
HAL Id: hal-02962655
https://laas.hal.science/hal-02962655

Submitted on 9 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A PSD-based fingerprinting approach to detect IoT
device spoofing

Florent Galtier, Romain Cayre, Guillaume Auriol, Mohamed Kaâniche,
Vincent Nicomette

To cite this version:
Florent Galtier, Romain Cayre, Guillaume Auriol, Mohamed Kaâniche, Vincent Nicomette. A
PSD-based fingerprinting approach to detect IoT device spoofing. 25th IEEE Pacific Rim In-
ternational Symposium on Dependable Computing (PRDC 2020), Dec 2020, Perth, Australia.
�10.1109/PRDC50213.2020.00015�. �hal-02962655�

https://laas.hal.science/hal-02962655
https://hal.archives-ouvertes.fr


A PSD-based fingerprinting approach to detect IoT
device spoofing

Florent Galtier∗, Romain Cayre∗‡, Guillaume Auriol∗†, Mohamed Kaâniche∗, Vincent Nicomette∗†
∗CNRS, LAAS, 7 avenue du colonel Roche, F-31400

†Univ de Toulouse, INSA, LAAS, F-31400
‡APSYS.Lab, APSYS

Email: ∗firstname.lastname@laas.fr ‡firstname.lastname@airbus.com

Abstract—Spoofing attacks are generally difficult to detect
and can have potentially harmful consequences on computer
networks and applications. Wireless IoT networks, in the context
of smart buildings or smart factories, are particularly vulnerable
to these attacks. In this paper, we present a new physical device
fingerprinting approach aiming at detecting spoofing attacks in
wireless IoT environments. The proposed approach is based on
the analysis of some properties of the physical signals emitted
by connected devices, using their Power Spectral Density (PSD)
to extract a frequency profile of their communications. This
approach does not require any expensive equipment, is easy to
deploy, and is resilient to non predictable phenomena in trans-
missions. The detection of spoofing attacks consists in comparing
the fingerprint of a transmitting device with previously stored
fingerprints of legitimate devices, by measuring the similarity
of the corresponding PSDs and applying a community detection
algorithm. The efficiency of this approach has been successfully
tested using various experimental setups with connected devices
supporting different wireless protocols (BLE, Zigbee). We also
discuss the practical applicability of our approach, e.g. in an
industrial environment by analysing its scalability and proposing
solutions to tune and optimize its deployment at a large scale.

Index Terms—Smart environments, IoT, fingerprinting, SDR,
PSD

I. INTRODUCTION

The rapid and massive expansion of IoT devices in recent
years has led to the development of a large number of
heterogeneous wireless communication protocols designed to
adapt to the constraints of these new systems (e.g. low power
consumption, ...), while security is generally not considered
as a primary concern. Indeed, many security vulnerabilities
affecting wireless IoT protocols have been published in recent
years [1] [2]. Several studies have also shown that multiple
wireless-based attacks targeting IoT devices can be easily
performed, using low cost hardware and open source software.

Many of these attack strategies rely on spoofing operations,
allowing an attacker to easily impersonate a legitimate node.
Multiple examples can be highlighted: Man-in-the-Middle,
forged traffic injection, deauthentication, etc. These attacks
allow an attacker to compromise the availability, confiden-
tiality or integrity of a communication by reproducing data
identifying a legitimate device. However, many of these attacks
are out of the scope of traditional network security monitoring
tools, as it is quite easy to run spoofing attacks that remain
undetected at link-layer and above OSI layers.

One of the most relevant defensive strategies to detect this
type of active attacks is fingerprinting. Indeed, this technique
makes it possible to identify an unknown device based on some
physical characteristics, even if it attempts to impersonate a
legitimate one. However, existing fingerprinting techniques are
generally not easy to deploy in practice. Indeed, some of them
require the use of costly Digital Signal Processing hardware,
whereas in the context of IoT there is a strong requirement for
cost reduction. Moreover, most of these techniques have been
validated only by simulation, and not experimentally under
real-world conditions which might significantly differ from
simulations.

In this paper, we present a novel method for fingerprinting
IoT devices that aims to address these limitations. Unlike
existing solutions which generally focus on the analysis of the
transient phase during which a device starts communicating,
which requires the use of high precision equipment, our
method is based on the analysis of the entire physical signals
emitted by the devices without relying on expensive hardware,
and is validated and assessed experimentally in a variety of
experimental conditions.

The proposed approach is designed to provide a comple-
mentary protection against spoofing attacks in Smart buildings,
factories or homes. It focuses on analysing the Power Spectral
Density (PSD) of physical signals to identify legitimate objects
and use the fingerprints of these objects to detect potential
intruders in the wireless environment.These fingerprints allow
each device to be uniquely identified because they reflect
the imperfections of hardware emitter components which
are specific to each device. PSD has been chosen instead
of the most commonly used Fast Fourier Transform (FFT),
particularly for its resilience to phase offsets. The effectiveness
of this technique is based on the difficulty for an attacker
to clone the imperfections of the hardware that produce
the spectrum variations. Indeed, to our knowledge, cloning
such a fingerprint would require the use of a very expensive
transceiver capable of operating at very high sampling rates,
while being able to compensate for the impact of its own
imperfections on the received and sent signals, which implies
building a complex model of the interferences it produces.

The contributions of this paper are threefold:
• We present a novel low-cost fingerprinting method based

on the PSD analysis and classification of IoT devices



entire signals, unlike most of existing solutions that focus
on the transient phase of the emitter, and thus require high
quality receivers. Our approach is generic and protocol-
independent, supporting the main modulation schemes
traditionally used in smart environments.

• We tested experimentally our approach to validate its
practical feasibility, showing promising results in terms of
detection efficiency of illegitimate devices and scalability.

• We make the data collected during our experiments and
our results publicly available to facilitate the reproducibil-
ity of our work and enable the development of other
fingerprinting solutions adapted to our context (see [3]).
We are not aware of similar data available to the scientific
community.

The paper is organized as follows. In Section II, we discuss
related work focused on wireless devices identification solu-
tions. Then, we give an overview of our approach in Section
III. The different steps of our approach (the construction of the
fingerprints and the detection process) are detailed in Section
IV. In Section V, the results of various experiments carried out
in real-word conditions are presented to assess the relevance of
our approach. The performance and scalability of the approach
are also discussed. The generalization of our approach to
address dynamic environments with mobile objects and real-
time execution is discussed in Section VI. Finally, Section VII
concludes the paper and outlines future work.

II. RELATED WORK

This section describes some related works focusing on
fingerprinting methods for wireless devices.

A common approach is based on the analysis of the transient
phase during which the transmitter starts to communicate.
Indeed, this transient phase exhibits certain distinctive char-
acteristics that are directly influenced by the components
involved and the manufacturing process of the transmitter.
Some examples are proposed in [4]–[6]. Another relevant
work by Boris Danev’s [7], [8] focusing on RFID devices
fingerprinting, relies on an analysis of the transient phase and
of the response time together with the identification of the
modulation used by the device. These solutions that focus
on the analysis of the transient transmission phase are quite
demanding in terms of reception quality, and require the use
of expensive receivers to collect a maximum amount of infor-
mation over a short period at the beginning of the transmission
of a frame, which is difficult in practice. Our objective being
to propose a low-cost approach, the solution explored in this
paper is based on the monitoring and acquisition of the entire
signal, which requires less precision of the receiver to get
the same amount of data from the emitter. We also want to
be able to recognise devices without having to identify the
specific modulation used as proposed by Danev.

Another approach, used in PARADIS [9] for IEEE 802.11
devices, consists in capturing the frames and their demodulated
version, in order to create an ”ideal” version of the modulated
signal and then compare it with the received signal to capture
specific artifacts that are inherent to the transmitter or the

channel. However, this approach is protocol-dependent and
is difficult to generalise to other modulation schemes and
protocols. Based on our experience, capturing and processing
signals in real-time is challenging due to potential desynchro-
nisation of the received signal and the regenerated one.

Other state of the art solutions use Physical Unclonable
Functions (PUF) to support device authentication and identifi-
cation. They actually implement ”challenge-response” mech-
anisms related to the physical characteristics of the devices,
and cover much more than simple signal processing, as they
are based on any uniquely identifiable mechanism that can
be linked to any physical object. Some works are related to
Radio-Frequency based PUF for IoT security, such as the RF-
PUF [10], an approach based on amplitude, phase and DC
offsets relatively to an ”ideal signal” in protocols using a 16-
Quadrature Amplitude Modulation (16-QAM), e.g., such as
for IEEE 802.11, and on classification with a neural network
to identify devices. These solutions are usually not generic and
costly and their efficiency is generally assessed by simulation.

Some interesting works focus on the characterization of the
device behaviour when faced with specific errors or alterations
of the packets. For instance, in [11], the authors study the
reception rate of different devices when packet headers are
modified, to uniquely identify devices based on their toler-
ance to those modified packets. Some physical fingerprinting
methods have been also proposed for specific applications
or devices, for example to distinguish two brands of mobile
phones [12], or in [13]. These methods focus on specific
protocols and on the differences they can detect among a given
set of devices. Our approach, however, aims to address all
possible protocols.

In the general context of device fingerprinting, several stud-
ies focused on upper-layers fingerprinting, analysing features
such as counters, headers content and software or hardware
specific parameters. For example, several fingerprinting and
anti-fingerprinting methods have been investigated in the con-
text of web-browsers in order to identify a user without the
use of cookies [14]–[16].

Our goal is to propose a new device fingerprinting approach
that can efficiently mitigate spoofing attacks that are not
detected at the link-layer, while being inexpensive (e.g., not
requiring high-quality receivers) and easy to deploy. Our
approach based on the PSD of the physical signal, sampling at
a low rate the entire signal, is designed to fulfil this objective.

III. APPROACH OVERVIEW

This section outlines the principles of our approach and our
assumptions about the targeted context and threat model.

A. Context

Our approach is intended for use in a smart environment,
in which the legitimate connected devices to be monitored are
deployed at specific locations of the environment , using het-
erogeneous wireless communication protocols, such as BLE,
Zigbee, WiFi, ... The generalization of our approach to IoT
environments including mobile objects is discussed in Section



VI. Typical use cases include smart buildings equipped with
many sensors aiming at optimizing the energy consumption
of the building, a smart factory in which some legitimate
connected devices are used to perform some specific tasks, or
smart homes in which different sensors of a physical intrusion
detection system are deployed at different locations. The pro-
posed approach aims at detecting an attacker entering the smart
environment, carrying some connected devices implementing
various wireless protocols that they use to impersonate a
legitimate device. We assume that the attacker is able to run
spoofing attacks targeting any layer above the link layer of the
OSI model. For that purpose, they may use a programmable
dongle supporting the targeted protocol, or an SDR (Software
Defined Radio) to perform replay attacks or to re-create a
physical-layer signal corresponding to the link-layer data to be
transmitted. However, we assume that the attacker is not able
to exactly replicate the physical imperfections of the legitimate
transmitter. Indeed, for replay attacks, a high quality SDR
would be required and, for a pure spoofing attack, the attacker
would also need high expertise in signal processing to be able
to replicate such imperfections while sending arbitrary data.

B. Architecture of the approach

Our approach is designed to create physical fingerprints
of the legitimate devices in the environment, and then to
detect potential intrusions by comparing with these fingerprints
captured signals that are identified at the link-layer as being
transmitted by one of the registered devices. It can be decom-
posed into three main steps:

1) Fingerprint creation: acquisition of Physical Protocol
Data Unit (PDU) signals from each legitimate device,
and computation of the PSDs associated to these differ-
ent signals. Each set of PSDs from a device constitutes
its fingerprint. The fingerprints of all legitimate devices
are then saved in a fingerprint database.

2) Cluster computation and Device fingerprints similarity
analysis: measurement of the similarities between all the
device fingerprints, then clustering of the different PSDs,
using a community detection algorithm. The similarity
matrix and the community for each PSD are then saved
in an additional database, called device communities
database, for further analyses.

3) Intrusion detection: The PSD of each incoming signal
whose address corresponds to a legitimate device is
compared to the fingerprints previously registered in the
database in Step 1, by computing its similarity with each
fingerprint in order to estimate whether or not it belongs
to a known community.

This approach is illustrated in Figures 1 and 2. Fingerprint
creation is first performed off-line, for each legitimate device
of the smart environment. These fingerprints along with the
device similarity matrix and the identified communities, are
saved respectively in the fingerprint and the device communi-
ties databases. This fingerprint creation is performed inside
the smart environment, including all the legitimate devices
at their dedicated location, by means of Software Defined

Radio (SDR) devices, purposely installed in the environment
at strategic locations. The intrusion detection is then per-
formed on-line, by capturing the signals emitted by the dif-
ferent connected devices of the smart environment (including
possible malicious devices carried by attackers entering the
environment and impersonating a legitimate device at link
layer1) and comparing these signals to the previously saved
fingerprint. This comparison algorithm takes as inputs the
similarity matrix and the communities previously saved in the
device communities database. Note that it is easy to integrate
new legitimate objects into the smart environment. This simply
consists in executing the two first steps described above in
order to create the fingerprint of this new object, and updating
the similarity matrix and the clusters.

Fig. 1: Fingerprint creation and cluster computation

IV. DETAILED DESCRIPTION OF THE APPROACH

In this section, we detail the different steps of our approach
and their integration. Subsection IV-A explains the motivations
for choosing the PSD for the creation of fingerprints, and how
these fingerprints are computed. Subsection IV-B describes the
algorithms used to measure the similarity between PSDs and
the methodology to compute PSD clusters. Finally, subsection
IV-C describes how the intrusion detection is performed for
each incoming signal, based on these clusters and the PSDs
stored in the database.

A. Fingerprint creation

1) Signal acquisition: To capture the signals transmitted
by connected devices, a receiver that can support all different
types of modulations is required, while being affordable and

1A device can be impersonated either by using its link-layer address if it
exists, or by mimicking its behaviour.



Fig. 2: Intrusion detection

easy to use with a standard computer. This is why, we have
chosen to use Software Defined Radio (SDR) based devices
such as the HackRF One [17] and the LimeSDR Mini [18].

These SDR receivers can be set to operate at given fre-
quency and sampling rate, and transmit a stream of the
captured signals to the computer dedicated to processing them.

The SDR receivers provide streams from which Physical
PDUs must be extracted. For this purpose, we used rising
and falling amplitude edges to detect PDUs, then tried to
demodulate them according to the protocol studied. When
a valid PDU is found, the signal corresponding to its entire
transmission is then saved.

2) Power Spectral Density Analysis: In order to extract the
frequency characteristics of a signal, a conventional approach
would be to use a Discrete Fourier Transform (or DFT).
Indeed, the DFT is a reversible transformation that converts a
discrete signal in the time domain into an amplitude distribu-
tion in the frequency domain, limiting the loss of information.
However, in our approach, we want to be able to deal with
non perfect transmitters that possibly produce different phase
offsets for each transmission. As the frequency is proportional
to the derivative of the signal’s phase, non predictable phase
offsets lead to different spectral representations of a same
device. As a consequence, the DFT may be problematic for
the construction of our fingerprints.

A more relevant approach, commonly used in signal pro-
cessing, is based on the Power Spectral Density, or PSD, of
the signal. The PSD measures the power distribution of the
frequencies of an entire signal, but with a loss of time infor-
mation (unlike DFT, PSD is not a reversible transformation).
It is calculated as follows:

PSD(s(t))(f) = DFT (s(t) · s∗(−t))(f)

the ”·” operation being the convolution between signals and
s∗ being the conjugate form of the temporal signal s.

Among the interesting properties the PSD exhibits, the one
we are interested in is its independence from phase offset.

PSD, like DFT, has the property of isolating the spectral
components of a signal. We assume that a specific object,
in addition to the frequencies related to the payload sent,
exhibits specific transmission profiles on different frequencies,
which are highly dependent on its physical components and
the quality of the manufacturing. As illustrated in Figure 3, we
believe the PSD is a relevant candidate to efficiently isolate
different emitters by their frequency usage profile2. In this
figure, two different Bluetooth Low Energy (BLE) devices are
analysed: a dongle and a lightbulb. The PSD curves correspond
to three PDU transmissions from each device. It can be seen
that different PSD profiles are associated to each BLE device.

We then decided to use PSD-based fingerprints of a device
in our approach. To build these fingerprints, we record a set
of physical signals from the device, each corresponding to the
entire emission of a single PDU, then we compute the PSDs
of those signals and store them as the fingerprint of the device.

Fig. 3: PSD for two distinct BLE devices (3 PDUs each)

B. PSDs similarity analysis and clustering

1) Similarities computation: Our approach is based on the
measurement of similarities between pairs of PSDs. For that
purpose, we experimented several metrics:
• Metrics based on the occurrence of specific frequen-

cies among top 10% frequencies with highest measured
power: The similarity measure corresponds to the number
of common frequencies in the top 10% of the PSD pair
to be compared.

• Metrics based on top 10% highest power frequencies, and
the difference between their ”rank”: we proceed the same
way as for the previous metric, taking into account in
addition the difference of ”rank” of the common frequen-
cies in the sorted 10% of highest power, to compare their
”importance” in the signal.

• Metrics based on top 10% highest power frequencies, and
the maximal ”rank” of each one: instead of comparing the
ranks, we take into account the highest one in the pair to
compare, to measure its maximal importance.

• Metrics based on the distance between the PSDs curves.
The first type of metrics aims at isolating the frequencies

that are actually specific to the devices, and compare their

2We discuss the experimental efficiency of our approach in Section V.



importance in the different signals. However, considering only
the frequencies with the highest power may lead to ignoring
potential weaker parts of the signal’s spectrum, that are
also characteristic of the device. Similarly, isolating only the
weakest parts would ignore relevant frequencies. Therefore,
we also experimentally explored the possibility to only use
the ”ranks” over the entire frequency spectrum. However, with
the whole spectrum or only a part of it, the results were at
best equivalent to those obtained with distance-based metrics,
and at worst equivalent to a random identification in the case
of only analysing the presence of these specific frequencies
among the most powerful ones. As a consequence, and also
because of its simplicity, we opted for distance-based metrics.

We tested several distances, such as the euclidean distance
between PSDs, average and max by-frequency L1 and L2
distances, also called the Manhattan distance and the Euclidean
distance. We obtained the best results with the max by-
frequency L2 distances between PSDs as the distance between
two PSDs defined as follows:

D(PSD1, PSD2) = max((PSD1(f)− PSD2(f))2) (1)

This distance was thus adopted in our approach. The next
step consists in defining a similarity measure to estimate the
proximity between a given PSD and other PSDs. Since our
PSDs are normalised, the distance D is always between 0
and 1. Hence, we decided to simply take 1 −D as our sim-
ilarity measure. However, in order to have a clear separation
between similar and dissimilar PSDs, we decided to amplify
the differences by lowering the values close to 0, leading to
the following similarity measure:

S(PSD1, PSD2) = [1−D(PSD1, PSD2)]amp (2)

Parameter amp is evaluated empirically for each protocol.
2) Community detection: The next step is then to create

”clusters” of PSDs corresponding to the physical PDUs from
a given source. To visualize the similarity between PSDs, a
graph is generated in which each node is associated to one
individual signal’s PSD, and the edges between the nodes are
labeled with a weight corresponding to the similarity measure
between the PSDs. A community detection algorithm is then
applied in order to group into clusters similar PSDs that are
likely to correspond to communications from the same device.

Several community detection algorithms are proposed in the
literature. Random walk algorithms, such as walktrap [19],
randomly crawl a graph to compute, for each pair of nodes,
estimates of the probabilities to move from one to the other
in a given number of steps. Then, based on these probabilities
and nodes degrees it estimates the likelihood for each pair
of nodes to be in a same community. Communities that are
close according to a distance based on these probabilities and
degrees are then grouped iteratively, starting with each node
in an independent community. Another approach is based on
k-means and k-medioids [20] algorithms, which take as a
parameter the number of clusters to build, start by randomly
adding nodes to clusters, then iteratively compute the center
of each cluster (either a barycenter for k-means, or the node

considered as the most central for k-medioids) and add again
nodes to the cluster of the nearest center. Modularity-based
algorithms, such as Girvan-Newman [21] or the fast-greedy
[22] (which is faster in the case of sparse graphs), add nodes to
individual clusters, then merge iteratively the two clusters that
maximise the modularity of the whole graph (the modularity
measures the quality of the partition based on the number
of inter-community and intra-community edges), forming a
dendrogram with the successive merges.

In our approach we chose the fast-greedy algorithm to build
”communities” of PSDs, each corresponding to a given object,
for several reasons:
• Weights can be assigned to edges.
• It is quite fast. A graph with n nodes, m edges and a

dendrogram describing the community structure of depth
d, results in a O(md log2 n) time complexity . Indeed,
in our case, since we have a near-complete graph m =
O(n2), and the dendrogram depth is in O(log2 n), the
fast-greedy algorithm has a complexity in O(n2 log22 n).

• It is deterministic, unlike random walk algorithms.
• In the implementation we used (see Section V), it can

estimate the number of clusters to create, unlike k-means
or k-medioids for which this number must be provided
by the end user. This would be difficult in our approach
since, even if the number of legitimate devices is known,
the presence of outliers could lead to the creation of
additional clusters, whose number is unknown.

3) Cleaning and saving the data: The final step is to
identify potential outliers, to avoid taking them into account
in the cluster databases, and to find out whether an incoming
signal being analyzed corresponds or not to one of the known
devices. We define a PSD as correctly identified by the
community detection algorithm if it is included in a cluster
containing a majority of the PSDs from the same device.

Three types of outliers can be distinguished:
• Unidentified signals: signals forming small external

communities outside the ”main” communities containing
a majority of signals from a device.

• Identified distant signals: signals included in the right
community, but located far from its other members.

• Wrongly identified signals: signals included in a wrong
community.

We first address the issue of unidentified signals, forming
small external communities, by removing the clusters with too
few members which are likely to correspond to outliers. For
each experiment, we empirically defined a threshold below
which the cluster is considered too small, relatively to the
number of signals per device in the experiment.

Identified distant outliers which correspond to PSDs cor-
rectly identified in a cluster but far from the other members
of the cluster are also removed. These are problematic because
a signal from another source, with interferences from the
environment, may be close to those outliers, and hence could
be recognised as member of the same cluster. To identify these
outliers, we measure, for each PSD, its average similarity with



the other PSDs of the same cluster. Then, we calculate, for
each one of them, the average similarity between a given PSD
and the other members of this cluster:

S(PSD, cluster) =
1

|cluster|
∑

PSDi∈cluster

S(PSD,PSDi)

(3)
Assuming that the signals follow a normal distribution

around the average, and that most of the signals are legitimate,
an assumption consistent with our experimental results, we
measure the standard deviation of these average similarities
σS in a given cluster, and remove the PSDs whose average
similarity with the cluster is too far from S, the average of
the different S for this cluster defined as follows:

S(cluster) =
1

|cluster|
∑

PSDi∈cluster

S(PSDi, cluster) (4)

We chose to remove all PSDs that have less than 99.7%
chances to be inside the cluster according to the hypothesis of
a normal distribution, which means the PSDs whose associated
S is below a threshold defined as follows:

threshold = S − 3 ∗ σS (5)

These S values, along with the average and standard devi-
ation for each cluster, are saved to be used subsequently for
intrusion detection, as explained in IV-C.

After the removal of these outliers, we obtain a list of
”clean” clusters and the corresponding signals. Then, the
following information is needed for intrusion detection:
• The PSDs of the signals used for this step.
• The similarity matrix between the different PSDs.
• The cluster associated with each one of them (outliers are

labeled as in an ”outlier cluster” numbered -1).
• The average and standard deviation of the average simi-

larity between a PSD and the rest of the cluster for each
cluster.

C. Detection

The detection phase consists in analysing the signals cap-
tured in the operational smart environment in order to estimate
whether they come from a known legitimate device or from
an unknown one. A new incoming physical PDU is hence
analysed as follows:
• The signal corresponding to this PDU is isolated accord-

ing to the approach described in Section IV-A1.
• The PSD of the signal, noted Ps is compared to the other

ones (by computing the similarity measure defined by
equation 2).

• The average similarity for each PSD in each cluster is
computed (except cluster -1) as defined in equation 3.

• This average similarity S(Ps, cluster) is compared to the
average S (as defined in equation 4) and standard devia-
tion σS of S previously saved for each cluster, identifying
possible clusters for the objects based on the proximity
of its average similarity to the reference one, using the

threshold defined in equation 5. If the PSD fits with more
than one cluster, the most relevant is selected according
to the similarity to the reference average similarity and
the standard deviation of those similarities. Otherwise we
consider the signal as an anomaly (that may correspond
to an attack).

Note that we deliberately did not consider the approach that
consists in re-computing the clustering algorithm to obtain
the cluster in which the new signal’s PSD would be located.
Indeed, this algorithm would take too much time whereas our
detection approach must be performed in real-time.

V. EXPERIMENTS

This section presents several experiments we carried out
in order to assess the relevance of our approach. We first
describe the experimental setup in Section V-A. Section V-B
is dedicated to the presentation of small scale experiments, 1)
using two devices sending the same data each at two different
positions to evaluate the impact of position on device recog-
nition, and 2) using three different devices at static positions,
still sending the same data. Section V-C is dedicated to the
presentation of higher scale experiments on sets of 10 different
devices, to evaluate our performances with more emitters.
Finally, in Section V-D, we describe some experiments carried
out on sets of around 20 identical devices. A summary of
the different parameters used in all the experiments, which
we further explain through the following subsections, can be
found in Table I. The section ends with a discussion about the
scalability and the performances of our approach. Note that the
signals we captured, along with the similarity matrices and the
results from our clustering, can be found in [3].

A. Experimental setup

Our objective was to design a tool that would be easily
accessible to researchers, requiring more affordable hardware
than the approaches based on high-precision captures. Accord-
ingly, we selected two different SDRs during our experiments:
the HackRF One, cheaper and faster to set up, for prototyping,
and the Lime SDR Mini, a little more expensive but offering
better capture precision and stability, for the final results. Our
implementation uses Python3 and the igraph [23] package for
graph creation and management as well as for the fast-greedy
community detection algorithm. For all experiments, the SDR
device (HackRF One for testing, then LimeSDR for the final
results) was plugged into a laptop located at a specific position.

For our experiments, we used very common connected
devices, that anyone can easily buy, including connected
lightbulbs, motion detectors, mobile phones or USB dongles.
The selected devices cover the three main modulation types:
• Amplitude modulation : used for example by remote

controls communicating with a modulation called Pulse
Width Modulation (PWM), transmitting during prede-
fined time slots, the duration of the transmission within
the slot encoding the different bits.

• Phase modulation : used by objects communicating with
Zigbee protocol, which is based on IEEE 802.15.4 using



TABLE I: Parameters of the different experiments

experiment number of sets per set size for set size number of signals for total number of
devices device fingerprint creation for testing fingerprint creation signals for testing

B-1 2 2 133 67 26600 13400
B-2 3 1 67 33 20100 9900
D 10 1 67 33 67000 33000

E-Zigbee 20 1 67 33 134000 66000
E-BLE 18 1 67 33 120600 59400

a Gaussian Minimum Shift Keying (GMSK, a phase
modulation where the sign of the phase variation is used
to encode the bits).

• Frequency modulation : used by objects implementing
BLE and Enhanced ShockBurst protocols, both using a
Gaussian Frequency Shift Keying (GFSK).

For our experiments, all incoming signals are demodulated
to ensure that they are generated from an identified device,
before processing them by our approach. Acquisition, demod-
ulation and signal processing were all implemented in Python3
to ease prototyping. An alternative solution would be to use a
compiled language to improve real-time performances.

B. First experiment

For the first experiment, we considered a reduced set of
BLE devices to assess, at a small scale, the efficiency of our
approach in creating distinct fingerprints for different devices.
For this experiment, we considered two different setups. For
each setup, the experiment consisted first in running the
fingerprints creation and PSD clustering steps of our approach
and then in evaluating the efficiency of our detection algorithm
in the presence of illegitimate devices. In the first setup (B-1 in
I), a connected power outlet and a BLE embedded chip were
used to transmit the same data. Two different locations are
also considered to capture the PDUs sent by the two sources.

As illustrated in Figure 4, the PDUs from the outlet and
those from the dongle are perfectly separated into two distinct
clusters, independent of the location of the signal acquisition
device, without errors and without any outlier found during the
cluster creation step. The nodes represent the PSDs and the
edges represent the similarities between PSDs, weighted by
our similarity measure. The graph is visualised using a posi-
tioning algorithm known as the spring layout, which positions
nodes on a graph by grouping ”close” nodes relatively to the
weight of edges linking them, representing their similarities.
This graph is only used for this visualisation purpose, and is
not used in the fingerprinting or intrusion detection algorithms.

In the second setup (B-2 in I), we run a similar experiment
with three different transceiver: the same BLE-connected
power outlet and two different BLE transceivers from different
manufacturers (CSR, which is a BLE dongle, and BLE-chip,
which is a Raspberry Pi’s Broadcom embedded chip). The
results of the clustering algorithm are displayed in Figure 5,
again showing a clear separation between the different devices.

In order to assess the detection efficiency of illegitimate
devices, we collected 200 signals from each device, and
adopted a 100-cross validation approach. The devices are first

Fig. 4: First experiment results Visualisation - Setup B-1

Fig. 5: First experiment results Visualisation - Setup B-2

separated into two sets, one playing the role of the legitimate
device, the other the role of the attacker (in the second setup
of the experiment, we considered one device as the attacker
and two as legitimate).

At each iteration, the data set of each legitimate device is
split in two parts: two thirds of the data set are used to compute
the fingerprints, similarities and clusters, and the last third is
used to assess the detection efficiency (to evaluate the false
positive rate). Similarly, one third of the data set associated
to an attacker device is used to run the detection algorithm
and check whether the corresponding PSDs are correctly
included in new clusters, different from those associated to
the legitimate devices, or are considered as outliers. We chose
to use only a third of the attacker’s PDUs for each test to
reduce the difference between legitimate and non legitimate
packet numbers. In this experiment, we used 100 signals in
each set (each position for each device), ran 100 iterations of
this process, and decided to consider a cluster to be too small
if it contains less than 49 members. We used the same values
for those parameters in each of the following experiments.

The results obtained after running those 100 iterations are
presented in Table II. The metrics used are defined as follows:

• Accuracy: assesses the success rate of our algorithm,
calculated with the formula TP+TN

Total .



• Precision: is related to the probability of false alarm,
given by TP

TP+FP .
• Recall: is related to the non-detection probability, calcu-

lated with the formula TP
TP+FN .

With TP /FP being the true/false positive rates, and TN /FN
being the true/false negative rates.

TABLE II: First experiments - results

Metric B-1 B-2
Accuracy 91.73% 100%
Precision 83.46% 100%

Recall 100% 100%
TP 33000 33000
TN 27541 66000
FP 5459 0
FN 0 0

From this first experiment, we conclude that our approach
is able to distinguish different objects on small sets. It can
also be seen from the first setup of the experiment that the
position has a significant effect on the frequency profile of
the devices, but no significant impact on the efficiency of
our approach to separate different emitters. The sensitivity
of the frequency profile to the position can be explained by
the impact of multipath-delay in wireless communications,
especially indoors, that generates Inter-Symbol Interferences
(ISI) in the signals due to reflections on different surfaces, and
hence depends on the positions of the emitter and receiver and
the surfaces present around them.

C. Generalisation - second experiment

In this experiment, we validated the approach at a larger
scale, using ten different BLE devices: 1) a Bluetooth USB
dongle from Cambridge Silicon Radio, 2) an iPhone, 3) a Sam-
sung smartphone, 4) a raspberry pi 3B (using its Broadcom
BCM43438 WiFi/BLE chip), 5) a WiFi/Bluetooth embedded
chip (Qualcomm Atheros QCA6174), 6) an electrical outlet
with a Texas Instruments (TI) BLE transceiver, 7) 2 different
connected lightbulb models, also using TI BLE transceiver, 8)
a thermometer using a TI BLE transceiver, and 9) a Bluetooth-
connected key ring (using a BK3231 chip).

The results of the clustering algorithm are displayed on Fig-
ure 6. Accuracy, Precision and Recall results generated from
100 cross-validation assessments, with the same proportions
as the previous experiment, and selecting each time randomly
half of the emitters as intruders, are presented in Table III.

TABLE III: Different devices, BLE - results

Metric BLE different devices
Accuracy 91.50%
Precision 85.81%

Recall 98.01%

The visualisation of the PSDs and their similarities shows
the presence of several outliers, that form small clusters of
one or two PSDs, but despite their presence, the different
devices are well isolated, their PSDs forming separate groups.

Fig. 6: Visualisation of the data from the different BLE devices

The results show that our approach is able to efficiently
detect the ”attackers” and recognise the legitimate registered
devices, though with a higher false positives rate compared
to the smaller-scale previous experiment. This is reflected
by a lower precision (which stems from the presence of
outliers, or from the relative proximity between some devices).
Nevertheless, the overall efficiency of our approach to detect
an intrusion inside a smart environment containing diverse
legitimate connected devices, is high a recall rate over 98%.

D. Identical devices

In the last experiment, we tested our approach on sets
of identical BLE and Zigbee devices: 18 NRF52840 chips
implementing BLE protocol and 20 XBee chips implement-
ing ZigBee protocol. The devices emit the same data from
similar positions. The results for the Zigbee and BLE cross-
validations can be found in Table IV, and the visualisation of
the PSDs similarities for Zigbee devices is presented in Figure
7. Moreover, we can conclude that the LimeSDR gives indeed
better results than the HackRF in our Zigbee experiment, while
they remain comparable for BLE.

TABLE IV: Same manufacturer, same model - results

Metric Zigbee Zigbee BLE BLE
LimeSDR Mini Hackrf LimeSDR Mini Hackrf

Accuracy 93.74% 81.09% 94.12% 95.81%
Precision 96.86% 85.85% 95.87% 94.89%

Recall 87.62% 66.20% 92.67% 97.16%

Even though in both cases, our visualisation highlighted a
potential collision between two emitters (as shown in Figure
7 between xbee9 and xbee20 for Zigbee devices), the overall
performance of our algorithm in separating the devices and de-
tecting potential intruders, as reflected by accuracy, precision
and recall measures, remains high.

Moreover, it is important to underline that the attacker
model used in this experiment is quite pessimistic. Indeed, we
consider that the attacker is able to know or guess precisely the



Fig. 7: Visualisation of the data from identical ZigBee devices

model of all legitimate devices, and is able to get a high num-
ber of identical copies of each specific model, and to use them
in approximately the same location as the legitimate ones. This
makes this kind of situation, and hence these collisions quite
unrealistic in usual smart environments. Moreover, even in this
pessimistic situation, our approach still exhibits fairly good
detection results, which, we believe reinforces its relevance.

E. Performances and Scalability

In this section we address the scalability of our approach and
estimate the associated performance overhead. Two main pa-
rameters are relevant for such analysis: the number of devices
N to be fingerprinted, and the number of PDUs or signals M
to be collected per device to create the associated fingerprints.
The processing time is directly proportional to the number of
similarity computations needed to run the community detec-
tion algorithm and create the fingerprints. This number is equal
to
(
M∗N

2

)
= (M∗N)∗(M∗N−1)

2 = (M∗N)2−M∗N
2 . Additionally,

when a new device is included in the environment and needs
to be fingerprinted, considering there were already (N − 1)
fingerprints, the number of similarity computations is given
by
(
M
2

)
+ (N − 1) ∗ M2 = (M−1)∗M

2 + (N − 1) ∗ M2 =
(2∗N−1)∗M2−M

2 . Figure 8 plots (on a log-scale) the evolution
of the number of similarity computations with the number
of devices, the number of PDUs per device varying between
10 to 100. Black curves correspond to the case where the
fingerprints are computed for the number of devices indicated
on the x-axis, and blue curves correspond to the case where
a new device is added incrementally. It can be seen that for a
given number of devices, increasing the number of PDUs leads
to a dramatic increase of the number of similarities computed,
and hence the processing time (the impact is quadratic). Ac-
cordingly, an optimal tradeoffs needs to be achieved between
the number of devices and the number of PDUs.

Fig. 8: Number of similarity computations estimation

The selection of the optimal number of PDUs should be
based on the detection efficiency of the proposed approach.
Table V presents the results of our intrusion detection algo-
rithm in the case of the experiment with BLE devices presented
in Section V-D, considering different numbers of PDUs per
device, varying from 10, 20, 50 and 100, respectively.

TABLE V: Same manufacturer, same model - BLE results for
different numbers of PDUs per device

Metric 100 PDUs 50 PDUs 20 PDUs 10 PDUs
Accuracy 94.8% 95.4% 94.5% 95.5%
Precision 93.2% 95.5% 96.5% 95.0%

Recall 97.0% 95.3% 92.9% 96.9%

The results of this experiment remain excellent with lower
numbers of PDUs. The results clearly depend on the experi-
mental environment and more experiments should performed
in different environments to analyse the impact of reducing
the number of PDUs on the detection effectiveness. We may
observe a higher variability in more noisy environments.

Additionally, Table VI presents the average times, over 100
samples, to compute the fingerprints measured in our different
experiments with different numbers of PDUs. These times
remain significantly low even with 100 PDUs per device.
Those times were obtained with a laptop equipped with an
i7-7700HQ (3.8GHz) and a 8GB RAM.

TABLE VI: Fingerprint creation measured times

#PDUs B-1 B-2 D E-BLE E-Zigbee
100 10.09s 10.34s 1mn 40s 2mn 12.30s 3m 34.21s
50 1.85s 1.84s 8.88s 11.56s 21.00s
20 1.13s 1.13s 1.83s 1.84s 4.51s
10 1.04s 1.03s 1.21s 1.12s 2.41s



Based on the numbers presented in Table VI, the estimated
time to create the fingerprints of 100 devices with 100 PDU
per device is around 90 mn and it takes only a few minutes
to create incrementally the fingerprint of an additional device.
These times are significantly reduced to around 60 mn and 30
sec, respectively if we only consider 50 PDUS per device.

VI. DISCUSSION

Our approach has been successfully tested in fairly static
smart environments, including smart sensors that are not
supposed to move much. This assumption corresponds to many
real-life cases, such as smart buildings.

However, the proposed approach can be easily adapted to
dynamic environments in which legitimate users can bring
connected devices that have not been already fingerprinted.
This requires that they register these devices before entering
the smart environment, so that their fingerprint can be com-
puted and saved in the corresponding database. The finger-
printing phase only requires a couple of minutes as shown in
Table VI (note that our algorithms are currently implemented
in Python, and can be further optimized), after which the
device can be identified by our algorithm.

Another relevant problem is related to dynamic objects that
can join, move around or leave the environment. This requires
a regular update of the fingerprints using the incremental
approach discussed in V-E. Note that dynamic fingerprints are
also useful to mitigate the potential desynchronisation between
the SDR receiver and the emitting devices.

Finally, it should be also noted that as the results of the
fingerprinting are sensitive to multi-path delay, the fingerprints
creation and the execution of the detection algorithm should
be done in the same environment.

VII. CONCLUSION

In this paper, we investigated a novel approach for device
identification and intruder detection based on the generation of
device fingerprints. These fingerprints are elaborated from the
PSDs of entire signals corresponding to PDUs from the device.
The selection of the PSD is motivated by the need to capture
the frequency characteristics of the emitter, without influence
of the position or phase offset. This approach is inexpensive
and is designed to detect potential link-layer spoofing attacks
that would not be detected by upper-layer monitoring.

The various experiments that we have performed confirmed
the high performance of our approach independently of the
protocol used by the emitters. Our experimental results showed
the high effectiveness of our approach in separating different
objects, with a precision and a recall always higher than 85%
when signal acquisition is carried out with the LimeSDR Mini,
showing a probability of non detection and a probability of
false alarm below 15%. These low probabilities ensure that,
in an intrusion detection system, a high number of positives
(packets coming from unidentified sources) observed over a
short period of time for a stream of PDUs will indicate that
the emitter is most likely an intruder.

For future work, we plan to carry out larger scale ex-
periments to confirm these promising results with a higher
number of sources in the environment. Moreover, we plan to
improve our implementation to address the limits exposed in
the previous section (by the use of a compiled language to
optimize the performances and the prototyping of the dynamic
signatures to mitigate desynchronisation problems).

SPECIAL THANKS

We would like to thank the GEI department of INSA
Toulouse for having provided the XBee modules for our
experiments.

REFERENCES

[1] D. Antonioli, N. O. Tippenhauer, and K. Rasmussen, “Bias: Bluetooth
impersonation attacks,” in Proceedings of the IEEE Symposium on
Security and Privacy (S&P), 2020.

[2] E. Ronen, A. Shamir, A.-O. Weingarten, and C. O’Flynn, “Iot goes
nuclear: Creating a zigbee chain reaction,” in 2017 IEEE Symposium on
Security and Privacy (SP). IEEE, 2017, pp. 195–212.

[3] “Experiments datasets,” https://gitlab.laas.fr/fgaltier/
prdc-2020-psd-based-fingerprinting-datasets.

[4] J. Hall, M. Barbeau, and E. Kranakis, “Radio frequency fingerprinting
for intrusion detection in wireless networks,” IEEE Trans. Dependable
Secure Comput., 2005.

[5] S. Ur Rehman, K. Sowerby, and C. Coghill, “Rf fingerprint extraction
from the energy envelope of an instantaneous transient signal,” in 2012
Australian Communications Theory Workshop (AusCTW), 2012, pp. 90–
95.

[6] M. Köse, S. Taşcioğlu, and Z. Telatar, “Rf fingerprinting of iot devices
based on transient energy spectrum,” IEEE Access, vol. 7, pp. 18 715–
18 726, 2019.

[7] B. Danev, “Physical-layer identification of wireless devices,” Ph.D.
dissertation, ETHZ, 2011, pages 25-90.

[8] B. Danev, D. Zanetti, and S. Capkun, “On physical-layer identification
of wireless devices,” ACM Computing Surveys (CSUR), vol. 45, no. 1,
pp. 1–29, 2012.

[9] V. Brik, S. Banerjee, M. Gruteser, and S. Oh, “Paradis : Physical 802 .
11 device identification with radiometric signatures,” 2008.

[10] B. Chatterjee, D. Das, S. Maity, and S. Sen, “Rf-puf: Enhancing iot
security through authentication of wireless nodes using in-situ machine
learning,” IEEE Internet of Things Journal, vol. 6, no. 1, pp. 388–398,
2019.

[11] B. W. Ramsey, B. E. Mullins, M. A. Temple, and M. R. Grimaila,
“Wireless intrusion detection and device fingerprinting through preamble
manipulation,” IEEE Transactions on Dependable and Secure Comput-
ing, vol. 12, no. 5, pp. 585–596, 2015.

[12] D. Nouichi, M. Abdelsalam, Q. Nasir, and S. Abbas, “Iot devices
security using rf fingerprinting,” in 2019 Advances in Science and
Engineering Technology Int. Conferences (ASET), 2019, pp. 1–7.

[13] J. Hasse, T. Gloe, and M. Beck, “Forensic identification of gsm mobile
phones,” in Proceedings of the first ACM workshop on Information
hiding and multimedia security, 2013, pp. 131–140.

[14] P. Laperdrix, N. Bielova, B. Baudry, and G. Avoine, “Browser finger-
printing: A survey,” 05 2019.

[15] P. Eckersley, “How unique is your web browser?” pp. 1–18, 2010.
[16] K. Boda, Á. M. Földes, G. G. Gulyás, and S. Imre, “User tracking on the

web via cross-browser fingerprinting,” in Nordic conference on secure
it systems. Springer, 2011, pp. 31–46.

[17] “Hackrf one official webpage,” https://greatscottgadgets.com/hackrf/.
[18] “Limesdr mini official webpage,” https://limemicro.com/products/

boards/limesdr-mini/.
[19] P. Pons and M. Latapy, “Computing communities in large networks using

random walks.” J. Graph Algorithms Appl., vol. 10, pp. 191–218, 01
2006.

[20] L. Kaufmann and P. Rousseeuw, “Clustering by means of medoids,”
Data Analysis based on the L1-Norm and Related Methods, pp. 405–
416, 01 1987.

https://gitlab.laas.fr/fgaltier/prdc-2020-psd-based-fingerprinting-datasets
https://gitlab.laas.fr/fgaltier/prdc-2020-psd-based-fingerprinting-datasets
https://greatscottgadgets.com/hackrf/
https://limemicro.com/products/boards/limesdr-mini/
https://limemicro.com/products/boards/limesdr-mini/


[21] M. Girvan and M. E. J. Newman, “Community structure in social
and biological networks,” Proceedings of the National Academy of
Sciences, vol. 99, no. 12, pp. 7821–7826, 2002. [Online]. Available:
https://www.pnas.org/content/99/12/7821

[22] A. Clauset, M. Newman, and C. Moore, “Finding community structure
in very large networks,” Physical review. E, Statistical, nonlinear, and
soft matter physics, vol. 70, p. 066111, 01 2005.

[23] “igraph,” https://igraph.org/.

https://www.pnas.org/content/99/12/7821
https://igraph.org/

