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Continuous quaternion based almost global attitude tracking

Thomas Conord1 and Dimitri Peaucelle1

Abstract— This paper considers the attitude control problem
of a generic rotating 3 degrees of freedom fully actuated rigid
object. The specific studied problem is the deviation control of
this object around a theoretically feasible attitude trajectory.
The rotation motion has an intrinsic non linear behaviour
(trigonometric, 2π-periodicity) that need to build non linear
and hybrid controllers to get global stability of the closed
loop system. This paper considers the opportunity to use the
quaternion framework to build a continuous non linear state
feedback that reaches an almost global asymptotical stability.
Some perspectives to enhance this result with integrators to
cancel out static and drag errors are eventually proposed.

I. INTRODUCTION

This paper studies the attitude control problem of a rigid
fully actuated object in the unit quaternion framework. The
attitude control of a rigid object is a widely studied problem
as it is a central issue of all moving robots: aircrafts, drones,
spacecrafts, satellites, manipulators.

The attitude control presents some specific complexity
linked to the topology of the rotational motion : its
trigonometric behaviour and its 2π-periodicity. The paper
[1] describes quite exhaustively the various mathematical
frameworks existing to model the attitude of an object: Euler
angles, rotation matrix, unit quaternion. As demonstrated
in [2], this topological issue leads to not be able to build
a global stable static or dynamic continuous linear time
invariant control law for the attitude control of a rigid object.

The unit quaternion framework is chosen here because of
its efficiency and compactness: 4 parameters against 9 for
the rotation matrix, it does not involve direct trigonometry
developments, and it suits the state space framework. The
topological issue remains and appears as a singularity
problem called double coverage: a unit quaternion q and
its opposite −q represents the same object attitude (cf. [3]
for detailed quaternion algebra). This quaternion singularity
problem may generate an unwinding phenomenon: the
controlled object flips back all the way around whereas it
was just nearby the required attitude, but it had done the
travel rotating from the other side and it does again the
same travel backwards.

From the general mathematical ”stability of motion”
problem which can be formalized with the Lyapunov
theory as in [4], the motion control of a rigid object
is included in the class of Lagrangian mechanical non
linear systems as shown in [5]. For this class of systems,
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many control strategies have been studied, starting with a
reference result [6] in 1988 with a dynamics reinjection
input and a Proportional Derivative (PD) deviation controller
architecture.

The quaternion-based attitude control problem is still
nowadays widely studied. Some approaches study similar
strategies as previous Lagrangian PD control architecture
[7], [8]. Others build some non linear controllers that
match the non linearities and singularities of the quaternion
attitude kinematics with specific Lyapunov function [9],
[10], [11], [12], [13]. The singularity issue may also be
managed with a hybrid control strategy depending on the
sign of the first component of the unit quaternion as in [14].
Some others address the robustness of the controller against
disturbance input or parametric uncertainties [15], [16], [17].

As developped in section II, the first novelty of this paper
is to represent the attitude trajectory deviation dynamics as
a single quaternion-based non linear state space model. It
brings out a model simplification in section III-A which
is another result, which leads to build in section III-B a
continuous non linear state feedback that reaches almost
global asymptotic stability as defined in [18], framed as
a Proportional Derivative controller. The demonstration is
performed with a relaxation of conditions of Input to State
Stability (ISS) as demonstrated in [19]. We eventually open
some perspectives in section III-C to enhance this result with
integrators to cancel out static and drag errors.

II. ATTITUDE DEVIATION MODEL

A. Newton’s law for the rotation motion

The Newton’s law for the attitude dynamics applied to
the center of gravity of an object of inertia Jb ∈ R3×3,
constant symmetric definite positive matrix, corresponds to
the following set of differential equations (cf. [3] for details
on rotation motion and quaternion):

H :


d(q)

dt
=

1

2

(
−qV
Sq(q)

)
ωb

Jb
d(ωb)

dt
+ SV (ωb)Jbωb = Cactb + Cextb

(1)

With all the variables without index expressed in the earth
reference frame, and all the variables with the index ”b”
expressed in the rigid body reference frame, with:



• the instantaneous attitude represented as the unit quater-
nion:

q =

(
qo
qV

)
=


qo
q1

q2

q3

 =


cos(θ/2)

sin(θ/2)

nxny
nz


 ∈ R4

which corresponds to a rotation of the object by an
angle θ around the axis defined by the unit vector
n = (nx ny nz)> ∈ R3. qo is generally called the
scalar part of the quaternion and qV the vector part.
The double coverage issue appears in this definition as
q and −q represents the same attitude. A complete non
ambiguous attitude position with these terms can be
defined by sign(qo)qV .

• Sq(q) is the skew symmetric matrix of the quaternion
q defined as follows:

Sq(q) =

 qo −q3 q2

q3 qo −q1

−q2 q1 qo

 = qoI3 + SV (qV )

The skew symmetric matrix SV of a vector allows to
perform the cross-product of two vectors V1 and V2 of
R3 such that : SV (V1)V2 = V1 ∧ V2.

• ωb ∈ R3 is the rotation speed vector,
• Cactb , Cextb ∈ R3 are respectively the torques applied

by the actuators and by the external environment (air
drag, objects or walls in contact with the object).

The second equation of (1) is expressed in the rotating
rigid body reference frame so that the inertia appears as the
constant Jb. In this frame, the inputs are also directly equal to
actuators actions (actuators attached to the rotating object).
We assume to have a fully actuated object, actuators acting
independently on the three components of the control input
torque Cactb .

B. State space attitude deviation model

Assumption 1: The optimal command problem (cf. [20])
is considered solved for the theoretical system (1) for
a thoretical inertia J∗b , without any external disturbances
(Cextb = 0), giving a theoretically feasible trajectory (q∗,
ω∗b ) with its optimal input C∗actb solutions of:

H∗ :


d(q∗)

dt
=

1

2

(
−q∗V
Sq(q∗)

)
ω∗b

J∗b
d(ω∗b )

dt
+ SV (ω∗b )J∗b ω

∗
b = C∗actb

(2)

All the theoretical values are noted with a ∗ exponent.

Proposition 1: The tracking deviation of (1) with respect
to (2) has the following almost linear open loop representa-
tion:

Σ̂ :


ẋ = Â(x)x+B(u+ w)

zq = Cqx

zω = Cωx

y = x

(3)

With the state x =
(
qε>V ωε∗>

b

)> ∈ R6 and the state
space matrices:

Â(x) =

(
0 1

2Sq(qε)
0 0

)
∈ R6×6, B =

(
0
I3

)
∈ R6×3

Cq =
(
I3 0

)
, Cω =

(
0 I3

)
∈ R3×6

The scalar part of the quaternion qεo inside the matrix
Sq(qε) = qεoI3 + SV (qεV ) in Â(x) is the non linear function
of the state solution of:

dqεo
dt

= −1

2
qε>V ωε∗

b = −1

4
x>
(

0 I3
I3 0

)
x (4)

It also respects the unit norm constraint: qεo
2 + ||qεV ||2 = 1.

qεo is not considered as a state of the system.

Proof: The attitude deviation system Σ̂ is obtained per-
forming the non linear difference between (1) and (2) giving
the following variables definitions:
• x =

(
qε>V ωε∗>

b

)> ∈ R6 the state defined by:
– qεV the vector part of the attitude error in the

quaternion format corresponding to:

qε =

(
qεo
qεV

)
=

(
qo −qV
qV Sq(q)

)(
q∗o
−q∗V

)
(5)

Which correponds to qε = q ? q∗−1, with the oper-
ation ? corresponding to the quaternion multiplica-
tion of the quaternion algebra (cf. [3]). It can also
be written : q = qε ? q∗, meaning qε is the rotation
correction to be performed to bring the object from
the theoretical attitude q∗ to the real current attitude
q. The object is on the trajectory meaning q = q∗, if
and only if qε = (±1 0 0 0)>, both values (double
coverage) representing the same reference attitude
corresponding to no rotation correction.

– ωε∗

b the rotation speed error:

ωε∗

b = Qq(q∗)ωε
b = Qq(q∗)(ωb − ω∗b ) (6)

The multiplication of the rotation speed error vector
ωε
b = ωb − ω∗b by the rotation matrix Qq(q∗) does

not change its norm which is equal to: ||ωε
b || =

||ωb − ω∗b || = ||ωε∗

b ||. Therefore, when ωε∗

b = 0,
we get ωb = ω∗b which corresponds to be on the
trajectory for the rotation speed.
The usual rotation matrix Qq(q) ∈ R3×3 corre-
sponding to the rotation defined by the quaternion
q, such that any vector Vb expressed in the rigid
body reference frame is obtained in the earth one
as follow: Ve = Qq(q)Vb, can be computed with
the following relationship:

Qq(q) = I3 + 2qoSV (qV ) + 2SV (qV )2 (7)

• u the correction input defined such that the total torque
command Cactb of (1) is equal to:

Cactb = J∗b ω̇
∗
b + SV (ω∗b )J∗b ω

∗
b

+ SV (ω∗b )(2J∗b − Tr(J∗b )I3)ωε
b + SV (ωε

b)J∗b ω
ε
b

+ J∗bQq(q∗)−1u

(8)



• w = w∆ + wext the perturbation input such that:
– w∆ is the internal perturbation input generated by

the model approximation done when computing the
theoretical input command C∗actb with J∗b = Jb −
∆Jb:

w∆ = Qq(q∗)J−1
b

[
−∆Jbω̇

∗
b − SV (ω∗b )∆Jbω

∗
b

− SV (ω∗b )(2∆Jb − Tr(∆Jb)I3)ωε
b

− SV (ωε
b)∆Jbω

ε
b −∆JbQq(q∗)−1u

]
(9)

– wext is the external disturbance input due to the
external interactions (winds, walls) :

wext = Qq(q∗)J−1
b Cextb (10)

• zq the trajectory tracking performance output corre-
sponding to the attitude deviation position qεV .

• zω the trajectory tracking performance output corre-
sponding to the rotation speed deviation ωε∗

b .
• y = x the measurments considered available through

physical sensors measures and data fusion post
processing such as Kalman filtering (cf. [21]). Thus qεo
is also available thanks to (4). �

Comment: qεV describes entirely the attitude position of
the object except to a sign ambiguity, the double coverage.
To take away this ambiguity, the following complete state
may be used for the results analysis:

xc = (sign(qεo)qε>V ωε∗>
b )> ∈ R6 (11)

However, this ambiguity does not affect the definition
of the equilibrium point : it is the single value xo =
(0 0 0 0 0 0)>, meaning the object is exactly on the attitude
trajectory when the state is zero. With this definition of
deviation model Σ̂, we can thus look for a structure of
controller that makes the single point xo = 0 asymptotically
stable.

III. ATTITUDE TRACKING CONTROL

A. Preliminaries

As confirmed with the proof of the below lemma 1,
despite the coupling of the three rotation speeds directions
due to the term SV (qεV ) in the matrix Â(x), the deviation
system (3) appears to be homogenous in the three directions
of space and can be studied according to this simplification:

Definition 1: Let the reduced non linear second order
system of (3) be:

Σ̂r :


ẋr = Âr(xr)xr +Br(ur + wr)

zqr = Cqrxr

zωr = Cωrxr

yr = xr

(12)

With xr = (qεVr
ωε∗

br
)> = (sin(θε/2) θ̇ε)> ∈ R2,

ur, wr ∈ R the scalar inputs projections of the original

inputs u and w on the instantaneous axis nε (nε(t) ∈ R3 the
vector defined by qεV = sin(θε/2)nε), and the matrices

Âr(xr) =

(
0 1/2qεo
0 0

)
∈ R2×2, Br =

(
0
1

)
∈ R2×1

Cqr =
(
1 0

)
∈ R1×2, Cωr =

(
0 1

)
∈ R1×2

Comment: Σ̂r corresponds to the projection of Σ̂ on the
direction of the unit vector nε, which is the 1-dimension
control problem, meaning the control of an object rotating
around one single fixed axis.

Lemma 1: A time varying state feedback

ur = [−kp(t, xr) − kd(t, xr)]xr, kp(t, xr), kd(t, xr) ∈ R

makes xr = 0 asymptotically stable for the reduced system
(12) and Vr(t, xr) = x>r Pr(t, xr)xr, with Pr(t, xr) ∈ R2×2

a time varying symmetric definite positive matrix, is a
Lyapunov function that demonstrates it,

if and only if the state feedback

u = [−kp(t, x)I3 − kd(t, x)I3]x

makes x = 0 asymptotically stable for the original deviation
system (3) and the Lyapunov function V (t, x) = x>P (t, x)x
with P (t, x) = Pr(t, x)⊗ I3 is a certificate.

Proof: Let us note whithout hat, respectively Ar and A,
the closed loop state matrices with this state feedback. Let
us notice that A can be decomposed as follow :

A(x) = Ar(x)⊗ I3 +AV (x) (13)

with ⊗ the Kronecker product and with

AV =

(
0 1/2SV (qεV )
0 0

)
which verifies for any symmetric matrix P (t, x) = Pr(t, x)⊗
I3

x>(AV (x)>P (t, x) + P (t, x)AV (x))x = 0

as SV (qεV ) corresponds to a vectorial product of qεV with
ωε∗

b which result is orthogonal to qεV and ωε∗

b ; and as
SV (qεV )> = −SV (qεV ) (skew symmetric matrix).

This leads to:

V̇ = x>(A(x)>P (t, x) + P (t, x)A(x) + Ṗ (t, x))x

V̇ = x>
(
(Ar(x)>Pr(t, x)+Pr(t, x)Ar(x)+Ṗr(t, x))⊗I3

)
x

Therefore, V̇ < 0 if and only if V̇r < 0, the lemma is
proved. �

Comments: This controller structure is similar to a
Proportional Derivative controller with respect to the
attitude position qεV and the rotation speed ωε∗

b , that is why
the controller parameters are noted kp as a ”proportional”
gain, and kd as a ”derivative” gain. When kp and kd are
taken constant, this controller is close to common quaternion
based control approaches developed in other papers, as in



[22].

This result brings out the fact that we can look for scalar
structure of controller for the original deviation system (3)
and study its stability through the reduced system (12).

B. Almost global asymptotical stable state feedback

Definition 2: As defined in [18], an autonomous system
defined by ẋ = f(x), where f : Rn 7→ Rn is C1 (enough
to ensure the existence and uniqueness of solutions to
the initial value problem) and f(0) = 0, is almost global
asymptotical stable if all the trajectories but a reduced set
of zero Lebesgue measure converge asymptotically to the
origin.

Using previous lemma 1 and inspired from the hybrid
control developped in [14] reaching a global stability
property, we consider to manage the double coverage sign
ambiguity of qεV with a continuous multiplication by qεo,
which is of the needed sign to inverse the command when
the object crosses backside.

Proposition 2: A non linear state feedback controller of
the form:

u(x) = −2kpq
ε
oq

ε
V − kdωε∗

b = K(x)x (14)

giving, for the original deviation system (3), the closed
loop non linear system without perturbations (w = 0):

Σ : ẋ = A(x)x = (Â(x) +BK(x)) x

=

(
0 1/2 Sq(qε)

−2kpq
ε
oI3 −kdI3

)
x

(15)

with K(x) = (−2kpq
ε
oI3 − kdI3), kp, kd > 0 scalar

constants, makes this closed loop system almost global
asymptotical stable with a compact invariant set defined by
W = {xo, X̄}, with X̄ = {x̄ = (q̄ε>V 0 0 0)> : ||q̄εV || = 1}.

Comments: the exact flipped backside attitudes set X̄
(corresponding to qεo = 0) from xo = 0, rotating around
any axis, is a set of unstable equilibrium points with the
controller (14). Indeed, the proportional term decreases
up to vanish its authority to bring back the object to
xo = 0 when the object is around the unstable equilibrium
points. It allows not to create conditions for chattering
around the unstable equilibrium points. Moreover, these
points are at the opposite from a tracking tolerance tube in
which a controller shall maintain the object (meaning far
away from the actuators range sizing). Thus this controller
structure could also be a good strategy to deal smoothly
with actuators saturation.

The multiplication by 2 of the proportional like term
gives the 1-dimension closed loop system nice formulation
(directly equivalent to the reduced system (12) in closed
loop):

θ̈ε = −kp sin(θε)− kdθ̇ε + wr (16)

Proof: The proof of the propostion 2 is performed using
the properties of almost global asymtotic stability as defined
in [18], previously mentioned as a dual to Lyapunov’s
stability theorem [23], which is a derivative of the Lyapunov
stability theorem [4] for systems with several equilibria or
invariant sets. We precisely use directly the recent derivative
result presented in [19] which is a relaxation of conditions
of ISS for multi stable periodic systems (the example in
[19] is precisely the demonstration of the stability of the
1-dimension control problem).

One may define for any α ∈]0; 1[, the class of Lyapunov
function V (x) = x>P (x)x with the matrix P (x) affine in
qεo equal to:

P (x) =

(
4(kp + αk2

d)I3 2αkdq
ε
oI3

2αkdq
ε
oI3 I3

)
� 0 (17)

The derivative of the Lyapunov function V (x) for the
trajectories of the closed loop system (15) is equal to:

V̇ (x) = x>[A(x)>P (x) + P (x)A(x) + Ṗ (x)]x

= x>
(
−8αkpkdq

ε
o

2I3 0
0 −2kd(1− αqεo2)I3

)
x

− 8αkd(q̇εo)2 < 0 ∀x /∈ W

(18)

From the expression of V and V̇ and the definition 7
of [19], we can see that V is an ISS Lyapunov function.
Therefore it is a practical ISS Leonov function (def. 11 of
[19]), which is equivalent to have the closed loop system
(15) ISS with respect to the invariant set W (cf. theorem
14 of [19]), thus the almost global asymptotic stability
property. �

The figure 1 gives an equivalent physical assembly
composed of a rotating cylinder in friction inside
another cylinder, with a spring attached to both cylinders
bringing back the rotating cylinder to a reference position,
representing the action of the ”Proportional Derivative” like
controller for the 1-dimension rotation control problem.

A representation in the phase plane of the reduced system
(12) in closed loop with this controller for the complete state
xc defined by (11) (qεV corrected with the sign of qεo) is given
figure 2.

C. Perspectives of almost global stability with integrators

This result of state feedback (14) highlights the special
interest of the quantity qεo to build controllers for the
attitude deviation system (3). In some way, |qεo| looks like a
Lyapunov dual function (cf. a dual to a Lyapunov stability
theorem [23]): it is equal to 1 when x = 0, and 0 when the
object is at the opposite.

Thus the multiplication by qεo has no effect when the
object is at the equilibrium point; it enables to inhibit some
part of the command when the object is flipped backside;
and its sign allows to switch the direction of the terms of



Fig. 1. Equivalent physical assembly representing the behaviour of the
reduced system in closed loop with the proportional derivative like attitude
controller (14).

Fig. 2. Phase plane of the reduced system in closed loop with the
proportional derivative like attitude controller (14), with kp = 1 and
kd = 1.

the command that need to switch when the object crosses
backside.

As the system (3) undergoes input perturbations
w∆ due to model approximations when computing the
optimal command, there will be a static error with such a
Proportional Derivative controller structure (14). Besides,
this perturbation is variable and added to the variable
external perturbations wext mainly due to the aerodynamics
drag. For instance, these variations can be strictly increasing
for some time intervals where the object is performing some
specific maneuvers, generating some drag errors. Depending
on the number of levels of errors (static + N − 1 levels of
drag errors) required to be cancelled out, we may then add
N integrators to the controller.

The integrators, which main function in our case is to
delete errors, are useful near the trajectory. Therefore, they

could be ”switched off” when the object is at the opposite
of the equilibrium point: using previous property of qεo, it
could be done for example with a multiplication by an even
power of qεo (qε2

o , qε4
o , ...).

Conjecture 1: A linear Proportional N-Integral Derivative
(P N-I D) controller, of the form:

u(xN ) = −kiN qε2N
o ηN − ...− ki1qε2

o η1 − 2kpq
ε
oq

ε
V − kdωε∗

b

(19)
with η̇1 = 2qεoq

ε
V and η̇k+1 = qε2k

o ηk,∀k = 1..N − 1,
giving, for the original deviation system (3), the closed loop
non linear system without perturbations (w = 0):

ΣN : ẋN = AN (xN )xN = ÂN (xN )xN +BNu(xN ) (20)

with the state xN = (η>N ... η>1 qε>V ωε∗>
b )> and the closed

loop matrix

AN (xN ) =
(
RqoNL

(qεo)R−1
2N
Ao

NR2N
RqoNR

(qεo)
)
⊗ I3

+AVN
(xN )

with

Ao
N =


0 1 ... 0 0 0
... ... ... ... ... ...
0 0 ... 0 1 0
0 0 ... 0 0 1

−kiN −kiN−1 ... −ki1 −kp −kd



R2N =


1 0 ... 0 0 0
0 1 ... 0 0 0
... ... ... ... ... ...
0 0 ... 1 0 0
0 0 ... 0 2 0
0 0 ... 0 0 1



RqoNL
(qεo) =


1 0 ... 0 0 0
0 1 ... 0 0 0
... ... ... ... ... ...
0 0 ... 1 0 0
0 0 ... 0 qεo 0
0 0 ... 0 0 1



RqoNR
(qεo) =


qε2No 0 0 ... 0 0

0 q
ε2(N−1)
o 0 ... 0 0

... ... ... ... ... ...
0 0 0 ... qεo 0
0 0 0 ... 0 1



AVN (xN ) =


0 ... 0 0 0
0 ... 0 0 0
... ... ... ... ...
0 ... 0 0 0
0 ... 0 0 1/2SV (qεV )
0 ... 0 0 0


with Ao

N a constant Hurwitz stable matrix, may make
xoN = 0 almost global asymptotical stable for the closed
loop system ΣN , without static errors nor levels 1 to N − 1
drag errors on the output zq = qεV .

Partial proof: The demonstration of integrators canceling
out levels of errors for LTI system extended to this non linar
system is not presented in detail : it can be noticed that this
non linear system is framed as an LTI one and that in steady
state, qεo is equal to 1 and makes the state matrix an LTI one.



Besides, the proof of stability is performed only for
the local stability. No Lyapunov function was find to
demonstrate the almost global stability of xoN = 0 for ΣN .

Using the decomposition of the closed loop state space
matrix AN (xN ), as Ao

N is assumed Hurwitz stable, it exists
a symmetric matrix PN � 0 such that:

PNA
o
N +Ao>

N PN = Qo
N ≺ 0

Using the certificate R2N
PNR2N

with the Lyapunov func-
tion VN (xN ) = x>NR2N

PNR2N
x>N , the derivative of this

Lyapunov function along the trajectory of the system (20)
gives the following matrix relationships (as explained in the
proof of lemma 1, AVN

(xN ) disappear in the derivative of
the Lyapunov function):

R2N
PNR2N

AN (xN ) +AN (xN )>R2N
PNR2N

= R2N
(PNRqoNL

Ao
NRqoNR

+RqoNR
Ao>

N RqoNL
PN )R2N

= R2N
Q(qεo)R2N

with Q(qεo) a continuous function of qεo which is equal
to Q(qεo = 1) = Qo

N ≺ 0 at the equilibrium point, as
RqoNR

(qεo = 1) = I and RqoNL
(qεo = 1) = I .

Therefore, it exists a neighbourhood of xN = 0, which
is equivalent to qεo = 1, such that V̇N (xN ) < 0. The local
stability is proved. �

Comments: even though the almost global stability is
not proved, the overall structure which is locally stable,
with integrators which are smoothly inhibited and reversed
when the object goes backside, makes this controller a
good candidate. Some simulations with arbitrary Hurwitz
stable Ao

N give similar results of converging trajectories as
presented in the phase plane figure 2, whithout being able
to figure out trajectories that would be unstable or lead to
the unstable equilibrium points; that’s why no additional
simulation are presented here.

IV. CONCLUSION

This paper presents a non linear state feedback which
allows to perform almost global asymptotical stable tracking
of a given feasible attitude trajectory for the attitude
deviation control problem. The state feedback structure
follows from a model simplification result that enables
to frame it as a proportional derivative like controller.
Hence, this controller leaves room to static and drag errors
necessarily present for the real system with uncertainties and
perturbations. Thus we eventually propose in a conjecture
some perspectives to enhance this controller structure with
integrators. The almost global stability is not demonstrated
and deserves to be more investigated in further work.
Though, the proved local stability already allows to perform
the tracking in a given tolerance tube around the trajectory
without errors. Some further work to tune these controllers
according to a multi-performance specification is already
started in [24], extending to non linear systems some results
of the LMI robust control S-Variable approach of [25]

dedicated to uncertain LTI systems.
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