
IEEE TRANSACTIONS ON ROBOTICS 1

Prehensile Manipulation Planning: Modeling, Algorithms and
Implementation

Florent Lamiraux1, and Joseph Mirabel1,
1LAAS-CNRS, University of Toulouse, France

This paper presents a software platform tailored for prehensile manipulation planning named Humanoid Path Planner. The
platform implements an original way of modeling manipulation planning through a constraint graph that represents the numerical
constraints that define the manipulation problem. We propose an extension of the RRT algorithm to manipulation planning that is
able to solve a large variety of problems. We provide replicable experimental results via a docker image that readers may download
to run the experimental results by themselves.

Index Terms—robotics, manipulation planning, constrained path planning, path planning

I. INTRODUCTION

Today, robots in industrial manufacturing are mostly pro-
grammed by hand. They repeat the same motion thousands of
times with great accuracy. However, automating a task with
some variability is very challenging since it requires more
programming effort to integrate sensors and motion planning
in the process. A good example of this difficulty is the Amazon
picking challenge [1]. The work described in this paper is a
small step towards simplifying industrial process automation in
the presence of some variability, like the variation of the initial
position of some object or unknown obstacles. The work only
covers motion planning – and more accurately manipulation
planning. The integration into a whole process is still under
development. We think that it is important not only to develop
algorithms, but also to provide them within an open-source
software platform in order to make the evaluation and then
the integration of those algorithms easier.

Therefore this paper describes a software platform called
Humanoid Path Planner tailored for manipulation planning in
robotics. It can handle many types of robots, from manipulator
arms to legged humanoid robots. Figure 1 displays an example
of manipulation problem. The main contributions are:
• an original and general modeling of prehensile manipu-

lation based on nonlinear constraints,
• an original solver for nonlinear constraints that can handle

implicit and explicit constraints,
• a manipulation planning algorithm that tackles a great

variety of manipulation planning problems,
• an open-source software suite that implements all the

above, following state-of-the-art development tools and
methods.

• a docker image of the aforementioned software with
installation instructions provided with this paper. This
image makes the experimental results replicable.

Installation instructions can be found at https://humanoid-
path-planner.github.io/hpp-doc. This paper extends the work
presented in previous papers [2],[3] with the following new
material:

Manuscript received March 13, 2021; revised August 24, 2021. Correspond-
ing author: F. Lamiraux (email: florent.lamiraux@laas.fr)

• description of the configuration space as a Cartesian
product of Lie groups (Section III),

• unified and detailed definition of the grasp and placement
constraints that are only mentioned in Mirabel et al [2]
(Section V),

• automatic construction of the constraint graph (Sec-
tion V),

• the docker image of the software,
• a description of the software platform (Section VII),
• experimental results for several different problems.
The paper is organized as follows. Section II presents some

related work for constrained motion planning and manipula-
tion planning. Section III introduces some preliminary notions
like kinematic chains and Lie groups that are used to model
the configuration space of each joint. Section IV introduces
nonlinear constraints and solvers that are at the core of the ma-
nipulation problem definition. Section V defines the problem
of prehensile manipulation in the general setting. Section VI
provides a general algorithm that solves manipulation planning
problems. Finally, Section VII is devoted to the software
platform implementing the notions introduced in the previous
sections. Experimental results are provided for a large variety
of problems.

Each section is implemented by one or several software
packages. For some values that need to be computed, rather
than providing formulas, we sometimes give a link to the C++
or python implementation.

II. RELATED WORK

Motion planning has given rise to a lot of research work
over the past decades. The problem consists in finding a
collision-free path for a given system in an environment
populated with obstacles. The field covers a large variety of
different applications ranging from navigation for autonomous
vehicles in partially known environments [4] to path planning
for deformable objects [5], [6] and many other applications
like coverage path planning [7], [8], or pursuit evasion plan-
ning [9].

Planning motions for high dimensional robots like hu-
manoid robots or multi-arm systems has been shown to be

https://humanoid-path-planner.github.io/hpp-doc
https://humanoid-path-planner.github.io/hpp-doc

IEEE TRANSACTIONS ON ROBOTICS 2

Constraint graph

(∅, ∅)

(1, ∅) (2, ∅)

(∅, 1)(∅, 2)

(1, 2) (2, 1)

Fig. 1. Example of manipulation planning problem. Top: two UR3 robots
with one gripper each (X=red, Y=green, Z=blue) manipulating a cylinder
with two handles. The environment contains one rectangular contact surface
(in red). The cylinder has two rectangular contact surfaces (in green). Bottom:
the corresponding constraint graph. Names of states follow Expression (19):
for example, (∅, 1) means that gripper of robot 2 grasps handle 1 of the
cylinder. In this state, there is no placement constraint.

highly complex [10], [11]. Starting in the 1990’s random
sampling methods have been proposed to solve the problem,
trading the completeness property against efficiency in solv-
ing problems in high dimensional configuration spaces [12],
[13], [14]. The latter methods are said to be probabilistically
complete since the probability to find a solution if one ex-
ists converges to 1 when the time of computation tends to
infinity. Since then, asymptotically optimal random sampling
algorithms have been proposed [15].

A. Path planning with nonlinear constraints

Some systems are subject to nonlinear constraints. These
constraints define submanifolds of the configuration space the

robot must stay on. For example, legged robots that must keep
contact with the ground and enforce quasi-static equilibrium,
or multi-arm systems grasping the same object are subject to
this type of constraints. As the volume of the constrained man-
ifold is usually equal to zero, sampling random configurations
satisfying the constraints is an event of zero probability. To
sample configurations on the constrained manifold, Dalibard et
al [16] and Benrenson et al [17] project random configurations
using a generalization of Newton-Raphson algorithm. Another
method consists in expressing some configuration variables
with respect to others [18], [3] whenever this can be done.
Jaillet et al [19] propose another method based on nonlinear
projection. They cover the constrained manifold by growing an
atlas composed of local charts. This approximation provides a
probability distribution that is closer to the uniform distribution
over the manifold than the projection of a uniform distribution
over the configuration space. Beobkyoon et al [20] propose a
variation of the latter paper. The main difference lies in the fact
that the nodes built on the tangent space are not immediately
projected onto the manifold. Cefalo et al [21] put forward
a general framework to plan task-constrained motions in the
presence of moving obstacles. Kingston et al [22] provide an
in-depth review of the various approaches to motion planning
with nonlinear constraints.

B. Manipulation planning

Manipulation planning is a particular instance of path
planning where some objects are moved by robots. Although
several instances of the manipulation problem exist like manip-
ulation by pushing [23], or by throwing [24], as well as multi-
contact planning [25], [26], [27], in this paper, we are only
concerned with prehensile manipulation. The configuration
space of the whole system is subject to nonlinear constraints
due to the fact that objects cannot move by themselves and
should stay in a stable pose when not grasped by a robot. The
accessible configuration space is thus a union of submanifolds
as defined in the previous section. Each of these manifolds
may moreover be a foliation where each leaf corresponds to
a stable pose of an object or to a grasp of an object by a
gripper. The geometrical structure of the problem has been
well understood for a long time [28]. Some specific instances
of the problem have even been addressed recently [29].

The first attempt to solve manipulation planning problems
using random sampling was proposed by Siméon et al [30]
where a reduction property simplifies the problem.

Papers about manipulation planning are commonly divided
into several categories.

Navigation Among Movable Obstacles (NAMO) [31], [32]
consists in finding a path for a robot that needs to move objects
in order to reach a goal configuration. The final poses of the
objects do not matter in this case.

Rearrangement planning [33], [34], [35], [36] consists in
finding a sequence of manipulation paths that move some ob-
jects from an initial pose to a final pose. The final configuration
of the robot is not specified. A simplifying assumption is the
existence of a monotone solution, where each object is grasped
at the most once and is moved from its initial pose to its final

IEEE TRANSACTIONS ON ROBOTICS 3

pose [32], [37], [38], [39], [33]. They mainly rely on two-level
methods composed of a symbolic task planner and of a motion
planner [40], [41], [42], [43].

Other contributions in manipulation planning explicitly ad-
dress the problem of multi-arm manipulation [44], [45], [46],
[47].

Schmitt et al [48] propose an approach where two robots
manipulate an object in a dynamic environment. The output
of the algorithm is a sequence of controllers rather than a
sequence of paths.

Our work shares many ideas with Hauser and Ng-Thow-
Hing [49] where the notion of constraint graph is present,
although not as clearly expressed as in this paper. The main
contribution of our work with respect to the latter paper is that
the constraint graph is built automatically at the cost of a more
restricted range of applications. We only address prehensile
manipulation.

C. Open-source software platforms

Open-source software platforms are an important tool to
enable fair comparison between algorithms. Several software
platforms are available for motion planning and/or manip-
ulation planning in the robotics community. Undoubtedly
the most popular one is OMPL [50] which integrates many
randomized path planning algorithms and is widely used for
teaching purposes. Recently, Kingston et al [22] proposed an
extension for systems subject to nonlinear constraints.

OpenRave [51] is a software platform that addresses motion
and manipulation planning. It includes computation of forward
kinematics.

One of the main differences between our solution and the
previously cited ones lies in the way manipulation constraints
are compiled into a graph. To our knowledge, none of the
previous solutions can handle such a variety of problems as
large as those described in Section VII-B.

III. PRELIMINARIES: KINEMATIC CHAINS AND LIE GROUPS

A kinematic chain is commonly understood as a set of rigid-
body links connected to each other by joints. Each joint has
one degree of freedom either in rotation or in translation. A
configuration of the kinematic chain is represented by a vector.
Each component of the vector represents the angular or linear
value of the corresponding joint.

Although well-suited for fixed base manipulator arms, this
representation is ill-suited for robots with a mobile base like
wheeled mobile, aerial or legged robots, since the mobility
of the base cannot be correctly represented by translation
or rotation joints. Representing a free-flying object by three
virtual translations followed by three virtual rotations referred
to as roll, pitch and yaw is indeed a poor workaround due to
the presence of singularities. A good illustration of this is the
gimball lock issue that arose during Apollo 13 flight. To avoid
singularities, the following definition is proposed.

A. Kinematic chain

A kinematic chain is a tree of joints where each joint
represents the mobility of a rigid-body link with respect to

another link or to the world reference frame. A configuration
space called the joint configuration space is associated to
each joint. The most common joints with their respective
configuration spaces are
• linear translation with configuration space R,
• bounded rotation with configuration space R,
• unbounded rotation with configuration space SO(2),
• planar joint with configuration space SE(2),
• freeflyer joint with configuration space SE(3).

SO(n) and SE(n) stand for special orthogonal group and
special Euclidean group respectively. They represent the group
of rotations and the group of rigid-body transformations in Rn.

B. Lie groups

The joint configuration spaces listed in the previous para-
graph: Rn, SO(n), and SE(n) are all Lie groups. The group
operation is + for Rn, and composition denoted as ”.” for
SE(n). We refer to Murray et al [52, Appendix A] for a
thorough definition of Lie groups. Here we detail only those
properties that are useful for the following developments.

For any Lie group L with neutral element n, the tangent
space at the neutral element TnL of the group naturally maps
to the tangent space at any point of the group. This means that
any velocity v ∈ TnL uniquely defines

1) a velocity w ∈ TgL at any point g of the group, and
thus,

2) a vector field on the tangent space TL, and
3) by integration during unit time of the latter vector field,

starting from the origin, a new point g1 ∈ L.
Item 1 above is called the transport of velocity v to g. Item
3 is called the exponential map of L and is denoted by exp.

1) Geometric interpretations
• R (and by trivial generalization Rn): the neutral element

is 0. The tangent space at 0 is isomorphic to R and

∀θ ∈ R, exp(θ) = θ.

• SE(3): an element g of SE(3) can be seen as the position
of a moving frame in a fixed reference frame. A point x ∈
R3 is mapped to g(x). Note that x is also the coordinate
vector of g(x) in the moving frame g. If v, ω are linear
and angular velocities at the origin, (v, ω) is transported
to g as the same linear and angular velocities expressed
in the moving frame. In other words, if

M =

(
R t
0 1

)
(1)

with R ∈ SO(3) and t ∈ R3 is the homogeneous matrix
representing g, and (v, ω) is a velocity in TI3SE(3),
the velocity transported to g corresponds to linear and
angular velocities Rv and Rω of the moving frame.
Integral curves of the vector field mentioned in item 2
above correspond to screw motions of constant velocity
expressed in the moving frame.

SE(2), SO(3), and SO(2) are subgroups of SE(3) and follow
the same geometrical interpretation.

IEEE TRANSACTIONS ON ROBOTICS 4

Lie group type configuration velocity
SE(3) (x1, x2, x3, p1, · · · , p4) q̇ = (v, ω)

∈ R7 ∈ R6

SE(2) (x1, x2, cos θ, sin θ) q̇ = (v, θ̇)
∈ R4 ∈ R3

SO(3) (p1, p2, p3, p4) ∈ R4 q̇ = ω ∈ R3

SO(2) (cos θ, sin θ) ∈ R2 q̇ = θ̇ ∈ R
TABLE I

MAIN LIE GROUP TYPES AND THEIR VECTOR REPRESENTATIONS. NOTICE
THAT THE DIMENSIONS OF THE CONFIGURATION REPRESENTATION AND
OF THE VELOCITY REPRESENTATION MAY DIFFER. USING (cos θ, sin θ)
INSTEAD OF θ FOR SO(2) AND SE(2) MAKES THE PARAMETERIZATION

CONTINUOUS WHEN θ DISCONTINUOUSLY SWITCHES FROM −π TO π

2) Vector representations
Each Lie group element is represented by a vector. Rotations

are represented by unit quaternions.
Therefore elements of SE(3) are represented by a vector

in R7 where the first three components represent the image of
the origin (vector t in Equation 1), the last four components
(x, y, z, w) represent unit quaternion w + xi+ yj + zk.

Elements of SO(3) are likewise represented by a unit vector
of dimension 4.

Elements of SE(2) are represented by a vector of dimension
4. The first 2 components represent the image of the origin.
The last 2 components represent the cosine and sine of the
rotation angle. Therefore the homogeneous matrix associated
to q = (q1, q2, q3, q4) is

M =

 q3 −q4 q1

q4 q3 q2

0 0 1

 .

Table I compiles this information.
3) Exponential map
As expressed earlier, following a constant velocity1 q̇ from

the neutral element of a joint configuration space leads to
another configuration denoted as

q = exp(q̇).

In some cases, we may specify in subscript the Lie group that
is used: expSO(3), expSE(3).

For all Lie groups R, SO(n), SE(n), the exponential
map is surjective. This means that for any q ∈ L, there
exists v ∈ TnL, such that q = exp(v). Although exp is
not injective, choosing the smallest norm v uniquely defines
function log from L to TnL, up to some singularities where
several candidates v are of equal norms. Again, we may
specify the Lie group that is used: logSE(3), logSO(3)

4) Sum and difference notations
Following a constant velocity q̇ ∈ TnL starting from q0 ∈

L, leads to
q1 = q0. exp(q̇).

Note that if L = R, we write

q1 = q0 + q̇,

1More precisely, following the vector field generated by q̇ ∈ TnL according
to the Lie group structure

since the Lie group operator of R is + and expR is the identity.
In order to homogenize notation, we define the following
operators. For any q0,q1 ∈ L and q̇ ∈ TnL:

q0 ⊕ q̇ , q0. exp(q̇) ∈ L, (2)
q1 	 q0 , log(q−1

0 .q1) ∈ TnL. (3)

C. Robot configuration space

Given a kinematic chain with joints (J1, · · · , Jnjoints),
ordered in such a way that each joint has an index bigger
than its parent in the tree, the configuration space of the robot
is the Cartesian product of the joint configuration spaces.

C , CJ1 × · · · × CJnjoints .

C naturally inherits the Lie group structure of the joint con-
figuration spaces through the Cartesian product. We denote
by nqi, nvi the sizes of the configuration and velocity vector
representations of joint Ji, as defined in Table I. The config-
uration and velocity of the robot can thus be represented by
vectors of size nq and nv such that

nq =

njoints∑
i=1

nqi, nv =

njoints∑
i=1

nvi

We denote by iqi, and ivi the starting indices of joint i in the
robot configuration and velocity vectors.

iqi =

i−1∑
j=1

nqj ivi =

i−1∑
j=1

nvj

With these definitions and notation, the linear interpolation
between two robot configurations q0 and q1 is naturally
written:

q(t) = q0 ⊕ t(q1	q0)

This formula generalizes the linear interpolation to robots with
free-flying bases, getting rid of singularities of roll – pitch –
yaw parameterization. Cartesian products of Lie groups are
represented by Class LiegroupSpace. Elements of these
spaces are represented by classes
• LiegroupElement
• LiegroupElementRef, and
• LiegroupElementConstRef.

IV. NONLINEAR CONSTRAINTS AND SOLVERS

Some tasks require the robot to enforce some nonlinear
constraints. Foot contact on the ground for a humanoid robot,
center of mass projection on a horizontal plane, gaze constraint
are a few examples.

A. Nonlinear constraints

Definition 1: nonlinear constraint. A nonlinear constraint
is defined by a piece-wise differentiable mapping h from C
to a vector space Rm and is written

h(q) = 0. (4)

If the robot is subject to several numerical constraints,
h1, · · · , hk with values in Rm1 · · ·Rmk , these constraints are

https://github.com/stack-of-tasks/pinocchio/blob/f8f3b9a24eab527df79650e3dc73410f9a46a2b2/src/spatial/explog.hpp#L34
https://github.com/stack-of-tasks/pinocchio/blob/f8f3b9a24eab527df79650e3dc73410f9a46a2b2/src/spatial/explog.hpp#L236
https://github.com/stack-of-tasks/pinocchio/blob/f8f3b9a24eab527df79650e3dc73410f9a46a2b2/src/spatial/log.hxx#L112
https://github.com/stack-of-tasks/pinocchio/blob/f8f3b9a24eab527df79650e3dc73410f9a46a2b2/src/spatial/log.hxx#L15
https://gepettoweb.laas.fr/hpp/hpp-pinocchio/doxygen-html/classhpp_1_1pinocchio_1_1LiegroupSpace.html
https://gepettoweb.laas.fr/hpp/hpp-pinocchio/doxygen-html/classhpp_1_1pinocchio_1_1LiegroupElementBase.html
https://gepettoweb.laas.fr/hpp/hpp-pinocchio/doxygen-html/classhpp_1_1pinocchio_1_1LiegroupElementBase.html
https://gepettoweb.laas.fr/hpp/hpp-pinocchio/doxygen-html/classhpp_1_1pinocchio_1_1LiegroupElementBase.html

IEEE TRANSACTIONS ON ROBOTICS 5

equivalent to a single constraint h with values in Rm, where
m =

∑k
i=1mi, such that

h(q) ,

 h1(q)
...

hk(q)

 .

It may be useful to use a non-zero right hand side for the
same function h. For that we define parameterized nonlinear
constraints.

Definition 2: Parameterized nonlinear constraint. A pa-
rameterized nonlinear constraint is defined by a piece-wise
differentiable mapping h from C to a vector space Rm and by
a vector h0 of Rm and is written

h(q) = h0.

Piece-wise differentiable mappings are represented by abstract
Class
DifferentiableFunction.

1) Jacobian
In this paper, we will make use of the term Jacobian in a

generalized way. If h is a piece-wise differentiable function
from a Lie group L1 to a Lie group L2, and q1 an element of
L1, we will denote by ∂h

∂q (q1) the operator that maps velocities
in Tq1L1 to the velocity in Th(q1)L2 transported by h2.

This operator is represented by a matrix with nv2 lines and
nv1 columns, where nv1 and nv2 are the dimensions of the
tangent spaces of L1 and L2 respectively.

B. Newton-based solver

It is sometimes useful to produce a configuration q that
satisfies a constraint (or a set of constraints) of type (4) from
a configuration q0 that does not. This action is called the
projection of q0 onto the submanifold defined by the constraint
and is performed by a Gauss-Newton solver [53, Chapter 10]
that iteratively linearizes the constraint as follows:

h(qi+1) ≈ h(qi) +
∂h

∂q
(qi)(qi+1	qi) = 0

Iterate qi+1 is computed as follows:

qi+1 = qi	αi
∂h

∂q

+

(qi)h(qi) (5)

where .+ denotes the Moore Penrose3 pseudo inverse, and αi
is a positive real number called the step size. Taking αi = 1
solves the linear approximation, but it may not be the best
choice in general.

The computation of αi is performed by a line search algo-
rithm. The algorithm stops when the norm of each hi(qi+1)
is below a given error threshold. Class
HierarchicalIterative implements the above Newton
method. Several line search methods are implemented:
• Backtracking [54],

2If q̇ ∈ Tq1L1 is a velocity along a time parameterized curve γ, ∂h
∂q

(q1)q̇

is the velocity along Curve h(γ).
3who has just been awarded the Nobel Prize.

• ErrorNormBased:

αi = C −Ktanh(a
‖f(qi)‖
ε2

+ b),

where C, K, a, and b are constant values, and ε is the
error threshold,

• FixedSequence implements a fixed sequence of αi
that converges to 1,

• and Constant sets αi to 1.
Note that to define a new constraint, the user needs to de-

rive class DifferentiableFunction and to implement
methods impl_compute and impl_jacobian.

C. Explicit constraints

In manipulation planning applications in which robots ma-
nipulate objects, once an object is grasped, the position of the
object can be explicitly computed from the configuration of
the robot. In this case, some configuration variables of the
system depend on other configuration variables:

q = (qrob,qobj) ∈ C, qobj = ggrasp(qrob).

Although this constraint may fit definition (4) by defining

h(q) , qobj 	 ggrasp(qrob), (6)

solving this constraint possibly with other constraints using an
iterative scheme (5) is obviously sub-optimal.

More generally, let us denote by
• Inq the set of positive integers not greater than nq =

dim C,
• I a subset of Inq ,
• Ī the complement in Inq of I ,
• |I| the cardinal of I .

If q ∈ C is a configuration, we denote by qI ∈ R|I| the vector
composed of the components of q of increasing indices in I .

1) Example
if q = (q1, q2, q3, q4, q5, q6, q7) and I = {1, 2, 6}, then qI =

(q1, q2, q6), qĪ = (q3, q4, q5, q7).
Similarly, if
• m and n are two integers,
• M and N are two subsets of Im and In respectively,
• J is a matrix with m rows and n columns,

we denote by
JM,N (7)

the matrix of size |M | × |N | obtained by extracting the rows
of J of indices in M and the columns of J with indices in
N .

2) Example
If m = 3, n = 4, M = {2, 3} and N = {1, 2, 4},

J =

J1,1 J1,2 J1,3 J1,4

J2,1 J2,2 J2,3 J2,4

J3,1 J3,2 J3,3 J3,4

J4,1 J4,2 J4,3 J4,4

then

JM×N =

(
J2,1 J2,2 J2,4

J3,1 J3,2 J3,4

)

https://gepettoweb.laas.fr/hpp/hpp-constraints/doxygen-html/classhpp_1_1constraints_1_1DifferentiableFunction.html
https://gepettoweb.laas.fr/hpp/hpp-constraints/doxygen-html/classhpp_1_1constraints_1_1solver_1_1HierarchicalIterative.html
https://gepettoweb.laas.fr/hpp/hpp-constraints/doxygen-html/structhpp_1_1constraints_1_1solver_1_1lineSearch_1_1Backtracking.html
https://gepettoweb.laas.fr/hpp/hpp-constraints/doxygen-html/structhpp_1_1constraints_1_1solver_1_1lineSearch_1_1ErrorNormBased.html
https://gepettoweb.laas.fr/hpp/hpp-constraints/doxygen-html/structhpp_1_1constraints_1_1solver_1_1lineSearch_1_1FixedSequence.html
https://gepettoweb.laas.fr/hpp/hpp-constraints/doxygen-html/structhpp_1_1constraints_1_1solver_1_1lineSearch_1_1Constant.html
https://gepettoweb.laas.fr/hpp/hpp-constraints/doxygen-html/classhpp_1_1constraints_1_1DifferentiableFunction.html

IEEE TRANSACTIONS ON ROBOTICS 6

Definition 3: An explicit constraint E = (in, out, f) is a
mapping from C to C, defined by the following elements:
• a subset of input indices in ⊂ {1, · · · , nq},
• a subset of output indices out ⊂ {1, · · · , nq},
• a smooth mapping f from R|in| to R|out|,

satisfying the following properties:
• in ∩ out = ∅,
• for any p ∈ C, q = E(p) is defined by

q ¯out = p ¯out

qout = f(pin).

D. Solver by substitution

To optimize constraint resolution, we perform variable sub-
stitution whenever possible in order to reduce the number of
variables as well as the dimension of the resulting implicit con-
straint. Here we describe the method first published in Mirabel
et al [3]. Unlike in the former paper, the description we give
in Algorithm 1 is closer to the real implementation. Some
links to the source code are indeed provided in the algorithm
description. Once several compatible explicit constraints have
been inserted in the solver, they behave as a single constraint.
For example, if q = (q1,q2,q3),{

q1 = f1(q2)
q2 = f2(q3)

becomes
[

q1

q2

]
=

[
f1(f2(q3))
f2(q3)

]
,

and f2 should be evaluated before f1.
1) Substitution

When an explicit constraint is not successfully added fol-
lowing Algorithm 1, it is handled as an implicit constraint.
Therefore, after inserting implicit and explicit constraints, the
solver stores a system of equations equivalent to one explicit
and one implicit constraints that we denote by:

h(qin,qout) = 0, (8)
qout = f(qin), where (9)

in ∩ out = ∅. (10)

Substituting (9) into (8), we define an implicit constraint on
qin only:

h̃(qin) , h(qin, f(qin)) = 0

The solver by substitution applies iteration (5) to h̃, instead of
h. Therefore we need to compute the Jacobian of h̃:

∂h̃

∂qin
=

∂h

∂qin
+

∂h

∂qout
.
∂f

∂qin
.

As the Jacobian of h is provided with the implicit constraint,
we need to compute ∂f

∂qin
. Let us recall that f may be the

combination of several compatible explicit constraints. Let us
denote by E the mapping from C to C associated to f by
Definition 3. Let J denote the nv×nv Jacobian matrix of E.
Then J is defined by blocks as follows:

Jin×in = I|in| Jin×out = 0

Jout×in = ∂f
∂qin

Jout×out = 0
(11)

Algorithm 1 Insertion of an explicit constraint in the solver.
Line 1 is called once at initialization of the solver. explicit is a
vector that stores the constraints that are successfully added to
the solver. nc is the size of the latter. args is an array that, for
each configuration variable stores the index in explicit of the
constraint that computes this configuration variable, -1 if no
constraint computes the index. Procedure ADD tests whether
explicit constraint E is compatible with the previously inserted
constraints. Line 6 checks whether any output variable of E
is already computed by a previous explicit constraint. If so
the procedure returns failure and E is not inserted. The Loop
at line 9 recursively checks that any element of out is not an
input variable of a previously inserted constraint. If the loop
ends without returning failure, line 18 stores the information
that elements of out are computed by E and E is inserted
in the vector of constraints. Function computeOrder at line 20
recursively computes the order in which the explicit constraints
are evaluated, following the rule that the input of a constraint
should be evaluated before the output.

1: procedure INITIALIZESOLVER
2: explicit ← empty vector of explicit constraints
3: nc← 0
4: args← array of size nq filled with -1
5: function ADD(E = (in, out, f))
6: if argsout contains an element ≥ 0 then
7: return failure
8: queue idxArg ← elements of in
9: while idxArg not empty do

10: iArg ← idxArg first element
11: remove idxArgs first element
12: if iArg ∈ out then
13: return failure
14: if args[iArg] == −1 then
15: continue
16: else
17: push explicit[args[iArg]].in elements into

idxArg

18: fill argsout with nc
19: explicit.add(E); nc← nc+ 1
20: computeOrder()
21: return success

If E is the composition of several explicit constraints Ei =
(ini, outi, fi) of Jacobian Ji, i ∈ Inc, for an integer nc, then

J =

1∏
i=nc

Ji, (12)

with Ji obtained by expression (11) after replacing in, out,
and f by ini, outi, and fi.

∂f
∂qin

is then obtained by extracting from J block out× in.
Let us now detail the iterative computation of (12). Let J

be the product of Jj for j from nc to i + 1. Note that if Ji
and J are square matrices of size nv, of the form (11), Ji.J

https://github.com/humanoid-path-planner/hpp-constraints/blob/2555dfec945575f824bd973c30c5c13ec3b67645/src/explicit-constraint-set.cc#L144
https://github.com/humanoid-path-planner/hpp-constraints/blob/2555dfec945575f824bd973c30c5c13ec3b67645/src/explicit-constraint-set.cc#L301

IEEE TRANSACTIONS ON ROBOTICS 7

can be computed by block as follows:

(Ji.J)ini×Inv = Jini×Inv

(Ji.J)outi×Inv =
∂fi
∂qini

.Jini×Inv

and as columns out of J are equal to 0, left multiplying J by
Ji consists in modifying only the following block of J :

(Ji.J)outi×in =
∂fi
∂qini

.Jini×in

Other coefficients of JiJ are equal to the corresponding
coefficients of J . An implementation of the aforementioned
Jacobian product can be found here.

The solver by substitution described in this section is im-
plemented by Class SolverBySubstitution, that stores
an instance of ExplicitConstraintSet.

2) Important remark
As mentioned in Table I, the configuration and velocity

vectors may have different sizes. As a consequence, index
sets in and out in Definition 3 correspond to configuration
vector indices, while in Expression (11), they correspond to
velocity vector indices. To keep notation simple, we use the
same notation for different sets.

E. Constrained path

Now that we are able to project configurations onto subman-
ifolds defined by numerical constraints – up to some numerical
threshold, we need to define paths on such submanifolds. The
usual way of doing so is by discretizing the path and projecting
each sample configuration. The shortcoming is that it requires
choosing a discretization step at path construction thus losing
the continuous information of the path.

Instead, we propose an alternative architecture where paths
store the constraints they are subject to and apply the con-
straints at path evaluation (i.e. when computing the configu-
ration at a given parameter). Let P ∈ C1([0, T], C) be a path
without constraint defined on an interval [0, T], and proj a
projector onto a submanifold defined by numerical constraints
(i.e. an instance of
SolverBySubstitution).

Then the corresponding constrained path P̃ is defined on
the same interval by

∀t ∈ [0, T], P̃ (t) = proj(P (t))

Paths are implemented by Class Path. Several implementa-
tions of unconstrained paths are provided:
StraightPath for linear interpolation generalized to Lie
groups, ReedsSheppPath, DubinsPath for nonholo-
nomic mobile robots.

1) Continuity of projection along a path
Projecting configurations at path evaluation has the ad-

vantage of not losing information. In return, the projection
of a continuous path may be discontinuous. Thus, before
inserting a projected path in a roadmap for example, it
is necessary to detect possible discontinuities. Hauser [55]
proposes a solution to this problem. In a previous pa-
per [56], we described two algorithms to check whether

a projected path is continuous. These algorithms are im-
plemented by classes pathProjector::Dichotomy and
pathProjector::Progressive. Note that when a path
is not continuous, the algorithms return a continuous portion
of the path starting at the beginning of the path. This enables
function EXTEND in Algorithm 4 to create a new node.

V. MANIPULATION PROBLEM

The previous sections have presented how we model kine-
matic chains, configurations and velocities for a given robotic
system and how configurations and paths can be projected onto
a submanifold of the configuration space defined by numerical
constraints.

In this section, we will use these notions to represent a
robotic manipulation problem.

Definition 4: Prehensile manipulation problem
A prehensile manipulation problem is defined by
• one or several robots,
• one or several objects,
• a set of possible grasps,
• environment contact surfaces,
• object contact surfaces,
• an initial configuration,
• a final configuration.

Admissible configurations of the system are configurations that
satisfy the following property:
• each object is either grasped by a robot, or lies in a stable

contact pose,
• the volumes occupied by the links of the robots and by

the objects are pair-wise disjoint.
Admissible motions of the system are motions that satisfy the
following property:
• configurations along the motion are admissible, and
• the pose of objects in stable contact is constant,
• the relative pose of objects grasped by a gripper with

respect to the gripper is constant.
The solution of a prehensile manipulation problem is an
admissible motion that links the initial and goal configurations.
———————————————————————–
We will now provide precise definitions for grippers, grasps
and stable contact poses.

A. Grasp

1) Configuration space
The configuration space of a manipulation problem is the

Cartesian product of the configuration spaces of the robots and
of the objects.

C = Cr1× · · · × Crnr × SE(3)no

where nr is the number of robots, no the number of objects,
Cri , i ∈ {1, ..., nr} is the configuration space of robot ri.

Definition 5: Gripper. A gripper g is defined as a frame
attached to the link of a robot. g(q), q ∈ C denotes the pose
of the frame when the system is in configuration q.

Definition 6: Handle. A handle is composed of
• a frame h attached to the root joint of an object,

https://github.com/humanoid-path-planner/hpp-constraints/blob/e21490c8c713949bd3038dccb6fe02cf254a615f/src/explicit-constraint-set.cc#L267
https://gepettoweb.laas.fr/hpp/hpp-constraints/doxygen-html/classhpp_1_1constraints_1_1solver_1_1BySubstitution.html
https://gepettoweb.laas.fr/hpp/hpp-constraints/doxygen-html/classhpp_1_1constraints_1_1ExplicitConstraintSet.html
https://gepettoweb.laas.fr/hpp/hpp-constraints/doxygen-html/classhpp_1_1constraints_1_1solver_1_1BySubstitution.html
https://gepettoweb.laas.fr/hpp/hpp-core/doxygen-html/classhpp_1_1core_1_1Path.html
https://gepettoweb.laas.fr/hpp/hpp-core/doxygen-html/classhpp_1_1core_1_1StraightPath.html
https://gepettoweb.laas.fr/hpp/hpp-core/doxygen-html/classhpp_1_1core_1_1ReedsSheppPath.html
https://gepettoweb.laas.fr/hpp/hpp-core/doxygen-html/classhpp_1_1core_1_1DubinsPath.html
https://gepettoweb.laas.fr/hpp/hpp-core/doxygen-html/classhpp_1_1core_1_1pathProjector_1_1Dichotomy.html
https://gepettoweb.laas.fr/hpp/hpp-core/doxygen-html/classhpp_1_1core_1_1pathProjector_1_1Progressive.html

IEEE TRANSACTIONS ON ROBOTICS 8

• a list flags = (x, y, z, rx, ry, rz) of 6 Boolean values.
h(q), q ∈ C denotes the pose of the frame when the system
is in configuration q.

Definition 7: Grasp. A grasp is a numerical constraint h
over C, defined by
• a gripper g,
• a handle h.

Let h̄ be the smooth mapping from C to R6 defined by

h̄(q) = logR3×SO(3)

(
g−1(q)h(q)

)
. (13)

h(q) is obtained by extracting from h̄ the components the
values of which are true in the handle flag.
Note that R3 × SO(3) and SE(3) have different group
operators, exponential maps and logarithms. Constant velocity
motions in SE(3) are screw motions while constant velocity
motions in R3 × SO(3) consist of linear interpolation of the
center of the frame and constant angular velocity.

Definition 8: Grasp complement. Given a grasp constraint
defined by gripper g, handle h and some flag vector, the grasp
complement is a parameterized nonlinear constraint defined by

hcomp(q) = h0

where hcomp is composed of the components of h̄ that are not
in h and h0 is a vector with the same size as hcomp output.

2) Geometric interpretation and examples
The first three components of h̄(q) in equation (13) corre-

spond to the position of the center of h(q) in the frame of g(q).
The last three components of h̄(q) are a vector representing the
relative orientation of h(q) with respect to g(q). The direction
of the vector represents the axis of rotation, the norm of the
vector represents the angle of rotation.
• If flags = (true,true,true,true,true,true)

the grasp is satisfied iff g(q) and h(q) coincide:

h = h̄,

hcomp is an empty constraint;
• if flags = (true,true,true,true,true,false)

the grasp is satisfied iff the centers and z axes of g(q)
and h(q) coincide (free rotation around z). This is useful
for cylindrical objects:

h = (h̄1, h̄2, h̄3, h̄4, h̄5),

hcomp = (h̄6);

• if flags = (true,true,false,true,true,false)
the grasp is satisfied iff the center of h(q) is on the z
axis of g(q) and if the z axes of g(q) and h(q) coincide
(free translation and rotation around z). This is also
useful for cylindrical objects:

h = (h̄1, h̄2, h̄4, h̄5),

hcomp = (h̄3, h̄6),

however inequality constraints need to be added manually
on h̄3 to limit the translation.

• if flags = (true,true,true,false,false,
false) the grasp is satisfied iff the centers of g(q) and

P0

P1

P2

Pn-1

C f j

Q0

Q1

Qm-1

Co i

d

d

P(Co i
, fj)

Fig. 2. Distance defined by two convex polygons.

h(q) coincide (free rotation). This is useful for spherical
objects.

h = (h̄1, h̄2, h̄3),

hcomp = (h̄4, h̄5, h̄6).

If q0 is a configuration satisfying the grasp constraint:
h(q0)=0, then the submanifold defined by

{q ∈ C, h(q) = 0 hcomp(q) = hcomp(q0)}

contains all the configurations that are reachable from q0 while
maintaining the grasp. Note that this representation of relative
pose constraints has been used in the Stack of Task software,
although it is not described in the corresponding paper [57]. It
is different from Task Space Regions [17] where open domains
of SE(3) are defined.

B. Stable contact pose

When an object is not grasped, it should lie in a stable pose.
There are two simple methods to enforce that:

1) defining virtual grippers in the environment and virtual
handles on the object, implicitly defines a discrete set
of poses,

2) defining a virtual gripper on a horizontal plane and a
virtual handle on the object, and using a grasp with
flags (false,false,true,true,true,false)
constrains the object to move along an infinite horizontal
plane.

Here we propose a third method that enables users to define
contact surfaces in a more flexible way. To this end, we denote
by:
• (oi)i∈I a set of convex polygons attached to an object,
• (fj)j∈J a set of convex polygons attached to the envi-

ronment or to a mobile part of a robot that can receive
objects (mobile robot for example),

• respectively Coi , noi the barycenter of oi and the normal
to the plane containing oi,

• Cfj , nfj the barycenter of fj and the normal to the plane
containing fj ,

• P (Coi , fj), the orthogonal projection of Coi onto the
plane containing fj .

IEEE TRANSACTIONS ON ROBOTICS 9

Then we define the distance between polygons oi and fj as
the distance of Coi to the cylindrical volume of generatrix nfj
and of directrix fj :

d(fj , oi) =
√
d2
‖ + d2

⊥ (14)

where

i, j are the indices that minimize the above distance,

d‖ =

{
d(fj , P (Coi , fj)) if P (Coi , fj) outside fj
0 otherwise

d⊥ = nfj .
~CfjCoi .

Figure 2 illustrates this definition.
We denote by oi(q) and fj(q) the poses in configuration

q of frames with respective centers Coi and Cfj and with x-
axis normal to each polygon. Similarly as in Definition 7, we
define

h̄(q) = logR3×SO(3)

(
fj(q)−1oi(q)

)
(15)

The contact constraint is defined by the following piece-wise
differentiable function:

h(q) =

{
(h̄1, 0, 0, h̄5, h̄6) if P (Coi , fj) inside fj
(h̄1, h̄2, h̄3, h̄5, h̄6) if P (Coi , fj) outside fj

(16)
It is straightforward that this function vanishes if and only if
two convex polygons oi and fj are in contact and if Coi is
inside fj .

As for grasps, we need to define a parameterized comple-
ment constraint for the contact constraint in order to specify
the submanifold of configurations reachable from one config-
uration while keeping the object in a constant stable pose. The
naive way consists in defining

hcomp(q) =

{
(h̄2, h̄3, h̄4) if P (Coi , fj) inside fj
(0, 0, h̄4) if P (Coi , fj) outside fj

h̄2, h̄3, h̄4 respectively represent the translation in y−z plane
and the rotation around x-axis of frame oi with respect to
frame fj . Let q0 be a configuration such that h(q0) = 0. The
submanifold defined by

{q ∈ C, h(q) = 0 hcomp(q) = hcomp(q0)} (17)

contains one object pose for each pair of polygons (oi, fj), and
there are |I|.|J | possible combinations. Thus this constraint is
not suitable to enforce object immobility along a path since
the object may jump from one pose to another.

To disambiguate the various combinations of convex poly-
gons that can be in contact, we define

hcomp(q) =

(h̄2 + 2jM, h̄3 + 2iM, h̄4)
if P (Coi , fj) inside fj
(2jM, 2iM, h̄4)
if P (Coi , fj) outside fj

(18)

where
• i and j are the indices that minimize distance (14),
• M is a positive real number such that for any κ ∈ J , all

vertices of fκ are included in the disk of center Cfκ and
of radius M .

With this definition, the submanifold defined by (17), (16),
(18) contains configurations where the object is in a unique
stable pose. The polygon indices i and j, as well as their
relative position can indeed be recovered from (18):

i =

⌊
h̄3

2M
+

1

2

⌋
j =

⌊
h̄2

2M
+

1

2

⌋
h̄1 = h̄5 = h̄6 = 0

h̄2 = hcomp 1 − 2jM

h̄3 = hcomp 2 − 2iM

h̄4 = hcomp 3

and from (15),

fj(q)−1oi(q) = expR3×SO(3)

(
h̄
)
.

Uniqueness comes from the fact that when two convex poly-
gons are in contact, necessarily, |h̄2| ≤M ,|h̄3| ≤M .

C. Merging constraint and complement into an explicit
constraint

Note that when a grasp constraint and its complement are
combined, they constitute an explicit constraint since the pose
of the object grasped uniquely depends on the configuration
of the robot that grasps the object.

Similarly, when a placement constraint and its complement
are combined, they constitute an explicit constraint since the
pose of the object placed uniquely depends on the pose of the
contact surface on which the object is placed. This latter pose
• either depends on the configuration of the robot the

contact surface belongs to,
• or is constant if the contact surface belongs to the

environment.
In any case, the explicit expression of the object pose depends
on the right hand side of the complement constraint that is
constant along transition paths.

During the construction of the constraint graph (described
in Section V-D), grasp and placement constraints, their com-
plements and the associated explicit constraints are created
together and registered using method
registerConstraint of Class ConstraintGraph.

D. Constraint graph

According to Definition 4, the set of admissible configura-
tions of a manipulation problem is the union of submanifolds
of the configuration space of the system. Each submanifold
is defined by grasp and/or stable contact constraints. We call
each submanifold a state of the problem.

A state can be defined by a subset of active grasps, any
object not grasped being in a stable contact pose. Let ng, nh,
and no respectively denote the number of grippers, handles,
and objects.

We denote by
• graspij i ∈ {1, · · · , ng} j ∈ {1, · · · , nh} the grasp

constraint of handle j by gripper i,

https://gepettoweb.laas.fr/hpp/hpp-manipulation/doxygen-html/classhpp_1_1manipulation_1_1graph_1_1Graph.html

IEEE TRANSACTIONS ON ROBOTICS 10

• graspij/comp i ∈ {1, · · · , ng} j ∈ {1, · · · , nh} the
complement constraint of the latter,

• placei i ∈ {1, · · ·no} the placement constraint of object
i,

• placei/comp i ∈ {1, · · ·no} the complement constraint
of the latter.

A state S is denoted by a vector of size ng:

S =
(
h1, · · · , hng

)
(19)

where hi ∈ {∅, 1, · · · , nh} denotes the index of the handle
grasped by gripper i; hi = ∅ means that gripper i does not
grasp any handle.

1) Number of states
note that for i ∈ {1, · · · , nh} the number of occurrences of

i in S is at the most 1: a handle cannot be grasped by several
grippers. Note also that the number of occurrences of ∅ is not
limited: several grippers may hold nothing. Let m be a non-
negative integer not greater than min(ng, nh) and let us count
the number of states with m handles grasped. The number of
subset of m handles among nh is equal to nh!

(nh−m)!m! . And the
number of ways of dispatching them among the ng grippers
is equal to ng!

(ng−m)! . Thus, the total number of states is equal
to

min(ng,nh)∑
m=0

nh!

(nh −m)!m!

ng!

(ng −m)!

Definition 9: adjacent states
Two states S1 = (h11, · · · , hng1) and S2 = (h12, · · · , hng2)
are adjacent to each other if they differ by only one grasp and
the grasp is empty in one of the states:

∃i ∈ {1, · · · , ng}, hi1 6= hi2 and (hi1 = ∅ or hi2 = ∅), and
∀j ∈ {1, · · · , ng}, j 6= i, hj1 = hj2.

Definition 10: Constraint graph
The constraint graph related to a manipulation problem as
defined in Definition 4 is a graph
• the nodes of which are states defined by subsets of

grasps (19),
• two edges (back and forth) connect two states if they are

adjacent to each other,
• one edge connects each state to itself.

Edges are also called transitions. Nodes contain
• the grasp constraints that are active in the corresponding

state,
• a placement constraint for each object that is not grasped

by any handle.
Transitions contain
• the constraints of the node they connect with the least

active grasps,
• the parameterized complement constraint of each of the

latter.
2) Example
To illustrate the notions expounded in the previous sections,

let us consider an example of two UR3 robots manipulat-
ing a cylinder illustrated in Figure 1. The robot is fitted
with one gripper attached to the end-effector. The cylinder

state active constraints
(∅, ∅) place1
(j, ∅), j ∈ {1, 2} grasp1j
(∅, j), j ∈ {1, 2} grasp2j
(i, j) i, j ∈ {1, 2} grasp1i, grasp2j

TABLE II
STATE CONSTRAINTS.

transition belongs to additional constraints
(∅, ∅)→ (i, ∅) (∅, ∅) place1/comp
(∅, ∅)→ (∅, i) (∅, ∅) place1/comp
(i, ∅)→ (i, j) (i, ∅) grasp1i/comp
(∅, j)→ (i, j) (∅, j) grasp2j/comp

TABLE III
TRANSITION CONSTRAINTS: i, j ARE EITHER 1 OR 2. COLUMN ”BELONGS
TO” MEANS THAT PATHS ALONG THE TRANSITION BELONG TO THE STATE,

i.e. THE TRANSITION CONTAINS THE STATE CONSTRAINTS.

is equipped with two handles and with two square contact
surfaces corresponding to the top and bottom sides of the
cylinder. ng = 2, nh = 2, no = 1. The flag of the handles
are

(true,true,true,false,true,true).

Therefore grasp constraints are of dimension 5 and keep
the rotation of the gripper around the cylinder axis free.
Table II indicates which constraints are active for each state
and Table III for each transition.

3) Automatic construction
Given a set of grippers, handles and objects, the constraint

graph can be constructed automatically. Here is an implemen-
tation in python. Algorithm 2 describes this implementation.
Functions
• GRASPCONSTRAINT,
• GRASPCONSTRAINTCOMP, build grasp constraint and com-

plement constraint as defined in Section V-A,
• PLACECONSTRAINT,
• PLACECONSTRAINTCOMP build placement constraints and

complement as defined in Section V-B,
• EXISTSTATE(Gr) returns true if a state has already been

created for the set of grasps given as input,
• STATE(Gr) returns the state created with the set of grasps

given as input,
• OBJECTINDEX(h) returns the index of the object handle h

belongs to.

VI. MANIPULATION PLANNING

In this section, we show how the constraint graph defined in
the previous section is used to plan collision-free manipulation
paths. Although we are working on an extension of the RMR*
algorithm [58] to several grippers, objects and handles, the
only manipulation planning algorithm available so far in HPP
is an extension of the RRT algorithm described in the next
section.

A. Manipulation-RRT

Manipulation Randomly exploring Random Tree is an ex-
tension of the RRT algorithm [59] that grows trees in the

https://github.com/humanoid-path-planner/hpp-manipulation-corba/blob/5af1b3bad68e8c339d5f42eb72173d7356504532/src/hpp/corbaserver/manipulation/constraint_graph_factory.py#L187

IEEE TRANSACTIONS ON ROBOTICS 11

Algorithm 2 Recursive Construction of the constraint graph.
The construction starts by the state with no grasp. Call to
RECURSE function loops over the available grippers and handles
and creates states with one more grasp, and a transition
to these new states. In each state, a placement constraint
is added for each object of which no handle is grasped.
Variables G and H contain the indices of the free grippers and
handles. Variable Gr stores the current set of grasps following
Expression (19). Lines 5 to 9 compute which objects are not
grasped. Lines 20 to 23 insert placement constraints in the
state for those objects. Line 24 recurses only if the latest node
reached is new. Functions CREATESTATE and CREATETRANSITION

are given in Algorithm 3.
1: global variables
2: no . number of objects
3: ng . number of grippers
4: nh . number of handles
5:
6: function BUILDCONSTRAINTGRAPH
7: G ← [0, · · · , ng − 1] . list of gripper indices
8: H ← [0, · · · , nh − 1] . list of handle indices
9: Gr ← [∅, · · · , ∅] . list of size ng

10: RECURSE(G,H,Gr)
11: function RECURSE(G,H,Gr)
12: CREATESTATE(Gr)
13: if G = ∅ or H = ∅ then
14: return
15: for g in G do
16: G′ ← G \ {g}
17: for h in H do
18: H′ ← H \ {h}
19: Gr′ ← Gr
20: Gr′[g]← h
21: isNewState← not EXISTSTATE(Gr′)
22: CREATESTATE(Gr′)
23: CREATETRANSITION(Gr, Gr′)
24: if isNewState then RECURSE(G′,H′,Gr′)

free configuration space, exploring the different states of the
manipulation problem. Algorithm 4 describes the algorithm
implemented in C++ here.

After initializing the roadmap with the initial and goal con-
figurations, the algorithm iteratively calls method ONESTEP until
a solution path is found or the maximum number of iterations
is reached. This method picks a random configuration (line 6)
and for each connected component of the roadmap and each
state of the constraint graph, extends the nearest node in the
direction of the random configuration (lines 7–10). For each
successful extension, the end of the extension path is stored
for subsequent connections (line 11). After the extension step,
the algorithm tries to connect new nodes to other connected
components using two strategies:

1) function TRYCONNECTNEWNODES calls method CONNECT

between all pairs of new nodes,
2) function TRYCONNECTTOROADMAP tries to connect each

new node to the nearest nodes in other connected

Algorithm 3 Method CREATESTATE builds the constraints rel-
ative to a state: one grasp constraint for each grasp, and
one placement constraint for each object not grasped. CRE-

ATETRANSITION builds the constraints relative to a transition:
the constraints of the initial state (with the fewest grasps) and
their complements.

1: function CREATESTATE(Gr)
2: if EXISTSTATE(Gr) then
3: return
4: S ← new state
5: S.P l← [true, ...,true] . list of size no
6: for g in [0, · · · , ng − 1] do
7: h← Gr[g]
8: S.P l[OBJECTINDEX(h)]← false
9: S.ADD(GRASPCONSTRAINT(g,h))

10: for o in [0, · · · , no] do
11: if S.P l[o] then
12: S.ADD(PLACECONSTRAINT(o))
13: function CREATETRANSITION(Gr1, Gr2)
14: T ← new transition(Gr1, Gr2)
15: S1 ←STATE(Gr1) . Recover state for this set of

grasps
16: for g in [0, · · · , ng − 1] do
17: h← Gr1[g]
18: T .ADD(GRASPCONSTRAINT(g,h))
19: T .ADD(GRASPCONSTRAINTCOMP(g,h))
20: for o in [0, · · · , no] do
21: if S1.P l[o] then
22: T .ADD(PLACECONSTRAINT(o))
23: T .ADD(PLACECONSTRAINTCOMP(o))
24: T1 ← new transition(Gr2, Gr1)
25: T1.SETCONSTRAINTS(T .CONSTRAINTS())

components of the roadmap also using function CONNECT.
Function CONNECT attempts to connect two configurations in
two states. First, it checks whether there exists a transition
between the states. If so, it checks that the right hand side of
the parameterized constraints of the transition is the same for
both configurations (up to the error threshold). Then it returns
the linear interpolation between the configurations, projected
onto the submanifold defined by the transition constraints. If
the path is in collision or discontinuous, only the continuous
collision-free part at the beginning of the path is returned.

Function EXTEND attempts to generate a path from a configu-
ration in a state to another state following a random transition.
Similarly as for function CONNECT, the path is projected onto
the submanifold defined by the transition constraints. The
end configuration is obtained by applying to the random
configuration the constraints of the transition and of the goal
state.

B. Examples

In this section, the algorithm described in the previous
section is depicted with two examples. Figure 3 shows function
EXTEND defined in the previous section applied to the example
of Figure 1. The system considered is composed of two

https://github.com/humanoid-path-planner/hpp-manipulation/blob/16369aa291ab1b17ef6176ae8b8b2512b5e6fff7/src/manipulation-planner.cc#L159

IEEE TRANSACTIONS ON ROBOTICS 12

Algorithm 4 Manipulation RRT algorithm iteratively calls
method ONESTEP until a solution path is found or the maximum
number of iterations is reached. Function CONNECT is described
in Algorithm 5

1: function INITIALIZEROADMAP(qinit,qgoal)
2: Γ← new roadmap
3: Γ.ADDNODE(qinit); Γ.ADDNODE(qgoal)
4: function ONESTEP(Γ)
5: newNodes← empty list
6: qrand ←SHOOTRANDOMCONFIG()
7: for cc in connected components of Γ do
8: for s in constraint graph states do
9: qnear ←NEARESTNODE(cc,s,qrand)

10: p←EXTEND(s, qnear, qrand)
11: if p thennewNodes ← newNodes ∪
{end of p}

12: nc←TRYCONNECTNEWNODES(Γ, newNodes)
13: if nc = 0 then
14: TRYCONNECTTOROADMAP(Γ,newNodes)
15: function TRYCONNECTNEWNODES(Γ, nodes)
16: for q1,q2 in nodes, q1 6= q2 do
17: s1 ← STATE(q1); s2 ← STATE(q2)
18: p← CONNECT(q1, s1,q2, s2)
19: if p then
20: Γ.ADDEDGE(q1,q2,p)
21: function TRYCONNECTTOROADMAP(Γ,nodes)
22: for q1 in nodes do
23: s1 ← STATE(q1)
24: for cc in connected components of Γ do
25: if q1 /∈ cc then
26: near ← K nearest neighbors of q1 in cc
27: for q2 in near do
28: s2 ← STATE(q2)
29: p← CONNECT(q1, s1,q2, s2)
30: if p thenΓ.ADDEDGE(q1,q2)
31: function EXTEND(s, qnear, qrand)
32: solver ←SOLVERBYSUBSTITUTION
33: T ← random edge getting out of s
34: g ← state T points to
35: for c in g.CONSTRAINTS() do
36: solver.ADDCONSTRAINT(c(q) = 0)
37: for c in T .CONSTRAINTS() do
38: solver.ADDCONSTRAINT(c(q) = c(qnear))
39: qtarget ← solver.SOLVE(qrand)
40: if qtarget then
41: p← linear interpolation from qnear to qtarget
42: p.ADDCONSTRAINTS(T .CONSTRAINTS())
43: if p collision-free and continuous then return p
44: else return collision-free continuous portion of p

starting at qnear

Algorithm 5 Function CONNECT of M-RRT algorithm
function CONNECT(q1, s1,q2, s2)

parameter ε > 0
p← linear interpolation from q1 to q2

T ←TRANSITION(s1,s2)
if not T then return ∅
for c in T .CONSTRAINTS() do

if ‖c(q2)− c(q1)‖ ≥ ε then return ∅
else

p.ADDCONSTRAINT(c(q) = c(q1))
if p in collision then return ∅
return p

Fig. 3. Example of extension along a transition of the constraint graph. Top
qrand, middle qnear , bottom qtarget.

IEEE TRANSACTIONS ON ROBOTICS 13

Fig. 4. Method CONNECT applied to two configurations.

robots and a cylinder with two handles. The picture at the top
displays qrand. The picture in the middle displays qnear that
belongs to state (∅, ∅). The transition that is randomly selected
(Algorithm 4, line 33) is (∅, ∅)→ (1, ∅), meaning that robot 1
will try to grasp handle 1. According to tables II and III, the
transition constraints are (place1, place1/comp). The first one
is of type (16), the second of type (18) and is parameterized:
the right hand side uniquely defines the contact surfaces and
the position of the object on the contact surface. qtarget is
obtained by projecting qrand onto the manifold defined by
the following constraints (Algorithm 4, lines 35–39):
• place1, place1/comp that belong to the transition,
• grasp11 that belongs to the goal state.

According to Section V-C, the first two constraints can be
replaced by an explicit constraint: the position of the object
can be derived from the right hand side of place1/comp that
is initialized with configuration qnear.

After substitution, the set of constraints is reduced to an
implicit constraint on the configuration variables of robot 1 (6
variables). The solution found by the solver, qtarget (line 39)
is displayed in Figure 3 at the bottom. Notice that as expected,
the position of the object is the same in qtarget as in qnear.

The path returned by function EXTEND is the linear inter-
polation between qnear and qtarget constrained with place1,
place1/comp with right hand side initialized with qnear. As
explained earlier, this constraint is replaced by an explicit
constraint. Let us notice that the linear interpolation already
satisfies the constraint, but this is not always the case.

If the latter path is in collision, the collision-free part of the
path starting at qnear is returned.

Figure 4 illustrates method CONNECT applied to two con-
figurations q1 (top) and q2 (bottom). Both configurations
belong to state (1, ∅)4. The transition between those states
(1, ∅) → (1, ∅) contains the following constraints (tables II
and III):
• grasp11/comp, grasp11.

Method CONNECT checks that the right hand side of
grasp11/comp is the same for q1 and q2, up to the error

4Note that q1 is at the intersection between states (∅, ∅) and (1, ∅).

(1, ∅) (1, 2)g2 > h2|(1, ∅)|pg

Fig. 5. Along a transition where an object already grasped is grasped a
second time, an intermediate waypoint state called pregrasp (pg) is added.
This intermediate state is represented by an hexagonal box. g2 > h2|(1, ∅)
means that gripper 2 is going to grasp handle 2 from the state where gripper
1 grasps handle 1. The constraints associated to this waypoint state are
those of the state with the least active grasps (here (1, ∅)) and the pregrasp
constraint corresponding to the new grasp (here pregrasp22). The transition
constraints are the same for all transitions (in red) and identical to the loop
transition of the state with the least active grasps (in blue: here grasp11 and
grasp11/comp).

threshold (Algorithm 4, line 51). From a geometrical point
of view, this means that the orientation of the cylinder along
its axis, with respect to the gripper is the same in both
configurations. Let us recall that the right hand side of grasp11

is 0. If the condition is satisfied, the method builds the linear
interpolation between q1 and q2 with the explicit constraint
equivalent to {grasp11/comp, grasp11} and returns this path
if it is collision-free.

C. Waypoint transitions

By definition, a prehensile manipulation motion contains
configurations that are in contact:
• between gripper and object during grasp,
• between object and contact surface when the object lies

in a stable pose.
Contacts are difficult to handle using classical collision de-
tection libraries and are often considered as collisions. To
overcome this issue, we keep the gripper open during grasp,
and objects slightly above contact surfaces in stable poses.

However even with these simple tricks, solution paths to a
manipulation problem need to come close to collision, raising
the well-known issue of narrow passages.

To cope with this, we define intermediate states in the con-
straint graph called waypoint states. These states are inserted
between the regular states of the constraint graph. They require
some prior definitions.

Definition 11: pregrasp A pregrasp is a numerical con-
straint h over C, defined by
• a gripper g,
• a handle h.
• a non-negative real number ∆.

Let h̄ be the smooth mapping from C to R6 defined by

h̄(q) = logR3×SO(3)

(
g−1(q)h(q)

)
− (∆ 0 0 0 0 0)

T
. (20)

IEEE TRANSACTIONS ON ROBOTICS 14

(∅, ∅)

(1, ∅)

g1 > h1|(∅, ∅)|pg

g1 > h1|(∅, ∅)|gp

g1 > h1|(∅, ∅)|pp

Fig. 6. Along a transition where an object in placement is grasped by a
gripper, we add three waypoint states called pregrasp (pg) where the gripper
is above the object, grasp-placement (gp) where the object is grasped but still
in placement and preplacement (pp) where the object is grasped above the
contact surface. All transitions between the state with the least active grasps
and the waypoint gp have the same constraints as the loop transition of the
state with the least active grasps (here: place1 and place1/comp in blue).
All transitions between the waypoint state gp and the state with the most
active grasps have the same constraints as the loop transition of the state with
the most active grasps (here: grasp11 and grasp11/comp in red).

h(q) is obtained by extracting from h̄ the components the
values of which are true in the handle flag.
Note that when this constraint is satisfied, the handle is
translated along x axis over a distance ∆ compared to a
configuration satisfying the grasp constraint. The value of ∆
depends on the geometry of the gripper and object. Clearance
values are associated to the handle: clo and to the gripper: clg .
∆ is defined as clo + clg . The clearance parameters are part
of the definition of the gripper and handle and are stored in
SRDF files.

Definition 12: preplacement A preplacement is a numerical
constraint h over C, defined by
• (oi)i∈I a set of convex polygons attached to an object,
• (fj)j∈J a set of convex polygons attached to the envi-

ronment or to a mobile part of a robot that can receive
objects (mobile robot for example),

• a non-negative real number ∆.
with the same notation as in Section V-B, we define i and j
as the indices that minimize d(fj , oi) (Equation (14)), and

h̄(q) = logR3×SO(3)

(
fj(q)−1oi(q)

)
+ (∆ 0 0 0 0 0)

T (21)

The left hand side of the preplacement constraint is defined
by Equation (16).
Note that when this constraint is satisfied, the object is
translated over a distance ∆ along the normal to the contact
surface.

We denote by
• pregraspij i ∈ {1, · · · , ng} j ∈ {1, · · · , nh} the pre-

grasp constraint of handle j by gripper i,

(∅, ∅)

(1, ∅) (1, 2) (2, ∅) (2, 1) (∅, 1)(∅, 2)

Fig. 7. Structure of the constraint graph corresponding to the system
in Section V-D2 after inserting waypoint transitions. Waypoint transitions
starting from/going to (∅, ∅) contain three waypoint states. All other waypoint
transitions contain one waypoint state.

• preplacei i ∈ {1, · · ·no} the preplacement constraint of
object i.

We replace the transitions of the constraint graph defined
in Section V-D by a sequence of intermediate states and
transitions: given Definition 9, if two states S1 and S2 are
adjacent to each other, one of them contains an additional
grasp with respect to the other. Without loss of generality,
consider that S2 contains the additional grasp gr(gi, hj),
i ∈ {1, · · ·ng}, j ∈ {1, · · ·nh}. Let us denote by o the object
to which handle hj belongs. Then either

1) o is already grasped in state S1, or
2) o is in placement in state S1.

In case 1, we replace the transitions between S1 and S2 by
an additional waypoint state and four waypoint transitions as
explained in Figure 5.

In case 2, we replace the transitions between S1 and S2 by
three additional waypoint states and eight waypoint transitions
as explained in Figure 6.

1) Construction of a path along a waypoint transition
Function EXTEND in Algorithm 4 builds a path along a

transition from an initial configuration by projecting the con-
figuration onto the submanifold defined by the goal state
constraints and by the transition constraints. The right hand
side of the transition constraint is first initialized with the
initial configuration.

A waypoint transition builds a path by defining a sequence
of configurations that belong to the intermediate waypoint
states, each configuration being obtained by projecting the pre-
vious configuration onto the corresponding manifold. Figure 8
proposes an example of extension along edge (∅, ∅)→ (1, ∅)
from configuration qnear (Figure 3 middle). The edge contains
three waypoints. The random configuration qrand is displayed
in Figure 3, top. Table IV lists the waypoint configurations
that are produced when extending qnear toward qrand, and
the constraints applied to compute these configurations.

2) Implementation
From an implementation point of view, Class

WaypointEdge derives from class Edge. The waypoint
configurations are computed by method
generateTargetConfig that is specialized in Class
WaypointEdge.

Note that waypoint states are internal to waypoint edges
and thus not known by the constraint graph when determining
to which state a configuration belongs (Algorithm 4 lines 17

https://gepettoweb.laas.fr/hpp/hpp-manipulation/doxygen-html/classhpp_1_1manipulation_1_1graph_1_1WaypointEdge.html
https://gepettoweb.laas.fr/hpp/hpp-manipulation/doxygen-html/classhpp_1_1manipulation_1_1graph_1_1Edge.html

IEEE TRANSACTIONS ON ROBOTICS 15

Fig. 8. Example of extension along the waypoint transition between states
(∅, ∅) and (1, ∅). Each picture represents a waypoint. The last waypoint is in
state (1, ∅). qnear and qrand are the same as in Figure 3.

qnear in state (∅, ∅)

q1

waypoint state g1 > h1|(∅, ∅)|pg
in state (∅, ∅)
constraints
place1(q) = 0
place1/comp(q) = place1/comp(qnear)
pregrasp11(q) = 0
solver initialized with qrand

q2

waypoint state g1 > h1|(∅, ∅)|gp
in states (∅, ∅) and (1, ∅)
constraints
place1(q) = 0
place1/comp(q) = place1/comp(qnear)
grasp11(q) = 0
solver initialized with q1

qtarget

waypoint state g1 > h1|(∅, ∅)|pp
in state (1, ∅)
constraints
grasp11(q) = 0
grasp11/comp(q) = grasp11/comp(q2)
preplace1(q) = 0
solver initialized with q2

TABLE IV
WAYPOINT CONFIGURATIONS COMPUTED ALONG EDGE (∅, ∅)→ (1, ∅).

THE RESULTING PATH BETWEEN qnear AND qtarget IS A
CONCATENATION OF CONSTRAINED LINEAR INTERPOLATION.

CONSTRAINTS APPLIED BETWEEN A WAYPOINT AND ITS PREDECESSOR
ARE SHOWN IN BLUE.

and 23) and when visiting the states of the constraint graph
(Algorithm 4 line 8).

VII. HUMANOID PATH PLANNER

In this section, we describe in greater details the software
platform Humanoid Path Planner that implements the concepts
and algorithms of the previous sections.

Humanoid Path Planner is a collection of standard software
packages that depend on each other. The main packages are
the following:
• hpp-fcl a modified version of fcl. The main addi-

tional features are:
– computation of a lower bound of the distance when

testing collision between two objects. This is re-
quired for continuous collision detection,

– security margins in collision checking,
• pinocchio [60] a library computing forward kinemat-

ics and dynamics for multi-body kinematic chains,
• hpp-constraints a library that implements numeri-

cal constraints and solvers,
• hpp-core a library that implements most of the con-

cepts relative to motion planning. The main features are:
– abstraction of paths in configuration spaces and some

implementations,
– abstraction of path planning and path optimization

and some implementations,
– abstraction of steering methods and some implemen-

tations,
– roadmaps,
– validation of configurations and paths, notice that

this includes an implementation of continuous colli-
sion checking first proposed by Schwarzer et al [61].

• hpp-manipulation a library that implements manip-
ulation problems and manipulation planning with

– composite kinematic chains composed of the robots
and objects,

– the constraint graph,
– M-RRT algorithm,

• hpp-manipulation-urdf an extension of the SRDF
parser to retrieve information relative to objects, like the
definition of grippers, handles, and contact surfaces.

An HPP session consists of a standalone executable
hppcorbaserver that implements CORBA services. These
services can be extended via a plugin system. The application
can then be controlled with python scripts or C++ code.
CORBA clients are provided in python and C++. The packages
implementing CORBA clients and servers are
• hpp-corbaserver for canonical path planning prob-

lems, and
• hpp-manipulation-corba for manipulation prob-

lems. This package also provides an implementation of
the automatic constraint graph construction in python.

The environment used for path planning as well as the paths
computed can be displayed using gepetto-gui through
packages
• gepetto-viewer,

https://humanoid-path-planner.github.io/hpp-doc
https://github.com/flexible-collision-library/fcl
https://stack-of-tasks.github.io/pinocchio

IEEE TRANSACTIONS ON ROBOTICS 16

Fig. 9. Constrained motion planning for HRP-2 humanoid robot sliding on
the ground in quasi-static equilibrium: the feet should stay horizontal with a
fixed relative position and the center of mass should project between the feet.
The initial configuration is shown on the left. The goal configuration is shown
on the right. The algorithm is a constrained RRT close to the one described
in Dalibard et al [16].

min max mean std dev
time (s) 0.03 11.64 1.32 2.55
nodes 4 136 32.40 30.72

TABLE V
EXPERIMENTAL RESULTS FOR HRP-2 SLIDING ON THE GROUND (36

DEGREES OF FREEDOM): TIME OF COMPUTATION AND NUMBER OF NODES.

• gepetto-viewer-corba, and
• hpp-gepetto-viewer.

A. Virtual machine

A virtual docker image can be downloaded to run, test
and replicate the examples described in the next sections. An
archive is provided with this paper. Decompress the archive
and follow instructions in the README file.

B. Experimental results

In this section, we report on several experimental results
obtained with HPP software on constrained motion planning
and on manipulation planning problems. The raw data can be
found in hpp_benchmark package. Here we only present a
few test cases. The benchmarks are run 20 times each on an
Intel Core i7 at 2.60 GHz, with 32 Gigabytes of RAM and
9 Megabytes of cache memory. For each test case, we report
the minimum, maximum, mean and standard deviation of the
time of computation on the one hand, and of the number of
nodes in the roadmap built to solve the problem, on the other.

1) Constrained motion planning
One test case concerns constrained motion planning. The

robot is an HRP-2 humanoid robot in quasi-static equilibrium
that can slide on the ground (Figure 9). This type of motion
can be post-processed into a walking motion using the method
described in Dalibard et al [62]. The results are displayed in
Table V.

2) Manipulation planning
In this section, we present some experimental results of ma-

nipulation planning problems obtained with M-RRT algorithm
described in Section VI.

Fig. 10. Manipulation problem with Baxter robot manipulating two small
boxes. The robot is requested to swap the boxes.

min max mean std dev
time (s) 0.84 15.60 7.60 4.48
nodes 23 375 176.15 108.54

TABLE VI
EXPERIMENTAL RESULTS FOR BAXTER ROBOT MANIPULATING TWO

BOXES ON A TABLE (31 DEGREES OF FREEDOM).

The first test case features robot Baxter manipulating two
boxes on a table (see Figure 10). The boxes are swapped
between the initial and final configurations. The robot has
two grippers and each box is equipped with a handle. Thus
the constraint graph contains seven nodes. The experimental
results are displayed in Table VI.

The second test case features robot PR-2 manipulating a box
on a table. The robot is requested to flip the box upside down
from an initial pose to a goal pose as represented in Figure 11.
The robot is equipped with two grippers and the box with two
handles. The constraint graph contains seven nodes. Table VII
shows the experimental results.

The third test case features Humanoid Robot Romeo manip-
ulating a placard. The robot is requested to rotate the placard
by 180 degrees. It is equipped with two grippers and the
placard with two handles. Each handle is associated to a single
gripper. The number of states of the constraint graph is thus
three.

In the three previous test cases, the constraint graph was
automatically built by Algorithm 2. If the number of grippers
and handles increases, the number of states in the constraint

min max mean std dev
time (s) 0.92 9.62 3.30 2.47
nodes 6 111 32.90 31.63

TABLE VII
EXPERIMENTAL RESULTS FOR PR-2 ROBOT MANIPULATING A BOX ON A

TABLE (39 DEGREES OF FREEDOM).

min max mean std dev
time (s) 4.64 554.18 151.49 158.64
nodes 27 2448 610.45 662.83

TABLE VIII
EXPERIMENTAL RESULTS FOR ROMEO ROBOT MANIPULATING A PLACARD

(67 DEGREES OF FREEDOM).

https://github.com/humanoid-path-planner/hpp_benchmark/tree/v4.10.0/2020-07-23

IEEE TRANSACTIONS ON ROBOTICS 17

Fig. 11. Manipulation planning problem with PR-2 robot manipulating a box.
The robot needs to flip the box upside down from an initial pose (top) to a
goal pose (bottom).

Fig. 12. Manipulation planning problem with Romeo robot manipulating a
placard. The robot needs to flip the placard by 180 degrees from an initial
pose (left) to a goal pose (right), keeping balance.

min max mean std dev
time (s) 0.20 214.22 17.11 45.84
nodes 10 39 14.70 6.48

TABLE IX
EXPERIMENTAL RESULTS FOR CONSTRUCTION SET ASSEMBLY (36

DEGREES OF FREEDOM).

Fig. 13. Construction set: two robots are requested to assemble magnetic
spheres on a cylinder from an initial configuration (top) to a goal state
(bottom).

min max mean std dev
with waypoints
time (s) 0.01 0.49 0.12 0.14
nodes 4 30 9.75 7.26
without waypoints
time (s) 4.15 73.53 26.24 17.07
nodes 97 1609 711.55 407.98

TABLE X
UR-5 MANIPULATING A BALL WITH AND WITHOUT WAYPOINT

TRANSITIONS

graph may increase very quickly. However using python
bindings, it is possible to define constraint graphs with only
the necessary states. We now present a test case that illustrates
this possibility. The system is depicted in Figure 13.

In this example, an operator provides the sequence of
actions (transitions) the system needs to perform:

1) robot 1 grasps sphere 1,
2) robot 2 grasps cylinder 1,
3) robot 1 sticks sphere 1 to cylinder 1,
4) robot 1 releases sphere 1,
5) robot 1 grasps sphere 2,
6) robot 1 sticks sphere 2 to cylinder 1,
7) robot 1 releases sphere 2,
8) robot 2 puts cylinder 1 on the ground.

From this sequence of actions, the sequence of states visited
is computed and only those states (nine in total) are built
in the constraint graph. Then, a sequence of subgoals in
the successive states is computed, in such a way that each
subgoal is accessible by the previous one (on the same leaf of
the corresponding transition foliation). The subgoals are then
linked by running a constrained visibility PRM algorithm [63]
on each leaf. The python code can be found at github.com.

Figure 13 displays the initial configuration and the goal
state. Table IX shows the experimental results.

https://github.com/humanoid-path-planner/hpp_benchmark/blob/master/2020-07-23/construction-set/script.py

IEEE TRANSACTIONS ON ROBOTICS 18

Fig. 14. UR-5 robot manipulating a ball lying on a plane. The robot is
requested to pick the ball and place it a few centimeters aside.

3) Influence of waypoint transitions
All the previous experimental results have been obtained

using waypoint transitions as described in Section VI-C. We
now empirically show the positive effect of waypoints on
the efficiency of manipulation planning. To do that, we run
20 times Algorithm M-RRT on the same problem with and
without waypoint transitions. The problem is defined by a UR-
5 robot manipulating a ball as shown in Figure 14. The results
are reported in Table X. We can notice in this example, that
waypoint transitions decrease the computation time and the
number of nodes by two orders of magnitude. This is because
in grasp configurations, the gripper is very close to the object
and only a small part of the approaching directions of the
gripper toward the object leads to collision-free paths. On the
contrary waypoint states are away from obstacles and easier to
reach. The transition between the pregrasp waypoint and the
grasp ∩ placement waypoint is almost always collision-free.

4) Analysis
The experimental results show that M-RRT is able to solve

a variety of manipulation problems including that of a legged
robot in quasi-static equilibrium. No parameter tuning is
required between the different problems. All parameters are
set to a default value for all test cases.

As in any random motion planning method, we observe a
large standard deviation between the 20 runs of each test case,
for the number of nodes as well as for the time of computation.

We have also observed experimentally that the efficiency of
M-RRT decreases when

1) the number of states to visit to solve a problem increases,
2) the number of foliated states increases.

Thus, M-RRT is not able to solve the construction set problem
within a reasonable amount of time. However, to our knowl-
edge it is the only algorithm in the literature capable of solving
a variety of problems as large as those presented in this section.

VIII. CONCLUSION AND FUTURE WORK

This paper presents a software platform aimed at prototyp-
ing and solving a large number of prehensile manipulation

planning problems. The platform provides an original algo-
rithm M-RRT that is an extension of RRT exploring the leaves
of the foliations defined by the manipulation constraints. The
automatic insertion of waypoint states makes the resolution
more efficient and the resulting paths more natural.

It is the authors’ opinion that this platform is perfect
for researchers who want to develop and benchmark new
manipulation planning algorithms. Note that some of the on-
going work in humanoid locomotion [64] is based on HPP.

To show the maturity of the project, we provide a docker
image embarking the software.

As a future work, we aim at working on general manipula-
tion planning algorithms that can handle use cases as diverse as
those proposed in the benchmark section. A good candidate
is a generalization of RMR* [58]. Also we intend to focus
on manipulation path optimization since paths computed by
random algorithms are too long to be applied to real robots
as such. Finally, we would like to generalize the reduction
property proposed by Siméon et al [30] . The constraint graph
representation is a perfect tool for that.

ACKNOWLEDGMENT

This work has been partially supported by Airbus S.A.S.
within the framework of the common laboratory Rob4Fam.

REFERENCES

[1] C. Eppner, S. Höfer, R. Jonschkowski, R. Martı́n-Martı́n, A. Sieverling,
V. Wall, and O. Brock, “Four aspects of building robotic
systems: lessons from the amazon picking challenge 2015,”
Autonomous Robots, vol. 42, no. 7, pp. 1459–1475, October 2018,
https://link.springer.com/article/10.1007/s10514-018-9761-2. [Online].
Available: https://link.springer.com/article/10.1007/s10514-018-9761-2

[2] J. Mirabel, S. Tonneau, P. Fernbach, A.-K. Seppälä, M. Campana,
N. Mansard, and F. Lamiraux, “HPP: a new software for constrained
motion planning,” in International Conference on Intelligent Robots
and Systems (IROS 2016), Daejeon, South Korea, Oct. 2016. [Online].
Available: https://hal.archives-ouvertes.fr/hal-01290850

[3] J. Mirabel and F. Lamiraux, “Handling implicit and explicit constraints
in manipulation planning,” in Robotics: Science and Systems 2018,
Pittsburg, United States, Jun. 2018, p. 9p. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-01804774

[4] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun, “Any-
time dynamic a*: An anytime, replanning algorithm,” in Proceedings
of the Fifteenth International Conference on International Conference
on Automated Planning and Scheduling, ser. ICAPS’05. AAAI Press,
2005, p. 262–271.

[5] F. Lamiraux and L. E. Kavraki, “Planning paths for elastic objects
under manipulation constraints,” The International Journal of Robotics
Research, vol. 20, no. 3, pp. 188–208, 2001. [Online]. Available:
https://doi.org/10.1177/02783640122067354

[6] O. Roussel, P. Fernbach, and M. Taı̈x, “Motion Planning for an
Elastic Rod using Contacts,” IEEE Transactions on Automation Science
and Engineering, vol. 17, no. 2, pp. 670–683, Apr. 2020. [Online].
Available: https://hal.archives-ouvertes.fr/hal-01954894

[7] H. Choset, “Coverage for robotics – a survey of recent results,” Annals
of Mathematics and Artificial Intelligence, vol. 31, no. 1, pp. 113–126,
2001.

[8] E. Galceran and M. Carreras, “A survey on coverage path planning
for robotics,” Robotics and Autonomous Systems, vol. 61, no. 12, pp.
1258 – 1276, 2013. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S092188901300167X

[9] L. J. Guibas, J.-C. Latombe, S. M. Lavalle, D. Lin,
and R. Motwani, “A visibility-based pursuit-evasion problem,”
International Journal of Computational Geometry & Applications,
vol. 09, no. 04n05, pp. 471–493, 1999. [Online]. Available:
https://doi.org/10.1142/S0218195999000273

https://link.springer.com/article/10.1007/s10514-018-9761-2
https://hal.archives-ouvertes.fr/hal-01290850
https://hal.archives-ouvertes.fr/hal-01804774
https://doi.org/10.1177/02783640122067354
https://hal.archives-ouvertes.fr/hal-01954894
http://www.sciencedirect.com/science/article/pii/S092188901300167X
http://www.sciencedirect.com/science/article/pii/S092188901300167X
https://doi.org/10.1142/S0218195999000273

IEEE TRANSACTIONS ON ROBOTICS 19

[10] J. T. Schwartz and M. Sharir, “On the “piano movers” problem.
ii. general techniques for computing topological properties of real
algebraic manifolds,” Advances in Applied Mathematics, vol. 4, no. 3,
pp. 298 – 351, 1983. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/0196885883900143

[11] J. Canny, “The complexity of robot motion planning,” Ph.D. dissertation,
Massachuset Institute of Technology, 1983.

[12] L. E. Kavraki, P. Švestka, J.-C. Latombe, and M. Overmars, “Probabilis-
tic roadmaps for fast path planning in high dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566–580, 1996.

[13] D. Hsu, J.-C. Latombe, and R. Motwani, “Path planning in expansive
configuration spaces,” International Journal of Computational Geometry
and Applications, vol. 9, no. 4–5, pp. 495–512, 1999.

[14] J. Kuffner and S. LaValle, “Rrt-connect: An efficient approach to single-
query path planning,” in International Conference on Robotics and
Automation. San Francisco, (USA): IEEE, Apr. 2000, pp. 473–479.

[15] S. Karaman and E. Frazzoli, “Sampling-based algorithms for
optimal motion planning,” The International Journal of Robotics
Research, vol. 30, no. 7, pp. 846–894, 2011. [Online]. Available:
http://arxiv.org/abs/1105.1186

[16] S. Dalibard, A. Nakhaei, F. Lamiraux, and J.-P. Laumond, “Whole-
Body Task Planning for a Humanoid Robot: a Way to Integrate
Collision Avoidance,” in IEEE International Conference on Humanoid
Robots, Paris, France, Dec. 2009, pp. 1–6. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-00450897

[17] D. Berenson, S. Srinivasa, and J. Kuffner, “Task space regions:
A framework for pose-constrained manipulation planning,” The
International Journal of Robotics Research, vol. 30, no. 12,
pp. 1435–1460, 2011. [Online]. Available: https://doi.org/10.1177/
0278364910396389

[18] J. Cortés, T. Simeon, and J.-P. Laumond, “A Random Loop Generator
for Planning the Motions of Closed Kinematic Chains using PRM
Methods,” in 2002 IEEE International Conference on Robotics and
Automation (ICRA 2002). Washington, United States: IEEE, May 2002,
pp. 2141–2146. [Online]. Available: https://hal.laas.fr/hal-01988698

[19] L. Jaillet and J. M. Porta, “Path planning under kinematic constraints by
rapidly exploring manifolds,” IEEE Transactions on Robotics, vol. 29,
no. 1, pp. 105–117, 2013.

[20] B. Kim, T. T. Um, C. Suh, and F. Park, “Tangent bundle rrt: A random-
ized algorithm for constrained motion planning,” Robotica, vol. 34, pp.
202–225, 2016.

[21] M. Cefalo and G. Oriolo, “A general framework for task-constrained
motion planning with moving obstacles,” Robotica, vol. 37, pp. 575–
598, 2019. [Online]. Available: http://www.dis.uniroma1.it/∼labrob/
pub/papers/Robotica19.pdf

[22] Z. Kingston, M. Moll, and L. E. Kavraki, “Exploring implicit spaces
for constrained sampling-based planning,” The International Journal of
Robotics Research, vol. 38, no. 10-11, pp. 1151–1178, 2019. [Online].
Available: https://doi.org/10.1177/0278364919868530

[23] O. Ben-Shahar and E. Rivlin, “Practical pushing planning for rearrange-
ment tasks,” IEEE Transactions On Robotics And Automation, vol. 14,
no. 4, pp. 549–565, August 1998.

[24] J. Z. Woodruff and K. M. Lynch, “Planning and control for dynamic,
nonprehensile, and hybrid manipulation tasks,” in 2017 IEEE Interna-
tional Conference on Robotics and Automation (ICRA). IEEE, 2017,
pp. 4066–4073.

[25] T. Bretl, “Motion planning of multi-limbed robots subject to equilibrium
constraints: The free-climbing robot problem,” The Int. Journal of
Robot. Research (IJRR), vol. 25, no. 4, pp. 317–342, Apr. 2006.
[Online]. Available: http://dx.doi.org/10.1177/0278364906063979

[26] S. Lengagne, J. Vaillant, E. Yoshida, and A. Kheddar, “Generation of
whole-body optimal dynamic multi-contact motions,” The International
Journal of Robotics Research, vol. 32, no. 9-10, pp. 1104–1119, 2013.
[Online]. Available: https://doi.org/10.1177/0278364913478990

[27] S. Tonneau, A. Del Prete, J. Pettré, C. Park, D. Manocha, and
N. Mansard, “An efficient acyclic contact planner for multiped robots,”
IEEE Transactions on Robotics, vol. 34, no. 3, pp. 586–601, 2018.

[28] R. Alami, T. Siméon, and J.-P. Laumond, “A geometrical approach to
planning manipulation tasks (3). the case of discrete placements and
grasps,” LAAS-CNRS, Tech. Rep., 1989.

[29] M. Vendittelli, J.-P. Laumond, and B. Mishra, “Decidability in
robot manipulation planning,” arXiv.org, Tech. Rep., 2018. [Online].
Available: https://arxiv.org/abs/1811.03581

[30] T. Siméon, J.-P. Laumond, J. Cortés, and A. Sahbani, “Manipulation
planning with probabilistic roadmaps,” International Journal of Robotics
Research, vol. 23, no. 7/8, July 2004.

[31] G. Wilfong, “Motion planning in the presence of movable obstacles,”
in Proceedings of the fourth annual symposium on Computational
geometry. ACM, 1988, pp. 279–288.

[32] M. Stilman and J. Kuffner, “Planning among movable obstacles with
artificial constraints,” The International Journal of Robotics Research,
vol. 27, no. 11-12, pp. 1295–1307, 2008.

[33] J. Ota, “Rearrangement of multiple movable objects-integration of global
and local planning methodology,” in Robotics and Automation, 2004.
Proceedings. ICRA’04. 2004 IEEE International Conference on, vol. 2.
IEEE, 2004, pp. 1962–1967.

[34] C. R. Garrett, T. Lozano-Perez, and L. P. Kaelbling, “Sample-based
methods for factored task and motion planning,” in Robotics: Science
and Systems (RSS), 2017. [Online]. Available: http://lis.csail.mit.edu/
pubs/garrett-rss17.pdf

[35] A. Krontiris and K. Bekris, “Dealing with difficult instances of object
rearrangement,” in Robotics Science and Systems, Roma, Italy, 2015.

[36] P. Lertkultanon and Q.-C. Pham, “A single-query manipulation planner,”
IEEE Robotics and Automation Letters, vol. 1, no. 1, pp. 198–205, 2015.

[37] M. Stilman, J.-U. Schamburek, J. Kuffner, and T. Asfour, “Manipulation
planning among movable obstacles,” in Robotics and Automation, 2007
IEEE International Conference on. IEEE, 2007, pp. 3327–3332.

[38] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel,
“Combined task and motion planning through an extensible planner-
independent interface layer,” in Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), 2014.

[39] D. Nieuwenhuisen, A. F. van der Stappen, and M. H. Overmars, “An
effective framework for path planning amidst movable obstacles,” in
Algorithmic Foundation of Robotics VII. Springer, 2008, pp. 87–102.

[40] S. Cambon, R. Alami, and F. Gravot, “A Hybrid Approach to Intricate
Motion, Manipulation and Task Planning,” The International Journal
of Robotics Research, vol. 28, no. 1, pp. 104–126, Jan. 2009. [Online].
Available: https://hal.laas.fr/hal-01976081

[41] L. Kaelbling and T. Lozano-Pérez, “Integrated task and motion
planning in belief space,” International Journal on Robotics Research,
vol. 32, no. 9–10, pp. 1194—-1227, 2013. [Online]. Available:
https://lis.csail.mit.edu/pubs/tlp/IJRRBelFinal.pdf

[42] T. Lozano-Pérez and L. P. Kaelbling, “A constraint-based method
for solving sequential manipulation planning problems,” in 2014
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2014, pp. 3684–3691. [Online]. Available: https://lis.csail.mit.edu/pubs/
tlpk-iros14.pdf

[43] M. Toussaint, K. R. Allen, K. A. Smith, and J. B. Tenenbaum, “Differen-
tiable physics and stable modes for tool-use and manipulation planning,”
in Proc. of Robotics: Science and Systems (R:SS 2018), 2018, Best Paper
Award.

[44] M. Gharbi, J. Cortés, , and T. Siméon, “Roadmap composition for multi-
arm systems path planning,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Saint-Louis, USA, 2009.

[45] K. Harada, T. Tsuji, and J.-P. Laumond, “A manipulation motion
planner for dual-arm industrial manipulators. in proceedings of,” in
IEEE International Conference on Robotics and Automation, Hongkong,
China, 2014, pp. 928––934.

[46] A. Dobson and K. Bekris, “Planning representations and algorithms for
prehensile multi-arm manipulation,” in IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), Hamburg, Germany,
2015.

[47] Z. Xian, P. Lertkultanon, and Q. Pham, “Closed-chain manipulation
of large objects by multi-arm robotic systems,” IEEE Robotics and
Automation Letters, vol. 2, no. 4, pp. 1832–1839, 2017.

[48] P. S. Schmitt, F. Wirnshofer, K. M. Wurm, G. V. Wichert, and
W. Burgard, “Modeling and planning manipulation in dynamic
environments,” in 2019 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2019. [Online]. Available: http:
//ais.informatik.uni-freiburg.de/publications/papers/schmitt19icra.pdf

[49] K. Hauser and V. Ng-Thow-Hing, “Randomized multi-
modal motion planning for a humanoid robot manipulation
task,” The International Journal of Robotics Research,
vol. 30, no. 6, pp. 678–698, 2011. [Online]. Available:
http://motion.pratt.duke.edu/papers/ijrr2011-MultiModal-preprint.pdf

[50] I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning
Library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp.
72–82, December 2012, https://ompl.kavrakilab.org.

[51] R. Diankov, “Automated construction of robotic manipulation
programs,” Ph.D. dissertation, Carnegie Mellon University,
Robotics Institute, August 2010. [Online]. Available: http:
//www.programmingvision.com/rosen diankov thesis.pdf

http://www.sciencedirect.com/science/article/pii/0196885883900143
http://www.sciencedirect.com/science/article/pii/0196885883900143
http://arxiv.org/abs/1105.1186
https://hal.archives-ouvertes.fr/hal-00450897
https://doi.org/10.1177/0278364910396389
https://doi.org/10.1177/0278364910396389
https://hal.laas.fr/hal-01988698
http://www.dis.uniroma1.it/~labrob/pub/papers/Robotica19.pdf
http://www.dis.uniroma1.it/~labrob/pub/papers/Robotica19.pdf
https://doi.org/10.1177/0278364919868530
http://dx.doi.org/10.1177/0278364906063979
https://doi.org/10.1177/0278364913478990
https://arxiv.org/abs/1811.03581
http://lis.csail.mit.edu/pubs/garrett-rss17.pdf
http://lis.csail.mit.edu/pubs/garrett-rss17.pdf
https://hal.laas.fr/hal-01976081
https://lis.csail.mit.edu/pubs/tlp/IJRRBelFinal.pdf
https://lis.csail.mit.edu/pubs/tlpk-iros14.pdf
https://lis.csail.mit.edu/pubs/tlpk-iros14.pdf
http://ais.informatik.uni-freiburg.de/publications/papers/schmitt19icra.pdf
http://ais.informatik.uni-freiburg.de/publications/papers/schmitt19icra.pdf
http://motion.pratt.duke.edu/papers/ijrr2011-MultiModal-preprint.pdf
https://ompl.kavrakilab.org
http://www.programmingvision.com/rosen_diankov_thesis.pdf
http://www.programmingvision.com/rosen_diankov_thesis.pdf

IEEE TRANSACTIONS ON ROBOTICS 20

[52] R. M. Murray, S. S. Sastry, and L. Zexiang, A mathematical introduction
to robotic manipulation. CRC Press, 1994.

[53] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. New
York, NY, USA: Springer, 2006.

[54] “Backtracking line search.” [Online]. Available: https://en.wikipedia.
org/wiki/Backtracking line search

[55] K. Hauser, “Fast interpolation and time-optimization on implicit contact
submanifolds,” in Proceedings of Robotics: Science and Systems, Berlin,
Germany, June 2013.

[56] J. Mirabel and F. Lamiraux, “Manipulation planning: building
paths on constrained manifolds,” Jul. 2016. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-01360409

[57] N. Mansard, O. Stasse, P. Evrard, and A. Kheddar, “A versatile
generalized inverted kinematics implementation for collaborative
working humanoid robots: the Stack of Tasks,” in ICAR’09:
International Conference on Advanced Robotics, Munich, Germany,
Jun. 2009, pp. 1–6. [Online]. Available: https://hal-lirmm.ccsd.cnrs.fr/
lirmm-00796736

[58] P. S. Schmitt, W. Neubauer, W. Feiten, K. M. Wurm, G. V. Wichert,
and W. Burgard, “Optimal, sampling-based manipulation planning,”
in 2017 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2017, pp. 3426–3432. [Online]. Available: http:
//ais.informatik.uni-freiburg.de/publications/papers/schmitt17icra.pdf

[59] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
International Journal of Robotics Research, vol. 20, no. 5, pp. 378–400,
May 2001.

[60] J. Carpentier, G. Saurel, G. Buondonno, J. Mirabel, F. Lamiraux,
O. Stasse, and N. Mansard, “The pinocchio c++ library : A fast and
flexible implementation of rigid body dynamics algorithms and their
analytical derivatives,” in 2019 IEEE/SICE International Symposium on
System Integration (SII), 2019, pp. 614–619.

[61] F. Schwarzer, M. Saha, and J.-C. Latombe, “Exact collision checking of
robot paths,” in Algorithmic Foundations of Robotics V, STAR 7, J.-D. B.
et al., Ed. Springer, 2004, pp. pp 25–41.

[62] S. Dalibard, A. El Khoury, F. Lamiraux, A. Nakhaei, M. Taı̈x, and J.-P.
Laumond, “Dynamic Walking and Whole-Body Motion Planning for
Humanoid Robots: an Integrated Approach,” The International Journal
of Robotics Research, vol. 32, no. 9-10, pp. pp.1089–1103, Aug. 2013.
[Online]. Available: https://hal.archives-ouvertes.fr/hal-00654175

[63] T. Simeon, J.-P. Laumond, and C. Nissoux, “Visibility-based proba-
bilistic roadmaps for motion planning,” Journal of Advanced Robotics,
vol. 14, no. 6, pp. 477–494, 2000.

[64] S. Tonneau, A. D. Prete, J. Pettré, C. Park, D. Manocha, and
N. Mansard, “An efficient acyclic contact planner for multiped robots,”
IEEE Transactions on Robotics, pp. 1–16, 2018. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-01267345/document

Florent Lamiraux graduated from the Ecole Polytechnique Paris in 1993.
He received the Ph-D degree in Computer Science from the Institut National
Polytechnique de Toulouse in 1997 for his research on Mobile Robots.
Between 1997 and 1999, he worked at Rice University as a postdoctoral
Research Associate on motion planning for deformable objects. Since 2005,
he has been working in humanoid robots. He spent two years in AIST Tsukuba
in Japan in 2008-2009. He is currently Directeur de Recherche at LAAS-
CNRS. His research interests include manipulation planning and control for
humanoid and industrial robots.

Joseph Mirabel graduated from the Ecole Polytechnique Paris and the Royal
Institute of Technology, Stockholm in 2013. He received the Ph-D degree in
Robotics from the Institut National Polytechnique de Toulouse in 2017 for
his research on motion and manipulation planning. Between 2017 and 2021,
he worked at LAAS-CNRS as a researcher on reactive manipulation planning
and robot control with visual feedback. He recently joined Eureka Robotics
as a Senior Scientist.

https://en.wikipedia.org/wiki/Backtracking_line_search
https://en.wikipedia.org/wiki/Backtracking_line_search
https://hal.archives-ouvertes.fr/hal-01360409
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00796736
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00796736
http://ais.informatik.uni-freiburg.de/publications/papers/schmitt17icra.pdf
http://ais.informatik.uni-freiburg.de/publications/papers/schmitt17icra.pdf
https://hal.archives-ouvertes.fr/hal-00654175
https://hal.archives-ouvertes.fr/hal-01267345/document

	I Introduction
	II Related work
	II-A Path planning with nonlinear constraints
	II-B Manipulation planning
	II-C Open-source software platforms

	III Preliminaries: kinematic chains and Lie groups
	III-A Kinematic chain
	III-B Lie groups
	III-B1 Geometric interpretations
	III-B2 Vector representations
	III-B3 Exponential map
	III-B4 Sum and difference notations

	III-C Robot configuration space

	IV Nonlinear constraints and solvers
	IV-A Nonlinear constraints
	IV-A1 Jacobian

	IV-B Newton-based solver
	IV-C Explicit constraints
	IV-C1 Example
	IV-C2 Example

	IV-D Solver by substitution
	IV-D1 Substitution
	IV-D2 Important remark

	IV-E Constrained path
	IV-E1 Continuity of projection along a path

	V Manipulation Problem
	V-A Grasp
	V-A1 Configuration space
	V-A2 Geometric interpretation and examples

	V-B Stable contact pose
	V-C Merging constraint and complement into an explicit constraint
	V-D Constraint graph
	V-D1 Number of states
	V-D2 Example
	V-D3 Automatic construction

	VI Manipulation planning
	VI-A Manipulation-RRT
	VI-B Examples
	VI-C Waypoint transitions
	VI-C1 Construction of a path along a waypoint transition
	VI-C2 Implementation

	VII Humanoid Path Planner
	VII-A Virtual machine
	VII-B Experimental results
	VII-B1 Constrained motion planning
	VII-B2 Manipulation planning
	VII-B3 Influence of waypoint transitions
	VII-B4 Analysis

	VIII Conclusion and future work
	References
	Biographies
	Florent Lamiraux
	Joseph Mirabel

