
Perception-constrained and Motor-level Nonlinear MPC for
both Underactuated and Tilted-propeller UAVs

Martin Jacquet1, Gianluca Corsini1, Davide Bicego2,1, Antonio Franchi2,1

Abstract— In this paper, we present a Perception-constrained
Nonlinear Model Predictive Control (NMPC) framework for the
real-time control of multi-rotor aerial vehicles. Our formulation
considers both constraints from a perceptive sensor and realistic
actuator limitations that are the rotor minimum and maximum
speeds and accelerations. The formulation is meant to be generic
and considers a large range of multi-rotor platforms (such
as underactuated quadrotors or tilted-propellers hexarotors)
since it does not rely on differential flatness for the dynamical
equations, and a broad range of sensors, such as cameras, lidars,
etc... The perceptive constraints are expressed to maintain
visibility of a feature point in the sensor’s field of view, while
performing a reference maneuver. We demonstrate both in
simulation and real experiments that our framework is able
to exploit the full capabilities of the multi-rotor, to achieve the
motion under the aforementioned constraints, and control in
real-time the platform at a motor-torque level, avoiding the use
of an intermediate unconstrained trajectory tracker.

I. INTRODUCTION
Unmanned Aerial Vehicles (UAVs) are becoming more

and more popular thanks to the increasingly powerful hard-
ware and software, and the strong aerial robotics community
that provides new efficient control techniques. Moreover, the
increasing availability, compactness and lightweightness of
onboard sensors, have resulted in a growing interest in using
such aerial platforms in a large range of applications, from
search and rescue tasks to aerial monitoring or exploration,
as well as work in high risks places or human-denied areas.
These tasks can be either perception-only or require physical
interaction. Besides, perception sensors are also of interest in
regards to the localization in the surrounding environment [1]
which is another criticality, especially when the robot is
moving around humans. In all these tasks, perception has
a fundamental role, as the lost of perceivability of the area
of interest may lead to the inability to fulfill the mission, or
to an immediate danger for the people around.

Considering perception in the planning and control of an
aerial vehicle is somehow challenging, due to the computa-

1LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France,
martin.jacquet@laas.fr, gianluca.corsini@laas.fr,
davide.bicego@laas.fr, antonio.franchi@laas.fr
2Robotics and Mechatronics lab, Faculty of Electrical Engineering, Mathe-
matics & Computer Science, University of Twente, Enschede, The Nether-
lands d.bicego@utwente.nl, a.franchi@utwente.nl

This work was partially funded by the ANR, under the Projects ANR-17-
CE33-0007 ‘MuRoPhen’ and ANR-18-CE33-0001 ‘The Flying Coworker’,
the cooperation program INTERREG Deutschland-Nederland as part of the
SPECTORS project 143081, and by the European Union’s Horizon 2020
research and innovation programme under grant agreement ID: 871479
AERIAL-CORE.

tional load of the processing, and the difficulty to consider
at the same time the perception constraints and the dynamic
limitations of the platform. As these constraints are critical
both for the sake of achieving the task and for safety reasons,
it is, therefore, very important to design a control architecture
able to ensure that the desired task is performed while
satisfying the aforementioned constraints.

Recently, MPC has gained popularity in aerial robotics,
and some work started to incorporate perception-based con-
straints [2]–[5] directly into the multi-rotor control archi-
tecture, since these constraints can be expressed and im-
plemented as a general inequality, like any other constraint
acting on the system. In particular, MPC is a model-based
and optimization-based control technique using the dynamic
model of the system to predict its behavior over a finite
receding horizon.

Thanks to the prediction capability of this control scheme,
it is meant to be in-between planning and control, providing
a short term sequence of inputs to accomplish a given task.
It allows a great reactivity of the platform since the short
term controls are planned online, and this predictive aspect
is also a way to be more compliant with the internal and the
external constraints. However, the high nonlinearity of these
constraints are limiting the use of these MPC frameworks as
real-time controllers for the complete system. They are thus
used as local trajectory planners or as attitude references,
while the low-level or attitude control is left to unconstrained
trackers or attitude regulators [6]–[9]. This leads to some
important issues: i) there is no guarantee that the local
trajectory tracker will fulfill the perceptive constraints which
might lead to a loose of perceivability, and either ii) the MPC
planner does not take into consideration the real constraints
acting on the system inputs, such as motor bounds on speed
and acceleration, or iii) it takes them into account, but the
use of a low level tracker jeopardizes such feature.

In this work, we build upon the work presented in [10]
and propose a Perception-based Nonlinear MPC approach
that considers the real constraints on the actuators and feeds
directly the low-level inputs to the rotor-speed controllers.
As the NMPC solver acts as a controller, the proposed
solution has also to cope with strong real-time constraints. In
addition to this, the proposed formulation is extended beyond
standard quadrotors since it does not rely on differential
flatness for the modeling of the system’s dynamics, and
covers a larger spectrum of multi-rotor vehicles with, e.g.,
differently-oriented propellers, for instance under-actuated or
fully-actuated platforms [11].

The paper is organized as follows. In Sec. II, we detail

mailto:martin.jacquet@laas.fr
mailto:gianluca.corsini@laas.fr
mailto:davide.bicego@laas.fr
mailto:antonio.franchi@laas.fr
mailto:d.bicego@utwente.nl
mailto:a.franchi@utwente.nl

the modeling of the dynamics and the formulation of the
perceptive constraints, while Sec. III contains the method-
ological aspects and the formalization of the optimal control
problem. Finally, in Sec. IV we present the experimental
results achieved using our framework.

II. MULTI-ROTOR MODELING
In this section we introduce the equality constraints due to

the multi-rotor dynamics and the inequality constrains due
to the motor-torque limitations and the perception require-
ments.

A. Equality Constraints due to the Multi-rotor Dynamics
The multi-rotor is modeled as a rigid body of mass m,

with n≥ 4 actuators (motors plus propellers). The propellers
rotation axes can be either all pointing in the same direc-
tion (collinear configurations) like in standard underactuated
platforms, or pointing in different directions (tilted configura-
tions) to have a larger actuation span (see [12] and references
therein). The world inertial frame and the rigid-body frame
(whose origin coincides with the center of mass of the multi-
rotor) are denoted by FW , FB, respectively. The position of
OB – the origin of FB in FW – is denoted by W pB, while
W RB is the rotation matrix that represents the orientation of
FB with respect to (w.r.t.) FW , and similarly for all the other
frame pairs. The robot state is defined as the concatenation
of the body state xb and the state of the actuators xa, i.e.,

x =
[
x>b x>a

]> ∈ R12+n. (1)

The body state xb is defined as

xb = [p>v>η>ω>]> ∈ R12, (2)

where p = W pB, v is the velocity of OB expressed in FW ,
η = [φ θ ψ]> is any Euler angle representation of W RB, and
ω is the angular velocity of FB w.r.t. FW , expressed in FB.

The actuator state is composed of the rotational speeds
of all the propellers, denoted w = [w1 . . .wn]

>. In fact, such
speeds cannot be changed instantaneously – thus can not
be considered as an input – but undergo the dynamics of a
rotating body with a mechanical inertia subject to external
moments such as friction, aerodynamic drag, and the motor
torque, the latter being the typical controllable input of a
motor. According to the most common propulsion model,
the rotational speed can be algebraically related to the force
produced by the propeller (see, e.g., [13]) and therefore such
force can equivalently represent the actuator state through a
suitable change of coordinates. Therefore we set

xa = γ ∈ Rn, (3)

where γ = [f1 . . . fn]
> is the n-dimensional vector of the

forces produced by the n propellers. Similarly, one can make
a (feedback, or state-dependent) change of coordinates from
the motor-torque input to the derivative of the force produced
by the propeller. As a consequence, we can consider

γ̇ = u, (4)

where u ∈ Rn is the n-dimensional vector of controllable
inputs to be chosen by the controller. We remark that

considering (4) is equivalent to require the motion controller
to control directly the motor torque of each propeller, i.e., the
lowest possible control input of the multi-rotor system. This
choice is physically the most meaningful one and avoids to
assume intermediate low-level controls, such as attitude or
angular velocity control loops, as done often in the literature.

The kinematic equations of the multi-rotor body are

ṗ = v (5a)
η̇ = T(η)ω (5b)

where T(η) is the Jacobian matrix mapping ω to η̇. The
linear and angular accelerations are defined by[

v̇
ω̇

]
=
[

mI3 O3
O3 J

]−1
([
−mgzW
−ω×Jω

]
+

[
R(η) O3
O3 I3

]
Gγ
)

(6)

where J ∈ R3×3 is the positive definite body inertia matrix,
O3 and I3 ∈ R3×3 are respectively the zero and identity
matrixes, g and −zW are the intensity and the unit vector
direction of the gravity force in FW . Finally, G∈R6×n is the
force/moment allocation matrix mapping the forces produced
by each propeller to the total force and moment acting on
the body. Notice that G includes the drag moments, which
can be written as a linear function of the propeller forces.
For a thorough derivation and explanation of all the terms
in (6) the reader is referred to previous works, e.g., to [13].
Note that rank(G) = 4 for standard under-actuated platforms
while for tilted-propeller multi-rotors systems one can obtain
rank(G) = 5 or rank(G) = 6, i.e., a larger actuation span. The
proposed model is general enough to be valid in all these
situations.

Grouping together (5), (6) and (4), the dynamics of the
multirotor is expressed as a set of nonlinear differential
equations, synthetically denoted in the following as

ẋ = f(x,u), (7)

which represent the equality constraints for the optimal
control problem that will be defined next.

B. Inequality Constraints Induced by the Motor Torques

Because of the bounded torque of the motors – induced
by the electrical current they can tolerate – we need also to
add inequality constraints on the state and input. First of all
the forces γ must satisfy the following constraint

γ ≤ γ ≤ γ (8)

were γ is directly related to the minimum rotational speed of
the motors and γ is related to the rotational speed achieved
at steady state when applying the maximum torque to the
motor. Such limit speed is of course bounded due to the
always present dissipative effects (friction, propeller air drag,
etc). Then, the input u must satisfy the following constraint

γ̇(γ)≤ u≤ γ̇(γ) (9)

where γ̇ and γ̇ represent the minimum and maximum accel-
erations that can be obtained when applying the minimum
and maximum torque to the motor, respectively. Such limits

Os

1

M1

M2

cosβ2

cosβ1

cosα

Fig. 1: The perceptive constraint is expressed using the cosine of
the normalized bearing vector. In this example M1 is in the FoV
while M2 is not.

depend also on the inertia of the propeller, the friction and
the air drag, which in turn depend on the propeller speed.
This justifies the dependency on γ of such limits.

However, it is not required to know all the parameters of
the motors and propellers to compute the limits in (8) and
(9). These quantities can be determined with an identification
campaign, as shown in [10].

Notice that no limit is induced on xb as far as the
actuation capabilities of the multirotor are concerned.
This differentiates our model from all the works in which
fictitious constraints on η or ω have been introduced in
order to simplify the optimal control problem (see the
Introduction).

C. Inequality Constraints Induced by Perception

It is assumed to have a sensor S rigidly mounted on the
UAV such that the transformation between FS – the sensor
frame – and FB is constant and known. Therefore, the
perception constraints can be expressed as inequalities [4]
which are functions of xb and some sensor parameters:

ci(xb) ∈ [bi,bi], i = 1, . . . ,P (10)

where ci is the scalar function for the i-th perceptive con-
straint, and bi, bi are its respective lower and upper bounds.

In particular we focus our attention here on a common
application of perceptive MPC, i.e., the feature-covering
along a motion [2]–[4], [14]. The sensor S is assumed to
be able to perceive a feature in the environment only if it
falls inside a conic Field of View (FoV) with principal axis zS
and halfwidth equal to α . The goal is to keep perceivability
of a group of features while performing other motion tasks.
In the next section the constraints (10) will be specialized
for this case.

III. METHODOLOGY

A. Constraints and Cost Terms from Perception

Assume to have P features in the environment, denoted
with M1, . . . ,MP. Define the angle βi between the axis zS

and the vector
−−−→
OSMi, where OS is the origin of FS (see

1thcosα cβ

qcβ

q̄

qint
q

Fig. 2: Piecewise-linear function used to adapt the weight in (12).

Fig. 1). Maintaining all the features in the FoV for a certain
time horizon is formulated, like in [4], as follows

cβi(t) ∈ [cosα,1] t ∈ [t0, t0 +T], i = 1, . . . ,P, (11)

where cβi is used as shorthand for cosβi. The quantity cβi(t)
depends on both xb and the motion of the feature Mi. The
first is included in the dynamic model, while the latter must
be estimated along the motion using a predictor, such as a
Kalman predictor, that fuses the sensor measurements, the
knowledge of xb over time, and possibly other parameters
known a priori [14].

In addition to the constraint (11), having the feature close
to the center of the FoV allows a larger span of possible
motion than when it gets close to the border, where the active
constraint limits the motion. Hence, the following term is
also included in the cost function of the controller:

qcβi(cβi−1)2, (12)

where qcβi is a positive weight. Such term (12) is zero only
when Mi is aligned with zS. The weight qcβi is adapted w.r.t.
cβi in a piecewise-linear fashion, as shown in Fig. 2. The
goal of such adaptation is to: i) prioritize importance of Mi
when it gets closer to the FoV boundary, and ii) avoid to
perturbate the precision of the other tasks when Mi is closer
to the FoV center.

B. Real-time Requirements

One of the strong requirements of our framework is
that the solver has to compute in real time the low level
inputs (motor-torque level) and to send them directly to the
actuators. This is different from what is done in other related
works that use the MPC to compute local trajectories or high
level commands that are executed by a low level tracker [4]
or an attitude controller [2]. In our case, a delay in the
computation causes a delay in the propeller inputs, which
can lead to unpredictable or unstable behaviors. To obtain
the smallest delay possible, we employ a Real-Time Iteration
solving strategy, where instead of having several linearization
steps per iteration that refine the solution, only one step is
performed. By doing so the output can become suboptimal
but it still fulfills all the constraints and allows real-time
computing.

This requirement also implies that the linearization step
has to be as efficient as possible. Considering that the
perceptive constraints are highly nonlinear, with the goal
of enhancing the performances of the solver, we decided

Software

NMPC
solver

multirotor
actuators

Hardware

integrator &
converter

state
sensors

rotor
measurements

perception
sensor

features detector & predictor

constraints

reference

wu γ

p, ṗ,η,ω

x

x

yr

xs

xa

xb

Fig. 3: Block diagram of the Perceptive NMPC framework, with main blocks highlighted in red. In simulation, the hardware part is
replaced by a dynamic model of the multirotor and virtual sensors.

Fig. 4: On the left, the flying quadrotor equipped with a camera.
On the right, the view from the sensor with the detected feature.

to fictitiously extend the state with the redundant quantities
cβi, and to add them into the dynamics constraints. By doing
so, the solver will locally linearize the dynamics of such
variables and converge faster to a solution which fulfills all
the desired constraints. This constitutes a trade-off between
optimality and computational time. This results in enlarging
the state of the system, including the sensors-state vector
xs = [cβ1 · · · cβP]

>, similarly to [2], thus obtaining

x =
[
x>b x>a x>s

]>
. (13)

C. Optimization Problem Formulation

The discrete-time optimization problem over the receding
horizon T is sampled in N shooting points, and is expressed
at a given time instant t as

min
x0...xNu0...uN−1

N

∑
k=0
‖yk−yr,k‖2

Q (14a)

s.t. x0 = x(t) (14b)
xk+1 = f(xk,uk), k = 0,1, . . . ,N−1 (14c)
yk = h(xk,uk), k = 0,1, . . . ,N (14d)
γ ≤ γ ≤ γ, k = 0,1, . . . ,N (14e)

γ̇ ≤ uk ≤ γ̇, k = 0,1, . . . ,N−1 (14f)

cosα ≤ cβi,k, k = 0,1, . . . ,N, i = 1, . . . ,P (14g)

with x = [p>v>η>ω>γ>cβ1 . . .cβP]
> being the state vector,

u = γ̇ the input vector, and f the dynamic function of the
system including xs. The matrix Q is a diagonal weight
matrix. The output of the system y is expressed as a function

h of the state and input. In particular, we use

y = [p>ṗ>η>ω>p̈>ω̇>cβ1 . . .cβP]
>. (15)

The reference vector yr is time dependent and varies during
the time horizon. The entries of yr corresponding to cβi, with
i = 1, . . . ,P are all set to 1 and their weights are adapted as
explained in Sec. III-A. The other entries of yr are provided
by an external reference generator, e.g., a waypoint planner
and their corresponding weights are set to an higher or lower
value depending on how important is the tracking task for
the corresponding state variable.

IV. RESULTS

In this section, we present the experimental framework
used to implement the aforementioned optimal control prob-
lem. We propose to explore simulations that present the capa-
bilities of the framework, as well as a real flight experiment
that show its applicability to real-world scenarios.

A. Experimental setup

The framework is implemented using MATMPC
from [15], which is a MATLAB-based toolbox for nonlinear
MPC. The solving routines of MATMPC are written in
C to allow efficiency, while providing the MATLAB and
Simulink comfort for prototyping a control framework.
MATMPC is used with a fixed step Runge-Kutta integrator
and the external solver qpOASES [16].

The presented results are obtained running the algorithm
off-board on a laptop, in order to use MATLAB and
Simulink, with an Intel Core i7 8850H processor and 32GB
2666MHz DDR4 on Ubuntu 16.04. A C/C++ implementation
of MATMPC exists and will be used in our future works
onboard the UAV. A recent onboard computer like an Intel
NUC shows similar or greater capabilities than the computer
used in these experiments, hence allowing a fully-onboard
implementation of the framework.

The architecture of the controller is presented in Fig. 3.
USB cables are used to send the inputs from the laptop to the
motor controllers of the flying platform, and to get data from
the perception sensor – in this case a standard monocular
camera.

0 5 10 15

-1

0

1

2

3

0 5 10 15
0.6

0.8

1

Fig. 5: The first plot shows the position tracking along the motion,
with the reference values in dashed lines computed using the sensor
measurements. The next two are the evolution of cβ and the
vector of propeller forces γ along the same trajectory, with the
corresponding bounds. The last four plots represent the evolution
of the inputs u within the corresponding bounds.

B. Simulations

First, the framework was tested in a simulated environ-
ment, using Simulink. The interface with the actual mul-
tirotor was replaced by a dynamic model which was used
to update the state of the system. In order to simulate the
perception sensor we used a simulated camera that computes
the cβ angle directly from the position in the image plane
of a marker, acting as a feature. This use case is meant to
emulate a standard monocular camera of known calibration,
tracking a marker of known shape, as e.g., an AprilTag,
allowing to retrieve the full 6D pose CpM,CRM of the marker
in camera frame (see Fig. 4). To emulate a real camera, the
frequency fS of the simulated one was slowed down to 60Hz,
meaning that the feature predictor was often using outdated
measurements.

1) Increasing feature speed: The first simulation is meant
to test the solver capability to explore the full constraint
space to find a viable solution. A simulated quadrotor has
to be on top of the moving marker of unknown trajectory
and speed, while keeping perceivability at any instant. The

Fig. 6: On the left: the position and attitude tracking of the
quadrotor, on the right: tracking for the tilted-propeller hexarotor.
The controller exploits the additional actuation of the latter to stay
closer to the requested hovering state (dashed black lines).

marker goes back and forth at increasing speed, along two
meters. This distance was chosen in order for the second
point to be outside of the field of view of the sensor when
hovering over the first. Since the target will eventually reach
speeds with a few meters per second of magnitude (with
high accelerations due to the small distance), the requested
maneuver of the robot is very agile, and the induced tilt
would break the perceivability constraint. As presented in
Fig. 5 – which shows a part of the simulation in which the
requested accelerations are already high – the motion of the
target along the x axis is tracked, while the overall motion
has to be modulated along the y and z axis. In this setup,
the MPC controller is able to find a modified maneuver that
fulfills the position tracking as well as the constraints. Doing
so, it exploits the full range of the propeller forces and their
derivatives, reaching several times the bounds for both.

2) Near hovering while observing a circular motion:
The next use-case implemented is a requested hovering for
the multirotor, while keeping perceivability of the moving
marker. The marker has a circular motion, whose radius is
chosen to be just outside the field of view while hovering.
Fig. 6 presents the results of position and attitude tracking of
an underactuated quadrotor and a tilted-propeller hexarotor.
The latter is able to stay much closer to the hovering state
by slightly modulating its attitude, while the first has to
make a circular motion in order to maintain perceivability.
With this simulation, we show that the controller is able
to take advantage of the larger actuation of fully-actuated
platforms in tasks where underactuation is in contrast with
other objectives, such as perception.

The simulation results can be found as the third part of
the attached multimedia file.

0 10 20 30 40 50
-1

0

1

2

0 10 20 30 40 50
0.4

0.6

0.8

1

0 10 20 30 40 50
0

2

4

6

8

Fig. 7: Position tracking, constrained value of cβ and solving time
of the NMPC problem along the real flight experiment.

C. Experimental results

We demonstrate here that our framework is able to cope
with real-world constraints and control an actual multirotor.
Since the framework is experimental, there is no backup
strategy in case of failure of the solver, so the maneuvers are
less agile than the one presented in the simulations, for safety
reasons, since having a security cable would have made the
motion unfeasible by blocking the propellers. Furthermore,
as the accent was on the control aspects, the sensor used in
this experiment was again a simulated camera.

We notice that the solving frequency, thus the control
input frequency, ranges from 150 to 400 [Hz] - depending
on the complexity of the optimal problem, and the number
of applied constraints - which is fast enough to effectively
control the multirotor (see Fig. 7).

V. CONCLUSIONS

In this work, we adapted the perceptive-aware MPC ap-
proaches of the state of the art to fit the need of more realistic
system inputs and a motion that is ensured to be compliant
with the perceptive constraints. The adopted formulation
can be extended to a wide range of platforms and sensors.
The solver is able to run in real time on a laptop, and
future perspectives include transitioning to an onboard C++
implementation.

Compared to previous works, we also proposed a method
able to track moving or fixed features, without any prior
knowledge of their motion. The controller is then able to
reach the limits of the actuators, coping with the desired
motion. These properties can also be applied to visual/inertial
odometry frameworks, where keeping a consistent number of
features in the field of view is a requirement for being able
to recover successfully the robot state.

In this work, potential collisions and occlusions are not
considered, like, e.g., in [4], [17], since they do not rely
on perception but rather use the apriori knowledge of the

positions of these obstacles, and thus were not a critical point
to stress according to our objectives. It will be the focus of
future work with an actual sensor in the loop. In particular,
feature-occlusion avoidance is of high interest in the scheme
of predictive control, given the underlying computer vision
processing, while still considering the real-time constraints.

REFERENCES

[1] M. Saska, T. Baca, J. Thomas, J. Chudoba, L. Preucil, T. Krajnik,
J. Faigl, G. Loianno, and V. Kumar, “System for deployment of groups
of unmanned micro aerial vehicles in gps-denied environments using
onboard visual relative localization,” Autonomous Robots, vol. 41,
no. 4, pp. 919–944, 2017.

[2] D. Falanga, P. Foehn, P. Lu, and D. Scaramuzza, “Pampc: Perception-
aware model predictive control for quadrotors,” in 2018 IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems, Oct. 2018, pp. 1–8.

[3] B. Penin, R. Spica, P. Robuffo Giordano, and F. Chaumette, “Vision-
based minimum-time trajectory generation for a quadrotor uav,” in
2017 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Sep.
2017, pp. 6199–6206.

[4] B. Penin, P. Robuffo Giordano, and F. Chaumette, “Vision-based reac-
tive planning for aggressive target tracking while avoiding collisions
and occlusions,” IEEE Robotics and Automation Letters, vol. 3, no. 4,
pp. 3725–3732, 2018.

[5] M. Castillo-Lopez, S. A. Sajadi-Alamdari, J. L. Sanchez-Lopez, M. A.
Olivares-Mendez, and H. Voos, “Model predictive control for aerial
collision avoidance in dynamic environments,” in 2018 Mediterranean
Conf. on Control and Automation, Jun. 2018, pp. 1–6.

[6] M. Kamel, M. Burri, and R. Siegwart, “Linear vs nonlinear mpc for
trajectory tracking applied to rotary wing micro aerial vehicles,” IFAC-
PapersOnLine, vol. 50, no. 1, pp. 3463–3469, 2017.

[7] M. Bangura and R. Mahony, “Real-time model predictive control for
quadrotors,” IFAC Proceedings Volumes, vol. 47, no. 3, pp. 11 773–
11 780, 2014.

[8] G. Darivianakis, K. Alexis, M. Burri, and R. Siegwart, “Hybrid predic-
tive control for aerial robotic physical interaction towards inspection
operations,” in 2014 IEEE Int. Conf. on Robotics and Automation,
May 2014, pp. 53–58.

[9] K. Alexis, C. Papachristos, R. Siegwart, and A. Tzes, “Robust model
predictive flight control of unmanned rotorcrafts,” Journal of Intelli-
gent & Robotics Systems, vol. 81, no. 3-4, pp. 443–469, 2016.

[10] D. Bicego, J. Mazzetto, R. Carli, M. Farina, and A. Franchi,
“Nonlinear model predictive control with actuator constraints for
multi-rotor aerial vehicles,” conditionally accepted to Journal
of Intelligent & Robotics Systems, 2019. [Online]. Available:
https://arxiv.org/abs/1911.08183

[11] F. Morbidi, D. Bicego, M. Ryll, and A. Franchi, “Energy-efficient
trajectory generation for a hexarotor with dual- tilting propellers,” in
2018 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Oct.
2018, pp. 6226–6232.

[12] C. F. Liew, D. DeLatte, N. Takeishi, and T. Yairi, “Recent develop-
ments in aerial robotics: A survey and prototypes overview,” arXiv
preprint arXiv:1711.10085, 2017.

[13] G. Michieletto, M. Ryll, and A. Franchi, “Fundamental actuation
properties of multirotors: Force-moment decoupling and fail-safe
robustness,” IEEE Trans. on Robotics, vol. 34, no. 3, pp. 702–715,
2018.

[14] J. Thomas, J. Welde, G. Loianno, K. Daniilidis, and V. Kumar,
“Autonomous flight for detection, localization, and tracking of moving
targets with a small quadrotor,” IEEE Robotics and Automation Letters,
vol. 2, no. 3, pp. 1762–1769, 2017.

[15] Y. Chen, M. Bruschetta, E. Picotti, and A. Beghi, “Matmpc - a matlab
based toolbox for real-time nonlinear model predictive control,” in
2019 European Control Conference, Jun. 2019, pp. 3365–3370.

[16] H. Ferreau, C. Kirches, A. Potschka, H. Bock, and M. Diehl,
“qpOASES: A parametric active-set algorithm for quadratic program-
ming,” Mathematical Programming Computation, vol. 6, no. 4, pp.
327–363, 2014.

[17] C. Lim, B. Li, E. M. Ng, X. Liu, and K. H. Low, “Three-dimensional
(3D) dynamic obstacle perception in a detect-and-avoid framework for
unmanned aerial vehicles,” in 2019 Int. Conf. on Unmanned Aircraft
Systems, Jun. 2019, pp. 996–1004.

https://arxiv.org/abs/1911.08183

	INTRODUCTION
	MULTI-ROTOR MODELING
	Equality Constraints due to the Multi-rotor Dynamics
	Inequality Constraints Induced by the Motor Torques
	Inequality Constraints Induced by Perception

	METHODOLOGY
	Constraints and Cost Terms from Perception
	Real-time Requirements
	Optimization Problem Formulation

	RESULTS
	Experimental setup
	Simulations
	Increasing feature speed
	Near hovering while observing a circular motion

	Experimental results

	CONCLUSIONS
	References

