
HAL Id: hal-03138649
https://laas.hal.science/hal-03138649

Submitted on 11 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reconfigurable Hardware for Microarchitectural Timing
Attacks Detection

Yuxiao Mao, Vincent Migliore, Vincent Nicomette

To cite this version:
Yuxiao Mao, Vincent Migliore, Vincent Nicomette. Reconfigurable Hardware for Microarchitectural
Timing Attacks Detection. Rendez-vous de la Recherche et de l’Enseignement de la Sécurité des
Systèmes d’Information (RESSI 2020), Dec 2020, online, France. �hal-03138649�

https://laas.hal.science/hal-03138649
https://hal.archives-ouvertes.fr


Reconfigurable Hardware for Microarchitectural
Timing Attacks Detection

Yuxiao Mao, Vincent Migliore, Vincent Nicomette
LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France

Email: {firstname}.{lastname}@laas.fr

Abstract—Software-based microarchitectural timing attacks
evolve quickly, exploiting hardware design properties that widely
affect both general-purpose processors and embedded processors.
Among the means of attack detection, hardware monitoring ben-
efits from less overhead and less power consumption compared to
software monitoring. Nevertheless, as usual hardware cannot be
upgraded, the efficiency of a hardware monitor device component
cannot be guaranteed against future attacks.

In this paper, we study the feasibility of using reconfigurable
hardware alongside software attacks detection to cope with mi-
croarchitectural timing attacks. We propose to use the hardware’s
capability of parallel execution, to deal with the problem that
reconfigurable technologies suffer from a lower frequency than
hardwired technologies. This architecture is designed to adapt
to new attacks, because the processor can decide to reconfigure
the detection logic to take them into consideration. We briefly
present an implementation of a proof of concept on FPGA to
validate our design.

I. INTRODUCTION

Software-based attacks are evolving faster and faster. In
recent years, an increasing number of low-level attacks, at the
interface between hardware and software have been published,
such as microarchitectural timing attacks (MTAs) [1].

During a process’s execution, some information related to
the execution may be stored in the hardware microarchitecture,
such as cache status or execution delay. This information is not
supposed to be visible to software. MTAs break this assump-
tion and aim to infer microarchitectural information by mea-
suring the duration of the execution of specific instructions. A
noticeable difference in this duration may enable a malicious
process to infer some sensitive information of a victim process
that shares hardware ressources with the malicious process
(such as memory cache lines in the processor). This difference
in the execution duration, measured by MTAs, can come
from performance optimization, or some design choice [2].
As sacrificing the performance gain or completely preventing
leak point in all hardware is unrealistic, MTAs present a true
threat to cryptography and other security critical algorithm [3].

Software-based protection is often the first choice for at-
tack detection, because it’s easy to deploy and to update.
However, at runtime, software can only rely on microarchi-
tectural information provided by underlying hardware such
as Hardware Performance Counter (HPC) for instance. This
limits the effectiveness of software solutions. In the other hand,
hardware-based protection has low overhead and low power
consumption, but it is a static and deterministic protection
that cannot evolve to cope with new attacks. In this context,

we believe that introducing flexibility to hardware for MTAs
monitoring is an inevitable trend. For that purpose, we propose
in the paper a solution that uses reconfigurable hardware, such
as Field-Programmable Gate Array (FPGA).

Section II presents a state of the art of MTAs detection
techniques and the use of reconfigurable hardware with proces-
sor. Section III provides some details about our reconfigurable
architecture, while Section IV describes a proof of concept
that is currently implemented in FPGA. Section V draws some
conclusions.

II. STATE OF THE ART

MTAs detection can be divided into two categories: static
analysis and runtime monitoring.

Static analysis aims at analyzing the instructions of a given
binary file in order to determine whether it contains an
attack [4] or not. A file that is suspected to include a malicious
code may not be allowed to run, or can only run in strict
condition. This method is suitable for scans in the applications
store for example and is performed before execution of the
binary. However, when the code is encrypted, obfuscated or
dynamically loaded, static analysis is not efficient any more.

Runtime monitoring consists in monitoring the process’
execution at runtime. It is generally more precise than static
analysis but has a significant impact on the runtime per-
formance. Some monitoring techniques do not modify the
hardware, simply read some information provided by the ex-
isting hardware and take a decision using software logic. The
information often comes from HPC that are present in most
modern processors and may be combined with thresholds,
heuristics, or machine learning processing to identify abnor-
mal behavior [5]. Our solution can provide complementary
hardware-level information to these software methods.

Modifying the hardware for runtime monitoring can provide
more effective detection and reduce runtime overhead. Chen et
al. [6] propose to modify some shared hardware components
such as caches, in order to include a specific monitoring unit
providing specific counters, then collect the data from these
custom counters. Their approach enables to collect information
that is directly useful to detect microarchitectural attacks and is
more precise than HPC. However, the performed modification
is only suited for a specific kind of known attacks and may
be inefficient to cover another category of attacks.

Ozsoy et al. [7] proposed a solution that extracts informa-
tion directly from the processor, combined with a hardware



machine learning unit for analysis. This work has some
similarities with our proposal, but has put aside the main
problem of updating this hardware when new attacks appear.

Using reconfigurable hardware with processors is not a new
research topic. High-performance reconfigurable computing
has been applied in many fields such as image processing and
communication. As regard to the security domain, reconfig-
urable hardware has already been proposed for cryptography,
for power and communication monitoring against hardware
attacks [8], etc. However, to our best knowledge, no one has
proposed the use of reconfigurable hardware to dynamically
monitor the running software on a processor.

III. ARCHITECTURE DESIGN

A. Overview

The overall architecture that we propose is depicted in
Fig. 1. The architecture consists of a main processor core,
a reconfigurable detection module, interconnected by three
information communication channels, and a trusted software
core executed on the main processor.

Fig. 1. Design of overall architecture.

The clock frequency of reconfigurable hardware such as
FPGA is an order of magnitude slower than the clock fre-
quency of the mainstream processors. Therefore, in order not
to affect the frequency of the main processor, we let the
processor runs at a normal high frequency while the Recon-
figurable Detection Module runs at a lower frequency. All
communication channels are equipped with synchronization
logic for clock domain crossing. Reconfigurable Detection
Module benefits from the parallel processing capabilities of
hardware, to process simultaneously in one single clock cycle
multiple information from multiple clock cycles of processor.
Taking a modern processor with a clock frequency of 3.2 GHz,
and a Detection Module able to process 16 clock cycles of
information at the same time, we can use a FPGA running at
a frequency of 200 MHz, which can be considered reasonable.

B. Communication channels

The communication between processor and Reconfigurable
Detection Module goes through three channels. The first

channel is a serial-to-parallel logic, into which high frequency
serial data are buffered and converted into low frequency
parallel data. It is used to transmit information extracted
from the processor to Detection Module for analysis. The
second communication channel is an interruption mechanism
used to notify the processor of any abnormal situation. The
last communication channel is a memory-mapped connection,
providing peripheral-like access to the processor. It is used
to read data, write some configurations, or even initiate a
reconfiguration to the Detection Module.

Since processor microarchitecture cannot be modified dur-
ing its entire lifetime, the type and number of processor
internal state observations sent by the serial-to-parallel logic
must be chosen wisely. For cache-based MTAs detection,
the observations we chose are the instructions executed by
the processor, and a valid bit to keep only one trace for
each multi-cycle instruction. They are obtained directly from
the execution stage of the processor pipeline. This choice is
motivated by the fact the instructions actually executed can
potentially help us to detect also transient execution, that is
used by Spectre [9] for instance. In other words, the choice of
using instructions as input increases the likelihood of detecting
other software-based attacks that execute special instruction
patterns. Other microarchitectural attacks that have physical
access, such as electromagnetic side-channel attacks, are out
of the scope of this paper.

C. Trusted software kernel

As hardware-level events alone are not enough to make
complex decisions, we include a trusted software Kernel in
our architecture. It may be embedded in the operating system
kernel itself or an hypervisor, running on the main processor,
and communicating with the Detection Module.

At runtime, the Kernel receives interruptions and other
data from the hardware Detection Module. It synthesizes the
situation with other known information of the running process,
and determines whether the process may be a MTA. When a
process is considered as suspicious, the kernel can react by
forcing termination of the process or by enforcing isolation.

As the security requirements may vary from one process to
another, the Kernel can adjust the threshold of the hardware
Detection Module or reconfigure it according to the current
needs. For example, when a cryptography process is running,
it can improve detection sensitivity to prevent any possible
leak of secret; when a benchmark process is running, it can
set a non-interruption mode to prevent unnecessary alarms.

To take into account new attacks, the kernel is also able to
perform a hardware reconfiguration of the Detection Module.

D. Detection Module

As discussed before, software monitoring is limited by its
characteristics to only analyze serial instructions, and hardware
monitoring is only designed to run at the same frequency as
the processor. We want to take full advantage of the parallel
nature of the hardware to maximize our detection capability
in this parallel input context.



We target Flush+Reload [3] attack, the most common MTA,
and propose a 3-stage detection logic as shown in Fig. 2.

Fig. 2. Design of Detection Module.

In the instruction type analysis stage, the parallel inputs
are analyzed with combined gate logic to deduce useful
information. For example, this logic may evaluate whether the
16 input instructions include or not at least one instruction to
get the value of the internal timer of the processor.

Then, we store the information obtained in a sliding window,
and perform further analysis. For example, we may store
values obtained from previous 32 clock cycles, and count how
many timer instructions have been executed in this window.

At the end, we try to match information in the sliding
window with attack patterns. For example, in Flush+Reload
attack, the instruction that flushes the cache must be close to
the instruction that gets the value of the timer, and this two-
instructions pattern must be repeated multiple times during
one attack. Thus, the Signature Matching Module counts the
number of occurrences where both the cache flush and timer
access instructions are present in a sliding window.

As this part of logic is fully reconfigurable, some other
detection logic, such as machine learning algorithm purposely
chosen, can be used instead.

IV. IMPLEMENTATION

Our design has been implemented on a Xilinx ML605
Evaluation Board (Virtex-6 FPGA) using the Orca RISC-V
softcore processor [10]. The frequency difference between
processor and reconfigurable logic has been modeled with
a 1/16 clock divider. To enable dynamic hardware update,
we put the Detection Module into a dedicated dynamically
reconfigurable area. Up to now, the Trusted Kernel only
manages interruptions, reads information from the Detection
Module, and sets thresholds.

We adapted the Flush+Reload attack of Mastik toolkit [11]
from x86 Instruction Set Architecture (ISA) to RISC-V ISA.
In particular, the rdtime instruction was used instead of
the rdtscp instruction. The cache flush instruction is not
officially defined in RISC-V, nevertheless, we found that in
Orca, when opcode is set to MISC-MEM, along with funct3 set
to REGION and funct7 set to CACHE-FLUSH, a cache region
is flushed. This special flush instruction was used instead of
clflush of x86 ISA.

Our Detection Module focuses on instructions that ac-
cess the timer Control and Status Register (CSR), including

rdtime, and the cache flush instruction described below.
By looking for timer/timer or timer/flush attack pattern, we
successfully detected this Flush+Reload attack.

The synthesis of our Detection Module shows a maximum
frequency of 271 MHz. In the fully implemented design, it
occupies 235 registers and 400 LUTs. Static synchronization
logic occupies additional 793 registers and 256 LUTs.

V. CONCLUSION AND FUTURE WORK

In this paper, we discussed the feasibility of dynamic
monitoring using reconfigurable hardware to detect cache
timing attacks. We presented how we integrate reconfigurable
hardware components into non-reconfigurable hardware and
explained how can deal with different execution frequencies
of the hardware.

For future work, we plan to improve our Detection Module,
in order to be able to detect other cache-based microarchitec-
tural attacks and their variants, and if possible, other software-
based microarchitectural attacks as well. We continue our
experimentation to evaluate the performance and area overhead
of this solution. In the longer term, we want to take into
account multithreading and context changes.

REFERENCES

[1] Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A survey of microarchitec-
tural timing attacks and countermeasures on contemporary hardware,”
Journal of Cryptographic Engineering, vol. 8, no. 1, pp. 1–27, Apr.
2018.

[2] M. R. Fadiheh, D. Stoffel, C. Barrett, S. Mitra, and W. Kunz, “Processor
Hardware Security Vulnerabilities and their Detection by Unique Pro-
gram Execution Checking,” in 2019 Design, Automation Test in Europe
Conference Exhibition (DATE), Mar. 2019, pp. 994–999.

[3] Y. Yarom and K. Falkner, “FLUSH+RELOAD: a High Resolution, Low
Noise, L3 Cache Side-Channel Attack,” in Proceedings of the 23rd
USENIX Security Symposium, San Diego, CA, Aug. 2014, pp. 719–732.

[4] G. Irazoqui, T. Eisenbarth, and B. Sunar, “MASCAT: Preventing Mi-
croarchitectural Attacks Before Distribution,” in Proceedings of the
Eighth ACM Conference on Data and Application Security and Privacy,
2018, pp. 377–388.

[5] M. Chiappetta, E. Savas, and C. Yilmaz, “Real time detection of
cache-based side-channel attacks using hardware performance counters,”
Applied Soft Computing, vol. 49, pp. 1162–1174, Dec. 2016.

[6] J. Chen and G. Venkataramani, “CC-Hunter: Uncovering Covert Tim-
ing Channels on Shared Processor Hardware,” in 2014 47th Annual
IEEE/ACM International Symposium on Microarchitecture. IEEE, Dec.
2014, pp. 216–228.

[7] M. Ozsoy, C. Donovick, I. Gorelik, N. Abu-Ghazaleh, and D. Pono-
marev, “Malware-aware processors: A framework for efficient online
malware detection,” in 2015 IEEE 21st International Symposium on
High Performance Computer Architecture (HPCA). IEEE, Feb. 2015,
pp. 651–661.

[8] G. Gogniat, T. Wolf, W. Burleson, J.-P. Diguet, L. Bossuet, and R. Vaslin,
“Reconfigurable Hardware for High-Security/ High-Performance Em-
bedded Systems: The SAFES Perspective,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 16, no. 2, pp. 144–155,
Feb. 2008.

[9] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,
“Spectre Attacks: Exploiting Speculative Execution,” in 40th IEEE
Symposium on Security and Privacy (S&P’19), 2019, p. 19.

[10] VectorBlox, “Orca,” Dec. 2019. [Online]. Available: https://github.com/
VectorBlox/orca

[11] Y. Yarom, “Mastik: A Micro-Architectural Side-Channel Toolkit,” 2016.
[Online]. Available: https://cs.adelaide.edu.au/∼yval/Mastik/

https://github.com/VectorBlox/orca
https://github.com/VectorBlox/orca
https://cs.adelaide.edu.au/~yval/Mastik/

	Introduction
	State of the art
	Architecture Design
	Overview
	Communication channels
	Trusted software kernel
	Detection Module

	Implementation
	Conclusion and Future Work
	References

