Skip to Main content Skip to Navigation
Journal articles

An implicit opinion analysis model based on feature-based implicit opinion patterns

Abstract : With the rapid growth of social networks, mining customer opinions based on online reviews is crucial to understand consumer needs. Due to the richness of language expressions, customer opinions are often expressed implicitly. However, previous studies usually focus on mining explicit opinions to understand consumer needs. In this paper, we propose a novel implicit opinion analysis model to perform implicit opinion analysis of Chinese customer reviews at both the feature and review levels. First, we extract an implicit-opinionated review/clause dataset from raw review dataset and introduce the concept of the feature-based implicit opinion pattern (FBIOP). Secondly, we develop a clustering algorithm to construct product feature categories. Based on the constructed feature categories, FBIOPs can be mined from the extracted implicit-opinionated clause dataset. Thirdly, the sentiment intensity and polarity of each FBIOP are calculated by using the Chi squared test and pointwise mutual information. Fourthly, according to the resulting FBIOP polarities, the polarities of implicit opinions can be determined at both the feature and review levels. Car forum reviews written in Chinese are collected and labeled as the experimental dataset. The results show that the proposed model outperforms the traditional support vector machine model and the cutting-edge convolutional neural network model.
Keywords : neural network
Complete list of metadata
Contributor : Claude Baron <>
Submitted on : Thursday, November 12, 2020 - 11:30:53 AM
Last modification on : Thursday, June 10, 2021 - 3:48:21 AM



Fang Zhao, Zhang Qiang, Xiaoan Tang, Anning Wang, Claude Baron. An implicit opinion analysis model based on feature-based implicit opinion patterns. Artificial Intelligence Review, Springer Verlag, 2020, 53, pp.4547-4574. ⟨10.1007/s10462-019-09801-9⟩. ⟨hal-03001147⟩



Record views