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Abstract 

Nanomechanical properties of cells could be considered as cellular biomarkers. The main 

method used to access the mechanical properties is based on nanoindentations 

measurements, performed with an operator manipulated Atomic Force Microscope (AFM) 

which is time-consuming, and expensive. This is one of the reasons preventing the transfer 

of AFM technology into clinical laboratories. In this paper we report a methodology which 

includes an algorithm (transferred to a script, executed on a commercial AFM) able to 

automatically move the tip onto a single cell and through several cells to record force 

curves combined with a smart strategy of cell immobilization. Cells are placed into 

microwells of a microstructured polydimethylsiloxane (PDMS) stamp. Inside a classical 

100x100 µm2 AFM field, 100 cells can be immobilized. In an optimal configuration we were 

able to measure, within 4 h, a population of 900 Candida albicans cells both native and 

caspofungin treated, which represents an unprecedented performance. We discovered 

that the population is heterogeneous and can be divided, on the basis of nanomechanical 

properties, into 2 subgroups. 

 

Introduction 

Medical doctors constantly have to face the issues of diagnostic, prognostic or evaluation of 
treatment efficiency. To tackle this question there is a constant need to develop and adapt 
new, more accurate and sensitive biomarkers, able to help in differential diagnostic or be 
predictive as early as possible of the disease evolution. In this aspect cell mechanical 
properties have the potential of being used as label free biomarkers for some pathologies1. 
Indeed, cell mechanical properties have the potential to address the diagnostic of cancer1–4 
as it has been reported that cancerous cells change their mechanical phenotype, presenting 
a lower Young modulus5–7 and adhesion7–9 than normal cells. Other authors have reported 
that cell mechanical properties are modified during proliferation10, by comparing their 
elastic modulus to differentiate normal cells from cancerous cells11 or normal cells from cells 
treated for example with H2O2, N-ethylmaleimide and chymotrypsin12. In the field of 
cardiology, it is also known that erythrocytes interactions with fibrogen, as probed by AFM, 
are modified in ischemia and that red blood cells stiffness is altered13. As for the cardiology 
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area for example cardiomyocytes are difficult to handle, and then works have reported the 
characterization of 1 to 30 cardiomyocytes14–20 in about 6-8 h. which is a too small amount 
of cells to make a statistically relevant information in the context of human diseases and 
therefore will never be reliable enough for clinicians. Mechanical properties have also help 
understanding the effects of antimicrobial molecules on bacteria or yeast cell’s walls21. 
Another example in the bacteria field is the work of Francius et.al22. They reported that S. 
aureus exposed to lysostaphin, presented a decrease in elasticity and stiffness of its cell 
membrane. Also, Feuillie et.al23 reported in their paper that when treating bacteria with a 
peptide derived from β-neurexin, it blocks the surface protein SdrC which impacts on the cell 
adhesion. Formosa et.al24 reported the increase of the cell wall elastic modulus and an 
overexpression of the adhesive protein Als1p when exposing Candida albicans to some 
incremental doses of caspofungin. Mechanical properties help understanding the 
microorganisms cell wall structure, their resistance mechanisms, and adhesion 
processes25,26. 

Atomic Force Microscopy (AFM)27 is the technique of reference to acquire mechanical 
properties of cells28,29. The classical procedure to obtain force curves from an AFM can be 
described by the following steps: first the tip is calibrated, then the sample is placed on the 
microscope stage, next a topographic image is acquired to determine the position of the 
cells, the tip is moved to the central region of each cell. AFM indentations at different 
locations of the cell are performed, and force curves are obtained and recorded. Finally, 
when all the cells are measured, the stage is moved so that new cells are brought into the 
AFM field of view. This cycle is performed manually, and its throughput is low (<1 cell/10 
min.)30. Up to this time the technique is neither used in the pharmaceutical industry nor in 
the antimicrobial drug discovery process. AFM is perceived as a research tool and indeed, 
the works reported so far have one common factor, which is the limited number of cells 
analyzed by an AFM. This limited number prevents the analysis of a cell population and 
therefore prohibits statistically relevant general conclusions or decisions. To be able to 
transfer the AFM technology to hospitals or pharmaceutical industry a mandatory step is to 
achieve high throughput results in order to analyze cell populations rather than single 
cells21,31. 

Wang et.al32 developed an automated system which uses image processing to identify Raji 
cell locations so the AFM tip can move exactly above the cells and take measurements. The 
location and measurement of the cells are done within 3 s per cell, but their system had 
some requirements: the cells needed to be round shape (which is usually the sign of dying 
cells), as the algorithm could only recognize round shape cells confining the system to a 
specific cell geometry. Moreover, the cells substrate had to be completely flat and the 
agglomeration of cells were to be avoided, because the system did not withdraw the tip 
from the sample. Finally, the authors tested their system with 4 cells per scanning area, but 
they did not report the number of cells analyzed per hour. In another effort to develop AFM 
measurements on tissues Roy et.al33 developed a system that used image processing to align 
the AFM probe with a tissue of interest, they were able to obtain in an area of 80 μm x 150 
μm up to 480 force curves in ~80 min. Nevertheless, the aim of their semi-automated system 
consisted in analyzing changes in tissue architecture not being adapted for single cell 
analysis. Another approach reported by Favre et.al34, focused on maximizing the number of 
cells analyzed by AFM. They developed an array of cantilevers that are controlled by one 
AFM acquiring images from different regions of a sample at the same time. However, to 
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apply this technology to a cell population the cantilever arrays should be fabricated with the 
same dimensions as the cell arrays. Another example was the parallelism of AFM which was 
reported by Sadeghian et.al35. Their tool involved the miniaturization of AFMs, they reported 
a maximum of 44 miniaturized AFM in an area of 450 mm (wafer like area). Each AFM was 
capable of working independently from the others having different kinds of analysis. The 
authors tested the system by obtaining topographical images of colloidal gold nanoparticles 
(10 nm in diameter) deposited on mica. However, the AFM heads distribution is very 
particular, and the cell array had to be adapted. Moreover, the regions of interest locations 
are determined manually, meaning that the human intervention is still predominant. Both 
parallel solutions did not consider a way to automatically bring new cells (or another cell 
array) inside the field of view of the AFM, consuming a vast amount of time.  

Very recently Antoine Dujardin et.al36 reported a solution where an automated procedure 
allows an AFM to obtain biomechanical analysis on prokaryotes. A python script was 
implemented in a Dimension Fast Scan-Bio AFM (Bruker, Santa Barbara, CA, USA), however 
this process takes considerable time to realign the photodetector and perform the 
engagement each time to finally analyze 501 areas in 8 h 35 min. They tested the system 
with fixed Yersinia pseudotuberculosis and living Mycobacterium bovis BCG bacteria. To 
identify the bioelements, a force volume image was performed in each well. This image was 
used to determine the bacteria positions (on the basis of their height) and the identified 
positions were imaged (2x2 µm2 area). The reported images are height and Peak Force-error 
signals discarding the option to perform a mechanical analysis on the analyzed bacteria. 

In the present work an original automated methodology, previously submitted as patent31 to 
measure cellular mechanical properties is reported. Our methodology combines a purposely 
developed copyright algorithm37 executed as a script on commercial AFMs with a smart 
strategy of cell immobilization (supp. Figure S2). The script automatically moves the tip from 
cell to cell to record force curves of each cell of a cell population. Cells are immobilized at 
known locations into microwells of a microfabricated PDMS stamp38. Once the tip has 
scanned all the cells of the scanning area, a motor stage moves automatically and brings a 
new cell array into the scanning area to re-initiate the methodology.  

We tested this AFM based automated methodology on eukaryotes C. albicans because they 
are known as an opportunistic pathogenic yeast which represents one of the main hospital-
acquired infections. We decided to compare native C. albicans cells with caspofungin treated 
C. albicans cells. Caspofungin is a last change antifungal drug form the echinocandin class, 
know to modify the yeast cell wall mechanical properties24. In our test, the automated 
methodology takes an average time of 12 seconds to perform 9 nanoindentations per cell 
and per microwell, giving a large number of force curves that is between 8,000 to 9,000 in 4 
h, providing a method for high throughput measurements of a cell population. This 
automated process can be considered as the first step for a viable future diagnostic tool31. 
Thanks to this development we present for the first time the mechanical properties of a cell 
population (800-900 cells) measured by AFM pointing out that the mechanical properties 
within the cell population is not homogeneous and may explain conflicting results from 
literature. 

Results and discussion 
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Figure 1 shows the execution of the program developed for this work (recommendations to 
initialize the algorithm: supp. figure S1 and description of the algorithm in supp. Figure S2 
and supp. Figure S3), 1A and 1B shows how the cantilever moves from one scanning area to 
another. The centering algorithm takes ~40 s to be executed on each microwell. Figure 1C 
shows the displacement among the microwells in one scanning area, the movement is from 
the center of one microwell to the center of other microwell. The program takes ~12 s to 
finish the 9 indentations per microwell and ~13 min. per area, that is 64 wells per scanning 
area. Then Figure 1D shows the nanoindentation on different regions inside a microwell. This 
result can be seen in the video on the supp. data information.  

 
 

Figure 1. Algorithm execution. Screenshots taken from the Supp data video. A: Location of the center of the 
first microwell in the current scanning area. B: Position of the tip after moving the motor stage, area 2 is the 
active scanning area at this moment. C: Shows the data acquisition through different microwells (i-iii). D: Shows 
the data acquisition inside one microwell, the indentation is performed in different regions of the same 
microwell (magenta/green/blue). 

The force curves were obtained from C. albicans cells immobilized inside the micro-
fabricated wells. Four experiments were conducted with the objective to establish the 
repeatability and reliability of the results. Native and caspofungin treated cells were 
independently prepared as mentioned in the materials & method section and immobilized 
the day they were used. The decision to use caspofungin is because its action on the yeast 



 5 

cell wall is still under debate24,42. The script was executed and 1021 cells were analyzed for 
the first experiment (native cells), 957 cells for the second experiment (native cells), 1000 
cells for the third (caspofungin), and 574 cells for the fourth experiment (caspofungin). For 
the experiments 1 and 3, 16 indentations per cells were taken, meanwhile for experiments 2 
and 4, 9 nanoindentations were taken. 

Experiments 1, 2, 3, and 4 are independent duplicates. The cell cultures were independent 
and were not performed the same day. Four experiments were performed, two of them 
(experiments 1 and 2) with native cells and two (experiments 3 and 4) with caspofungin 
treated cells. The objective of this setup was to obtain a comparable number of analyzed 
cells (for native and treated) and to determine the maximum number of cells analyzed in a 
fixed time (4 h).  

Following the previous criteria Table 1 presents the number of cells analyzed, the number of 
force curves discarded, and the time taken to analyze each well. 

Table 1. Summary of the information derived from the experiments. 

 Experiment Force Curves  
Wells 

analyzed 

Cells 

analyzed 

Time per 

well(s) 

Discarded 

force curves 

(%) 

Native cells 
1 15927 1021 1021 9 4.31 

2 8620 959 957 12 12.87 

Treated cells 
3 15457 1018 1000 9 8.19 

4 5180 579 574 12 20.88 

 

The force curves obtained were analyzed using the JPK data processing software, based on 
the work published by El-Kirat-Chatel42 we extracted the cell spring constant from all the 
force curves. However, the filling rate of the PDMS stamp is not 100 % (actually ~86 %). In 
the sup. data section dealing with force curves acquisition and analysis, the parameters used 
to exclude curves recorded out of the cells are described (supp. Figure S4). To filter the force 
curves the following criteria was implemented: 

 The contact point is used to determine if the force curves are from the bottom of the 
well, so all the curves with a contact point value below 4.15 µm are discarded. 

 Curves with a negative slope are discarded. 

 We assumed that the cell spring constant should be lower than that of the PDMS 
measured at 150 pN/nm, hence we discarded all force curve giving a spring constant 
higher than 150 pN/nm. 

Figure 2 presents the spring constant and adhesion histograms for C. albicans cells in native 

conditions (A and B) and treated with caspofungin (C and D). 2A and B, left, show the spring 

constant histograms, the number of cells analyzed in the first two experiments were 1021 

and 959 respectively; both are obtained by analyzing independently the cultured native cells. 

Analyzing the two histograms with the k-means method they can be deconvoluted into 2 

populations that are slightly different in the 2 experiments. The first population has a mean 
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spring constant of 21 ±6 pN/nm (experiment 1) and 30 ±13 pN/nm (experiment 2) while the 

second population has a spring constant of 48 ±9 pN/nm (experiment 1) and 80 ±18 pN/nm 

(experiment 2). For the experiments 3 and 4 (Figure 2C and D, left) 1018 and 579 cells were 

analyzed. According to the literature42, treated cells present a softening of the cell wall 

because of the caspofungin treatment.  

This shift can be seen in Figure 2, comparing experiments 1 and 3. The peak present at 21 pN/nm 

(2A-left) shift to 13 pN/nm (2C-left) and the peak at 48 pN/nm shifts to 42 pN/nm. For experiments 2 

and 4 (2B and 2D, -left, respectively) the peak present at 30 pN/nm shifts to 15 pN/nm and the peak 

at 80 pN/nm shifts to 52 pN/nm. Figure 2E and 2F show the one-way ANOVA test, 2E-left was 

obtained comparing 2A and 2C spring constant data reducing both sets to 1018 cells, meanwhile 2F-

left was obtained by comparing 2B and 2D spring constant data reducing both sets to 579. The one 

way test is used to compare the native cells results against treated cells obtaining a p<0.001 

(represented by ***). 

 

Figure 2. Spring constant histograms for C. albicans, native and treated with caspofungin. A and B (left) show 
the spring constant histograms for experiments 1 and 2 of native C. albicans cells (1021 and 959 cells analyzed 
respectively). While C and D (left) show the spring constant histograms for the experiments 3 and 4 of treated C. 
albicans cells (1018 and 579 cells analyzed respectively). A and B (right) show the results obtained from the 
adhesion analysis on experiments 1 and 2. C and D show the adhesion results for experiments 3 and 4. E and F 
show the one-way ANOVA test performed using the spring constant and adhesion data from 1-3 and 2-4 
respectively. *** = p value < 0.001, NS = no significant difference. Bin width was determined by Freedman-
Diaconis rule. 

Figure 2A-right shows that the adhesion force between the bare tip and native cells was 0.64 
±0.6 nN in the first experiment, while in the second experiment still on native cells, 2 
subpopulations were found: the first has a mean adhesion force of 0.7±1.4 nN while the 
second is 4.5±1.5 nN. The treatment with caspofungin has no significant effect on the 
adhesion if experiment 1 and 3 are considered (one way ANOVA test, figure 2E-right shows 
no significant difference) but it seems that caspofungin induces a decrease in the adhesion 
to the tip and a reduction of the population adhesion heterogeneity.  
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Discussion 

The protocol used to immobilize the cells is the one described by Formosa et. al38, 
nevertheless in this work a modification was made to go from ~50 % to ~85 % of microwells 
filled with cells (see materials & methods section). The number of nanoindentations were 16 
for experiments one and three and 9 for experiments two and four. The objective of varying 
the number of nanoindentations was to observe if a significant change will be present in the 
histograms, and as can be seen the two subpopulations start to merge when we decrease 
the number of measurements, however, with nine indentations it is still possible to see the 
two subpopulations (Figure 2).  

We extracted the spring constant from every force curve we obtain with the automated 

procedure. Based on the results published by El-Kirat-Chatel42 a shift on the results for the 

treated cells with respect to the native cells was expected, these can be confirmed by 

looking at Figure 2 (A and C, B and D). On the contrary, the presence of the two peaks in the 

histograms that we observed in all four experiments were unexpected. Indeed, experiments 

performed on single cell(24,42)only demonstrated homogeneous distribution of the 

nanomechanical properties. The difference in the spring constant absolute value for the two 

independent experiments on native cells may come from uncontrollable differences in the 

cell cultures. Indeed, the maximum applied force, the tip velocity, the cantilever spring 

constant, the buffer, the temperature, etc were the same. It is important to note that C. 

albicans is actually an extremely versatile microbe43 able to sense and adapt to its 

environment. As a consequence, the growth phases of C. albicans are difficult to control and 

an unmeasurable difference in the initial culture conditions may result through the butterfly 

effect to the difference that we observe in between experiment 1 and 3. A further 

interesting experiment would be to follow a cell culture in order to monitor it's evolution 

throughout the time. But, most importantly we reproduced, two times, the distribution of 

the cells into two distinct populations. Dague E. et.al44 reported an heterogeneity on the 

young modulus of Saccharomyces cerevisiae cells analyzed in the same conditions. 

Nevertheless, the numbers were really low (5 cells) and it was therefore impossible to draw 

a general conclusion at the population scale. Sub-populations in C. albicans have been 

described since more than ten years in the context of biofilms. They are reported to be 

responsible of biofilm resistance to chelating agents45 and to antifungal drugs like 

amphotericin B46. In this last publication, the authors demonstrated that the sub-population 

was associated to ergosterol and beta 1-6 glucan pathway genes. They both are important 

component of the fungal cell wall and we know from previous investigation of the team47 

that their expression level is correlated with the nanomechanical properties of the cells. 

More recently, Rosenberg et al. showed that antifungal tolerance was a sub-population 

effect48. It therefore seems that sub-populations in C. albicans are common. In our work 

there is no a particular reason responsible for the 2 sub-populations, and we must admit 

that we have no clue of its origin. Globally, we can hypothesize that sub-populations, in C. 

albicans are an adaptation mechanism probably responsible for the remarkable expansion of 

this microbe, usually being commensal but also opportunistic pathogen. 
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To our knowledge this work is the first that reports the use of AFM to analyze hundreds of 
cells which demonstrate that a microbe population is mechanically heterogeneous. Supp 
Figure S6. (A and B) show the presence of the two populations at all times during the 
experiment. This means that the sub-populations are not due to the alteration or 
modification of the cells during the experiments. The two populations exist from the 
beginning to the end of the experiments. We also wondered if the sub populations could be 
due to an artifact linked with the tip position above the cell/well. To eliminate this 
hypothesis, we examined the distribution of stiffness constants for each position of the tip. 
This analysis, presented in Figures S6C and S6D (supp. Figure S6.), shows that the spring 
constants are distributed according to the same sub-population distribution for each analysis 
point. There is, therefore, no one position category that contributes to one sub-population 
and another position category that contributes to the other sub-population. These 
subpopulations are really linked to differences in spring constant between cells and are 
really reflecting the biological reality, complexity, variability of a Candida albicans cell 
population. 

To be sure we also calculated the average value of each cell and represented these values on 
a histogram (supp. Figure S5). These representations show 2 sub-populations, centered on 
the same values as those of the global distribution histograms. 

Our strategy to achieve a few force curves (9 to 16) over a large number of cells marks a 
break with the traditional approach to mechanical measurements, by AFM, on living cells. 
Nevertheless, we compared our results with those in the literature to validate the approach. 
Indeed, if the measurement on hundreds of cells were theoretically to open the door to the 
observation of sub-population, the decrease in the number of force curves, per cell, may 
also have negative effects. El Kirat-Chatel et.al42 performed 256 nanoindentations on single 
cell, they found a stiffness value of 51+/-9 pN/nm for cells not treated with caspofungin and 
27+/-10 pN/nm for cells treated with caspofungin. Our results are of the same order of 
magnitude (spring constant ranging from 21+/-6 to 81+/-19 pN/nm for native cells) and we 
observe the same tendency to decrease the spring constant with caspofungin treatment 
(spring constant ranging from 13 to 52 pN/nm, in our experiments, for caspofungin treated 
cells). 

In another paper by Formosa et.al24 showed that Candida albicans cells treated with 
caspofungin became harder. Formosa results are based on the analysis of 1024 
nanoindentations performed on a cell. This inconsistency could be explained if authors 
selected an untreated cell from the softest subpopulation and a treated cell from the 
hardest subpopulation. Having no means at that time to access the sub-populations, the 2 
results were accurate but incomplete. These inconsistencies are numerous in the literature 
and have partly motivated our work. 

The results of the adhesion measures are particularly interesting and highlight the limit with which 

our method could be confronted. Indeed, it is known that Candida albicans is able to express on its 

surface a large number of different adhesins, in variable quantities43,49. The conditions of expression 

of some of them are known but for example the conditions of amyloid aggregation described in41 

have not been demonstrated. It seems that it could be triggered by mechanical stimulation (force 

induced nanodomain Alsteens PNAS ALS550) but this has not been demonstrated in Candida. Our 

adhesion results are different from one experiment to another, although the culture conditions were 
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the same or at least we had the impression that they were the same, the usual microbiological 

techniques being implemented. This probably means that the expression of adhesins and or their 

organization on the cell surface in experiments 1 and 2 were different. Our method is not designed 

to analysis in high details single cells and therefore the detection of nanodomains is impossible. It 

means that the traditional approach is not antagonist with our new method and that they provide 

additional information. Moreover, the differences in spring constant between the nanodomains and the 

"normal" cell wall are not in the order of magnitude of the 2 sub-populations. Stiffer nanodomains are 

13.4 +/- 0.2 nN/µm when the rest of the cell wall is 12.4 +/- 0.3 nN/µm
(41)

. In the present work we 

report a sub-population at 21+/- 6 nN/µm and the second at 48 +/- 9 nN/µm. It means that the 

difference due to the nanodomains are included in the error bar of our measurement. 

Thus, and that is a potential new limit, our results would no longer be incomplete because they 
would not consider the heterogeneity of the cell population but incomplete because we would lack 
control over the biological sample produced. Candida albicans is known for its versatility43 and in this 
context serves this demonstration better than any other cell model would have done. 

Conclusions 

An automated methodology for AFM force curves acquisition on cell population was 
successfully developed and implemented on a JPK Nanowizard II. The portability of the 
algorithm was tested on a JPK Nanowizard III. The results demonstrate that increasing 
drastically the number of cells analyzed (from tens to hundreds) makes it possible to 
describe a cell population from the nanomechanical point of view. Moreover, we showed 
that the number of measurements per cell has no impact on the significance of the result. 

Our results, in addition to being consistent with those in the literature, show for the first 
time the presence of at least 2 subcellular populations. These are distinguished by 
differences in mechanical properties and cell wall adhesion. This discovery could have 
important implications for understanding the pathogenicity of Candida albicans. Indeed, the 
adhesion of cells to the host represents the first stage of infection and the mechanical 
environment of Candida is known to induce transformation from the yeast form to the 
invasive hypha form. Different subpopulations in terms of adhesion and mechanical 
properties are thus potentially responsible for one or the other of these key stages of 
Candida albicans infection. 

Methods 

Cell culture 

The cell cultures were prepared as previously reported24,41. C. albicans was stored at -80°C, 
four independent cultures were prepared with the C. albicans revivified on Yeast. Peptone 
Dextrose (YPD) agar, and each were grown in 5 ml YPD broth for 20 h at 30°C under static 
conditions. In two of these four independent cultures 9.4 µl of caspofungin at 0.1 mg/ml 
(4xMIC) concentration were added and let under static conditions for 24 h at 30°C. Yeast 
cells (native and treated) were concentrated by centrifugation, washed two times in acetate 
buffer, and resuspended in acetate buffer just before performing AFM experiments. 

 

Sample preparation 
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600 µL were taken from the resuspended cell solution and centrifuged, to separate the 
buffer from the cells. The supernatant is deposited onto a PDMS stamp, prepared as 
described in38 and degassed for about 40 min. After 40 min. the buffer is removed from the 
PDMS surface, 200 µl of the cells solution are deposited and allowed to stand for 15 min. at 
room temperature. The cells were then placed into the microstructures of the stamp by 
convective/capillary assembly as described in38. 

The PDMS stamp with cells was finally fixed on a Petri dish (FluoroDish FD35-100) and it was 
filled with 5 ml of acetate buffer solution to maintain the cells in liquid media. 

 

AFM measurements 

For all experiments, commercially available silicon nitride triangular cantilevers (Bruker 
MLCT) with spring constants and sensitivity ranging respectively from 0.0110 N/m to 0.0405 
N/m and from 31.8 nm/V to 54.2 nm/V were used. Cantilevers were calibrated using the 
thermal tune method. The parameters used to engage the tip on the stamp surface were as 
follows: IGain= 70 Hz, PGain= 0.002, Setpoint=0.559 nN. The topographic image used to 
determine W1 and W2 coordinates was recorded in the force map mode, (64 x64 pixels, 
maximum applied force 1nN, tip velocity 10 µm.s-1). The maximum applied force used to 
record force curves was set to 1 nN and the piezo and motor stage speed were 10 µm/s and 
200 µm/s respectively. The AFM field was 10,000 µm2 (100 µm x 100 µm). 

The AFM automation has been implemented on a JPK Nanowizard II, with a motorized 
precision stage MotStage Zeiss AxioObserver (S/N SM-01-0017) on an inverted optical 
microscope Zeiss Axiovert 200M. The AFM control software (SPM version 4) runs under 
Ubuntu 10.04 LTS (Lucid Lynx), the script was executed by using the experiment planner 
module, included in the JPK SPM software control. Indeed, the experiment planner mode 
offers a Jython scripting interface to control the AFM, hence the software programs for 
automation has been developed in Jython programming language. 

Statistical analysis: k-means method 

The k-means method has been used to group the subpopulations observed in the results. 
The method is based in the Hartigan and Wong algorithm39, it divides M points in N 
dimensions into K clusters, the clusters centers are at the mean of their Voronoi set40 (the 
set of data points which are nearest to the group center). The procedure is to minimize the 
within-cluster sum of squares so the dimension of the clusters will be changed until the 
items in the same cluster are similar as possible and items in different clusters are different 
as possible. 

The k-means method was used to divide the stiffness and adhesion results into groups for 
analysis. 
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