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Abstract
In this paper, we address the problem of failure
detection in production lines modeled as Timed
Event Graphs (TEG). The proposed method rep-
resents TEGs as (max,+)-linear systems with dis-
turbance and aims at detecting time shift failures
in the underlying production lines. To do so, we
will reconstruct the state of the observed system
and define an indicator relying on the residuation
theory on (max,+)-linear systems.

1 Introduction
In industry, Discrete Event Systems (DES) can be used to
model and solve fault diagnosis problems in automated pro-
duction lines. The objective is to detect, localize and ul-
timately identify failures as soon as possible to avoid fur-
ther equipment unavailability. In systems like production
lines, failures can be not only caused by complete equip-
ment breakdowns but also by the occurrence of time shifts
so the production line can dramatically slow down and not
be able to comply with the specified production objectives.
This paper addresses the problem of detecting and localiz-
ing the source of such time shifts. One of the first methods
used to diagnose failures in DES is proposed in [SSL+95]
on untimed automata. Then, [Tri02] defines the diagnosis
problem on timed automata so that diagnostic decisions are
refined by using timed observations. In [GTY09], the diag-
nosis is based on time Petri Nets that is well-suited to model
competition and parallelism within the system. One sub-
class of time Petri Nets, called Timed Event Graph (TEG),
can also be used to specifically represent systems like pro-
duction lines. In TEGs, places are associated with a punc-
tual duration and they can be modeled by (max,+) algebra
as introduced in [BCOQ92, Max91]. [KLBvdB18] presents
the history of DES with the use of (max,+) algebra. For ex-
ample, [KL15] uses (max,+) algebra to control wafer delays
in cluster tools for semiconductor production. The prob-
lem of failure diagnosis by the use of (max,+) algebra has
been introduced in [SLCP17] where the proposed detection
method relies on the residuation theory and compares ob-
servable outputs with expected ones to detect output time
shifts. Failure localisation is then performed by an adhoc
structural analysis of the underlying TEG that does not use
(max,+) algebra. The objective of this paper is to design a
new set of time shift failure indicators that are not based on
the observable outputs of the system only but on the esti-
mation of the internal state of the system so that the fail-

ure localisation problem is also solved in an algebraic way.
To do so, the proposed failure indicator will rely on an ob-
server that is proposed in [HMCL10] and aim at rebuilding
system’states based on the observations.

The paper is organized as follows. Section 2 presents a
motivation example inspired from the semiconductor indus-
try. Section 3 summarizes the necessary mathematical back-
ground about (max,+)-linear systems. Section 4 describes
how the time shift failure problem in system can be turned
into the problem of state estimation in a system with in-
put disturbance and gives the construction of an observer of
such a system. Section 5 finally defines the proposed time
shift failure indicators.

2 Motivation example
The problem that we address is motivated by a real pro-
duction line that is at STMicroelectronics Crolles300 plant.
STMicroelectronics is among the world’s largest semicon-
ductor companies, serving all electronics segments. Semi-
conductor manufacturing is complex and one of its most
important challenges is to succeed in detecting produc-
tion drifts before they have real impact on production plan.
STMicroelectronics has complex production lines of wafer
batches with many pieces of equipment running in parallel.
One of the objectives is to detect as soon as possible that an
equipment is late to ensure that products (wafer batches) are
delivered on time or at least with minimal delays.
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Figure 1: Fault free model

Figure 1 presents a fault-free behavioural model of such a



production line defined by a TEG. This production line cor-
responds to three pieces of equipment (namely Eq1, Eq2,
Eq3). Eq1 is modeled with a couple of places p3, p4: it is
available (i.e. no current processing) if a token is in place
p3 while it is processing its input if a token is in place p4.
The process of Eq1 is carried out in 3 hours. Similarly Eq2
and Eq3 are respectively modeled by the couple of places
p6, p5 (processing time: 4 hours) and p9, p10 (processing
time 4 hours). Places p7, p8 model wafer batch transporta-
tion between Eq1, Eq2 and Eq3. From Eq1 to Eq3 it takes
2 hours while from Eq2 to Eq3 it takes only 1 hour. Eq3
requires processed wafer batches from both Eq1 and Eq2 to
operate. It is modeled by a transition x5 that can be fired
only when Eq3 is available and wafer batches from Eq1
and Eq2 are finally in front of Eq3. For i = {1, 2}, a trig-
ger of an input transition ui represents the occurrence of an
event from sensors on the production line that indicates the
arrival of unprocessed wafer batches in front of Eqi. The
output to the production line is a stream of fully processed
wafer batches modeled by firing transition y1. Outputs y2
and y3 provide observable information about the end of the
process of Eq1 and Eq2. Suppose now that the underly-
ing production line is faulty, i.e. it does not comply with
the behaviour defined by Figure 1. Consider that a stream
of 7 wafer batches arrive at Eq1 (input u1) respectively at
time t ∈ {1, 2, 3, 4, 5, 6, 7} and a similar stream with the
same dates arrive at Eq2 (input u2). Then, suppose that
processed wafer batches are successively available at time
{12, 17, 22, 27, 32, 37, 42} (output y1), and process infor-
mation is available at time {5, 8, 11, 14, 17, 20, 23} for out-
put y2 and at time {7, 12, 17, 22, 27, 32, 37} for output y3.
Then, the question is: based on the fault-free model of Fig-
ure 1, can we detect and localize a time shift failure in the
underlying production line?

If the line is not faulty, the wafer batch that arrives at t=1
on Eq2 (resp. Eq1) is processed in 4 hours (resp. 3 hours)
and then takes 1 hour (2 hours) to arrive in front of Eq3.
Synchronization is done at t=7 and the batches are processed
by Eq3 in 4 hours. So, the fully processed batch should
come out at t=11. However, the first real output comes out
one hour later: a time drift has happened. Following the
same idea, considering output y3, the batch that arrives at
t=1 on Eq2, should be processed in 4 hours and process in-
formation should come at t=6, hence another time drift.

In production lines, such time drifts are considered as
time shift failures. This paper aims at designing a (max,+)-
algebraic indicator that detects them based on a model as the
one presented in Figure 1. TEGs can be formally defined as
(max,+)-linear systems that are introduced in the next sec-
tion. It relies on the dioidMax

in [[γ, δ]] where the successive
fires of a transition x of the TEG are characterized by a se-
ries representing the events γ and the fire timings δ.

3 Mathematical background
This section recalls the mathematical background used in
this paper for describing (max,+)-linear systems [BCOQ92,
Max91].

3.1 Dioid theory
The dioid theory is used to describe the inputs and the be-
havior of the studied system. In particular, series of a spe-
cific dioid are defined to obtain the trajectories of inputs and
states flows of timed events.

Definition 1. A dioid D is a set composed of two internal
operations⊕ and⊗. The addition⊕ is associative, commu-
tative, idempotent (i.e. ∀a ∈ D, a⊕a = a) and has a neutral
element ε. The multiplication ⊗ is associative, distributive
on the right and the left over the addition ⊕ and has a neu-
tral element e. Element ε is absorbing by ⊗. When there is
no ambiguity, the symbol ⊗ is omitted.
Definition 2. A dioid is complete if it is closed for infinite
sums and if ⊗ is distributive over infinite sums.
Example 1. The dioid Zmax = (Z ∪ −∞) endowed with
the max operation as addition ⊕ and the addition as mul-
tiplication ⊗ with neutral element denoted ε = −∞ and
e = 0. The dioid Zmax is not complete because +∞ does
not belong to the set Zmax so the infinite sum is not set to
+∞. By adding +∞ to the dioid Zmax, we get the complete
dioid Zmax where (−∞) + (+∞) = (−∞).
Theorem 1 ( [BCOQ92]). Let D be a complete dioid, x =
a∗b is the solution of x = ax ⊕ b, where x = a∗b, and
a∗ =

⊕
i≥0

ai is the Kleene star operator with a0 = e and

ai+1 = a⊗ ai.
Definition 3. For a dioid D, � denotes the order relation
such that ∀a, b ∈ D, a � b⇔ a⊕ b = b.
Example 2. The complete dioid B[[γ, δ]] is the set of for-
mal series with two commutative variables γ and δ with
Boolean coefficients in {ε, e} and exponents in Z. A se-
ries s ∈ B[[γ, δ]] is written s =

⊕
n,t∈Z

s(n, t)γnδt where

s(n, t) = e or ε (respectively representing the presence
or the absence of the monomial). The neutral elements are
ε =

⊕
n,t∈Z

εγnδt and e = γ0δ0.

Graphically, a series of B[[γ, δ]] is described by a collec-
tion of point of coordinates (n, t) in Z2 with γ as horizontal
axis and δ as vertical axis. For instance, Figure 2 shows a
series u1 = u2 = γ0δ1 ⊕ γ1δ2 ⊕ γ2δ3 ⊕ γ3δ4 ⊕ γ4δ5 ⊕
γ5δ6⊕ γ6δ7⊕ γ7δ+∞ (monomials with e as Boolean coef-
ficient).
In the following, we will consider the dioidMax

in [[γ, δ]]. It
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Figure 2: Representation of inputs u1 = u2

is the quotient of the dioid B[[γ, δ]] by the modulo γ∗(δ−1)∗.
The dioid Max

in [[γ, δ]] is a complete dioid with ∀a, b ∈
Max

in [[γ, δ]]: a = b ⇔ aγ∗(δ−1)∗ = bγ∗(δ−1)∗. The in-
ternal operations are the same as in B[[γ, δ]] and neutral ele-
ments ε and e are identical to those of B[[γ, δ]].
Definition 4. Let s ∈Max

in [[γ, δ]] be a series, the dater func-
tion of s is the non-decreasing function Ds(n) from Z 7→ Z
such that s =

⊕
n∈Z

γnδDs(n).



Considering the TEG of Figure 1 and the associated sce-
nario defined in Section 2, inputs u1 and u2 are represented
by the series u1 = u2 = γ0δ1⊕γ1δ2⊕γ2δ3⊕γ3δ4⊕γ4δ5⊕
γ5δ6 ⊕ γ6δ7 ⊕ γ7δ+∞ from theMax

in [[γ, δ]] dioid. The ab-
sence of an 8th wafer batch in the scenario is indicated by
+∞ in monomial γ7δ+∞. Figure 2 is the graphical repre-
sentation of u1 = u2. This series is composed of monomials
γδ, where γ represents the events of the series, and δ repre-
sents the dates of the series. Series u1 has for dater function
Du1(0) = 1, Du1(1) = 2, Du1(2) = 3, Du1(3) = 4,
Du1(4) = 5, Du1(5) = 6 and Du1(6) = 7. This dater
function lists all the dates of the event occurrences. u2 has
obviously the same dater function (as u1 = u2).
Definition 5. Let s ∈ Max

in [[γ, δ]] be a series, its canonical
form is

s =

K⊕
k=0

γnkδtk with K ∈ N∪{+∞} and
{
n0 < n1 < . . .

t0 < t1 < . . .

Definition 6. Let Π : D 7→ C an application defined on
ordered sets. We say: Π isotone ≡ ∀s, s′ ∈ D s � s′ ⇒
Π(s) � Π(s′).

Definition 7. Let Π : D 7→ C be an isotone mapping,
where D and C are complete dioids. The largest solution
of Π(x) = b, if it exists, is called the residual of Π and is
denoted Π]. When Π is residuated, Π] is the unique isotone
mapping such that Π ◦ Π] � IdC and Π] ◦ Π � IdD where
IdC and IdD are respectively the identity mappings on C and
D.

Example 3. The mappings La : x 7→ a⊗ x and Ra : x 7→
x⊗ a defined over a complete dioid D are both residuated.
Their residuals are denoted by L]

a(x) = a ◦\x and R]
a(x) =

x◦/a.

Theorem 2 ( [Max91]). LetD be a complete dioid andA ∈
Dn×m be a matrix. Then,

A ◦\A = (A ◦\A)∗ (1)

Time comparison between series can then be defined
based on residuals.
Definition 8. Let a, b ∈ Max

in [[γ, δ]] and their respective
dater functions Da and Db. The time shift function repre-
senting the time shift between a and b for each n ∈ Z is
defined by Ta,b(n) = Da −Db.

Theorem 3 ( [Max91]). Let a, b ∈Max
in [[γ, δ]], the time shift

function Ta,b(n) can be bounded by:

∀n ∈ Z, Db◦/a(0) ≤ Ta,b(n) ≤ −Da◦/b(0),

whereDb◦/a(0) is obtained from monomial γ0δDb◦/a
(0) of se-

ries b◦/a and Da◦/b(0) is obtained from γ0δ
D

a◦/b
(0) of series

a◦/b.

Definition 9. Let a, b ∈ Max
in [[γ, δ]], the time shift between

series a and b is

∆(a, b) = [Db◦/a(0);−Da◦/b(0)], (2)

where γ0δDb◦/a
(0) ∈ b◦/a and γ0δ

D
a◦/b

(0) ∈ a◦/b. In this
interval, the series from which the time offset is measured is
the series a. It is called the reference series of the interval.

From this definition, if the time shift interval needs to be
defined with series b as the reference series, the interval will
be ∆(b, a) = [Da◦/b(0);−Db◦/a(0)].

Example 4. Generally speaking, let us consider two differ-
ent series a = γ0δ12 ⊕ γ1δ15 ⊕ γ2δ18 ⊕ γ3δ21 ⊕ γ4δ+∞
and b = γ0δ12 ⊕ γ1δ15 ⊕ γ2δ19 ⊕ γ3δ23 ⊕ γ4δ+∞. The
minimal time shift between a and b is Db◦/a(0) = 0 and
is found in the monomial where the degree of γ is 0 in
b◦/a = γ0δ0 ⊕ γ1δ3 ⊕ γ2δ7 ⊕ γ3δ11 ⊕ γ4δ+∞. The maxi-
mal time shift is −Da◦/b(0) = 2 and is found in γ0δ−2 from
a◦/b = γ0δ−2⊕γ1δ2⊕γ2δ6⊕γ3δ9⊕γ4δ+∞. The time shift
interval is ∆(a, b) = [0; 2]. The distance between a and b
is a minimum of 0 and a maximum of 2 hours meaning that
series a is faster than b.

3.2 Models of (max,+)-linear systems
The elements of the TEG are represented by equations in
Max

in [[γ, δ]]. The equations can be grouped into a set of
matrices A, B and C that contain information about the
structure of the TEG. The state representation defines rela-
tions between any set of input event flows u and the state x,
and the relations between the state x and the output event
flows y. Let u ∈ Max

in [[γ, δ]]p×1 be the input vector of
size p, x ∈ Max

in [[γ, δ]]n×1 be the state vector of size n and
y ∈ Max

in [[γ, δ]]q×1 be the output vector of size q. The state
representation is: {

x = Ax ⊕ Bu,

y = Cx,

where A ∈ Max
in [[γ, δ]]n×n, B ∈ Max

in [[γ, δ]]n×p and C ∈
Max

in [[γ, δ]]q×n. Equality x = Ax⊕Bu can be transformed
to x = A∗Bu thanks to Theorem 1 so we have

y = CA∗Bu.

Matrix H = CA∗B represents the transfer function of the
TEG, that is the dynamic of the system between the inputs
and the outputs.

For the system of Figure 1 the matrices
A ∈ Max

in [[γ, δ]]6×6, B ∈ Max
in [[γ, δ]]6×2 and

C ∈Max
in [[γ, δ]]3×6 of the state representation are:

A =


. γ1δ0 . . . .

γ0δ3 . . . . .
. . . γ1δ0 . .
. . γ0δ4 . . .
. γ0δ2 . γ0δ1 . γ1δ0

. . . . γ0δ4 .

,

B =


γ0δ1 .
. .
. γ0δ1

. .

. .

. .

, C =

. . . . . γ0δ0

. γ0δ0 . . . .

. . . γ0δ0 . .

.

The exponent n of γ represents the backward event shift
between transitions (the n + 1th firing of x1 depends on
the nth firing of x2) and the exponent of δ represents the
backward time shift between transition (the firing date of x2
depends on the firing date of x1 and time between 2 and 5).



4 How can a (max,+) observer be sensitive to
time shift failures?

The objective of the paper is to propose a method that de-
tects time shift failures as proposed in Section 2 and that
uses an observer as introduced in [HMCL10] and [HM-
CSM10]. As later detailed in Section 4.2, this observer aims
at computing a reconstructed state from the observation of
the inputs and outputs of the system that is sensitive to a
specific type of disturbance. These disturbances are charac-
terized as new inputs w that slow down the system. Based
on this characterisation, the system will then be assumed to
behave with respect to the following state representation.{

x = Ax ⊕ Bu ⊕ Rw,

y = Cx.
(3)

Section 4.1 describes how time shift failures can be char-
acterized as such disturbances. Section 4.2 then introduces
the observer that will be used in the proposed detection
method.

4.1 Time shift failures as input disturbances
Throughout this paper, we consider that time shift failures
are permanent phenomena that can occur at any step of the
production. Formally speaking, a time shift failure is char-
acterized by an unexpected and unknown delay d > 0 that
is added to the normal duration time t of a place p.

As shown on Figure 3, this place is characterized by a
transition upstream xi−1, a duration t, a number of tokens

o and a transition downstream xi. Let xi−1 =
K⊕

n=0
γsnδhn

(see Definition 5), where sn is the transition firing number,
hn is the firing date and K the number of firing events. The

normal downstream transition is xi =
K⊕

n=0
γsn+oδhn+t.

When a time shift failure d > 0 holds in a
place, the downstream transition then becomes: xi =
K⊕

n=0
γsn+oδhn+t+d.

To characterize the same time shift failure over the place
p by a disturbance, we will first modify the TEG. We add
to the downstream transition xi an input wi, as shown in
Figure 4, which slows down this transition. This new input
wi is not observed because it is related to a failure in an
equipment. To get the same effect of an offset d > 0 in the
downstream transition, input wi has to be defined as

wi =

k⊕
n=0

γsn+oδhn+t+d. (4)

Back to Figure 1 where the place p5 has a duration of t =
4. To characterize an offset, meaning a time shift failure, of
d = 1, we add a disturbance w4 to the transition x4 after
the place p5 in the same configuration as Figure 4. Suppose
that x3 = γ0δ2⊕ γ1δ6⊕ γ2δ10⊕ γ3δ14⊕ γ4δ18⊕ γ5δ22⊕
γ6δ26 ⊕ γ7δ+∞. Since an offset of 1 time unit is present on
p5, x4 = γ0δ2+4+1⊕γ1δ6+4+1⊕γ2δ10+4+1⊕γ3δ14+4+1⊕
γ4δ18+4+1⊕γ5δ22+4+1⊕γ6δ26+4+1⊕γ7δ+∞. By setting
the disturbancew4 = x4 = γ0δ7⊕γ1δ12⊕γ2δ17⊕γ3δ22⊕
γ4δ27⊕ γ5δ32⊕ γ6δ37⊕ γ7δ+∞, the firing of transition x4
is slowed down.

Based on this characterization, the faulty system that we
consider will behave based on Equation (3) and input distur-
bances as defined by Equation (4). Let w ∈ Max

in [[γ, δ]]l×1

t

p

xi−1 xi
o

Figure 3: Representation of a
place

t

p

xi−1 xi

wi

o

Figure 4: Representation of
a place with disturbance

be the input vector of disturbances of size l. The input w
corresponds to the transition that will be disturbed. Ma-
trix R ∈ Max

in [[γ, δ]]n×l is filled with γ0δ0 monomials that
represent the connections between disturbances and inter-
nal disturbed transitions. All the other entries are set to
ε. Equality x = Ax ⊕ Bu ⊕ Rw can be transformed to
x = A∗Bu⊕A∗Rw thanks to Theorem 1 so we have

y = CA∗Bu⊕ CA∗Rw.

In the example of Section 2, all the internal transitions
in Figure 1 will be disturbed so R is the matrix R ∈
Max

in [[γ, δ]]6×6:

R =


γ0δ0 . . . . .
. γ0δ0 . . . .
. . γ0δ0 . . .
. . . γ0δ0 . .
. . . . γ0δ0 .
. . . . . γ0δ0


4.2 Observer synthesis
In this paper we use the definition of an observer from the
articles [HMCSM10], [HMCL10]. Figure 5 shows the sys-
tem with disturbances w and from which we can observe
the outputs yo. The observer is a new model obtained from
the fault-free model and that will estimate the states of the
system xr in the presence of such disturbances.

Figure 5: Observer structure with disturbance

From articles [HMCSM10], [HMCL10] we get the fol-
lowing observer’s equations:

xr = Axr ⊕Bu⊕ L(yr ⊕ yo)

= (A⊕ LC)∗Bu⊕ (A⊕ LC)∗LCA∗Rw,

yr = Cxr.

(5)

To obtain the estimated vector xr as close as possible to
real state x, the observer relies on the largest matrix L ∈
Max

in [[γ, δ]]n×q such that:

xr � xo
(A⊕ LC)∗Bu⊕ (A⊕ LC)∗LCA∗Rw � A∗Bu⊕A∗Rw



which is given by:
L = (A∗B◦/CA∗B) ∧ (A∗R◦/CA∗R).

The observer matrix L of the TEG of Figure 1 is

L =


. γ1δ0(γ1δ3)∗ .
. γ0δ0(γ1δ3)∗ .
. . γ1δ0(γ1δ4)∗

. . γ0δ0(γ1δ4)∗

γ1δ0(γ1δ4)∗ γ0δ2(γ1δ4)∗ γ0δ1(γ1δ4)∗

γ0δ0(γ1δ4)∗ γ0δ6(γ1δ4)∗ γ0δ5(γ1δ4)∗


Based on the previous observer, suppose that the sys-

tem behaves with respect to the inputs u1 and u2 de-
fined in Section 3 but transition x4 disturbed with w4 =
γ0δ7 ⊕ γ1δ12 ⊕ γ2δ17 ⊕ γ3δ22 ⊕ γ4δ27 ⊕ γ5δ32 ⊕
γ6δ37 ⊕ γ7δ+∞ then the reconstructed state is xr = (A ⊕
LC)∗Bu⊕ (A⊕ LC)∗LCA∗Rw which is the vector xr =
[xr1, . . . , xr6]T =
γ0δ2 ⊕ γ1δ5 ⊕ γ2δ8 ⊕ γ3δ11 ⊕ γ4δ14 ⊕ γ5δ17 ⊕ γ6δ20 ⊕ γ7δ+∞

γ0δ5 ⊕ γ1δ8 ⊕ γ2δ11 ⊕ γ3δ14 ⊕ γ4δ17 ⊕ γ5δ20 ⊕ γ6δ23 ⊕ γ7δ+∞

γ0δ2 ⊕ γ1δ7 ⊕ γ2δ12 ⊕ γ3δ17 ⊕ γ4δ22 ⊕ γ5δ27 ⊕ γ6δ32 ⊕ γ7δ+∞

γ0δ7 ⊕ γ1δ12 ⊕ γ2δ17 ⊕ γ3δ22 ⊕ γ4δ27 ⊕ γ5δ32 ⊕ γ6δ37 ⊕ γ7δ+∞

γ0δ8 ⊕ γ1δ13 ⊕ γ2δ18 ⊕ γ3δ23 ⊕ γ4δ28 ⊕ γ5δ33 ⊕ γ6δ38 ⊕ γ7δ+∞

γ0δ12 ⊕ γ1δ17 ⊕ γ2δ22 ⊕ γ3δ27 ⊕ γ4δ32 ⊕ γ5δ37 ⊕ γ6δ42 ⊕ γ7δ+∞


The state xr estimated by the observer takes into account

the disturbance w4. If the disturbance w4 were not present,
the estimated state would be xr4 = γ0δ6⊕γ1δ10⊕γ2δ14⊕
γ3δ18 ⊕ γ4δ22 ⊕ γ5δ26 ⊕ γ6δ30 ⊕ γ7δ+∞ (no time shift:
monomial γ0δ6 instead of γ0δ7).

5 Time shift failure detection in
(max,+)-linear systems with observer

Figure 6 shows how the proposed set of indicators is de-
signed: the system is ruled by the observable inputs u, the
unobservable disturbances w and produces the observable
outputs yo; the observer estimates the states xr based on the
observation of u and yo. States xs result from the simulation
of the fault-free model (as in Figure 1) based on u, the pro-
posed indicator then relies on a series comparison denoted
∆(xri, xsi) (see Definition 9) for every transition xi.

Figure 6: Detection method structure

Definition 10. The indicator for state xi is Ixi(u, yo) de-
fined as the Boolean function:

Ixi(u, yo) =

{
false if ∆(xri, xsi) = [0; 0],

true otherwise,

with

xs = [xs1 . . . xsn]T = A∗Bu

xr = [xr1 . . . xrn]T = Axr ⊕Bu⊕ LCxr ⊕ Lyo
∆(xri, xsi) = [Dxri◦/xsi

(0);−Dxsi◦/xri
(0)].

Theorem 4. The indicator Ixi
(u, yo) returns true only if

a time shift failure involving xi with ∆(xri, xsi) 6= [0, 0]
has occurred in the system. A time shift failure involves a
transition xi if the time shift failure occurs in a place of the
TEG that is in the upstream1 of transition xi.

To prove the result, we show that if the system has no
failure in the places in the upstream of xi then the indicator
Ixi(u, yo) necessary returns false. Suppose the system does
not have such a time shift failure, it means by definition of
the observer that the estimated state xri is the same as the
fault-free model state xsi as no place in the upstream of xi is
disturbed. If xsi = xri, then we have xsi◦/xri = xri◦/xsi =
xri◦/xri but xri◦/xri = (xri◦/xri)

∗ according to Theorem 2
and with Definition 1 of the Kleene star: (xri◦/xri)

∗ = e ⊕
· · · = γ0δ0 ⊕ . . . . So if xri = xsi, one has Dxri◦/xsi

(0) =
−Dxsi◦/xri

(0) = 0.
In the example of Section 2, based on the previous ob-

server, suppose that the system behaves with respect to the
inputs u1 and u2 defined in Section 3. Suppose that in re-
ality there was an incident on Equipment 2: the operation
lasts longer with a processing time of 5 hours in p5 instead
of 4 hours (see Figure 1). The real system is then character-
ized by Equation (3) with the disturbance w4 that is defined
in Section 4.1. The estimated state is the same as given at
the end of Section 4.2. In particular, xr3 is represented with
plain line in Figure 7. The expected state xs is the vector
[xs1, . . . , xs6]T =

γ0δ2 ⊕ γ1δ5 ⊕ γ2δ8 ⊕ γ3δ11 ⊕ γ4δ14 ⊕ γ5δ17 ⊕ γ6δ20 ⊕ γ7δ+∞

γ0δ5 ⊕ γ1δ8 ⊕ γ2δ11 ⊕ γ3δ14 ⊕ γ4δ17 ⊕ γ5δ20 ⊕ γ6δ23 ⊕ γ7δ+∞

γ0δ2 ⊕ γ1δ6 ⊕ γ2δ10 ⊕ γ3δ14 ⊕ γ4δ18 ⊕ γ5δ22 ⊕ γ6δ26 ⊕ γ7δ+∞

γ0δ6 ⊕ γ1δ10 ⊕ γ2δ14 ⊕ γ3δ18 ⊕ γ4δ22 ⊕ γ5δ26 ⊕ γ6δ30 ⊕ γ7δ+∞

γ0δ7 ⊕ γ1δ11 ⊕ γ2δ15 ⊕ γ3δ19 ⊕ γ4δ23 ⊕ γ5δ27 ⊕ γ6δ31 ⊕ γ7δ+∞

γ0δ11 ⊕ γ1δ15 ⊕ γ2δ19 ⊕ γ3δ23 ⊕ γ4δ27 ⊕ γ5δ31 ⊕ γ6δ35 ⊕ γ7δ+∞


Series xs3 is represented with dotted line in Figure 7. The
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Figure 7: Graphical representation of xr3 and xs3

intervals computed by the set of indicators are:
∆(xr1, xs1) = [Dxr1◦/xs1(0),−Dxs1◦/xr1

(0)] = [0, 0],
∆(xr2, xs2) = [Dxr2◦/xs2(0),−Dxs2◦/xr2

(0)] = [0, 0],

1A place p is in the upstream of a transition x in a TEG if there
is a path of arcs from p to x.



∆(xr3, xs3) = [Dxr3◦/xs3(0),−Dxs3◦/xr3
(0)] = [0, 6],

∆(xr4, xs4) = [Dxr4◦/xs4(0),−Dxs4◦/xr4
(0)] = [1, 7],

∆(xr5, xs5) = [Dxr5◦/xs5(0),−Dxs5◦/xr5
(0)] = [1, 7],

∆(xr6, xs6) = [Dxr6◦/xs6(0),−Dxs6◦/xr6
(0)] = [1, 7].

The set of indicators that return true are associated with
transitions x3, x4, x5, x6. Indicators for transitions x1, x2
return false. Now, if we assume that there is only one
type of time shift failure in the system (as it is the case
in the proposed scenario where there is only one incident
on Equipement 2), Proposition 4 ensures that the time shift
failure occurs in a place that is in the upstream of every tran-
sition x3, x4, x5, x6. It follows that the time shift failure oc-
curs in Eq2, either in place p2 (transportation delay before
the arrival in front of Eq2), or in place p6 (processing start
of Eq2 is delayed), or in place p5 (process of Eq2 longer
than expected, which is the real case).

6 Conclusion
In this paper, we define a method for detecting time shift
failures in systems modeled as Timed-Event Graphs using
an observer that estimates the real states of the system based
on the observations. Our work is motivated by the monitor-
ing and the detection of time shift in production lines like in
semiconductor manufacturing industry. The method defines
a formal (max,+) algebraic indicator on the residuation the-
ory. The proposed indicator is able to detect the presence of
time shift failures as soon as it returns true and provides first
localisation results. As a perspective, we aim at improving
the accuracy of this indicator to better exploit the quantita-
tive information contained in the interval ∆(xri, xsi). We
expect that a further analysis about the bounds of the in-
tervals may actually provide more information about fail-
ure localization and identification. Indeed, observer matrix
L actually represents the connections between the observed
output yo and the internal transitions xr of the observer. In
the matrix L of Section 4.2, we can notice that all the rows
are filled which means that L is able to provide an estimate
of any of the states xi’s (one row per xi). Looking at the first
monomial γjδl of a series γjδl(...)∗ it should be possible to
know when a state xi starts to be effectively reconstructed
by L. A monomial like γjδl asserts that the estimation of
the corresponding state only starts after the jth+1 event. By
using this property of L, our perspective would be to make
the indicators more accurate and take benefit of the quanti-
tative information from the computed intervals to estimate
the delay of the time failures.
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