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Comparison of predictive controllers
for locomotion and balance recovery of quadruped robots

Thomas Corbères a, Thomas Flayols a,b, Pierre-Alexandre Léziart a, Rohan Budhiraja a,
Philippe Souères a, Guilhem Saurel a, Nicolas Mansard a,b

Abstract— As locomotion decisions must be taken by con-
sidering the future, most existing quadruped controllers are
based on a model predictive controller (MPC) with a reduced
model of the dynamics to generate the motion and a whole-
body controller to execute it. Yet the simplifying assumptions
of the MPC are often chosen ad-hoc or by intuition. In this
article, we focus on a set of MPCs and analyze the effect of
chosen model reductions on the behavior of the robot. Based on
existing formulations, we present additional controllers to better
understand the influence of model reductions on the controller
capabilities. Finally, we propose a robust predictive controller
capable of optimizing the foot placements, gait period, center-
of-mass trajectory and ground reaction forces. The behavior
of these controllers is statistically evaluated in simulation. This
empirical study aims to assess the relative importance of the
components of the optimal control problem (variables, costs,
dynamics) to be able to take reasoned decisions instead of
arbitrarily emphasizing or neglecting some of them. We also
provide a qualitative study in simulation and on the real robot
Solo-12.

I. INTRODUCTION

Locomotion with quadruped robots is both challenging and
rewarding for roboticists. With lighter feet than bipeds and
more stability, quadrupeds can be used for highly dynamic
motions and gaits, as already done with Cheetah [1], Anymal
[2] or HyQ [3]. For this purpose, controllers that can generate
real-time motion trajectories are highly sought. Among them,
non-linear model predictive controllers (MPC) [4], [5] can
provide real-time computations [3], reactive control [6], [7],
and because of optimal control over a time horizon, can deal
with disturbances and perturbations to the system [8].

Whole-body dynamics allow maximum utilization of our
knowledge about the model of the robot [10]. However, non-
linearity and high dimensions are prohibitive with respect
to computation times. The classical consequence is to use
reduced dynamics of lower dimensions instead [11]–[13],
very often with additional assumptions to further simplify
the non-linearities of the problem. In such cases, the plan
provided by the reduced model is followed by the low-
level controller using inverse dynamics, e.g. in [6], [14].
Several reduced models can be considered to build a MPC for
quadruped locomotion: table-cart [11] (or with foothold opti-
mization [14], [15]), centroidal [16] (or with contact timings
optimization [17]). For quadruped robots, a sound reduction
is to approximate the angular momentum to the rotation of
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Fig. 1. Solo-12 [9] trotting during experiments. Motions from different
controllers were tried on Solo. While all controllers were able to perform
simple motions, we provide comparison of their performances for more
extreme cases.

the rigid body and to neglect the limb dynamics [18]–[20],
which we chose in this work [13].

The simplifications of dynamics are mostly the result
of limited resources available for online real-time MPC.
In this paper, we propose to simultaneously evaluate their
advantages and drawbacks. After recalling the main concepts
in Sec. II, we start by introducing the general optimal control
problem (OCP) formulation. Then, based on the convex
problem detailed in [13], the first OCP is presented in Sec. III
to clearly define the optimization problem and serve as a
reference for comparison. Three other optimal problems are
then proposed by successively removing some linearization
assumptions done in [13] (Sec. IV), extending the formu-
lation to footholds optimization (Sec. V) and including the
walk period as an optimization parameter (Sec VI). All OCPs
are presented following the same template to better exhibit
their similarities and particularities. As the two last OCP
involve the simultaneous optimization of trajectories and
static parameters (foothold positions and timings), we explain
in Section VII how a differential dynamic programming
(DDP) solver can be used to solve a parametric OCP. The
MPC implementing the OCP to perform the feedback control
of the robot is detailed in Sec. VIII and is used in Sec. IX
to benchmark several OCP formulations both in simulation
and on the robot Solo-12.

II. OPTIMAL CONTROL WITH REDUCED DYNAMICS

The centroidal dynamics [21] describe the dynamics of
the center of mass (CoM) of the robot due to its interactions
with the environment and corresponds to the under-actuated
dynamics [22]. Since most quadruped robots are built with



lightweight limbs, the centroidal dynamics described below
are often used to approximate the whole-body dynamics :

mp̈ =

nc∑
i=1

fi +mg (1a)

Iω̇ + ω × (Iω) =

nc∑
i=1

(ri − p)× fi (1b)

where p = (x, y, z) is the position of the body, ω is the
angular velocity of the body, m and I are mass and inertia
of the body, and g = (0, 0,−9.8) is the gravity vector. nc 3D
forces fi are applied at the contact points ri. Consequently,
the robot state is composed by linear and angular positions
and velocities, belonging to R12:

x =
[
p Θ ṗ ω

]T
. (2)

where Θ = (θ, φ, ψ) is the rotation of the body frame
Rl with regards to the world frame R0. To facilitate the
reading, we represent the rotation Θ by the 3 Euler angles.
The rotation matrix from body to world is then: Rzyx =
Rz(ψ)Ry(φ)Rx(θ).

In the next section, we will follow [13] and assume small
body inclination φ and θ. Consequently, i) the roll and
pitch angles in the rotational matrices can be neglected:
Rz(ψ)Ry(φ)Rx(θ) ≈ Rz(ψ). ii) ω = Θ̇. iii) The repre-
sentation of inertia matrix in world frame is simplified as:
I ≈ Rz(ψ)IlRz(ψ)T [23], and iv) the cross-product term
ω × (Iω) is neglected leading to a linear variation of the
angular momentum:

d

dt
(Iω) ≈ Iω̇ (3)

where I is approximately constant in the world frame.
We can now set up the generic form of the optimal control
problem for locomotion. The predicted time horizon can be
divided using different contact phases. Each modification of
ground contact - creation or deletion - is associated with
a new phase s entirely defined by its duration Ts and the
location of feet in contact rs.

min
{x},{u}

∑
s∈phases

Ts∑
t=0

`(xt, ut|rs) + `T (xT )

s.t. x0 = x̂ (4a)
∀t, s xt+1 = f(xt, ut|rs) (4b)
∀t ut ∈ U (4c)
∀t, s xt ∈ Xs (4d)

where `k and `N are respectively the running and terminal
cost. {x} and {u} are the decision variables which we take
as discretized at the nodes indexed by t. The control vector
u contains the 3D forces at each contact point, constrained
to the friction cone U . The centroidal states x should be
chosen so that there exists a valid whole-body movement
that can achieve x [22]. We put this last constraint under the

abstract form x ∈ Xs which depends on the phase s. This
would take the form of kinematic constraints as described
in Sec. IV-B. The OCP presented here is still quite abstract.
However, in the following sections, it will be derived into
several versions of increasing complexity, starting from the
OCP formulated in [22]. Our goal is to show how several
motion features can be formulated to improve the accuracy
of the decisions the MPC is capable of and to experimentally
show the consequences of these improvements.

III. LINEARIZATION OF THE DYNAMICS

The first problem is a simple reformulation of the convex
formulation proposed in [13]. The CoM is approximated by
the desired CoM p∗ in the Euler equation (1b). With this
assumption, we can reduce the complexity and make the
system convex as the dynamic matrix no longer contains
coupling between control and state vector:

Iω̇ =

nc∑
i=1

(ri − p)× fi ≈
nc∑
i=1

(ri − p∗)× fi (5)

A. Convex Dynamic Model

The chosen dynamics (1a) - (5) is discretized with an
implicit scheme of integration such that Pt+1 = Pt+∆tVt+1

to estimate the position more accurately, bringing ∆t2 terms
to the B matrix.

xt+1 = ft(xt, ut) = Axt +But (6a)

A =

[
I6 ∆tI6
06 I6

]
(6b)

B =


∆t2

m I3 ... ∆t2

m I3

∆t2I-1[r1 − p∗]× ... ∆t2I-1[rn − p∗]×
∆t
m I3 ... ∆t

m I3

∆tI-1[r1 − p∗]× ... ∆tI-1[rn − p∗]×


(6c)

with ∆t the integration time between nodes, I6 the identity
matrix of size 6 and [. . . ]× a 3x3 skew-symmetric matrix
representing cross products as matrix multiplications.

B. Cost function

The cost function consists of three cost terms. The first
one is a quadratic cost which penalizes the error between
the state vector and the desired state. The second quadratic
cost penalizes the relative command vector. We use the
relative reference force f refz = fz − mg

nc
, where fz is the

normal ground reaction force, since it brings the forces to
equilibrium and also leads to a faster convergence. Finally,
we use a penalty cost to implement the friction cone in-
equality constraints. Because the solver we use works by
penalization, they cannot be formulated as such and instead



are translated in a penalisation term using a discrete 4-facet
cone approximation and for each foot:

`cone,i(f) =
1

2
||(fx − µfz)+||2 +

1

2
||(−fx − µfz)+||2

+
1

2
||(fy − µfz)+||2 +

1

2
||(−fy − µfz)+||2 +

1

2
||(fz)+||2

(7)

where y+ = max (y, 0). The cost is thus activated and
strongly penalized only if u does not respect the inequality
constraints. However, this penalisation formulation does not
guarantee that the constraints will be respected. Some margin
for the coefficient friction is needed. We experimentally show
that this approximation works very well and presents some
results in Sec. IX-A.

IV. KEEPING THE BILINEAR DYNAMICS

A. Non Linear model
In this second OCP, the assumption (5) on the lever arm

is withdrawn. We no longer use the desired CoM position p∗

in the cross product but instead the predicted CoM p. The B
matrix (6c) therefore varies with the state and the coupling
between state and control is re-introduced.

B. Kinematic constraint
In the previous controller, no precautions are taken to

ensure that x is admissible (i.e. x ∈ Xs). In particular it
did not guarantee that the CoM would not move too far
away from the contact. As we now accept to have a non-
linear formulation, we take that as an opportunity to add a
term to enforce it. This kinematic limit is approximated by
penalizing distances between shoulders and their associated
contact point when over 80% of the leg limit. The position
of a shoulder in R0 can be formulated such as : xsh = x+ px − pyψ

ysh = y + py + pxψ
zsh = z + pyφ− pxθ

(8)

where
(
px py 0

)T
is the position of the shoulder in

Rl and
(
x y z

)T
the position of the CoM in R0. The

shoulder-to-cost penalization is thus the following :

`sh(xt) = ||((xsh−xc)2+(ysh−yc)2+(zsh−zc)2−d2
lim)+||2

where xc =
(
xc, yc, zc

)T
is the contact placement in R0.

V. SIMULTANEOUS FOOTHOLD OPTIMIZATION

The third controller additionally optimizes feet place-
ments. The set of contact {r}, containing the contact loca-
tions rs for each phase s, are therefore a decision variable.
This new OCP can be rewritten as:

min
{x},{u},{r}

∑
s∈phases

Ts∑
t=0

`(xt, ut|rs) + `T (xT ) (9a)

s.t. x0 = x̂ (9b)
∀t, s xt+1 = f(xt, ut|rs) (9c)

In addition to the four cost terms described earlier in Sec.
III and Sec. IV, namely the state regularization, the relative
force regularization, the friction cone violation penalty and
the kinematic limit penalty, three other quadratic costs are
proposed to reduce the search space : i) The distance of the
footstep is penalized. ii) The contact placement is penalised
to keep the position of the foot around a certain heuristic.
The same heuristic terms given to previous OCP models
for contact points serve here to lead the optimization. iii)
A last cost term is proposed which allows the optimization
of the contact placement to be stopped when the foot is
approaching the ground. It avoids destabilisation at the end
of the flying phase by preventing lateral feet velocities just
before touchdown. This last cost term disappears in the next
controller.

VI. OCP WITH PERIOD OPTIMIZATION

This last OCP formulation includes contact timings as a
decision variable in addition to the decision variables of (9).
Thus, we evaluate the behaviour of the OCP while optimizing
the gait period, the footholds position, the trajectory of the
CoM and the reaction forces at the same time :

min
{x},{u},{r},{T}

∑
s∈phases

Ts∑
t=0

`(xt, ut|rs) + `T (xT )

s.t. x0 = x̂ (10a)
∀t, s xt+1 = f(xt, ut|rs) (10b)

Looking only at the cendroidal dynamics, the solver will
always take advantage of reducing the duration of the contact
phase. A lower gait period means the CoM falls during a
shorter duration until the next contact switch, hence a better
stabilization capability. Yet, short duration of the contact
phases implies high velocity of the flying feet, in particular if
the solver also decides to take large steps. A cost term needs
to be added to carry this information. Trajectories of the
flying feet are represented by 5-th order polynomial functions
chosen to nullify the speed and acceleration at touchdown
and to take into account the current speed and acceleration of
the flying feet. Only the lateral velocities are penalized since
they are higher than the speed along the Z axis during the
movement. The maximum speed along this trajectory is only
a function of the start and end locations, and of the current
velocity of the foot if any. For predicted phases that have not
started yet, maximum speed is reached at the middle of the
polynomials and thus easily evaluated. The maximum of a 4-
th order polynomial function with non null initial conditions
cannot be computed in a reasonable time. That is why the
velocity of flying feet is evaluated multiple times along the
trajectory at time α∆T , where ∆T is the duration of the
flying phase and α the percentage of trajectory travelled :

Vx(α∆T ) = V0b0(α) + ∆Tacc0b2(α) +
∆x

∆T
b3(α) (11)

where Vx is the speed of the foot along the X axis, ∆x is the
distance traveled by the foot during the phase along the X
axis, vlim the speed limit, b constant coefficients depending



on α, V0 the current speed of the foot and acc0 is the current
acceleration. For one foot, the penalization is thus :

`speed(∆T,∆x,∆y) =
∑
α

[(∆Tb1 + ∆T 2b2 + ∆xb3)2

+(∆Tb1 + ∆T 2b2 + ∆yb3)2 −∆TV 2
lim]+

(12)

For the next phases, the same expression with α = 1
2

holds.

VII. DIFFERENTIAL DYNAMIC PROGRAMMING SOLVER

To solve the OCP formulations described above, the
differential dynamic algorithm programming (DDP) is used
from the library Crocoddyl [24], [25]. The discrete dynamics
model is inserted into a multiple shooting problem. For the
two first OCP, the implementation is quite straightforward
since the state and the control vector do not change along the
temporal horizon. OCPs proposed in (9) and (10) are actually
parameterized OCPs and to handle them with DDP the state
variables are augmented with the new decision variables.

A. OCP with foothold optimization

For the foothold OCP, with rt being the position of the foot
in R0 : yt+1 = (xt, rt). A first shooting node is introduced
to handle the dynamics (1a), (1b) with the forces as control
vector. The second one is used to determine the next position
of the feet and as the contact timing is predefined, this node
is inserted before the modification of the contact point.

∀t ˙yt+1 =

(
ft(xt, ut, pt)
gt(pt, ut)

)
(13)

where f corresponds to the discrete dynamic model, and g is
a function which allocates the new position of the feet when
the contact switch occurs.

For the model representing the dynamics, f is the same
as the non linear OCP and feet positions are constant:

gt(pt, ut) = pt (14)

Regarding the model inserted between the dynamics mod-
els, the control corresponds now to the distance between the
previous and the new contact point. The size of the control
thus depends on the number of modified foot placements. In
this node, the state xt is constant f(xt, ut, pt) = xt and here
is the variation of the foot position:

gt(pt, ut) = pt + ut (15)

B. OCP with period optimization

The same method is used and the state is augmented with
the integration time between the nodes : ∆ts = Ts

Ns
where

Ns is the number of nodes in phase s. A third type of node
whose control is of size 1 and equal to the integration time
is inserted before each flying phase and stance phase. By
modifying the integration time between the nodes the period
of the phase is thus modified. The cost proposed on the state

Fig. 2. Architecture of the controller. x is the state vector, q the joint
configuration, τ the torque from the PD controller and τff the feed-forward
torques, f the contact forces.

vector is no longer quadratic and depends on the integration
time:

`state(xt|s) =
∆ts

2
(xt − x∗)TWs(xt − x∗) (16)

where Ws the weight vector, xt the state and x∗ the desired
state. Thus if no additional constraints are formulated the
optimization solver tends to minimize the phase period by
reducing the integration time to minimize the cost. This
phenomena is highly sought since first it avoids falling into
a local optimum. Then, this allows the optimization to reach
a solution faster. To finish, we assume that the behaviour
of the robot is more stable with a small gait period since
the distance between footholds is lower and the quadrupedal
support are more frequent. Therefore, a minimal integration
time is required.

VIII. IMPLEMENTATION DETAILS

The four OCP formulations described above are tested,
evaluated and compared in simulation as a model predictive
controller with the Solo12 robot. They are integrated inside
a state-of-the-art control architecture for cyclic quadrupedal
locomotion as described in Fig. 2. It is close to the hybrid
architecture proposed in [26] in which control blocks are
explained in more details. The MPC block, running at 50Hz,
is coupled with a whole body controller at 1kHz. From the
desired speed and walking pattern, the gait scheduler block
outputs the heuristic to choose the footstep location and the
sequence of contact phases. This heuristic is the same than
described in [1]. The environment and the simulated feed-
back of sensors are generated using the PyBullet simulator
[27]. We have chosen to run our test in simulation as each
controller will be extensively tested until it reaches its limit,
which we could not afford to do on the real robot.

A. Model predictive controller

The OCP formulations are tested in the MPC block. It
receives the estimated state, the desired state resulting from



Fig. 3. Viable Operating Region. Comparison of linear and non linear
MPC with the shoulder-to-contact point penalization on the right (ii). On
the left (i), the non-linear solver tends to elevate the body, that the WBC
then fails to track, although both solves behave quite similar. The benefits
of completely modeling the lever arm dynamics is highlighted by the larger
area on the right.

the reference velocity and feet positions in local frame given
by the gait scheduler [1]. The MPC outputs ground reaction
forces to apply at contact points and the predicted state
evolution if they are applied. One period of gait is chosen
for the temporal horizon, around 0.5s. The number of nodes
is chosen depending on the integration time between them.
15 to 30 nodes are usually taken. To warm-start the MPC,
the predicted state and calculated forces from the previous
control cycle are slipped of one iteration into the timeline
for the new control cycle. For the last node, the values at the
equilibrium point are chosen.

B. Whole body controller (WBC)

Feet in swing phase follow a 5-th order polynomial
trajectory in X,Y, and Z axis to ensure negative acceleration
and velocity at the impact point. The trajectory is updated
at each iteration with current acceleration/velocities of the
foot and the new contact point. To avoid lateral velocities at
touchdown, the contact point location is locked when 90%
of the flying phase is done.

To generate the inverse dynamic control, we use a task
space inverse dynamics (TSID) [28]. Using the estimated
state, contact forces from the MPC and feet positions, the
WBC computes the torques, position and velocities of joints.
The computed torques are then tracked using a proportional
derivative controller with feed-forward. In order to highlight
the behavior of the MPC rather than the WBC, we voluntarily
choose a high frequency for it at 1Khz.

IX. RESULTS

The main results obtained in simulation are presented in
this section. To understand the difference in behavior induced
by changes in OCPs, a statistical approach has been set up.
The goal is to determine their respective viable operating
region. A video showing some of our results can be found
online1.

1https://peertube.laas.fr/videos/watch/
d6d90690-3262-4e61-9d03-08a2623726e3

A. Checking the force-cone penalization

To first validate the DDP solver, the initial linear controller
was compared to the QP formulation proposed in [13], solved
with the OSQP solver [29]. We checked by an empirical
validation that 3 iterations of DDP solver were enough to
solve the problem in every situation. We chose 16 nodes
and a time horizon of 0.32s. On a forward velocity V ∗ =
0.3m.s-1, the root means square error (RMSE) between
the forces computed by [13] and the forces computed by
DDP solver using the force cone penalization was only
∆f = 0.3N . The next results concerning the computation
time were obtained with 5000 trials for one iteration of the
DDP algorithm.

TABLE I
BENCHMARK OF THE DDP FOR OCPS

OCP Mean [ms] Min - Max [ms]
Linear [ms] 0.327 0.302 - 0.882
Non Linear [ms] 0.351 0.305 - 0.938
Footstep [ms] 0.676 0.618 - 1.271
Dt Optim [ms] 0.769 0.725 - 1.511

B. Influence of the lever arm assumption

We then compared the formulations by running a complete
MPC simulation with a given reference basis velocity. The
simulation is validated if the robot reaches a steady cycle
with the commanded velocity, and invalidated if the robot
falls or does not reach it. We then plot the viable operating
region Vx−Vy and Vx−ω. We first compare the linear OCP
in section III with the non-linear OCP of section IV. In Fig. 3
on the right, we compare the two MPCs with the cost term
introduced in section IV that penalizes the distance between
the shoulder and the contact point. Without the kinematic
constraint, convex and non-linear MPCs are quite equivalent.
The areas are almost similar in Fig. 3-left. The non-linear
MPC slightly improves the behaviour for forward velocities
whereas it is less efficient for lateral velocities. Indeed, it
takes advantage of the cross-product relative to the lever arm
(1b) by elevating the robot body for such lateral velocities.
It results in movements not achievable by the robot with the
CoM too high.

The shoulder-to-contact penalty cost allows the OCP to
better handle this issue. On the contrary, this term degrades
the behaviour of the linear MPC for lateral velocities as
highlighted by the Fig.3-right. The origin of this effect has
not been identified yet. In general the non-linear OCP per-
forms much better in particular at high speed. This non-linear
problem does not need a complex warm-start to converge
toward an acceptable solution. Both OCPs mentioned above
requires the same number of iterations to converge and their
computation time is equivalent.

C. Optimization of the footsteps

Fig. 4 summarizes the performances of the first three OCPs
with shoulder-to-contact penalty. The non linear model with
optimization of the footholds improves the robot walking

https://peertube.laas.fr/videos/watch/d6d90690-3262-4e61-9d03-08a2623726e3
https://peertube.laas.fr/videos/watch/d6d90690-3262-4e61-9d03-08a2623726e3


Fig. 4. Comparing the 3 OCP : (i) linear OCP, (ii) non-linear OCP with fixed footholds, (iii) non-linear OCP with foothold as decision variable. In the
three cases, the shoulder-to-cost penalty is activated. Optimally deciding the footholds greatly helps to stabilize the system.

Fig. 5. Stance phase in dark for the left hind -LH- and front foot -LF-,
depending on which controller is used (optimization of the period or not).
The gait, predefined, is symmetric for the right feet.

behaviour by producing a more stable locomotion. However,
the computation time is higher: one iteration of the DDP
solver takes approximately 0.6ms. It also requires more
iterations, up to 5 with a proper warm-start.

D. Optimization of the gait period

In nominal situation, the MPC tends to minimize the
period as explained in VII-B. For a nominal walk, the timings
are marginally changed by the solver and the viable operating
region is not modified, even at high speed. Optimizing the
gait period provides the most interesting results when the
robot has to handle a perturbation. When a perturbation
occurs, the controller is able to modify the duration of
the flying phase and the duration of the stance phase. We
have tried to quantify this augmented robustness, yet in
simulation, all controllers resist unrealistic perturbations (up
to ∆V = 1m.s-1). As an example, the system is perturbed
by a linear velocity during a double support phase in Fig.
6. The stance phase is then extended as shown in Fig. 5 to
allow a better rejection of the perturbation on the roll, pitch
and yaw angles since it is more stable during quadrupedal
support. A further disturbance analysis to properly quantify
the controller stability should be incorporated in a more
advanced version of the paper.

Fig. 6. Angular positions and linear velocities of the robot CoM in the
world frame. Perturbation of the lateral velocity -Y axis- of 0.7 m.s−1

during a double contact phase.

X. CONCLUSION AND PERSPECTIVE

We have proposed several formulations of MPCs for
quadruped locomotion and evaluated statistically and quali-
tatively the impact of their formulation on the control.

Our first observation is that the linearity of either the
dynamics or the cost is not a mandatory feature for com-
putational efficiency. Actually, we would be more interested
by strict convexity, for which linearity is only a proxy [30].

We have empirically demonstrated the importance of con-
sidering the exact dynamics of the lever arm in the MPC,
the kinematic limit, the positions and timing of the contacts.
We showed that these non-linear features only marginally
increase the computational burden. On the other hand, some
approximations of the dynamics, or some constraints that are
discarded from the problem because of their non-linearity,
have a strong impact on the quality of the controller. We
believed the same comparative methodology should be con-
tinued and could integrate other missing terms next. We are
also looking at a way to extend the systematic validation on
real hardware without damaging the robot.
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