S. K. Deb, A Novel Electrophotographic System, Appl. Opt, issue.8, pp.192-195, 1969.

S. Burkhardt, M. T. Elm, B. Lani-wayda, and P. J. Klar, Situ Monitoring of Lateral Hydrogen Diffusion in Amorphous and Polycrystalline WO3 Thin Films, vol.1701587, pp.1-9, 2018.

S. Sekimoto, H. Nakagawa, S. Okazaki, K. Fukuda, S. Asakura et al., Fiber-Optic Evanescent-Wave Hydrogen Gas Sensor Using Palladium-Supported Tungsten Oxide, Sensors Actuators, B Chem, vol.66, issue.1, pp.142-145, 2000.

N. Matsuyama, S. Okazaki, H. Nakagawa, H. Sone, and K. Fukuda, Response Kinetics of a Fiber-Optic Gas Sensor Using Pt / WO3 Thin Film to Hydrogen, Thin Solid Films, vol.517, issue.16, pp.4650-4653, 2009.

Y. Xi, Q. Zhang, and H. Cheng, Mechanism of Hydrogen Spillover on WO3 (001) and Formation of HxWO3 (X=0.125, 0.25, 0.375, and 0.5), J. Phys. Chem. C, vol.2014, issue.001, pp.494-501

A. I. Gavrilyuk, Aging of the Nanosized Photochromic WO3 Films and the Role of Adsorbed Water in the Photochromism, Appl. Surf. Sci, vol.364, pp.498-504, 2016.

,

S. Wang, W. Fan, Z. Liu, A. Yu, and X. Jiang, Advances on Tungsten Oxide Based Photochromic Materials: Strategies to Improve Their Photochromic Properties, J. Mater. Chem, vol.6, issue.2, pp.191-212, 2018.

Y. Zhou, Y. Peng, Y. Yin, F. Zhou, C. Liu et al., Modulating Memristive Performance of Hexagonal WO3 Nanowire by Water-Oxidized Hydrogen Ion Implantation, Sci. Rep, vol.6, pp.1-9, 2016.

W. H. Brattain and J. Bardeen, Surface Properties of Germanium, Bell Labs Tech. J, vol.32, issue.1, pp.1-41, 1953.

T. Seiyama, A. Kato, K. Fujishi, and M. Nagatani, A New Detector for Gaseous Components Using Semiconductive Thin Films, Anal. Chem, vol.1962, pp.2-3

,

N. Taguchi, Gas-Detecting Device, vol.3695848, 1971.

N. Barsan and U. Weimar, Conduction Model of Metal Oxide Gas Sensors, J. Electroceramics, vol.7, issue.3, pp.143-167, 2001.

G. Heiland and D. Kohl, Physical and Chemical Aspects of Oxidic Semiconductor Gas Sensors, In Chemical Sensor Technology

T. Seiyama and . Ed, , pp.43-88, 1992.

A. Staerz, S. Somacescu, M. Epifani, T. Kida, U. Weimar et al., WO3 Based Gas Sensors : Identifying Inherent Qualities and Understanding the Sensing Mechanism, Acs Sensors, 2020.

A. Staerz, C. Berthold, T. Russ, S. Wicker, U. Weimar et al., The Oxidizing Effect of Humidity on WO3 Based Sensors, Sensors Actuators B Chem, vol.237, pp.54-58, 2016.

S. Pokhrel, C. E. Simion, V. S. Teodorescu, N. Barsan, and U. Weimar, Synthesis, Mechanism, and Gas-Sensing Application of Surfactant Tailored Tungsten Oxide Nanostructures, Adv. Funct. Mater, vol.19, pp.1767-1774, 2009.

S. R. Utembe, G. M. Hansford, M. G. Sanderson, R. Freshwater, K. F. Pratt et al., An Ozone Monitoring Instrument Based on the Tungsten Trioxide Semiconductor, Sensors and Actuators B-Chemical, vol.114, issue.1, pp.507-512, 2006.

G. Neri, First Fifty Years of Chemoresistive Gas Sensors, Chemosensors, vol.2015, issue.1, pp.1-20

,

S. Pokhrel, C. E. Simion, V. S. Teodorescu, N. Barsan, and U. Weimar, Synthesis, Mechanism, and Gas-Sensing Application of Surfactant Tailored Tungsten Oxide Nanostructures, Adv. Funct. Mater, vol.19, issue.11, pp.1767-1774, 2009.

T. Daeneke, N. Dahr, P. Atkin, R. M. Clark, C. J. Harrison et al., Surface Water Dependent Properties of Sulfur-Rich Molybdenum Sulfides: Electrolyteless Gas Phase Water Splitting, 2017.

E. Albanese, C. Di-valentin, and G. Pacchioni, H2O Adsorption on WO3 and WO3-x (001) Surfaces, ACS Appl. Mater. Interfaces, vol.2017, issue.27, pp.23212-23221

,

T. Teusch and T. Klüner, Understanding the Water Splitting Mechanism on WO3(001) -A Theoretical Approach, J. Phys. Chem. C, vol.2019, issue.46, pp.28233-28240

,

R. Kishore, X. Cao, X. Zhang, and A. Bieberle-hütter, Electrochemical Water Oxidation on WO3 Surfaces: A Density Functional Theory Study, Catal. Today, pp.94-99, 2018.

,

Y. Mao, Y. Gao, W. Dong, H. Wu, Z. Song et al., Hydrogen Production via a Two-Step Water Splitting Thermochemical Cycle Based on Metal Oxide -A, Review. Appl. Energy, vol.2020, p.114860, 2019.

S. Abanades, Metal Oxides Applied to Thermochemical Water-Splitting for Hydrogen Production Using Concentrated Solar Energy, ChemEngineering, vol.2019, issue.3
URL : https://hal.archives-ouvertes.fr/hal-02310037

C. Berthold, A. Bjeoumikhov, and L. Brügemann, Fast XRD2 Microdiffraction with Focusing X-Ray Microlenses, Part. Part. Syst. Charact, vol.26, pp.107-111, 2009.

,

J. M. Olinger and P. R. Griffiths, Quantitative Effects of an Absorbing Matrix on Near-Infrared Diffuse Reflectance Spectra, Anal. Chem, issue.21, pp.2427-2428, 1988.

,

J. Sirita, S. Phanichphant, and F. Meunier, Quantitative Analysis of Adsorbate Concentrations by Diffuse Reflectance FT-IR, Anal. Chem, issue.0, pp.3912-3918, 2007.

,

G. Kresse and J. Hafner, Ab Initio Molecular-Dynamics Simulation of the Liquid-Metal-Amorphous-Semiconductor Transition in Germanium, Phys. Rev. B, issue.20, pp.14251-14269, 1994.

G. Kresse and J. Furthmüller, Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set, Comput. Mateials Sci, vol.6, pp.15-50, 1996.

J. P. Perdew, M. Ernzerhof, and K. Burke, Rationale for Mixing Exact Exchange with Density Functional Approximations, J. Chem. Phys, issue.22, pp.9982-9985, 1996.

,

S. Wicker, M. Guiltat, U. Weimar, A. Hémeryck, and N. Barsan, Ambient Humidity Influence on CO Detection with SnO2 Gas Sensing Materials. A Combined DRIFTS/DFT Investigation, J. Phys. Chem. C, vol.2017, issue.45, pp.25064-25073
URL : https://hal.archives-ouvertes.fr/hal-01685597

,

D. Joubert, From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method, Phys. Rev. B -Condens. Matter Mater. Phys, vol.59, issue.3, pp.1758-1775, 1999.

,

P. E. Blochl, Projector Augmented-Wave Method, p.50, 1994.

H. J. Monkhorst and J. D. Pack, Special Points for Brillouin-Zone Integrations, Phys. Rev. B, issue.12, pp.5188-5192, 1976.

W. Tang, E. Sanville, and G. Henkelman, A Grid-Based Bader Analysis Algorithm without Lattice Bias, J. Phys. Condens. Matter, vol.21, issue.084204, pp.1-7, 2009.

W. Humphrey, A. Dalke, and K. Schulten, VMD: Visual Molecular Dynamics, J. Mol. Graph, vol.14, issue.1, pp.33-38, 1996.

, Persistence of Vision Raytracer. Persistence of Vision Pty. Ltd, 2004.

A. Staerz, Methods for Expanding the Diversity in the Response of Metal Oxide Based Gas Sensors, 2019.

S. M. Kanan, Z. Lu, J. K. Cox, G. Bernhardt, and C. P. Tripp, Identification of Surface Sites on Monoclinic WO3 Powders by Infrared Spectroscopy, Langmuir, vol.18, issue.5, pp.1707-1712, 2002.

E. Roedel, A. Urakawa, S. Kureti, and A. Baiker, On the Local Sensitivity of Different IR Techniques: Ba Species Relevant in NO(x) Storage-Reduction, Phys. Chem. Chem. Phys, vol.10, issue.40, pp.6190-6198, 2008.

M. F. Daniel, B. Desbat, and J. C. Lassegues, Infrared and Raman Study of W03 Tungsten Trioxide and W03x H2O Tungsten Trioxide Hydrates Trioxides, J. Solid State Chem, vol.247, issue.2, pp.90359-90367, 1987.

M. Arai, S. Hayashi, K. Yamamoto, and . Raman, Studies of Phase Transitions in Gas-Evaporated WO3 Microcrystals, vol.75, pp.613-616, 1990.

M. Righettoni and S. E. Pratsinis, Annealing Dynamics of WO3 by in Situ XRD, Mater. Res. Bull, vol.59, pp.199-204, 2014.

E. Salje, The Orthorhombic Phase of WO3, Acta Cryst. B, vol.1977, issue.1, pp.574-577

B. O. Loopstra and P. Boldrini, Neutron Diffraction Inverstigation of WO3, Acta Cryst . B, issue.21, 1966.

D. Y. Lu, J. Chen, H. J. Chen, L. Gong, S. Z. Deng et al., Raman Study of Thermochromic Phase Transition in Tungsten Trioxide Nanowires, Appl. Phys. Lett, vol.90, issue.4, pp.96-99, 2007.

H. Jin, H. Zhou, and Y. Zhang, Insight into the Mechanism of CO Oxidation on WO3(001) Surfaces for Gas Sensing: A DFT Study, Sensors, vol.2017, pp.1-12, 1898.

,

M. Gillet, C. Lemire, E. Gillet, and K. Aguir, The Role of Surface Oxygen Vacancies upon WO3 Conductivity, Surf. Sci, pp.519-525, 2003.

, Figaro Engineering Inc. Technical Information for, 2600.

J. Osaka, , 2004.

T. Heisig, C. Baeumer, U. N. Gries, M. P. Mueller, C. La-torre et al., Oxygen Exchange Processes between Oxide Memristive Devices and Water Molecules, Adv. Mater, vol.30, issue.29, pp.1-7, 2018.

Y. Wu, M. K. Chan, and G. Ceder, Prediction of Semiconductor Band Edge Positions in Aqueous Environments from First Principles, Phys. Rev. B -Condens. Matter Mater. Phys, vol.83, issue.23, pp.1-7, 2011.

J. T. Szymanski and A. C. Roberts, The Crystal Structure of Tungstite, Can. Mineral, vol.22, pp.681-688, 1984.

J. R. Günter, M. Amberg, and H. Schmalle, Direct Synthesis and Single Crystal Structure Determination of Cubic Pyrochlore-Type Tungsten Trioxide Hemihydrate, WO3 · 0.5H2O, Mater. Res. Bull, vol.24, issue.3, pp.90214-90220, 1989.

B. Gerand, G. Nowogrocki, and M. Figlarz, A New Tungsten Trioxide Hydrate, WO3 · 1/3H2O: Preparation, Characterization, and Crystallographic Study, J. Solid State Chem, vol.38, issue.3, pp.312-320, 1981.

B. O. Loopstra and H. M. Rietveld, Further Refinement of the Structure of WO3, Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem, issue.7, pp.1420-1421, 1969.

,

R. Kishore, X. Cao, X. Zhang, and A. Bieberle-hütter, Electrochemical Water Oxidation on WO3 Surfaces: A Density Functional Theory Study, Catal. Today, pp.94-99, 2018.

Y. Wu, M. K. Chan, and G. Ceder, Prediction of Semiconductor Band Edge Positions in Aqueous Environments from First Principles, Phys. Rev. B -Condens. Matter Mater. Phys, vol.83, issue.23, pp.1-7, 2011.

J. T. Szymanski and A. C. Roberts, The Crystal Structure of Tungstite, WO 3 -H 2 O, Can. Mineral, vol.22, pp.681-688, 1984.

J. R. Günter, M. Amberg, and H. Schmalle, Direct Synthesis and Single Crystal Structure Determination of Cubic Pyrochlore-Type Tungsten Trioxide Hemihydrate, WO 3 · 0.5H 2 O, Mater. Res. Bull, vol.24, issue.3, pp.90214-90220, 1989.

B. Gerand, G. Nowogrocki, and M. Figlarz, A New Tungsten Trioxide Hydrate, WO 3 · 1/3H 2 O: Preparation, Characterization, and Crystallographic Study, J. Solid State Chem, vol.38, issue.3, pp.312-320, 1981.

B. O. Loopstra and H. M. Rietveld, Further Refinement of the Structure of WO 3, Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem, issue.7, pp.1420-1421, 1969.

E. Salje, The Orthorhombic Phase of WO 3, Acta Cryst. B, issue.1, pp.574-577, 1977.