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Abstract

In AI research, synthesizing a plan of action has typically used descriptive
models of the actions that abstractly specify what might happen as a result of
an action, and are tailored for efficiently computing state transitions. However,
executing the planned actions has needed operational models, in which rich com-
putational control structures and closed-loop online decision-making are used
to specify how to perform an action in a nondeterministic execution context,
react to events and adapt to an unfolding situation. Deliberative actors, which
integrate acting and planning, have typically needed to use both of these mod-
els together—which causes problems when attempting to develop the different
models, verify their consistency, and smoothly interleave acting and planning.

As an alternative, we define and implement an integrated acting-and-planning
system in which both planning and acting use the same operational models.
These rely on hierarchical task-oriented refinement methods offering rich con-
trol structures. The acting component, called Reactive Acting Engine (RAE),
is inspired by the well-known PRS system. At each decision step, RAE can get
advice from a planner for a near-optimal choice with respect to an utility func-
tion. The anytime planner uses a UCT-like Monte Carlo Tree Search procedure,
called UPOM, whose rollouts are simulations of the actor’s operational models.
We also present learning strategies for use with RAE and UPOM that acquire,
from online acting experiences and/or simulated planning results, a mapping
from decision contexts to method instances as well as a heuristic function to
guide UPOM. We demonstrate the asymptotic convergence of UPOM towards
optimal methods in static domains, and show experimentally that UPOM and
the learning strategies significantly improve the acting efficiency and robustness.
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1. Introduction

Consider a system required to autonomously perform a diversity of tasks
in varying dynamic environments. Such a system, referred to as an “actor”
(following [36]), needs to be reactive and to act in a purposeful deliberative way.
This requirements are usually addressed by combining a reactive approach and
a plan-based approach using, respectively, operational models and descriptive
models of actions.

Descriptive models specify what might happen as a result of an action. They
are tailored to efficiently search a huge state space by representing state tran-
sitions with abstract preconditions and effects. This representation, inherited
from the early STRIPS system [28], refined into SAS+ [3, 57], the PDDL lan-
guages [78, 30, 31, 42] and their nondeterministic and probabilistic variants,
e.g., PPDDL [123] and RDDL [101], is used by most planning algorithms.

Operational models specify how to perform an action. They are designed to
take into account an elaborate context about ongoing activities, react to events
and adapt to an unfolding situation. Using several computational paradigms
with rich control structures (e.g., procedures, rules, automata, Petri nets), they
allow for closed-loop online decision-making. They have been designed into a
diversity of languages, such as PRS, RAPS, TDL, Plexil, Golex, or RMPL (see
the survey [53, Section 4]).

The combination of descriptive and operational models raises several prob-
lems. First, it is difficult to take into account with two separate models the
highly interconnected reasoning required between planning and deliberative act-
ing. Second, the mapping between descriptive and operational models is very
complex. A guarantee of the consistency of this mapping is required in safety-
critical applications, such as self-driving cars [44], collaborative robots working
directly with humans [114], or virtual coaching systems to help patients with
chronic diseases [98]. However, to verify the consistency between the two differ-
ent models is difficult (e.g., see the work on formal verification of operational
models such as PRS-like procedures, using model checking and theorem proving
[105, 9]). Finally, modeling is always a costly bottleneck; reducing the corre-
sponding effort is beneficial in most applications.

Therefore, it is desirable to have a single representation for both acting and
planning. If such a representation were solely descriptive, it wouldn’t provide
sufficient functionality. Instead, the planner needs to be able to reason directly
with the actor’s operational models.

This paper describes an integrated planning and acting system in which
both planning and acting use the actor’s operational models.1 The acting com-
ponent, called Refinement Acting Engine (RAE), is inspired by the well-known

1Prior results about this approach have been presented in [37, 93, 92, 94]. The last para-
graph of Section 2 describes what the current paper adds to that work.
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PRS system [52]. RAE uses a hierarchical task-oriented operational representa-
tion in which an expressive, general-purpose language offers rich programming
control structures for online decision-making. A collection of hierarchical refine-
ment methods describes alternative ways to handle tasks and react to events. A
method can be any complex algorithm, including subtasks, which need to be re-
fined recursively, and primitive actions, which query and change the world non-
deterministically. We assume that methods are manually specified (approaches
for learning method bodies are discussed in Section 8).

Rather than behaving purely reactively, RAE interacts with a planner. To
choose how best to refine tasks, the planner uses a Monte Carlo Tree Search
procedure, called UPOM, which assesses the utility of possible alternatives and
finds an approximately optimal one. Two utility functions are proposed re-
flecting the acting efficiency (reciprocal of the cost) and robustness (success
ratio). Planning is performed using the constructs and steps as of the oper-
ational model, except that methods and actions are executed in a simulated
world rather than the real one. When a refinement method contains an action,
UPOM takes samples of its possible outcomes, using either a domain-dependent
generative simulator, when available, or a probability distribution of its effects.

UPOM is used by RAE as a progressive deepening, receding-horizon anytime
planner. Its scalability requires heuristics. However, operational models lead
to quite complex search spaces not easily amenable to the usual techniques for
domain-independent heuristics. Fortunately, this issue can be addressed with a
learning approach to acquire a mapping from decision contexts to method in-
stances; this mapping provides the base case of the anytime algorithm. Learning
can also be used to acquire a heuristic function to prune deep Monte Carlo roll-
outs. We use an off-the-shelf learning library with appropriate adaptation for
our experiments. Our contribution is not on the learning techniques per se, but
on the integration of learning, planning, and acting. The learning algorithms do
not provide the operational models needed by the planner, but they do several
other useful things. They speed up the online planning search allowing for an
anytime procedure. Both the planner and the actor can find better solutions,
thereby improving the actor’s performance. The human domain author can
write refinement methods without needing to specify a preference ordering in
which the planner or actor should try instances of those methods.

Following a discussion of the state of the art in Section 2, Section 3 describes
the actor’s architecture and the hierarchical operational model representation.
In Sections 4, 5, and 6, respectively, we present the acting component RAE, the
planning component UPOM, and, the learning procedures for RAE and UPOM.
We provide an experimental evaluation of the approach in Section 7, followed
by a discussion and a conclusion. The planner’s asymptotic convergence to
optimal choices is detailed in Appendix A. The operational model for a search
and rescue domain is described in Appendix B. A table of notation is presented
in Appendix C. The code for the algorithms and test domains is available online.
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2. Related Work

To our knowledge, no previous approach has proposed the integration of
planning, acting and learning directly with operational models. In this section,
we first discuss the relations with systems for acting, including those approaches
that provide some (limited) deliberation mechanism. We then discuss the main
differences of our approach with systems for on-line acting and planning, such
as RMPL and Behaviour Trees. We continue the section by comparing our
work with HTNs and with different approaches based on MDP and Monte Carlo
search. We discuss the relation with work on integrating planning and execution
in robotics, the work on approaches based on temporal logics (including situation
calculus and BDIs), and the approach to planning by reinforcement learning.
We conclude the section with a relation with our prior work on the topic of this
paper.

(Deliberative) Acting. Our acting algorithm and operational models are based
on the Refinement Acting Engine, RAE algorithm [37, Chapter 3], which in turn
is inspired from PRS [52]. If RAE needs to choose among several eligible refine-
ment method instances for a given task or event, it makes the choice without
trying to plan ahead. This approach has been extended with some planning
capabilities in PropicePlan [18] and SeRPE [37]. Unlike our approach, those
systems model actions as classical planning operators; they both require the
action models and the refinement methods to satisfy classical planning assump-
tions of deterministic, fully observable and static environments, which are not
acceptable assumptions for most acting systems. Moreover, these works do not
perform any kind of learning.

Various acting approaches similar to PRS and RAE have been proposed,
e.g., [29, 107, 109, 5, 83, 85]. Some of these have refinement capabilities and
hierarchical models, e.g., [115, 117, 7]. While such systems offer expressive
acting environments, e.g., with real time handling primitives, none of them
provides the ability to plan with the operational models used for acting, and
thus cannot integrate acting and planning as we do. Most of these systems
do not reason about alternative refinements, and do not perform any kind of
learning.

Online Acting and Planning. Online planning and acting is addressed in many
approaches, e.g., [84, 39, 38], but their notion of “online” is different from ours.
For example, in [84], the old plan is executed repeatedly in a loop while the
planner synthesizes a new plan, which isn’t installed until planning has been
finished. In UPOM, hierarchical task refinement is simulated to do the planning,
and can be interrupted anytime when RAE needs to act.

The Reactive Model-based Programming Language (RMPL) [51] is a com-
prehensive CSP-based approach for temporal planning and acting, which com-
bines a system model with a control model. The system model specifies nominal
as well as failure state transitions with hierarchical constraints. The control
model uses standard reactive programming constructs. RMPL programs are
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transformed into an extension of Simple Temporal Networks with symbolic con-
straints and decision nodes [118, 14]. Planning consists in finding a path in
the network that meets the constraints. RMPL has been extended with error
recovery, temporal flexibility, and conditional execution based on the state of
the world [21]. Probabilistic RMPL is introduced in [102, 73] with the notions
of weak and strong consistency, as well as uncertainty for contingent decisions
taken by the environment or another agent. The acting system adapts the
execution to observations and predictions based on the plan. RMPL and sub-
sequent developments have been illustrated with a service robot which observes
and assists a human. Our approach does not handle time; it focuses instead on
hierarchical decomposition with Monte Carlo rollout and sampling.

Behavior trees (BT) [11, 12, 13] can also respond reactively to contingent
events that were not predicted. In [11, 12], BT are synthesized by planning.
In [13] BT are generated by genetic programming. Building the tree refines
the acting process by mapping the descriptive action model onto an operational
model. We integrate acting, planning, and learning directly in an operational
model with the control constructs of a programming language. Moreover, we
learn how to select refinement methods and method instances in a natural and
practical way to specify different ways of accomplishing a task.

Hierarchical Task Networks. Our methods are significantly different from those
used in HTNs [87]: to allow for the operational models needed for acting, we
use rich control constructs rather than simple sequences of primitives. Learning
HTN methods has also been investigated. HTN-MAKER [49] learns methods
given a set of actions, a set of solutions to classical planning problems, and a
collection of annotated tasks. This is extended for nondeterministic domains in
[47]. [48] integrates HTN with Reinforcement Learning (RL), and estimates the
expected values of the learned methods by performing Monte Carlo updates. At
this stage, we do not learn the methods but only how to chose the appropriate
one.

MDP and Monte Carlo Tree Search. A wide literature on MDP planning and
Monte Carlo Tree Search refers to simulated execution, e.g., [25, 26, 55] and
sampling outcomes of action models e.g., RFF [112], FF-replan [121], or hind-
sight optimization [122]. In particular, our UPOM procedure is an adaptation
of the popular UCT algorithm [66], which has been used for various games and
MDP planners, e.g., in PROST for RDDL domains [63]. The main conceptual
and practical difference with our work is that these approaches use descriptive
models, i.e., abstract actions on finite MDPs. Although most of the papers refer
to online planning, they plan using descriptive models rather than operational
models. There is no integration of acting and planning, hence no concerns about
the planner’s descriptive models versus the actor’s operational models. Some
works deal with hierarchically structured MDPs (see, e.g., [90, 4, 43]), or hierar-
chical extensions of Hidden Markov Models for plan recognition (see, e.g., [20]).
However, most of the approaches based on MDPs do not deal with hierarchical
models and none of them is based on refinement methods.
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Planning and Execution in Robotics. There has been a lot of work in robotics to
integrate planning and execution. They propose various techniques and strate-
gies to handle the inconsistency issues that arise when execution and planning
are done with different models. [68] shows how HTN planning can be used in
robotics. [33] and [34] integrates task and motion planning for robotics. The
approach of [81] addresses a problem similar to ours but specific to robot navi-
gation. Several methods for performing a navigation task and its subtasks are
available, each with strong and weak points depending on the context. The
problem of choosing a best method instance for starting or pursuing a task in a
given context is formulated as receding-horizon planning in an MDP for which
a model-explicit RL technique is proposed. Our approach is not limited to navi-
gation tasks; it allows for richer hierarchical refinement models and is combined
with a powerful Monte-Carlo tree search technique.

The Hierarchical Planning in the Now (HPN) of [59] is designed for integrat-
ing task and motion planning and acting in robotics. Task planning in HPN
relies on a goal regression hierarchized according to the level of fluents in an
operator preconditions. The regression is pursued until the preconditions of the
considered action (at some hierarchical level) are met by current world state,
at which point acting starts. Geometric reasoning is performed at the planning
level (i) to test ground fluents through procedural attachement (for truth, en-
tailment, contradiction), and (ii) to focus the search on a few suggested branches
corresponding to geometric bindings of relevant operators using heuristics called
geometric suggesters. It is also performed at the acting level to plan feasible
motions for the primitives to be executed. HPN is correct but not complete;
however when primitive actions are reversible, interleaved planning and acting
is complete. HPN has been extended in a comprehensive system for handling
geometric uncertainty [60].

The integration of task and motion planning problem is also addressed in
[119], which uses an HTN approach. Motion primitives are assessed with a
specific solver through sampling for cost and feasibility. An algorithm called
SAHTN extends the usual HTN search with a bookkeeping mechanism to cache
previously computed motions. In comparison to this work as well as to HPN, our
approach does not integrate specific constructs for motion planning. However,
it is more generic regarding the integration of planning and acting.

Logic Based Approaches. Approaches based on temporal logics (see e.g., [19])
specify acting and planning knowledge through high-level descriptive models
and not through operational models like in RAE. Moreover, these approaches
integrate acting and planning without exploiting the hierarchical refinement ap-
proach described here. Models based on GOLOG (see, e.g., [41, 10, 27]) share
some similarities with RAE operational models, since they extend situation cal-
culus with control constructs, procedure invocation and nondeterministic choice.
In principle, GOLOG can use forward search to make a decision at each nonde-
terministic choice. This resembles our approach where UPOM is used to choose
a method to be executed among the available ones. However, no work based on
GOLOG provides an effective and practical planning method such as UPOM,
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which is based on UCT-like Monte Carlo Tree Search and simulations over dif-
ferent scenarios. It is not clear to us how GOLOG could be extended in such a
direction.

There are many commonalities between RAE and architectures based on
BDI (Belief-Desire-Intention) models [79, 15, 103, 16]. Both approaches rely
on a reactive system, but with differences regarding their primitives as well as
their methods or plan-rules. Several BDI systems rely on a descriptive model,
e.g., specified in PDDL, whereas RAE can handle any type of skill (e.g., physics-
based action simulators) with nondeterministic effects. Because of the latter,
there are also differences about how they can do planning. Nondeterministic
approaches are required in RAE for the selection of methods, and since we are
relying on a reactive approach, we do not synthesize a policy per se, but only a
receding-horizon best choice.

Reinforcement Learning and Learning Domain Models. Our approach shares
some similarities with the work on planning by reinforcement learning (RL)
[58, 111, 35, 71, 32], since we learn by acting in a (simulated) environment.
However, most of the works on RL learn policies that map states to actions to
be executed, and learning is performed in a descriptive model. We learn how
to select refinement method instances in an operational model that allows for
programming control constructs. This main difference holds also with works
on hierarchical reinforcement learning, see, e.g., [120], [89], [100]. Works on
user-guided learning, see e.g., [76], [75], use model based RL to learn relational
models, and the learner is integrated in a robot for planning with exogenous
events. Even if relational models are then mapped to execution platforms, the
main difference with our work still holds: Learning is performed in a descriptive
model. [56] uses RL for user-guided learning directly in the specific case of robot
motion primitives.

Several approaches have been investigated for learning planning-domain
models. In probabilistic planning, for example [99], or [62], learn a POMDP
domain model through interactions with the environment, in order to plan by
reinforcement learning or by sampling methods. In these cases, no integration
with operational models and hierarchical refinements is provided.

Relation with our prior work. Here is how the current paper relates to our prior
work on this topic. A pseudocode version of RAE first appeared in [37]. An im-
plementation of RAE, and three successively better planners for use with it, were
described in [93, 92, 94]. The current paper is based on [94], with the following
additional contributions. We provide complete formal specifications and expla-
nations of the actor RAE and planner UPOM. We present a learning strategy
to learn values of uninstantiated method parameters, with experimental evalua-
tion. We have an additional experimental domain, called Deliver. We propose a
new performance metric, called Retry Ratio, and evaluate it on our five experi-
mental domains. We perform experiments with success-ratio (or probability of
success) as the utility function optimized by UPOM, We compare success ratio
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with efficiency. We perform experiments with varying the parameters, num-
ber of rollouts and maximum rollout length, of UPOM. We provide a proof of
convergence of UPOM to a plan with optimal expected utility.

3. Architecture and Representation

Our approach integrates reactive and deliberative capabilities on the basis of
hierarchical operational models. It focuses on a reactive perspective, extended
with planning capabilities. This section presents the global architecture of the
actor and details the ingredient of the representation.

3.1. Architecture

The popular three-layer architectures for autonomous deliberative actors
usually combine (i) a platform layer with sensory-motor modules, (ii) a reactive
control layer, and (iii) a deliberative planning layer [67]. As motivated earlier,
our approach merges the last two layers within a reactive-centered perspective.

Actor

Execution Platform

Environment

eventsactions State

actuation sensing 

Operational  
models

tasks 
Users 

reports 

(a)

Execution Platform

Environment

eventsactions State

actuation sensing 

Operational  
models

tasks 
Users 

reports 

UPOM
Context m*

Training set of  
successful runs

Supervised learning

(𝜏, s, m)

h(m, s, 𝜏)𝝅(𝜏, s)= m

RAE

(b)

Figure 1: (a) Architecture of an actor reacting to events and tasks through an execution
platform; (b) Integration of refinement acting, planning and learning.

The central component of the architecture (labelled “Actor” in Figure 1(a))
interacts with the environment for sensing and actuation through an execution
platform, from which it receives events and world state updates. It also interacts
with users getting tasks to be performed and reporting on their achievement.

RAE is the driving system within the actor. It reacts to tasks and events
through hierarchical refinements specified by a library of operational models.
At each decision step, RAE uses the planner UPOM to make the appropriate
choice. UPOM performs a look-ahead by simulating available options in the
current context. Supervised learning is used to speed-up UPOM with a heuristic,
avoiding very deep and costly Monte Carlo rollouts; it also provides a base policy
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for an anytime strategy when the actor has no time for planning (see Figure
1(b), the integration of planning, learning and refinement acting is detailed in
subsequent sections).

3.2. Hierarchical Operational Models

We rely on a formalism described in [37, Chapter 3], which has been designed
for acting and reacting in a dynamic environment. It provides a hierarchical
representation of tasks through alternative refinement methods and primitive
actions. Let us detail its main ingredients (see table of notation in Appendix C).

State variables. We rely on a representation with parameterized state variables.
These are a finite collection of mappings from typed sets of objects of the domain
into some range. For example, to describe the kinematic configuration of a two-
arm robot r, its location with respect to a floor reference frame, and the status
of a door d, one might use state variables configuration(r) ∈ R17, loc(r) ∈ R2,
door-status(d) ∈ {closed, open, cracked}. Let X be a finite set of such state
variables; variable x ∈ X takes values from the set Range(x). For each x ∈ X,
to provide a convenient notation for handling partial knowledge, Range(x) is
extended to include the special symbol unknown, which is the default value if x
has not been set or updated to another value.

A state is a total assignment of values to state variables. The world state ξ is
updated through observation by the execution platform, reflecting the dynamics
of the external world. This update is continual for some state variables, e.g.,
configuration(r), with the usual propriosensing in robotics. Other variables may
be updated to unknown, unless they are in the range of a sensor or known to keep
a value set by the actor. In the following algorithms, an update step, denoted
as “observe current state ξ”, precedes every reactive decision of the actor.

State abstraction. For the purpose of the planning lookahead, ξ is simplified
into an abstract state s ∈ S which evolves by reasoning. The state s, which
gets updated from the observed state ξ each time the actor calls the planner
(see Section 5), is a domain-dependent abstraction of ξ meeting the following
conditions:

• The set of state variables of the abstract state s is a subset of X, i.e., some
state variables in ξ may be ignored in s.

• For a variable x in s, Range(x) can be a discretization of its range
in Ξ. Continuing with the preceding robotics example, we might
have Range(configuration(r)) = {packed, holding, carrying,manipulating}, and
Range(loc(r)) = a finite set of locations. Note that the formal proof of the
asymptotic convergence of UPOM assumes S to be finite. However, this
assumption is not a practical requirement of the planning algorithm.2

2We report (Section 7) on a test domain with continuous state variables in S.

9



Hence, a world state ξ is deterministically mapped to a single s=Abstract(ξ).
An abstract state s may correspond to a subset of world states; but there is never
a need to map back an abstract state. Indeed, the reasoning by simulation on
s=Abstract(ξ) informs the actor about an appropriate choice of a method at
some point. But the abstract states s′, s′′, . . ., to which this reasoning led are
not needed by the actor whose actions always rely on the current observed state.

Other variables and relations. The state variables in X are managed in the
acting and planning algorithms as global variables. However, since methods
embody programs, it is convenient to define local variables, which are generally
derived from other variables. For example, one might use stable(o, pose) ∈
{>,⊥}, to mean that object o in some particular pose is stable; this property
results from some geometric and dynamic computation. Local variables are
updated by assignment statements inside methods. An assignment statement
is of the form x← expr, where expr may be either a ground value in Range(x),
or a computational expression that returns a ground value in Range(x). Such
an expression may include, for example, calls to specialized software packages.

It is convenient to define the unvarying properties of a domain through a
set of rigid relations (as opposed to fluents, in our case parametrized state
variables). For example, the adjacency of two locations or the color objects (if
relevant) could be described with rigid relations.

Tasks. A task is a label naming an activity to be performed. It has the form
task-name(args), where task-name designates the task considered, arguments
args is an ordered list of objects and values. Tasks specified by a user are called
root tasks, to distinguish them from the subtasks in which they are refined.

Events. An event designates an occurrence of some type detected by the exe-
cution platform; it corresponds to an exogenous change in the environment to
which the actor may have to react, e.g., the activation of an emergency signal.
It has the form event-name(args).

Actions. An action is a primitive function with instantiated parameters that
can be executed by the execution platform through sensory motor commands.
It has nondeterministic effects. For the purpose of planning, we do not represent
actions with formal templates, as usually done with descriptive models. Instead,
we assume there is a generative nondeterministic sampling simulator, denoted
Sample. A call to Sample(a, s) returns a state s′ randomly drawn among the
possible states resulting from the execution of a in s. Sample can be implemented
simply through a probability distribution of the effects of a (see Section 5).

When the actor triggers an action a for some task or event, it waits until
a terminates or fails before pursuing that task or event. To follow its exe-
cution progress, when action a is triggered, there is a state variable, denoted
execution-status(a) ∈ {running, done, failed}, which expresses the fact that the
execution of a is going on, has terminated or failed. A terminated action returns
a value of some type, which can be used to branch over various followup of the
activity.

10



Refinement Methods. A refinement method is a triple of the form
(task, precondition, body) or (event, precondition, body). The first field, either a
task or an event, is its role; it tells what the method is about. When the pre-
condition holds in the current state, the method is applicable for addressing
the task or event in its role by running a program given in the method’s body.
This program refines the task or event into a sequence of subtasks, actions, and
assignments. It may use recursions and iteration loops, but its sequence of steps
is assumed to be finite.3

Refinement methods are specified as parameterized templates with a name
and list of arguments method-name(arg1, . . . , argk). An instance of a method is
given by the substitution of its arguments by constants that are the values of
state variables.

A method instance is applicable for a task if its role matches a current task
or event, and its preconditions are satisfied by the current values of the state
variables. A method may have several applicable instances for a current state,
task, and event. An applicable instance of a method, if executed, addresses a
task or an event by refining it, in a context dependent manner, into subtasks,
actions, and possibly state updates, as specified in its body.

The body of a method is a sequence of lines with the usual programming
control structure (if-then-else, while loops, etc.), and tests on the values of state
variables. A simple test has the form (x ◦ v), where ◦ ∈ {=, 6=, <,>}. A
compound test is a negation, conjunction, or disjunction of simple or compound
tests. Tests are evaluated with respect to the current state ξ. In tests, the
symbol unknown is not treated in any special way; it is just one of the state
variable’s possible values.

The following example of a simplified search-and-rescue domain illustrates
the representation.

Example 1. Consider a set R of robots performing search and rescue operations
in a partially mapped area. The robots have to find people needing help in some
area and leave them a package of supplies (medication, food, water, etc.). This
domain is specified with state variables such as robotType(r) ∈ {UAV, UGV},
r ∈ R, a finite set of robot names; hasSupply(r) ∈ {>,⊥}; loc(r) ∈ L, a finite set
of locations. A rigid relation adjacent ⊆ L2 gives the topology of the domain.

These robots can use actions such as Detect(r, camera, class) (which de-
tects if an object of some class appears in images acquired by camera of r),
TriggerAlarm(r, l), DropSupply(r, l), LoadSupply(r, l), Takeoff(r, l),
Land(r, l), MoveTo(r, l), and FlyTo(r, l). They can address tasks such as:

3One way to enforce such a restriction would be as follows. For each iteration loop, one
could require it to have a loop counter that will terminate it after a finite number of iterations.
For recursions, one could use a level mapping (e.g., see [22, 46]) that assigns to each task t
a positive integer `(t), and require that for every method m whose task is t and every task
t′ that appears in the body of m, `(t′) < `(t). However, in most problem domains it is
straightforward to write a set of methods that don’t necessarily satisfy this property but still
don’t produce infinite recursion.
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search(r, area) (which makes a UAV r survey in sequence the locations in area),
survey(l), navigate(r, l), rescue(r, l), and getSupplies(r).

Here is a refinement method for the survey task:

m1-survey(l, r)
task: survey(l)
pre: robotType(r) = UAV and loc(r) = l and status(r) = free

body: for all l′ in neighbouring areas of l do:
moveTo(r, l′)
for cam in cameras(r):

if DetectPerson(r, cam) = > then:
if hasSupply(r) then rescue(r, l′)
else TriggerAlarm(r, l′)

This method specifies that in the location l the UAV r detects if a person
appears in the images from its camera. In that case, it proceeds to a rescue
task if it has supplies; if it does not it triggers an alarm event. This event is
processed (by some other methods) by finding the closest robot not involved in
a current rescue and assigning to it a rescue task for that location.

m1-GetSupplies(r)
task: GetSupplies(r)
pre: robotType(r) = UGV

body: moveTo(r,loc(BASE))
ReplenishSupplies(r)

m2-GetSupplies(r)
task: GetSupplies(r)
pre: robotType(r) = UGV

body: r2 ← argminr′{Distance(r, r′) | hasMedicine(r′) = True}
if r2 = None then Fail
else:

moveTo(r, loc(r2))
Transfer(r2, r)

Specification of an acting domain. We model an acting domain Σ as a tuple
Σ = (Ξ, T ,M,A) where:

• Ξ is the set of world states the actor may be in.

• T is the set of tasks and events the actor may have to deal with.

• M is the set of methods for handling tasks or events in T , Applicable(ξ, τ)
is the set of method instances applicable to τ in state ξ.

• A is the set of actions the actor may perform. We let γ(ξ, a) be the set of
states that may be reached after performing action a in state ξ.

We assume that Ξ, T , M, and A are finite.
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The deliberative acting problem can be stated informally as follows: given
Σ and a task or event τ ∈ T , what is the “best” method instance m ∈ M to
perform τ in a current state ξ. In Example 1, for a task getSupplies(r), the
choice is between m1-GetSupplies(r) and m2-GetSupplies(r). Strictly speaking,
the actor does not require a plan, i.e., an organized set of actions or a policy. It
requires a selection procedure which designates for each task or subtask at hand
the “best” method instance for pursuing the activity in the current context.

The next section describes a reactive actor which relies on a predefined
preference order of methods in Applicable(ξ, τ). Such an order is often natural
when specifying the set of possible methods for a task. In Section 5 we detail a
more informed receding-horizon look-ahead mechanism using an approximately
optimal planning algorithm which provides the needed selection procedure.

4. Acting with RAE

RAE is adapted from [37, Chapter 3]. It maintains an Agenda consisting
of a set of refinement stacks, one for each root task or event that needs to be
addressed. A refinement stack σ is a LIFO list of tuples of the form (τ,m, i, tried)
where τ is an identifier for the task or event; m is a method instance to refine
τ (set to nil if no method instance has been chosen yet); i is a pointer to a line
in the body of m, initialized to 1 (first line in the body); and tried is a set of
refinement method instances already tried for τ that failed to accomplish it. A
stack σ is handled with the usual push, pop and top functions.

RAE:
Agenda← empty list
while True do

1 for each new task or event τ to be addressed do
2 observe current state ξ
3 m← Select(ξ, τ, 〈(τ, nil, 1, ∅)〉, dmax, nro)
4 if m = ∅ then output(τ , “failed”)

else Agenda← Agenda ∪ {〈(τ,m, 1, ∅)〉}
5 for each σ ∈ Agenda do

observe current state ξ
σ ← Progress(σ, ξ)

6 if σ = ∅ then
Agenda← Agenda \ σ
output(τ , “succeeded”)

7 else if σ =retrial-failure then
Agenda← Agenda \ σ
output(τ , “failed”)

Algorithm 1: Refinement Acting Engine RAE
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When RAE addresses a task τ , it must choose a method instance m for
τ . This is performed by function Select (lines 3 of RAE, 5 of Progress, and 2 of
Retry). Select takes five arguments: the current state ξ, task τ , and stack σ, and
two control parameters dmax, nro which are needed only for planning. In purely
reactive mode (without planning), Select returns the first applicable method
instance, according to a pre-defined ordering, which has not already been tried
(tried is given in σ). Note that this choice is with respect to the current world
state ξ. Lines 2,4,1 in RAE, Progress and Retry respectively, specify to get an
update of the world state from the execution platform. If Applicable(ξ, τ) ⊆
tried, then Select returns ∅, i.e., there is no applicable method instances for τ
in ξ that has not already been tried, meaning a failure to address τ .

The first inner loop of RAE (line 1) reads each new root task or event τ
to be addressed and adds to the Agenda its refinement stack, initialized to
〈(τ,m, 1, ∅)〉, m being the method instance returned by Select, if there is one.
The root task τ for this stack will remain at the bottom of σ until solved; the
subtasks in which τ refines will be pushed onto σ along with the refinement.
The second loop of RAE progresses by one step in the topmost method instance
of each stack in the Agenda.

Progress(σ, ξ):
(τ,m, i, tried)← top(σ)

1 if m[i] is an already triggered action then
case execution-status(m[i]):

running: return σ
2 failed: return Retry(σ)

done: return Next(σ, ξ)

3 else if m[i] is an assignement step then
update ξ according to m[i]
return Next(σ, ξ)

else if m[i] is an action a then
trigger the execution of action a
return σ

else if m[i] is a task τ ′ then
4 observe current state ξ
5 m′ ← Select(ξ, τ ′, σ, dmax, nro)

if m′ = ∅ then return Retry(σ)
else return push((τ ′,m′, 1, ∅), σ)

Algorithm 2: Progress returns an updated stack taking into account the
execution status of the ongoing action, or the type of the next step in
method instance m.

To progress a refinement stack σ, Progress (Algorithm 2) focuses on the tu-
ple (τ,m, i, tried) at the top of σ. If the current line m[i] is an action already
triggered, then the execution status of this action is checked. If the action m[i]
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is still running, this stack has to wait, but RAE goes on for other pending stacks
in the Agenda. If m[i] failed, Retry examines alternative method instances. Oth-
erwise the action m[i] is done: RAE will proceed in the following iteration with
the next step in method instance m, as defined by the function Next (Algorithm
3).

Next (σ, ξ):
repeat

(τ,m, i, tried)← top(σ)
pop(σ)
if σ = 〈〉 then return 〈〉

until i is not the last step of m
j ← step following i in m depending on ξ
return push((τ,m, j, tried), σ)

Algorithm 3: Returns the next step in a method instance m for a stack
σ and updates σ.

Next(σ, ξ) advances within the body of the topmost method instance m in σ
as well as with respect to σ. If i is the last step in the body of m, the current
tuple is removed from σ: method instance m has successfully addressed τ . If τ
is a root task; Next and Progress return ∅, meaning that τ succeeded; its stack
σ is removed from the Agenda. If i is not the last step of m, RAE proceeds
to the next step j. Normally j is the next line after i, but if that line is a
control instruction (e.g., an if or while) then j is the step to which the control
instruction directs us (which of course may depend on the current state ξ).

Starting from line 3 in Progress, i points to the next line of m to be pro-
cessed. If m[i] is an assignment, the corresponding update of ξ if performed;
RAE proceeds with the next step. If m[i] is an action a, its execution is triggered;
RAE will wait until a finishes to examine the Next step of m. If m[i] is a task
τ ′, a refinement with a method instance m′, returned by Select, is performed.
The corresponding tuple is pushed on top of σ. If there is no applicable method
instance to τ ′, then the current method instance m failed to accomplish τ , a
Retry with other method instances is performed.

Retry(σ):
(τ,m, i, tried)← pop(σ)
tried← tried ∪ {m} . m failed

1 observe current state ξ
2 m′ ← Select(ξ, τ, σ, dmax, nro)
3 if m′ 6= ∅ then return push((τ,m′, 1, tried), σ)
else if σ 6= ∅ then return Retry(σ)

4 else return retrial-failure

Algorithm 4: Retry examines untried alternative method instances, if
any, and returns an updated stack.
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Retry (Algorithm 4) adds the failed method instance m to the set of method
instances that have been tried for τ and failed. It removes the corresponding
tuple from σ. It retries refining τ with another method instance m′ returned by
Select which has not been already tried (line 3). If there is no such m′ and if σ
is not empty, Retry calls itself recursively on the topmost stack element, which
is the one that generated τ as a subtask: retrial is performed one level up in
the refinement tree. If stack σ is empty, then τ is the root task or event: RAE
failed to accomplish τ .

RAE fails either (i) when there is no method instance applicable to the root
task in the current state (line 4 of RAE), or (ii) when all applicable method
instances have been tried and failed (line 7). A method instance fails either
(i) when one of its actions fails (line 2 in Progress) or (ii) when all applicable
method instances for one of its subtasks have been tried and failed (line 4 in
Retry).

Note that Retry is not a backtracking procedure: it does not go back to a
previous computational node to pick up another option among the candidates
that were applicable when that node was first reached. It finds another method
instance among those that are now applicable for the current state of the world
ξ. RAE interacts with a dynamic world: it cannot rely on the set Applicable(ξ, τ)
computed earlier, because ξ has changed, new method instances may be applica-
ble. However, the same method instance that failed at some point may succeed
later on and may merit retrials. We discuss this issue in Section 8.

5. Planning for RAE

In Section 3, we informally defined the deliberative acting problem as the
problem of selecting the “best” method instance m ∈ M to perform τ in a
current state ξ for a domain Σ = (Ξ, T ,M,A). A refinement planning domain
is a tuple Φ = (S, T ,M,A), where S is the set of states that are abstractions
of states in Ξ, and T , M, and A are the same as in Σ.

Recall that if RAE is run purely reactively, Select chooses a refinement
method instance from a predefined order of refinement methods, without com-
paring alternative options in the current context. In this section, we define a
utility function to assess and compare method instances in Applicable(ξ, τ) to
select the best one. This utility function might, in principle, be used by an ex-
act optimization procedure for finding the optimal method instance for a task.
We propose a more efficient Monte Carlo Tree Search approach for finding an
approximately optimal method instance. The planner relies on a procedure,
called UPOM, inspired from the Upper Confidence bounds search applied to
Trees (UCT). UPOM (UCT Procedure for Operational Models) is parameterized
for rollout depth d and number of rollouts, nro. It relies on a heuristic function
h for estimating the criterion at the end of the rollouts when d <∞.

The proposed approach runs multiple simulations using the method instances
and a generative sampling model of actions. This model is defined as a function
Sample: S × A → S. Sample(s, a) returns a state s′ randomly drawn from
γ(s, a), with γ : S ×A→ 2S ∪ {failed}. The transition function γ is augmented
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with the token failed to account for possible failures of a. We assume, as usual,
that the sampling reflects the probability distribution of the action’s real-world
outcomes.

A simulation of a method instance m for a task τ during planning goes suc-
cessively through the steps of m, as required by the control flow for the current
context, and generates a sequence of simulated states 〈s0, . . . , si, . . .〉, where ini-
tially s0 corresponds to an abstraction of the current real world state ξ. For
instance in Example 1 this involves simulating for the method m1-survey(l, r)
several moveTo(r, l′) tasks, followed by DetectPerson(r, cam) action and res-
cue(r, l′) tasks depending on the current context. The utility function is com-
puted along such a sequence, taking into account the deterministic refinements
of method instances and the nondeterministic outcomes of actions (see Fig-
ure 2). Simulation during planning does not Retry, as in RAE, but it takes
into account possible failures. Further, we do not observe in UPOM nor con-
sider possible changes in ξ during a simulation. These changes, when leading to
events, are dealt with at the acting level through the main loop of RAE which
remains concurrently active during planning. [[[malik says: I modified the
point regarding ξ]]]

5.1. Utility criteria and optimal approach

The appropriate utility function can be application dependent. One may
consider a function combining rewards for desirable or undesirable states, and
costs for the time and resources of actions. To keep the formal presentation
simple, we assume that there are no rewards in states. We studied two util-
ity functions measuring respectively the actor’s efficiency and robustness. Re-
garding the former, instead of minimizing costs, the efficiency utility function
maximizes values to easily account for failures. For the latter, the actor seeks a
method instance that has a good chance to succeed.

We first define two value functions for actions, ve and vs, which lead to the
two proposed utility functions for method instances.

Efficiency. Let Cost : S × A × (S ∪ {failed}) → R+ be a cost function.
Cost(s, a, s′) is the cost of performing action a in state s when the outcome
is s′. Note that the cost of an action a is finite even when a fails. This is the
case since in general an actor is able to figure out that an attempted action
failed to limit its cost. However, a failed action a in a method instance m leads
to the failure of m; its eficiency is simply 0. Hence we define the efficiency value
of an action as follows:

ve(s, a, s
′) =

{
0 if s′ = “failed”,

1/Cost(s, a, s′) otherwise.
(1)

If we let ve1⊕ve2 denote the cumulative efficiency value of two successive actions
whose efficiency values are ve1 = 1/c1 and ve2 = 1/c2, then

ve1 ⊕ ve2 = 1/(c1 + c2) = 1/
(

1
ve1

+ 1
ve2

)
= ve1 × ve2/(ve1 + ve2). (2)
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Success Ratio. Here, we measure the utility of a method instance as its proba-
bility of success over all possible outcomes of its actions. Hence we simply take
a value 0 for an action that fails, and 1 if the action succeeds.

vs(s, a, s
′) =

{
0 if s′ = “failed”,

1 otherwise.
(3)

If we let vs1⊕ vs2 denote the cumulative success ratio for two successive actions
in a method instance whose success ratios are vs1 and vs2, then

vs1 ⊕ vs2 = vs1 × vs2. (4)

For both value functions ve and vs, the operator ⊕ is associative, which is needed
for combining successive steps. For both value functions, we let I denote the
identity element for operation ⊕, i.e., the element such that x⊕ I = I⊕ x = x:

• For ve in Equation 1, we have I =∞, corresponding to a cost of 1/I = 0. If
ve1 = I, then ve1 ⊕ ve2 = 1/(0 + 1

ve2
) = ve2 for every ve2.

• For vs in Equation 3, we have I = 1, corresponding to success (task is already
accomplished).

Note that if either of two actions in a method instance m fails, their combined
value is 0, since m also fails.

Let us now define a utility function for method instances using either ve or
vs. In order to compute the expected utility of a method instance m we need to
consider possible traces of the execution of m for a task τ . In RAE, an execution
trace was conveniently represented though the evolution of σ for the task τ . In
planning, we similarly use σ as a LIFO list of tuples (τ,m, i, tried), as defined in
RAE.4 For a given simulation of m for τ , σ is initialized as a copy of the current
stack in RAE.We progress in the simulation of m step by step using the function
Next (Algorithm 3), pushing in σ a new tuple when a step requires a refinement
into a subtask.

Let top(σ) be the stack tuple (τ,m, i, tried). The utility of a particular
simulation of ith step of m for τ is given by the following recursive equation:

U(m, s, σ) =


U(m, s′,Next(σ, s)) if m[i] is an assignment,

v(s, a, s′)⊕ U(m, s′,Next(σ, s)) if m[i] is an action a,

U(m′, s, push((τ ′,m′, 1,∅),Next(σ, s)) if m[i] is a subtask τ ′,

I if σ = ∅,
(5)

where v is either ve or vs. An assignment step changes the state from s to s′ but
does not change the utility U . An action a changes the state nondeterministi-
cally to s′; the utility is the combined value of a and the utility of the remaining

4We do not need for the moment to keep track of already tried method instances, but we’ll
see in a moment the usefulness of this term
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step. A refinement step does not change the state; it is addressed in this partic-
ular simulation by refining τ into τ ′ with m′. The function Next moves to the
following step, and to the empty stack at the end of every simulated execution.

From Equation 5 we derive the maximal expected utility of m for τ by max-
imizing recursively over all possible refinements in m and averaging over all
possible outcomes of actions, including failures:

U∗(m, s, σ) =



U∗(m, s′,Next(σ, s)) if m[i] is an assignment,∑
s′∈γ(s,a) Pr(s′|s, a)[v(s, a, s′)⊕ U∗(m, s′,Next(σ, s))]

if m[i] is an action a,

maxm′∈Applicable(s,τ ′)U
∗(m′, s, push((τ ′,m′, 1),Next(σ, s))

if m[i] is a subtask τ ′,

I if σ = ∅.
(6)

In the above equation, γ(s, a) includes the token “failed”. We assume as usual
that if Applicable(s, τ) = ∅ then maxm∈Applicable(s,τ)U

∗(m, s, σ) = 0, meaning
a refinement failure. Instantiating v as either ve or vs gives the two utility
functions, the efficiency and the success ratio of method instances, respectively.

The optimal method instance for a task τ in a state s for the utility U∗ is:

m∗τ,s = argmaxm∈Applicable(s,τ)U
∗(m, s, 〈(τ,m, 1,∅)〉) (7)

It is possible to implement Equation 6 directly as a recursive backtracking
optimization algorithm and to make the planning algorithm return m∗τ,s, as
defined above. However, this would be too computationally demanding and not
practical for an online planner. We propose instead to seek an approximately
optimal method instance with an anytime controllable procedure using a Monte
Carlo Tree Search algorithm in the space of operational models.

5.2. A planning algorithm based on UCT

To find an approximation m̃ of m∗, we propose a progressive deepening
Monte Carlo Tree Search procedure with nro rollouts, down to a depth dmax
in the refinement tree of a task τ (see Figure 2). A rollout in MCTS is an
exploration of a path along a random branch from each nondeterministic node
(i.e., an outcome of an action) down to depth dmax. The basic ideas of UPOM
are the following:

• at an action node of the search tree, we average over the values of the
corresponding nro rollouts;

• at a task node, we choose the refinement method instance with the highest
expected utility;

• starting from d = dmax,we decrease d for a refinement step and an action
step, but not in an assignment step;
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• we take a heuristic estimate of the utility of the remaining refinements at
the tip of a rollout, i.e., at d = 0;

• we stop a rollout at a failure of an action or a refinement, and return a value
UFailure = 0; we also stop when the stack is empty and return USuccess = I.

Select(ξ, τ, σ, dmax, nro):
(τ,m, i, tried)← top(σ)
M ← Applicable(ξ, τ) \ tried
if M = ∅ then return ∅
if |M = {m}| = 1 then return m
s← Abstract(ξ) ; σ ← copy of σ; d← 0

1 m̃← argmaxm∈Mh(τ,m, s) . initialize m̃
2 repeat

d← d+ 1 . progressive deepening

3 for nro times do
UPOM (s, push((τ, nil, 1,∅), σ), d)

m̃← argmaxm∈MQσ,s(m)
until d = dmax or search time is over
return m̃

Algorithm 5: A progressive deepening procedure using UPOM for find-
ing an approximately optimal method instance.

This is detailed in algorithms 5 and 6. Select is called by RAE with five
parameters: ξ, τ , and σ, and the control parameters dmax, the maximum roll-
out depth, and nro, the number of UCT rollouts. Recall that on a new root
task τ , RAE calls Select with σ = 〈(τ, nil, 1,∅)〉. Select returns m̃, an approx-
imately optimal method instance for τ , or ∅ if no method instance is found,
i.e., if there is no applicable method instances for τ in ξ, but of those already
tried by RAE for this task. Select uses a copy of RAE’s current stack σ, and
a simulation state s, which is an abstraction of the current execution state ξ
(e.g., in Example 1, l can be a precise metric location for acting and topological
reference for planning). It initializes m̃ with a heuristic estimates (line 1). It
performs a succession of simulations at progressively deeper refinement levels
using the function UPOM to evaluate the utility of a candidate method instance.
The progressive deepening loop (line 2) is pursued until reaching the maximum
rollout depth, or until the actor interrupts the search because of time limit or
any other reason, at which point the current m̃ is returned and will be tried by
RAE. Select is an anytime procedure: it returns a solution whenever interrupted.
Qσ,s(m) is a global data structure that approximates the utility U∗(m, s, σ).

UPOM (Algorithm 6) takes as arguments a simulation state s, a stack σ, and
the rollout depth d. It performs one rollout over recursive calls for a method
instance m and its refinements. On the first call of a rollout, m = nil, meaning
that no method instance has yet been chosen. A method instance mc is chosen
among untried method instances (line 3). If all method instances have been
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UPOM(s, σ, d):
if σ = 〈〉 then return USuccess

(τ,m, i, tried)← top(σ)
1 if d = 0 then return h(τ,m, s)
if m = nil or m[i] is a task τ ′ then

if m = nil then τ ′ ← τ
if Nσ,s(τ

′) is not initialized yet then
2 M ′ ← Applicable(s, τ ′) \ tried

if M ′ = 0 then return UFailure

Nσ,s(τ
′)← 0

for m′ ∈M ′ do
Nσ,s(m

′)← 0 ; Qσ,s(m
′)← 0

Untried ← {m′ ∈M ′|Nσ,s(m′) = 0}
if Untried 6= ∅ then

3 mc ← random selection from Untried

4 else mc ← argmaxm∈M ′{Qσ,s(m) + C × [logNσ,s(τ)/Nσ,s(m)]1/2}
5 λ← UPOM(s, push((τ ′,mc, 1,∅),Next(σ, s)), d− 1)
6 Qσ,s(mc)← [Nσ,s(mc)×Qσ,s(mc) + λ]/[1 +Nσ,s(mc)]

Nσ,s(mc)← Nσ,s(mc) + 1
return λ

if m[i] is an assignment then
s′ ← state s updated according to m[i]
return UPOM(s′,Next(σ, s′), d)

if m[i] is an action a then
7 s′ ← Sample(s, a)

if s′ = failed then return UFailure

8 else return v(s, a, s′)⊕ UPOM(s′,Next(σ, s′), d− 1)

Algorithm 6: Monte Carlo tree search procedure UPOM; performs one
rollout recursively down the refinement tree of a method instance to
compute an estimate of its optimal utility.

tried, mc is chosen (line 4) according to a tradeoff between exploration and
exploitation. The constant C > 0 fixes this tradeoff for the exploration less
sampled method instances (high C) versus the exploitation or more promising
ones (low C).

Qσ,s(m) is calculated as follows. Qσ,s(m) combines the value of a sampled
action with the utility of the remaining part of a rollout (line 8), and it updates
Q by averaging over previous rollouts (line 6). The value function v (line 8) is
either ve or vs depending on the chosen utility function, efficiency or success
ratio. For both function, USuccess = I and UFailure = 0.
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Figure 2: A refinement tree, with three types of nodes: disjunction for a task over possible
method instances, sequence for a method instances over all its steps, and sampling for an
action over its possible outcomes. A rollout can be, for example, the sequence of nodes
marked 1 (a sample of a1), 2 (first step of m1), . . . , j (subsequent refinements), j + 1 (next
step of m1), . . . , n (a sample of a2), n+ 1 (first step of m2), etc.

Differences from Equations 6 and 7. A significant difference between the pseu-
docode in Algorithm 6 and Equation 6 is the restriction of Applicable to method
instances that have not been tried before by RAE for the same task. This is a
conservative strategy, because at this point the actor has no means for distin-
guishing failures of tried method instances that require retrials from those that
don’t. We’ll come back to a retrial strategy in Section 9.

Another difference shows up in the initialization of σ in Select. This is
explained by going back to how Select is used by RAE. At a root task τ , when
Select is called the first time (line 3 of RAE), σ = 〈(τ, nil, 1,∅)〉. If RAE proceeds
for τ with a method instance m returned by Select, at the next refinement call of
RAE, e.g., for τ1 (see Figure 2) Select needs to consider the utility of the method
instances for τ1, but also their impact on the remaining steps in m, here on
a2 and τ2. In other words, the actor requires the best method instance for τ1
in the context of its current execution state, taking into account the remaining
steps of the method instance m it is executing. This best method instance for
τ1 may be different from that given by Equation 7. The need to keep track of
previously tried method instances and pending tasks explains why σ is taken
as a copy of the current σ in RAE for the root task at hand. However, this
does not lead to reconsider previously made choices of method instances the
actor is currently executing, e.g., in Figure 2, m′ is not reassessed. Note that
UPOM does not pursue a rollout at an internal refinement node with the method
instance maximizing the current utility evaluation Q, but with the best method
instance according to the UCT exploration/exploitation tradeoff (line 4).
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Asymptotic convergence. In Appendix A we prove the asymptotic convergence
of UPOM towards an optimal method, i.e., as nro → ∞ (Theorem 1). The
proof assumes no depth cut-off (dmax = ∞) and static domains, i.e., domains
without exogenous events.5 It proceeds by mapping UPOM’s search strategy
into UCT, which has been demonstrated to converge on a finite horizon MDP
with a probability of not finding the optimal action at the root node that goes to
zero at a polynomial rate as the number of rollouts grows to infinity (Theorem
6 of [66]). To simplify the mapping, we first consider UPOM with an additive
utility function, and show how to map UPOM’s search space into an MDP. We
then discuss how this can be extended to the efficiency and success ratio utility
functions defined in 5, using the fact that the UCT algorithm is not restricted to
the additive case; it still converges as long as the utility function is monotonic.

Control parameters. The effects of the two control parameters dmax and nro are
not independent. This is because UCT exploration examines an untried method
instance before pursuing a rollout on an already tried one. Exploration would
be complete if nro > µ, where [[[dana says: I modified the following equation
to try to improve readability. Please check whether it’s OK.]]]

µ =
∑
τi is a subtask maxs|Applicable(s, τi)|,

over all subtasks τi in the refinement tree (see Figure 2), down to a refinement
depth of the root task. But µ increases with dmax. In our experiments, we keep
a large constant nro and increase d in the progressive deepening loop until the
max depth dmax. An alternative control of Select can be the following:

• for a given d, pursue the rollouts (line 3) until there are K successive ex-
ploitation rollouts, i.e., for which Untried = ∅, for some constant K;6

• pursue the progressive deepening loop (line 2) until no subtask is left unre-
fined for the K exploitation rollouts or until the search time is over.

This is an adaptive control strategy that requires only two constants C and K.

Search depth. Finally, let us discuss the important issue of the depth cutoff
strategy. Two options may be considered: (i) d is the number of steps of a
rollout (as in MDP algorithms), or (ii) d is the refinement depth of a rollout.
The pseudocode in Algorithm 6 takes the former option: d decreases at every
recursive call, for an action step as well as for a task refinement step. The
advantage is that the cutoff at d = 0 stops the current evaluation. The difficulty
is that the root method instance, and possibly its refinements, are only partially
evaluated. For example in Figure 2, if j > dmax, steps a2 and τ2 of m will never
be considered; similarly for the remaining steps in m1: rollouts will go in deep

5It should be possible to extend the proof to dynamic domains if there are known proba-
bility distributions over the occurrence of exogenous events.

6The probabilistic roadmap motion planning algorithm uses a similar idea to stop after K
configuration samples unsuccessful for augmenting the roadmap.
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refinements and never assess all the steps of evaluated method instances. The
value returned by UPOM can be arbitrarily far from U∗. The other issue of
this strategy is that the heuristic estimate has to take into account remaining
refinements lower down the cutoff point as well as remaining steps higher up in
the refinement tree, i.e., what remains to be evaluated in σ.

In the alternative option where d is the refinement depth of a rollout, d
decreases at a task refinement step only, not at an action step. The advantage
is to allow each rollout to go through all the steps of every developed method
instance. Furthermore, the heuristic estimate at a cutoff is focused in this case
on a subtask and its applicable method instances, whose simulation will not be
started (nondeveloped method instances). The disadvantage is that one needs
an estimate of the state following the achievement of a task with a nondeveloped
method instance in order to pursue the sibling steps. In Figure 2 with d = 1 for
example, τ1 will not be refined; a2 and remaining steps of m will be based on an
estimated state following the achievement of τ1. The definition of a default state
change following a task is domain dependent and might not be easily specified
in general.

The modifications needed in UPOM to implement option (ii) are as follows:

• In order to be able to go back to higher levels of d when the simulation
is pursued in parent method instances after a cutoff, it is convenient to
maintain d as part of the simulation stack: a fifth term d is added in every
tuple of σ.

• The arguments of UPOM are modified according to the previous point.

• Line 1 in UPOM has to pursue the evaluation higher up in σ:

if d = 0 then return h(τ,m, s)⊕ UPOM(g(s, τ,m), pop(σ), b, k),

where g(s, τ,m) is a default state after the achievement of τ with m in s.

For our experimental results (see Section 7), we have implemented a mixture
of the two options: we take d as the refinement steps of a rollout (decreasing
d at a task refinement step only), but we stop the evaluation when reaching
d = 0, taking heuristic estimates for the remaining steps of pending method
instances. This has the disadvantage of a partial evaluation, but its advantages
are to allow easily defined heuristic and not require a following state estimate.

6. Learning for RAE and UPOM

Purely reactive RAE chooses a method instance for a task using an a priori
ordering or a heuristic. RAE with anytime receding-horizon planning uses UPOM
to find an approximately optimal method instance to refine a task or a subtask.
At maximum rollout depth, UPOM needs also heuristic estimates

The classical techniques for domain independent heuristics in planning do
not work for operational refinement models. Specifying by hand efficient
domain-specific heuristics is not an acceptable solution. However, it is possible
to learn such heuristics automatically by running UPOM offline in simulation
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over numerous cases. For this work we relied on a neural network approach,
using both linear and rectified linear unit (ReLU) layers.

We developed three learning procedures to guide RAE and UPOM:

• Learnπ learns a policy which maps a context defined by a task τ , a state s,
and a stack σ to a refinement method m in this context, to be chosen by RAE
when no planning can be performed. In Example 1, for the task getSupplies,
Learnπ is used to choose between m1-GetSupplies and m2-GetSupplies in the
current context.

• Learnπi learns the values of uninstantiated parameters of refinement method
m chosen by Learnπ. In Example 1, for the method m1-survey(l, r), Learnπi
is used to choose the value of r. The value of l comes from the argument l
in the task survey(l).

• LearnH learns a heuristic evaluation function to be used by UPOM.

6.1. Learning to choose methods ( Learnπ)

In a first approach, Learnπ learns a mapping from contexts to partially in-
stantiated methods. A parameter of a method instance can inherit its value
from the task at hand. However, different instances of a method may be ap-
plicable in a given state to the same task. This is illustrated in Example 1 by
method m1-survey(l, r) where l is inherited from the task, but r can be instan-
tiated as any robot such that status(r) = free. Learnπ simplifies the learning
by abstracting all these applicable method instances to a single class. To use
the learned policy, RAE chooses randomly among all applicable instances of the
learned method for the context at hand. Learnπ learning procedure consists of
the following four steps, which are schematically depicted in Figure 3.

Figure 3: A schematic diagram for the Learnπ procedure.

Step 1: Data generation. Training is performed on a set of data records of the
form r = ((s, τ),m), where s is a state, τ is a task to be refined and m is a
method for τ . Data records are obtained by making RAE call the planner offline
with randomly generated tasks. Each call returns a method instance of the
method m. We tested two approaches (the results of the tests are in Section 7):
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• Learnπ-1 adds r = ((s, τ),m) to the training set if RAE succeeds with m in
accomplishing τ while acting in a dynamic environment.

• Learnπ-2 adds r to the training set irrespective of whether m succeeded
during acting.

Step 2: Encoding. The data records are encoded according to the usual require-
ments of neural net approaches. Given a record r = ((s, τ),m), we encode (s, τ)
into an input-feature vector and encode m into an output label, with the refine-
ment stack σ omitted from the encoding for the sake of simplicity.7 Thus the
encoding is

((s, τ),m)
Encoding7−→ ([ws, wτ ], wm), (8)

with ws, wτ and wm being One-Hot representations of s, τ , andm. The encoding
uses an N -dimensional One-Hot vector representation of each state variable,
with N being the maximum range of any state variable. Thus if every s ∈ S
has V state-variables, then s’s representation ws is V × N dimensional. Note
that some information may be lost in this step due to discretization.

Step 3: Training. Our multi-layer perceptron (MLP) nnπ consists of two linear
layers separated by a ReLU layer to account for non-linearity in our training
data. To learn and classify [ws, wτ ] by refinement methods, we used a SGD
(Stochastic Gradient Descent) optimizer and the Cross Entropy loss function.
The output of nnπ is a vector of size |M| where M is the set of all refinement
methods in a domain. Each dimension in the output represents the degree to
which a specific method is optimal in accomplishing τ .

Step 4: Integration in RAE. RAE uses the trained network nnπ to choose a
refinement method whenever a task or sub-task needs to be refined. Instead of
calling the planner, RAE encodes (s, τ) into [ws, wτ ] using Equation 8. Then m
is chosen as

m← Decode(argmaxi(nnπ([ws, wτ ])[i])),

where Decode is a one-one mapping from an integer index to a refinement
method.

6.2. Learning to choose method instances ( Learnπi)

Here, we extend the previous approach to learn a mapping from context to
fully instantiated methods. The Learnπi procedure learns over all the values of
uninstantiated parameters using a multi-layered perceptron (MLP). We have a
separate MLP for each uninstantiated parameter.

7Technically, the choice of m depends partly on σ. However, since σ is a program execution
stack, including it would greatly increase the input feature vector’s complexity, and the neural
network’s size and complexity.
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Step 1: Data generation. For each uninstantiated method parameter vun, train-
ing is performed on a set of data records of the form r = ((s, vτ ), b), where s is
the current state, vτ is a list of values of the task parameters, and b is the value
of the parameter vun. Data records are obtained by making RAE call UPOM
offline with randomly generated tasks. Each call returns a method instance m
and the value of its parameters.

Step 2: Encoding. Given a record r = ((s, vτ ), b), we encode (s, vτ ) into an
input-feature vector and encode b into an output label. Thus the encoding is

((s, vτ ), b)
Encoding7−→ ([ws, wvτ ], wb), (9)

with ws, wvτ and wb being One-Hot representations of s, vτ , and b.

Step 3: Training. We train a multi-layered perceptron (MLP) for each unin-
stantiated task parameter vun. Each such MLP nnvun consists of two linear
layers separated by a ReLU layer to account for non-linearity in our training
data. To learn and classify [ws, wvτ ] by the values of vun, we used a SGD
(Stochastic Gradient Descent) optimizer and the Cross Entropy loss function.
The output of nnvun is a vector of size |Range(vun)|. Each dimension in the
output represents the degree to which vun takes a specific value.

Step 4: Integration in RAE. After RAE has chosen a refinement method m
for task τ , we have RAE use the trained network nnvun to choose a value for
each uninstantiated parameter vun. RAE encodes (s, vτ ) into [ws, wvτ ] using
Equation 9. Then, the value for vun, b is chosen as

b← Decode(argmaxj(nnvun([ws, wvun ])[j])),

where Decode is a one-one mapping from integer indices to Range(vun).

With Learnπi, we choose the value of each uninstantiated parameter inde-
pendently of the others, while remaining among currently applicable values (i.e.,
valid method instances). Certainly, parameters are not independent, and are
not processed as such by RAE nor UPOM. This choice is simply relaxation as-
sumption in Learnπi, which is common in the design of heuristics. Despite this
relaxation, we found the guidance of Learnπ and Learnπi to be quite effective
when compared to reactive RAE (see [94, Figures 6 and 7]). Furthermore, recall
that Learnπi is needed only when methods have more parameters than the task
they address, and it is used only as first choice in progressive deepening, when
there is no time for planning.

6.3. Learning a heuristic function ( LearnH)

The LearnH procedure tries to learn an estimate of the utility u of accom-
plishing a task τ with a method instance m in state s. One difficulty with this
is that u is a real number. In principle, an MLP could learn the u values using
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either regression or classification. We chose to use classification.8 We divided
the range of utility values into K intervals. By studying the range and distribu-
tion of utility values, we chose K and the range of each interval such that the
intervals contained approximately equal numbers of data records. LearnH learns
to predict interval(u), i.e., the interval in which u lies. The steps of LearnH are
the following (see Figure 4):

Figure 4: A schematic diagram for the LearnH procedure.

Step 1: Data generation. We generate data records in a similar way as in
the Learnπ procedure, with the difference that each record r is of the form
((s, τ,m), u) where u is the estimated utility value calculated by UPOM.

Step 2: Encoding. In a record r = ((s, τ,m), u), we encode (s, τ,m) into an
input-feature vector using N -dimensional One-Hot vector representation, omit-
ting σ for the same reasons as before. If interval(u) is as described above, then
the encoding is

((s, τ,m), interval(u))
Encoding7−→ ([ws, wτ , wm], wu) (10)

with ws, wτ , wm and wu being One-Hot representations of s, τ , m and
interval(u).

Step 3: Training. LearnH’s MLP nnH is the same as Learnπ’s, except for the
output layer. nnH has a vector of size K as output where K is the number of
intervals into which the utility values are split. Each dimension in the output
of nnH represents the degree to which the estimated utility lies in that interval.

8We chose classification because it outperformed regression in our preliminary experiments.
It is possible that regression could be made to perform better, but that is beyond the scope
of this paper.
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Step 4: Integration in RAE. RAE calls the planner with a limited rollout length
d, giving UPOM the following heuristic function to estimate a rollout’s remaining
utility:

h(τ,m, s)← Decode(argmaxi(nnH([ws, wτ , wm])[i])),

where [ws, wτ , wm] is the encoding of (τ,m, s) using Equation 10, and Decode is
a one-one mapping from a utility interval to its mid-point. Before the progressive
deepening loop over calls to UPOM, Select initializes m̃ in line 1 according to
this heuristic h.

6.4. Incremental online learning

The previous learning procedures rely on synthetic training data obtained
from a collection of states and tasks. However, even if one is careful, the train-
ing data may not reflect an actor’s specific working conditions. This is a well
known important issue in machine learning. It can be addressed by continual
incremental online learning. Here is a procedure to do so in our framework.

• Initialization: either (i) without a heuristic by running RAE+UPOM online
with dmax =∞ , or (ii) with an initial heuristic obtained from offline learning
on simulated data.

• Online acting, planning and incremental learning:

– Augment the training set by recording successful methods (with the val-
ues of uninstantiated parameters) and U values; train the models using
Learnπ and LearnH with Z records, and then switch RAE to use either
Learnπ alone when no search time is available, or UPOM with current
heuristic h and finite dmax when planning time available.

– Repeat the above steps every X runs (or on idle periods) using the most
recent Z training records (for Z about a few thousands) to improve the
learning on both LearnH and Learnπ.

The issues for deploying this procedure in a practical application are dis-
cussed in Section 8.

7. Experimental Evaluation

7.1. Domains

We have implemented and tested our framework on five domains which illus-
trate service and exploration robotics scenarios with aerial and ground robots.
All the agents are under a centralized control. In these domains, acting is per-
formed in a simulated environment. Consequently, we did not need to abstract
the acting state ξ into a planning state s; both are identical in our tests.

The S&R domain extends the search and rescue setting of Example 1 with
several UAVs surveying a partially mapped area and finding injured people
in need of help. UGVs gather supplies, such as medicines, and go to rescue
the localized persons. Exogenous events are weather conditions and debris in
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paths. The complete set of tasks, commands, and refinement methods for the
S&R domain is described in Appendix B.

In Explore, several chargeable UGVs and UAVs explore a partially known
terrain and gather information by surveying, screening, monitoring, e.g., for
ecological studies. They need to go back to the base regularly to deposit data
or to collect a specific equipment. Exogenous events are appearance of animals
in motion.

In Fetch domain, several robots are collecting objects of interest. The robots
are rechargeable and may carry the charger with them. They can’t know where
objects are, unless they do a sensing action at the object’s location. They must
search for an object before collecting it. A task reaches a dead end if a robot is far
away from the charger and runs out of charge. While collecting objects, robots
may have to attend to some emergency events happening in certain locations.

The Nav domain has several robots trying to move objects from one room to
another in an environment with a mixture of spring doors (which close unless
they’re held open) and ordinary doors. A robot can’t simultaneously carry an
object and hold a spring door open, so it must ask for help from another robot.
A free robot can be the helper. The type of each door isn’t known to the robots
in advance.

The Deliver domain has several robots in a shipping warehouse that must
co-operatively package incoming orders, i.e., lists of items of different types and
weights to deliver to customers. Items for a single order have be placed in a
machine, which packs them together; packages have to be placed in the shipping
doc. To process multiple orders concurrently, items can be moved to a pallet
before transfer to a machine. Robots have limited capacities.

S&R, Explore, Nav and Fetch have sensing actions. S&R, Explore, Fetch and
Deliver can have dead-ends. The features of these domains are summarized in
Table 1, Table 2 and Table 3. Recall from Section 3 that M is the set of all
refinement methods,M is the set of all refinement method instances, and T and
A are the sets of instances of tasks and actions. In Table 2, the upper bound on
the size of the state space is |S| <

∏
x∈X |Range(x)|, since state variables are

generally not independent.

Dynamic Dead Sensing Robot Concurrent
Domain events ends collaboration tasks

S&R X X X X X
Explore X X X X X
Fetch X X X – X
Nav X – X X X

Deliver X X – X X

Table 1: Features of the test domains.

7.2. Planning parameters

Here we analyze the effect of the two planning parameters, nro and dmax, on
the two utility functions we considered, the efficiency, and the success ratio, as
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Domain Upper bound on |S| |T | |T | |M| |M| |A| |A|
S&R 9.6× 1016 8 2508 16 8766 14 2.7× 106

Explore 1.93× 1021 9 358 17 756 14 843
Fetch 2.4× 1017 6 270 10 282 9 463
Nav 1.5× 1011 6 192 9 651 10 490

Deliver ∞ 6 64 6 318 9 4442

Table 2: Sizes of the test domains. M is the set of all refinement methods, M is the set of all
refinement method instances, and T and A are the sets of instances of tasks and actions. In
the Deliver domain, the number of states is infinite because some of the state variables may
have real values, but the other numbers are finite because the task, methods, and instances
do not have real-valued arguments.

Domain Rollout length Branching factor
Task nodes (∨) Action nodes (∴)

Avg Max Avg Max Avg Max

S&R 19 27 2.4 4 1.1 2
Explore 20 112 1.5 3 1.2 2
Fetch 26 56 1.3 3 1.4 4
Nav 30 78 2 6 1.2 2

Deliver 42 52 1.1 64 1.1 2

Table 3: Estimates of the search space parameters of the test domains.

well as on the retry ratio of RAE. We tested nro ∈ [0, 1000] and dmax ∈ [0, 30].
The case nro = 0 rollout corresponds to purely reactive RAE, without planning.
We only report for nro ∈ [0, 250] since no significant additional effect was ob-
served beyond nro > 250. We tested each domain on 50 randomly generated
problems. A problem consists of one or two root tasks that arrive at random
time points in RAE’s input stream, together with other randomly generated
exogenous events. For each problem we recorded 50 runs to account for the
nondeterministic effects of actions. We measured the following:

• the efficiency of RAE for a task, i.e., the reciprocal of the sum of the costs
of the actions executed by RAE for accomplishing that task;

• the success ratio of RAE for a run, i.e., the number of successful tasks over
the total of tasks for that run; and

• the retry ratio of RAE for a run, i.e., the number of call to Retry over the
total of tasks for that run.

Since we are more concerned with the relative values than the absolute values of
the efficiency, the success ratio, and the retry ratio, we rescaled in the following
plots the Y axis with respect to the base case for nro = 0. Note that the mea-
sured efficiency takes into account the execution context with concurrent tasks
and exogenous events; hence it is different for the corresponding utility function
optimized in UPOM (i.e., the expected efficiency of Equation 6); similarly for
the success ratio. We used a 2.8 GHz Intel Ivy Bridge processor. The cut-off
time for a run was set to 30 minutes.
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Figure 5: Efficiency and success ratio for two different utility functions (orange is expected
success ratio and gray is expected efficiency) averaged over all five domains, with dmax = ∞.
The Y axis is rescaled with respect to the base case of U for nro = 0.

Comparison of the two utility functions. We studied two utility functions that
are not totally independent but assess different criteria. The success ratio is use-
ful as a measure of robustness. Suppose method instance m1 is always successful
but has a large cost, whereas m2 sometimes fails but costs very little when it
works: m1 has a higher success ratio, but m2 has higher expected efficiency.

Figure 5 shows the measured efficiency and success ratio of RAE for the two
utility functions, averaged over all domains. Each data point is the average
of 12, 500 runs, with the error bars showing 95% confidence interval; we plot
relative values with respect the base case of U for nro = 0. As expected, the
measured efficiency is higher when the optimized utility function of UPOM is
the expected efficiency. Similarly for the success ratio. However, optimizing one
criteria has also a good effect on the other one, since the two are not independent.
We also observe that 5 rollouts have already a significant effect on the efficiency,
with slight improvements as UPOM does more rollouts. In contrast, the success-
ratio increases smoothly from no planning to planning with 250 rollouts. This
can be due to the difference between the two criteria: a task that succeeds in
its first attempt and a task that succeeds after several retries of RAE have both
a success-ratio of 1, but the efficiency in the latter case is lower. This point is
analyzed next.

Retry ratio. Figure 6 shows the retry ratio, i.e., the number of calls to Retry,
divided by the total number of tasks. Recall that calling Retry is how RAE faces
the failure of chosen methods; RAE may succeed but after numerous retrials,
which is not desirable. Although the retry ratio criteria is not independent from
the combined two utility functions, this ratio depicts very clearly how effective
the guidance of RAE is. We observe that the retry ratio drops sharply from
purely reactive RAE to calling UPOM with 5 rollouts. From then onwards, until
250 rollouts, the retry ratio continues to decrease gradually. The behavior is
similar in all domains, so we have combined the results together to show the
rescaled average values in a single plot.
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Figure 6: Retry ratio (# of retries / total # of incoming tasks) averaged over all five domains,
for UPOM with dmax = ∞; Y axis rescaled with respect to the base case for nro = 0.

Efficiency across domains. In Figure 7 we detail for each domain the measured
efficiency of RAE when the utility of UPOM was set to expected efficiency, for
varying nro and dmax = ∞. Each data point is the average of 2500 runs. We
observe that the efficiency generally improves with the number of rollouts. How-
ever, there is not much improvement with increase in nro in the Fetch domain,
and in the Deliver domain, the efficiency drops slightly when nro = 250. We
conjectured that this can be due to concurrent interfering tasks. Hence, we
measured for Fetch and Deliver domains the efficiency for test cases with only
one root task; the results in Figure 8 confirmed this conjecture.

Figure 7: Measured efficiency of RAE for nro ∈ [0, 250] and dmax = ∞; Y axis rescaled with
respect to the base case for nro = 0).
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Figure 8: Measured efficiency averaged over only test cases with one root task, in Fetch and
Deliver domains with dmax = ∞; Y axis rescaled with respect to the base case for nro = 0.

Figure 9: Measured success ratio (# of successful incoming tasks/ total # of incoming tasks)
for nro ∈ [0, 250] and dmax = ∞; Y axis rescaled with respect to the base case for nro = 0.

Success ratio across domains. Figure 9 shows for each domain the measured
success ratio of RAE when the utility of UPOM was set to expected success
ratio, for varying nro and dmax =∞. The success-ratio generally increases with
increase in the number of rollouts. Again, a slight drop is observed in the Deliver

domain. Figure 10 shows that for test cases with only one root task the success-
ratio improves in the Fetch domain, and remains constant in the Deliver domain.
The success ratio remains 1 in the Deliver domain because all test cases with
one root task succeed eventually, with or without retries. In the domains with
dead ends, the improvement in success ratio is more substantial than domains
without dead ends because planning is more critical for cases where one bad
choice of refinement method instance can lead to permanent failure.

Depth and Heuristics. We ran UPOM at different values of dmax ∈ [0, 30], with-
out progressive deepening in Select. At the depth limit, UPOM estimates the
remaining efficiency using one of the following heuristic functions:
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Figure 10: Measured success ratio averaged over only test cases with one root task, in Fetch
and Deliver domains with dmax = ∞; Y axis rescaled with respect to the base case for
nro = 0.

• h0 always returns ∞;

• hD is a hand written domain specific heuristic;

• hLearnH is the heuristic function learned by the LearnH procedure (Sec-
tion 6.3).

The results, in Figure 11, show that the efficiency generally increases with
depth across all domains. In the Nav domain, the hLearnH performs better than
h0 and hD with 95% confidence at depths 2 and 3. In the Explore domain,
hLearnH performs better than h0 and hD at depth 1 with 95% confidence. The
same is true for Fetch at depth 2. In the Deliver domain, the learned heuristic
performs better than the others with 95% confidence for all depths >= 1. The
performance difference between the three different heuristics are due to the
properties of the domain, how the refinement methods are designed and how
much of it is learnable by the LearnH procedure.

Measured vs expected efficiency. Each time RAE calls UPOM, UPOM uses its
rollouts to make a prediction of expected efficiency. This predicted efficiency
may differ from the measured efficiency that RAE achieves by time that it fin-
ishes. We will use the term relative error to denote the absolute value of this
difference divided by the error in UPOM’s initial prediction with a constant
number of rollouts 9 (i.e., UPOM’s prediction before RAE has performed any
actions). Figure 12 shows the average relative error of UPOM’s predictions, av-
eraged over all 12, 500 runs of our test problems, as a function of RAE’s progress,
i.e., how many actions RAE has performed since it began. Note that UPOM’s
relative error generally decreases as RAE’s progress increases, and that it is quite
small after just one or two actions.

7.3. Assessment of UPOM

We are not aware of any comparable planner for operational models, but of
RAEplan [92], a Monte Carlo Tree Search procedure we developed earlier. We discuss

9We choose to plot the error relative to 5 UPOM rollouts.
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Figure 11: Measured efficiency with limited depth and three different heuristic functions. The
utility function optimized is expected efficiency; Y axis rescaled with respect to the base case
for nro = 0.

Figure 12: Average relative error of UPOM’s predictions, for various numbers of rollouts by
UPOM, shown as a function of RAE’s progress (i.e., how many actions RAE has performed so
far). Each data point is an average over all 12, 500 runs of our test problems.

here RAE with UPOM vs RAEplan.10 We configured UPOM to optimize the expected
efficiency as its utility function, the same as RAEplan. In order not to favor the UCT
strategy of UPOM with respect to the tree branching strategy of RAEplan, we set
nro = 1000, with dmax =∞ in each rollout.

Figure 13 shows the computation time for a single run of a problem (one or two
root tasks), averaged across all domains and problems, i.e., over 12500 runs. RAE with
UPOM runs more than twice as fast as RAE with RAEplan. Note that the computation
time of RAE alone is negligible, since it is designed to be a fast reactive system,
without search. However, in physical experiments, the total time includes sensing and
actuation time, hence the planning overhead would not appear as significant as it is

10We didn’t compare UPOM with any non-hierarchical planning algorithms because it would
be very difficult to perform a fair comparison, as discussed in [61].
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here.

Figure 13: Average computation time in seconds for a single run of a problem, for RAE with
and without the planners.

Efficiency. Figure 14 gives the measured efficiency for the five domains, with the 95%
confidence intervals. It shows in all domains that RAE with UPOM is more efficient
than purely reactive RAE and RAE with RAEplan.

Figure 14: Measured efficiency for each domain with purely reactive RAE, RAE with RAEplan,
RAE with the policies learned by Learnπ without planning, RAE with UPOM, the
heuristic learned by LearnH and dmax = 5, and RAE with UPOM and dmax = ∞; Y
axis rescaled with respect to the base case for nro = 0.

Success ratio. Figure 15 shows RAE’s success ratio both with and without the planners.
We observe that planning with UPOM outperforms purely reactive RAE in S&R and
Fetch with 95% confidence, and Explore and Nav with 85% confidence. Also, UPOM
outperforms RAEplan in Fetch and Nav domains with a 95% confidence, and Explore
domain with 85% confidence. In the S&R domain, the success ratio is similar for
RAEplan and UPOM.
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Figure 15: Measured success ratio for each domain with purely reactive RAE, RAE with

RAEplan, RAE with the policies learned by Learnπ without planning, RAE with UPOM,
the heuristic learned by LearnH and dmax = 5, and RAE with UPOM and dmax =∞;
Y axis rescaled with respect to the base case for nro = 0.

Asymptotically, UPOM and RAEplan should have near-equivalent efficiency and
success ratio metrics. They differ because neither are able to traverse the entire search
space due to computational constraints. Our experiments on simulated environments
suggest that UPOM is more effective than RAEplan when called online with real-time
constraints.

7.4. Assessment of learning procedures

For training purposes, we synthesized data records for each domain by randomly
generating root tasks and then running RAE with UPOM. The number of randomly
generated tasks in S&R, Nav, Explore, Fetch, and Deliver domains are 96, 132, 189, 123,
and 100 respectively. We save the data records according to the Learnπ-1, Learnπ-2,
Learnπi and LearnH procedures, and encode them using the One-Hot schema. We di-
vide the training set randomly into two parts: 80% for training and 20% for validation
to avoid overfitting on the training data.

The training and validation losses decrease and the accuracy increases with increase
in the number of training epochs (see Figure 16).

The accuracy of Learnπ is measured by checking whether the refinement method
instance returned by UPOM matches the template predicted by the MLP nnπ, whereas
the accuracy of LearnH is measured by checking whether the efficiency estimated by
UPOM lies in the interval predicted by nnH . We chose the learning rate to be in the
range [10−3, 10−1]. Learning rate is a scaling factor that controls how weights are
updated in each training epoch via backpropagation.
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Figure 16: Training and validation results for Learnπ and LearnH, averaged over all domains.

Domain Training Set Size #(input features) Training epochs #(outputs)
LM-1 LM-2 LH LM-1 and -2 LH LM-1 and -2 LH LM-1 and -2 LH

S&R 250 634 3542 330 401 225 250 16 10
Nav 1686 5331 16251 126 144 750 150 9 75

Explore 2391 6883 10503 182 204 1000 250 17 200
Fetch 262 508 1084 97 104 430 250 10 100
Deliver - - 2001 - 627 - 250 - 10

Table 4: The size of the training set, number of input features and outputs, and the number
of training epochs for three different learning procedures: Learnπ-1, Learnπ-2, and LearnH. We
note LM-1 = Learnπ-1, LM-2 = Learnπ-2, and LH = LearnH.

Table 4 summarizes the training set size, the number of input features and outputs
after data records are encoded using the One-Hot schema, number of training epochs
for the three different learning procedures. In the LearnH learning procedure, we define
the number of output intervals K from the training data such that each interval has
an approximately equal number of data records. The final validation accuracies for
Learnπ are 65%, 91%, 66% and 78% in the domains Fetch, Explore, S&R and Nav
respectively. The final validation accuracies for LearnH are similar but slightly lower.
The accuracy values may possibly improve with more training data and encoding the
refinement stacks as part of the input feature vectors.

To test the learning procedures we measured the efficiency and success ratio of
RAE with the policies learned by Learnπ-1 and Learnπ-2 without planning, and RAE
with UPOM and the heuristic learned by LearnH. We use the same test suite as in
our experiments with RAE using RAEplan and UPOM, and do 20 runs for each test
problem. When using UPOM with LearnH, we set dmax to 5 and nro to 50, which
has about 88% less computation time compared to using UPOM with infinite dmax
and nro = 1000. Since the learning happens offline, there is almost no computational
overhead when RAE uses the learned models for online acting.

Efficiency. Figure 14 shows that RAE with UPOM + LearnH is more efficient than
both purely reactive RAE and RAE with RAEplan in three domains (Explore, S&R
and Nav) with 95% confidence, and in the Fetch domain with 90% confidence. The
efficiency of RAE with Learnπ-1 and Learnπ-2 lies in between RAE with RAEplan and
RAE with UPOM + LearnH, except in the S&R domain, where they perform worse
than RAE with RAEplan but better than purely reactive RAE. This is possibly because
the refinement stack plays a major role in the resulting efficiency in the S&R domain.
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Success ratio. In these last experiments, UPOM optimizes for the efficiency, not the
success ratio. It is however interesting to see how we perform for this criteria even
when it is not the chosen utility function. In Figure 15, we observe that RAE with
UPOM + LearnH outperforms purely reactive RAE and RAE with RAEplan in three
domains (Fetch, Nav and S&R) with 95% confidence in terms of success ratio. In
Explore, there is only slight improvement in success-ratio possibly because of high
level of nondeterminism in the domain’s design.

In a majority of the domains, the best efficiency and success ratio is achieved by
either RAE with UPOM, or RAE with UPOM + LearnH. However, their computation
times are quite different. Note that when UPOM is run with LearnH, the rollout lengths
are quite shallow and the computation time is similar to purely reactive RAE (Figure
13). This makes it highy scalable. In contrast, RAE with UPOM explores each rollout
to its maximum possible depth. This increases the computation time, making it less
suitable for online usage with strict time constraints.

In most cases, we observe that RAE does better with Learnπ-2 than with Learnπ-
1. Recall that the training set for Learnπ-2 is created with all methods returned by
UPOM regardless of whether they succeed while acting or not, whereas Learnπ-1 leaves
out the methods that don’t. This makes Learnπ-1’s training set much smaller. In our
simulated environments, the acting failures due to random exogenous events don’t
have a learnable pattern, and a smaller training set makes Learnπ-1’s performance
worse.

Domain Method Parameter Training Set Size #(input features) #(outputs)
Nav MoveThroughDoorway M2 robot 404 150 4

Recover M1 robot 337 128 4
Deliver Order M1 machine 296 613 5

objList 297 613 2
Order M2 machine 95 613 5

objList 95 613 2
pallet 95 613 4

PickupAndLoad M1 robot 244 637 7
UnloadAndDeliver M1 robot 219 625 7

MoveToPallet M1 robot 7 633 7

Table 5: The size of the training set, number of input features and outputs for learning method
parameters in Learnπi.

Learning Method Instances. Two of our simulated domains, Nav and Deliver, have
refinement methods with parameters that are not inherited from the task at hand.
For these domains, Learnπ-1 and Learnπ-2 give only partially instantiated methods,
while Learnπi is more discriminate. To test its benefit, we trained a MLP for each
parameter not specified in the task. The size of the training set, number of input
features and number of outputs are summarized in Table 5.

Figure 17 compares the efficiency of RAE with Learnπi vs purely reactive RAE and
RAE with RAEplan, Learnπ-1, Learnπ-2, LearnH, and UPOM. In the Deliver domain,
RAE with Learnπi is better than purely reactive RAE as well as RAE with Learnπ-1
or Learnπ-2 with 95% confidence. In the Nav domain, RAE with Learnπi also out-
performs Learnπ-1 and purely reactive RAE with 95% confidence, but not Learnπ-2.
The performance benefit is important in the Deliver domain because the refinement
methods have several parameters that are not arguments of the task that the method
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Figure 17: The cross-hatched blue bars show the performance of RAE with Learnπi (learning
method instances) for the two domains, Nav and Deliver, which have methods with parameters
not in tasks (Y axis rescaled with respect to the base case for nro = 0).

is used for, hence there are combinatorially many different ways to instantiate these
parameters when creating method instances.

In summary, for all the domains, planning with UPOM and learning clearly out-
performs purely reactive RAE.

8. Discussion

We now discuss several issues that readers may find helpful for using and deploying
RAE and UPOM in practical applications. We also point out several limitations and
topics for future work.

8.1. Retrial in RAE

As mentioned earlier, Retry is not a backtracking procedure. Since RAE interacts
with a dynamic world, Retry cannot go back to a previous state. It selects a method
instance among those applicable in the current world state, except for those that have
been tried before and failed. This latter restriction may not always be necessary, since
the same method instance that failed at some point may succeed later on. It can be
complicated to analyze the conditions responsible for failures and ascertain whether
they still hold. However, RAE can be adapted to retrial of method instances if they
are vulnerable to noisy sensing, or if the execution context is one in which they should
be retried. For example, one may give the methods additional parameters that are not
needed for the logic of the method instance but that characterize the context (e.g., the
pose of a sensor that may have changed between trials), while bounding the number
of retrials.

Retrial can be applied more easily for actions. In RAE, a method instance fails
when one of its actions fails. But if an action has nondeterministic outcomes, it may
be worthwhile retrying the action as assessed by its expected utility. This may be
implemented after a full analysis and the computation of an optimal MDP policy,11 or

11 This can be done with a sequence of dummy states sfaili such that the effects of action

a in s include sfail1 ∈ γ(s, a), sfail2 ∈ γ(sfail1 , a), . . ., sfaili+1 ∈ γ(sfaili , a), with two actions being

applicable to each sfaili : a and stop-with-failure.
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simply with an ad-hoc loop on the execution-status of the actions that merit retrials.
Furthermore, the body of a method is a procedure in which one can specify com-
plex retrial loops. For example, a difficult grasp action in robotics may need several
sequences of 〈move, sense, grasp〉 before succeeding or giving up.

In the Deliver domain, we implemented a retrial procedure by having the actions set
a status describing if they should be retried after failing. This status depends on the
nature of the failure, with likely unrectifiable failures such as unsatisfied preconditions
not being retried. These actions were called from a wrapper task that can repeat the
command up to two additional times.

8.2. Concurrency

RAE’s Agenda contains several refinement stacks, one for each top-level task, and
the purpose of RAE’s main loop is to progress these stacks concurrently. Each of the
experimental domains in Section 7 used this facility and involved concurrent tasks.
However, our current implementation provides no built-in way to manage possible
conflicts and needed synchronizations; instead they must be managed by the refinement
methods. We handled conflict in our S&R, Nav, and Deliver domains by having state
variables to specify the status of the resources. The task waiting for the resource
executes no action until that resource is available again. We use semaphores to avoid
race conditions. Such refinement methods could be made easier to write by extending
RAE to provide synchronization constructs such as those used in TCA and TDL [108,
109], and rely on the execution-status of actions to handle waits. Since both UPOM
and learning rely on the simulation of the method instances, they could support such
extensions as long as Sample can simulate the duration of actions. More research is
needed on how to extend RAE to permit formal verification of concurrency properties
(liveness, deadlocks), e.g., as in the Petri-net based reactive system ASPiC [72].

Note that it is possible to extend RAE to allow the body of a method to specify
concurrent subtasks (see [37, Sect. 3.2.4]). However, our current version of RAE does
not include such a facility.

8.3. Learning operational models

The Learnπ and LearnH procedures are designed to improve the decision making
of RAE, with or without planning. They are also of help to a domain author, who
does not need to design a minimal set of methods associated to a preference ordering.
However, assistance in acquiring operational models would be highly desirable. Let us
raise few remarks about this important issue of future work.

Actions and methods, the two main components of operational models, demand
different learning techniques. Execution models of actions are often domain dependent.
For example, in robotics several approaches have been proposed for learning primitive
actions, e.g., [96, 64, 45, 17], usually relying on Reinforcement Learning (RL), possibly
supervised and/or with inverse RL (see survey [65]). Other techniques for learning
actions as low-level skills may also be relevant, e.g., [13, 124]. These and similar
techniques would provide operational models of primitive actions needed by RAE, as
well as a domain simulator needed by UPOM for the function Sample (see line 7 of
Algorithm 6). However, since UPOM may call Sample many times during its Monte
Carlo rollouts, a detailed domain simulator may have a high computational overhead.
A learned domain independent but shallow model of primitive actions, e.g., [91, 69],
would provide an efficient Sample function.
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Regarding refinement methods, several techniques have been developed for learn-
ing HTN methods, e.g., [49, 47, 48, 125, 124]. However, our refinement methods for
operational models can be significantly more complex. Possible avenues of investiga-
tion for synthesizing these methods include program synthesis techniques [116, 40],
partial programming and RL [1, 74, 110], as well as learning from the demonstrations
of a tutor [2].

8.4. Potential and limitations

The work presented in this paper includes a reactive system (RAE), extended with
capabilities for planning (UPOM) and learning (Learnπ, Learnπi, LearnH). It is intended
to empower an autonomous system facing a diversity of tasks in nondeterministic
dynamic environments with robust and efficient deliberation competences. It makes
use of a hierarchical representation of tasks and refinement methods, and abstraction
of the reactive system’s states for use in the planning and learning algorithms.

Beyond the aspects stressed earlier, there are several possible ways to extend the
work:

• In addition to planning and acting, a deliberative system needs also monitoring.
This function fits naturally in our framework through methods for handling alarms
and other surveilled events. Many fault detection, identification and recovery sys-
tems, e.g., in space and critical applications [50, 97], can use approaches like RAE.
Furthermore, RAE and UPOM have been used in a prototype cybersecurity moni-
toring and recovery system (see Section 8.5) in which monitoring functions invoke
RAE and UPOM when they are needed to plan recovery from cyber-attacks.

• Although time and temporal primitives have not been introduced in our relatively
simple representation, these constructs are widely used in several reactive langages,
such as TCA/TDL or Petri Net based systems. Offering similar facilities in RAE
appears quite feasible, but the extensions in UPOM will require more work.

• Similarly, we have not covered space and motion planning. But these can be added
in RAE, e.g., as external functions conditioning particular actions. They can be
part of the simulations performed in UPOM.

There also are several limitations, two of which need to be underlined:

• The approach developed in this paper is not suitable for addressing intensive com-
binatorial search and optimization problems. For example, while the approach is
adequate for a video game such as Starcraft; for board games such as chess or go,
it is better to use game-tree search and learning techniques [88, 106]. Similarly,
the organization of numerous resources over a long horizon in a well-modeled pre-
dictable environment are better addressed with temporal planning and scheduling
tools, e.g., [23]. However, it is conceivable to connect such a tool for assigning tasks
to actors that are driven by our approach (see [37, Section 4.5]).

• Our approach, as presented, does not integrate general inference-making mecha-
nisms, e.g., in order to deduce from common sense or general knowledge that in
some contexts, additional care is necessary for an activity to succeed. Right now,
such a situation would require refinement methods that are adapted to that con-
text; and in their absence, UPOM would find that all of the available methods fail.
Possible avenues of response to this limitation include online continual learning of
methods, and extending RAE to include an inference engine that uses general and
domain-specific axioms [86, 113].
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8.5. Deployment in new applications

To deploy the proposed approach in a new domain, it is necessary to have an
execution platform or the equivalent collection of sensing and primitive actions, as
well as a set of methods. If the tasks and events are well-defined and the techniques
for handling them are known, human experts may be able to write the methods without
too much difficulty.

RAE executes methods and triggers the execution of primitive actions by the plat-
form. UPOM has to simulate both. Simulating refinement methods is not an issue, but
more effort may be needed to simulate the execution platform and its environment.
Clearly, the reliability of such a simulator affects the quality of UPOM’s steering. It is
not straightforward to develop a reliable simulator that reproduces the dynamics of a
nondeterministic uncertain environment. In some cases, available simulation tools can
be useful, e.g., physics-based simulations [6, 24, 8], robotic simulations [80, 70, 104],
automated manufacturing simulations [54, 82] and so forth. Some of these tools are
often used for the specification and design of an execution platform, which may sim-
plify their use for the development of a simulator. A fallback option, easily applicable
in most cases, would be to define the procedure Sample by sampling the possible out-
comes of every action from probability distributions, which are initialized by a human
expert, then refined by learning and experiments. The results in Section 7 show that
this shallow simulation already provides substantial improvements in decision-making.
Note that it is possible to combine detailed simulations for critical actions, for which
tools might be available, and shallow simulations for the remaining actions.

The deployment of RAE and UPOM in a prototype application for security moni-
toring and recovery from attacks on Software-Defined Networks (SDN) is described in
[95]. It defines an abstract representation of the SDN’s state used by RAE and UPOM,
hand-programmed primitive actions that could be executed on the SDN, tasks and
events regarding attacks on an SDN, and a set of refinement methods giving possible
recovery procedures for each of the attacks. Several refinement method are applicable
to the same task or event; the human expert does not need to specify which applicable
method is preferable in which contexts, since the purpose of UPOM is to make such
choices online. The final system has been evaluated by SDN experts successfully.

The development effort required about three person-months of work by the human
expert, but the human expert’s ongoing experience with RAE and UPOM revealed
software features that we needed to add so that his development effort could proceed.
Given RAE and UPOM in their current form, we think such a development effort might
take much less time.

9. Conclusion

We have presented a novel system for integrating acting and planning using hier-
archical refinement operational models. The refinement acting engine, RAE, can either
run purely reactively or it can get advice from an online planner to choose efficient
method instances for performing a task. The planning procedure, UPOM, uses an
anytime search strategy inspired by UCT, extended to operate in a more complicated
search space. UPOM provides near-optimal method instances with respect to utility
functions that may be quite general, and it converges asymptotically. We have pro-
posed two distinct utility functions that favor efficiency and robustness, respectively.
UPOM is integrated with RAE using a receding-horizon, anytime progressive-deepening
procedure.
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We have also presented three learning strategies: Learnπ, to learn a mapping from
a task in a given context to a good method, Learnπi, to learn values of uninstantiated
method parameters, and LearnH, to learn a domain specific heuristic function for our
hierarchical refinement framework. We have shown how incremental learning can be
integrated online with acting and planning.

We have presented empirical results over five domains that have challenging fea-
tures such as dynamicity, dead-ends, exogenous events, sensing and information gath-
ering actions, collaborative and concurrent tasks. Rather than just evaluating the
system’s planning functionality, we have devised simulations and measurements that
assess its overall acting performance, with and without planning and learning, taking
into account exogenous events and failure cases.

We have measured the actor’s efficiency, success ratio and retry ratio, and dis-
cussed their relationships with respect to the planner’s utility function, maximizing
either the expected efficiency or the expected success ratio. Our results show that
Learnπ improves the performance of reactive RAE with respect to the three perfor-
mance measures, and they are improved even further when RAE is used either with
UPOM and LearnH or with UPOM at unbounded search depth. Thanks to learning,
the computational overhead remains acceptable for an online procedure, since in this
case a small number of rollouts already bring a good benefit.

In summary, acting purely reactively in dynamic domains with dead ends can be
costly and risky. Our proposed integration of acting, planning and learning can be of
great benefit, reflected by a higher efficiency or robustness. An open source repository
of all of the algorithms and test domains is available at [? ].
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[76] Mart́ınez, D.M., Alenyà, G., Torras, C., 2017b. Relational reinforcement learning
with guided demonstrations. Artificial Intelligence 247, 295–312.

[77] Mausam, A.K., 2012. Planning with markov decision processes: an ai perspec-
tive. Morgan & Claypool Publishers .

[78] McDermott, D.M., 2000. The 1998 AI planning systems competition. AI Mag.
21, 35.

[79] Meneguzzi, F., De Silva, L., 2015. Planning in BDI agents: a survey of the inte-
gration of planning algorithms and agent reasoning. The Knowledge Engineering
Review 30, 1–44.

[80] Michel, O., 2004. Cyberbotics Ltd. Webots™: professional mobile robot simula-
tion. International Journal of Advanced Robotic Systems 1, 5.

[81] Morisset, B., Ghallab, M., 2008. Learning how to combine sensory-motor func-
tions into a robust behavior. Artificial Intelligence 172, 392–412.

[82] Mourtzis, D., Doukas, M., Bernidaki, D., 2014. Simulation in manufacturing:
Review and challenges. Procedia Cirp 25, 213–229.

[83] Muscettola, N., Nayak, P.P., Pell, B., Williams, B.C., 1998. Remote Agent: To
boldly go where no AI system has gone before. Artificial Intelligence 103, 5–47.

[84] Musliner, D.J., Pelican, M.J., Goldman, R.P., Krebsbach, K.D., Durfee, E.H.,
2008. The evolution of CIRCA, a theory-based ai architecture with real-time
performance guarantees., in: AAAI Spring Symposium: Emotion, Personality,
and Social Behavior.

[85] Myers, K.L., 1999. CPEF: A continuous planning and execution framework. AI
Mag. 20, 63–69.

[86] Nau, D.S., Au, T.C., Ilghami, O., Kuter, U., Murdock, J.W., Wu, D., Yaman,
F., 2003. SHOP2: An HTN planning system. J. Artificial Intelligence Research
20, 379–404.
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Appendix A. Asymptotic Convergence of UPOM

In this section we demonstrate the asymptotic convergence of UPOM towards an
optimal method, as nro → ∞. The proof assumes no depth cut-off (dmax = ∞)
and static domains, i.e., domains without exogenous events. We believe it would be
straightforward to extend the proof to dynamic domains if there are known probability
distributions over the occurrence of exogenous events. However, we have not attempted
to extend the proof to that case.

The proof proceeds by mapping UPOM’s search strategy into UCT, which is
demonstrated to converge on a finite horizon MDP with a probability of not find-
ing the optimal action at the root node that goes to zero at a polynomial rate as the
number of rollouts grows to infinity (Theorem 6 of [66]).

To simplify the mapping, we first consider UPOM with an additive utility function,
and show how to map UPOM’s search space into an MDP. We then discuss how this
can be extended to the efficiency and success ratio utility functions defined in 5, using
the fact that the UCT algorithm is not restricted to the additive case; it still converges
as long as the utility function is monotonic.

A.1. Search Space for Refinement Planning

Let Σ = (Ξ, T ,M,A) be an acting domain, as specified at the end of Section 3.
Throughout this appendix, we will assume that Σ is static.

Recall from Section 5 that the space searched by UPOM is a simulated version of
Σ. To talk about this formally, recall that a refinement planning domain is a tuple
Φ = (S, T ,M,A), where S is the set of states (recall that these are abstractions of
states in Ξ), and T ,M, and A are the same as in Σ. Recall from Section 3 that S, T ,
M, and A are all finite, and that every sequence of steps generated by the methods
in M is finite.
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For s ∈ S and a ∈ A, we let γ(s, a) ⊆ S be the set of all states that may be
produced by simulating a’s execution in s. For each s′ ∈ γ(s, a), we let P (s, a, s′) be
the probability that state s′ will be produced if we simulate a’s execution in state s.

Recall from Section 4 that a refinement stack is a LIFO stack in which each element
is a tuple (τ,m, i, tried), where τ is a task, m is a method, i is an instruction pointer
that points to the i’th line of m’s body (which is a computer program), and tried is
the set of methods previously tried for τ . We will call the tuple (τ,m, i, tried) a stack
frame, and we will let m[i] denote the i’th line of the body of m.

We now can define a refinement planning problem to be a tuple Π = (Φ, s0, σ0, U),
where s0 is the initial state, σ0 is the initial refinement stack, and U is a utility function.

Rollouts. A rollout in Φ is a sequence of pairs

ρ = 〈(σ0, s0), (σ1, s1), . . . , (σn, sn)〉 (A.1)

satisfying the following properties:

• each si is a state, and each σi is a refinement stack;

• for each i > 0 there is a nonzero probability that sj and σj are the next state and
refinement stack after si−1 and σi−1;

• (σn, sn) is a termination point for UPOM.

If the final refinement stack is σn = 〈〉, i.e., the empty stack, then the rollout ρ is
successful. Otherwise ρ fails.

In a top-level call to UPOM, the initial refinement stack σ0 would normally be

σ0 = 〈(τ0,m0, 1,∅)〉, (A.2)

where τ0 is a task, and m0 is a method that is relevant for τ0 and applicable in s0. In
all subsequent refinement stacks produced by UPOM.

We will say that a refinement stack σ is reachable in Φ (i.e., reachable from a
top-level call to UPOM) if there exists a rollout

ρ = 〈(σ0, s0), (σ1, s1), . . . , (σn, sn)〉

such that σ0 satisfies Equation A.2 and σ ∈ {σ0, . . . , σn}. We let R(Φ) be the set of
all refinement stacks that are reachable in Φ. Since every sequence of steps generated
by the methods in M is finite, it follows that R(Φ) is also finite.

Additive utility functions. The utility function U is additive if there is either a reward
function R(s) or a cost function C(s, a, s′) (where (s, a, s′) is a transition from s to s′

caused by action a) such that U is the sum of the rewards or costs associated with
the state transitions in ρ. These state transitions are the points in ρ where UPOM
simulates the execution of an action.

For each pair (σj , sj) in ρ, let (τj ,mj , ij , triedj) be the top element of σj . If mj [ij ]
is an action, then the next element of ρ is a pair (σj+1, sj+1) in which sj+1 is the state
produced by executing the action mj [ij ]. In Φ this corresponds to the state transition
(sj ,mj [ij ], sj+1). Thus the set of state transitions in ρ is

tρ = {(sj ,mj [ij ], sj+1) | (σj , sj) and (σj+1, sj+1) are members of ρ,

(τj ,mj , ij , triedj) = top(σj), and mj [ij ] is an action}. (A.3)

Thus if U is additive, then

U(ρ) =

{∑
(s,a,s′)∈tρ R(s′), if U is the sum of rewards,∑
(s,a,s′)∈tρ C(s, a, s′), if U is the sum of costs.

(A.4)
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A.2. Defining the MDP

We want to define an MDP Ψ such that choosing among methods in Φ corresponds
to choosing among actions in Ψ. The easiest way to do this is to let all of Φ’s actions
and methods be actions in Ψ. Based loosely on the notation in [77], we will write Ψ
as

Ψ = (SΨ,AΨ, sΨ
0 , S

Ψ
g , γ

Ψ, PΨ, UΨ) (A.5)

where

SΨ = stacks(Φ)× S is the set of states,

AΨ =M∪A is the set of actions,

sΨ
0 = (σ0, s0) is the initial state,

SΨ
g = {(〈〉, s) | s ∈ S} is the set of goal states,

and the state-transition function γΨ, state-transition probability function PΨ, and
utility function UΨ are defined as follows.

State transitions. To define γΨ and PΨ, we must first define which actions are appli-
cable in each state. Let (σ, s) ∈ SΨ, and (τ,m, i, t) = top(σ). Then the set of actions
that are applicable to (σ, s) in Ψ is

ApplicableΨ((σ, s)) =

{
Instances(M,m[i], s), if m[i] is a task,

{m[i]}, if m[i] is an action.
(A.6)

Thus if a ∈ ApplicableΨ((σ, s)), then there are two cases for what γΨ(s, a) and
PΨ(s, a, s′) might be:

• Case 1: m[i] is a task in M, and a ∈ Instances(M,m[i], s). In this case, the next
refinement stack will be produced by pushing a new stack frame φ = (m[i], a, 1,∅)
onto σ. The state s will remain unchanged. Thus the next state in Ψ will be
(φ+ σ, s), where ‘+’ denotes concatenation. Thus

γ((σ, s), a) = {(φ+ σ, s)};

PΨ[(σ, s), a, (φ+ σ, s)] = 1;

PΨ[(σ, s), a, (σ′, s′)] = 0, if (σ′, s′) 6= (φ+ σ, s).

• Case 2: m[i] is an action in A, and a = m[i]. Then a’s possible outcomes in Ψ
correspond one-to-one to its possible outcomes in Φ. More specifically, if γ is the
state-transition function for Φ (see Section 3), then

γΨ((σ, s), a) = {(Next(σ, s′), s′) | s′ ∈ γ(s, a)}

and

PΨ((σ, s), a, (σ′, s′))) =

{
P (s, a, s′), if (σ′, s′) ∈ γΨ((σ, s), a),

0, otherwise.
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Rollouts and utility. A rollout of ΠΨ is any sequence of states and actions of Ψ,

ρΨ = 〈(σ0, s0), a1, (σ1, s1), a2, . . . , (σn−1, sn−1), an, (σn, sn)〉,

such that for i = 1, . . . , n, ai ∈ Applicable(σi−1, si−1) and

PΨ((σi−1, si−1, (σi, si)), ai) > 0.

The rollout is successful if (σn, sn) ∈ SΦ
g , and unsuccessful otherwise.

We can define UΨ directly from U . If ρΨ is the rollout given above, then the
corresponding rollout in Φ is ρ = 〈(σ0, s0), (σ1, s1), . . . , (σn−1, sn−1), (σn, sn)〉, and

UΨ(ρΨ) = U(ρ).

If U is additive, then so is UΨ. In this case, Ψ satisfies the definition of an MDP with
initial state (see [77]).

A.3. Mapping UPOM’s Search to an Equivalent UCT Search

Let
Π = (Φ, s0, σ0, U) (A.7)

be a refinement planning problem, where

Φ = (S, T ,M,A). (A.8)

Suppose UPOM(s0, σ0,∞) generates the rollout

ρ = 〈(σ0, s0), (σ1, s1), . . . , (σn, sn)〉, (A.9)

where σj = (τj ,mj , ij , triedj), for j = 1, . . . , n. UPOM generates ρ by choosing m1

and then recursively calling UPOM(sj , σj ,∞). Consequently, UPOM’s probability of
generating ρ is

p = p1 × . . .× pn, (A.10)

where each pj is the probability that UPOM(sj , σj ,∞) will choose mj before making
its recursive call. The value of pj will depend on UPOM’s metadata for Π, e.g., the
number of times each method for a task τ has been tried in each state s, and the
average utility obtained over those tries.

We want to show that UPOM’s search of Π corresponds to an equivalent UCT
search of Ψ. Below, Theorem 1 accomplishes this in the case where the utility function
U is additive. After the proof of the theorem, we discuss how to generalize the theorem
to cases where U is not additive.

Theorem 1. Let Π, Φ, ρ and p be as in Equations A.7–A.10, let U be additive, let
UPOM’s metadata for Π be as described above, and let Ψ = (SΨ,AΨ, γΨ, PΨ, UΨ) be
the MDP corresponding to Π. If UCT searches Ψ using the same metadata that UPOM
used, then the probability that UCT generates the rollout

ρΨ = 〈(σ0, s0),m1, (σ1, s1),m2, . . . , (σn−1, sn−1),mn, (σn, sn)〉

is the same probability p = p1 × . . .× pn as in Equation A.10.

56



Sketch of proof. The proof is by induction on n, the length of ρ. The base case is
when n = 0, i.e., ρ = 〈(σ0, s0)〉. If n = 0 then it must be that Applicable(s0) = ∅.
Thus ApplicableΨ((σ0, s0)) = ∅, so in this case the theorem is vacuously true.

For the induction step, suppose n > 0, and consider UPOM’s recursive call to
UPOM(s1, σ1,∞). In this case, the refinement planning problem is Π1 = (Φ, s1, σ1, U),
and we let Ψ1 be the corresponding MDP.

Given the same metadata as above, UPOM(s1, σ1,∞) will generate the rollout
ρ1 = 〈(σ1, s1), . . . , (σn, sn)〉 with probability p2 × . . .× pn. The induction assumption
is that with that same probability, a UCT search of Ψ1 will generate the rollout

ρΨ
1 = 〈(σ1, s1),m2, . . . , (σn−1, sn−1),mn, (σn, sn)〉.

Before applying the induction assumption, we first need to show that if p1 is the
probability that UPOM(s0, σ0, U) chooses m1 before making its recursive call, then a
UCT search of Ψ1 will choose m1 with the same probability p1. There are two cases:

• Case 1: m1 is a method in Φ. As shown in Algorithm 6, UPOM(s0, σ0, U) chooses
m1 using the same UCB-style computation that a UCT search in Ψ would use at
(σ0, s0). Thus, omitting the details about how to compute p1 from the metadata,
it follows that if UPOM(s0, σ0, U) chooses m1 with probability p1, then so does the
UCT search.

• Case 2: m1 is an action in Φ. Then UPOM’s computation (in lines line 8 through
the end of Algorithm 6) is not a UCT-style computation, but this does not mat-
ter, because there is only one possible choice, namely m1. In this case, UPOM’s
probability of choosing m1 is p1 = 1, and the same is true for the UCT search.

In both cases, it follows from the induction assumption that in Π, UPOM’s probability
of generating ρ is p1 × p2 × . . . × pn, and in ΠΨ, UCT’s probability of generating ρΨ

is also p1 × p2 × . . .× pn. This concludes the sketch of the proof.

Generalizing beyond MDPs. If the utility function U is not additive, Equation A.5
produces a probabilistic planning problem that looks similar to an MDP, the only
difference being that the utility function UΨ is not additive. Furthermore, Theorem 1
still holds even when U is not additive, if we modify the proof to remove the claim
that Ψ is an MDP.

We note that the UCT algorithm [66] is not restricted to the case where UΨ is
additive; it will still converge as long as UΨ is monotonic. If U is monotonic, then so is
UΨ. In this case it follows that UCT—and thus UPOM—will converge to an optimal
solution. In particular, UPOM will converge to an optimal solution when using the
efficiency and success ratio utility functions described in Section 5.1.

Appendix B. Operational model for the S&R domain

declare_commands ([

moveEuclidean , # UGV moves from a location to another following

a Euclidean path

moveCurved , # UGV moves from a location to another following a

curved path

moveManhattan , # UGV moves from a location to another following

a Manhattan path

fly , # UAV flies from one location to another

giveSupportToPerson , # UGV helps one person
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clearLocation , # UGV removes debri from a location

inspectLocation , # UAV surveys a location , searching for

injured people

inspectPerson , # UGV checks whether a person is injured or not

transfer , # one UGV transfers medical supplies to another

replenishSupplies , # UGV replenishes medical supplies at the

base

captureImage , # UAV captures an image using on of its cameras

changeAltitude , # UAV changes its flying altitude

deadEnd , # the agent reaches a dead end from which it can’t

recover from

fail # the command always fails

])

declare_task(’moveTo ’, ’r’, ’l’) # robot r moves to location l

declare_task(’rescue ’, ’r’, ’p’) # robot r rescues person p

declare_task(’helpPerson ’, ’r’, ’p’) # robot r helps a person p

declare_task(’getSupplies ’, ’r’) # UGV r refills its medical

supplies from the base

declare_task(’survey ’, ’r’, ’l’) # UAV r surveys the location l

declare_task(’getRobot ’) # assigns a free robot to help a person

declare_task(’adjustAltitude ’, ’r’) # UAV r adjusts its flying

altitude depending on the weather conditions

declare_methods(’moveTo ’, # Four possible methods for the \

MoveTo_Method4 , # task moveTo(r, l)

MoveTo_Method3 ,

MoveTo_Method2 ,

MoveTo_Method1 ,

)

declare_methods(’rescue ’, # Two methods for the task rescue(r, p)

Rescue_Method1 ,

Rescue_Method2 ,

)

declare_methods(’helpPerson ’, # Two methods for the \

HelpPerson_Method2 , # task helpPerson(r, p)

HelpPerson_Method1 ,

)

declare_methods(’getSupplies ’, # Two methods for the \

GetSupplies_Method2 , # task getSupplies(r)

GetSupplies_Method1 ,

)

declare_methods(’survey ’, # Two methods for the \

Survey_Method1 , # task survey(r, l)

Survey_Method2

)

declare_methods(’getRobot ’, # Two methods for the \

GetRobot_Method1 , # task getRobot

GetRobot_Method2 ,

)
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declare_methods(’adjustAltitude ’, # Two methods for the \

AdjustAltitude_Method1 , # task adjustAltitude(r)

AdjustAltitude_Method2 ,

)

# Full descriptions of the commands

def moveEuclidean(r, l1, l2, dist):

’’’ UGV r moves from a location l1 to location l2 following a

Euclidean path. ’’’

(x1 , y1) = l1

(x2 , y2) = l2

xlow = min(x1 , x2)

xhigh = max(x1, x2)

ylow = min(y1 , y2)

yhigh = max(y1, y2)

# r checks whether there are any obstacles in the path

for o in rv.OBSTACLES:

(ox , oy) = o

if ox >= xlow and ox <= xhigh and oy >= ylow and oy <=

yhigh:

if ox == x1 or x2 == x1:

Simulate("%s cannot move in Euclidean path because

of obstacle\n" %r)

return FAILURE

elif abs((oy - y1)/(ox - x1) - (y2 - y1)/(x2 - x1)) <=

0.0001:

Simulate("%s cannot move in Euclidean path because

of obstacle\n" %r)

return FAILURE

state.loc.AcquireLock(r)

if l1 == l2:

Simulate("Robot %s is already at location %s\n" %(r, l2))

res = SUCCESS

elif state.loc[r] == l1:

start = globalTimer.GetTime ()

while(globalTimer.IsCommandExecutionOver(’moveEuclidean ’,

start , r, l1, l2 , dist) == False):

pass

res = Sense(’moveEuclidean ’)

if res == SUCCESS:

Simulate("Robot %s has moved from %s to %s\n" %(r, str(

l1), str(l2)))

state.loc[r] = l2

else:

Simulate("Robot %s failed to move due to some internal

failure .\n" %r)

else:

Simulate("Robot %s is not in location %d.\n" %(r, l1))

res = FAILURE

state.loc.ReleaseLock(r)

return res

def moveCurved(r, l1, l2, dist):

’’’ UGV r moves from a location l1 to l2 following a curved path
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’’’

(x1 , y1) = l1

(x2 , y2) = l2

centrex = (x1 + x2)/2

centrey = (y1 + y2)/2

# r checks whether there are any obstacles in the path

for o in rv.OBSTACLES:

(ox , oy) = o

r2 = (x2 - centrex)*(x2 - centrex) + (y2 - centrey)*(y2 -

centrey)

ro = (ox - centrex)*(ox - centrex) + (oy - centrey)*(oy -

centrey)

if abs(r2 - ro) <= 0.0001:

Simulate("%s cannot move in curved path because of

obstacle\n" %r)

return FAILURE

state.loc.AcquireLock(r)

if l1 == l2:

Simulate("Robot %s is already at location %s\n" %(r, l2))

res = SUCCESS

elif state.loc[r] == l1:

start = globalTimer.GetTime ()

while(globalTimer.IsCommandExecutionOver(’moveCurved ’,

start , r, l1, l2 , dist) == False):

pass

res = Sense(’moveCurved ’)

if res == SUCCESS:

Simulate("Robot %s has moved from %s to %s\n" %(r, str(

l1), str(l2)))

state.loc[r] = l2

else:

Simulate("Robot %s failed to move due to some internal

failure .\n" %r)

else:

Simulate("Robot %s is not in location %d.\n" %(r, l1))

res = FAILURE

state.loc.ReleaseLock(r)

return res

def moveManhattan(r, l1, l2, dist):

’’’ UGV r moves from a location l1 to l2 following a Manhattan

path ’’’

(x1 , y1) = l1

(x2 , y2) = l2

xlow = min(x1 , x2)

xhigh = max(x1, x2)

ylow = min(y1 , y2)

yhigh = max(y1, y2)

# r checks whether there are any obstacles in the path

for o in rv.OBSTACLES:

(ox , oy) = o

if abs(oy - y1) <= 0.0001 and ox >= xlow and ox <= xhigh:

Simulate("%s cannot move in Manhattan path because of

obstacle\n" %r)

return FAILURE
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if abs(ox - x2) <= 0.0001 and oy >= ylow and oy <= yhigh:

Simulate("%s cannot move in Manhattan path because of

obstacle\n" %r)

return FAILURE

state.loc.AcquireLock(r)

if l1 == l2:

Simulate("Robot %s is already at location %s\n" %(r, l2))

res = SUCCESS

elif state.loc[r] == l1:

start = globalTimer.GetTime ()

while(globalTimer.IsCommandExecutionOver(’moveManhattan ’,

start , r, l1, l2 , dist) == False):

pass

res = Sense(’moveManhattan ’)

if res == SUCCESS:

Simulate("Robot %s has moved from %s to %s\n" %(r, str(

l1), str(l2)))

state.loc[r] = l2

else:

Simulate("Robot %s failed to move due to some internal

failure .\n" %r)

else:

Simulate("Robot %s is not in location %d.\n" %(r, l1))

res = FAILURE

state.loc.ReleaseLock(r)

return res

def fly(r, l1 , l2):

’’’ UAV r flies from one location l1 to another location l2 ’’’

state.loc.AcquireLock(r)

if l1 == l2:

Simulate("Robot %s is already at location %s\n" %(r, l2))

res = SUCCESS

elif state.loc[r] == l1:

start = globalTimer.GetTime ()

while(globalTimer.IsCommandExecutionOver(’fly’, start) ==

False):

pass

res = Sense(’fly’)

if res == SUCCESS:

Simulate("Robot %s has flied from %s to %s\n" %(r, str(

l1), str(l2)))

state.loc[r] = l2

else:

Simulate("Robot %s failed to fly due to some internal

failure .\n" %r)

else:

Simulate("Robot %s is not in location %d.\n" %(r, l1))

res = FAILURE

state.loc.ReleaseLock(r)

return res

def inspectPerson(r, p):

’’’ UGV r helps one person p’’’

Simulate("Robot %s is inspecting person %s \n" %(r, p))

state.status[p] = env.realStatus[p]
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return SUCCESS

def giveSupportToPerson(r, p):

if state.status[p] != ’dead’:

Simulate("Robot %s has saved person %s \n" %(r, p))

state.status[p] = ’OK’

env.realStatus[p] = ’OK’

res = SUCCESS

else:

Simulate("Person %s is already dead \n" %(p))

res = FAILURE

return res

def inspectLocation(r, l):

’’’ UAV r surveys a location , searching for injured people ’’’

Simulate("Robot %s is inspecting location %s \n" %(r, str(l)))

state.status[l] = env.realStatus[l]

return SUCCESS

def clearLocation(r, l):

’’’ UGV r removes debri from a location l’’’

Simulate("Robot %s has cleared location %s \n" %(r, str(l)))

state.status[l] = ’clear’

env.realStatus[l] = ’clear’

return SUCCESS

def replenishSupplies(r):

’’’ UGV r replenishes medical supplies at the base ’’’

state.hasMedicine.AcquireLock(r)

if state.loc[r] == (1,1):

state.hasMedicine[r] = 5

Simulate("Robot %s has replenished supplies at the base.\n"

%r)

res = SUCCESS

else:

Simulate("Robot %s is not at the base.\n" %r)

res = FAILURE

state.hasMedicine.ReleaseLock(r)

return res

def transfer(r1, r2):

’’’ One UGV r1 transfers medical supplies to another UGV r2 ’’’

state.hasMedicine.AcquireLock(r1)

state.hasMedicine.AcquireLock(r2)

if state.loc[r1] == state.loc[r2]:

if state.hasMedicine[r1] > 0:

state.hasMedicine[r2] += 1

state.hasMedicine[r1] -= 1

Simulate("Robot %s has transferred medicine to %s.\n"

%(r1, r2))

res = SUCCESS

else:

Simulate("Robot %s does not have medicines .\n" %r1)

res = FAILURE

else:

Simulate("Robots %s and %s are in different locations .\n"
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%(r1, r2))

res = FAILURE

state.hasMedicine.ReleaseLock(r2)

state.hasMedicine.ReleaseLock(r1)

return res

def captureImage(r, camera , l):

’’’ UAV r captures an image using on of its cameras at location l

’’’

img = Sense(’captureImage ’, r, camera , l)

state.currentImage.AcquireLock(r)

state.currentImage[r] = img

Simulate("UAV %s has captured image in location %s using %s\n"

%(r, l, camera))

state.currentImage.ReleaseLock(r)

return SUCCESS

def changeAltitude(r, newAltitude):

’’’ UAV r changes its flying altitude to newAltitude ’’’

state.altitude.AcquireLock(r)

if state.altitude[r] != newAltitude:

res = Sense(’changeAltitude ’)

if res == SUCCESS:

state.altitude[r] = newAltitude

Simulate("UAV %s has changed altitude to %s\n" %(r,

newAltitude))

else:

Simulate("UAV %s was not able to change altitude to %s\

n" %(r, newAltitude))

else:

res = SUCCESS

Simulate("UAV %s is already in %s altitude .\n" %(r,

newAltitude))

state.altitude.ReleaseLock(r)

return res

def SR_GETDISTANCE_Euclidean(l0, l1):

’’’Calculates the euclidean distance between two 2D points , l0 and

l1 ’’’

(x0 , y0) = l0

(x1 , y1) = l1

return math.sqrt((x1 - x0)*(x1 - x0) + (y1 - y0)*(y1-y0))

def MoveTo_Method1(r, l):

# A wheeled UGV robot r takes the straight path to reach l1

x = state.loc[r]

if x == l:

Simulate("Robot %s is already in location %s\n." %(r, l))

elif state.robotType[r] == ’wheeled ’:

dist = SR_GETDISTANCE_Euclidean(x, l)

Simulate("Euclidean distance = %d " %dist)

do_command(moveEuclidean , r, x, l, dist)

else:

do_command(fail)

def SR_GETDISTANCE_Manhattan(l0, l1):
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’’’ Calculates the Manhattan distance between two 2D points , l0

and l1. ’’’

(x1 , y1) = l0

(x2 , y2) = l1

return abs(x2 - x1) + abs(y2 - y1)

def MoveTo_Method2(r, l):

’’’ UGV r takes a Manhattan path to location l ’’’

x = state.loc[r]

if x == l:

Simulate("Robot %s is already in location %s\n." %(r, l))

elif state.robotType[r] == ’wheeled ’:

dist = SR_GETDISTANCE_Manhattan(x, l)

Simulate("Manhattan distance = %d " %dist)

do_command(moveManhattan , r, x, l, dist)

else:

do_command(fail)

def SR_GETDISTANCE_Curved(l0 , l1):

’’’ Calculates the curved distance between two 2D points , l0 and

l1. ’’’

diameter = SR_GETDISTANCE_Euclidean(l0, l1)

return math.pi * diameter / 2

def MoveTo_Method3(r, l):

# UGV r takes a curved path to reach location l

x = state.loc[r]

if x == l:

Simulate("Robot %s is already in location %s\n." %(r, l))

elif state.robotType[r] == ’wheeled ’:

dist = SR_GETDISTANCE_Curved(x, l)

Simulate("Curved distance = %d " %dist)

do_command(moveCurved , r, x, l, dist)

else:

do_command(fail)

def MoveTo_Method4(r, l):

’’’ UAV r moves to location l ’’’

x = state.loc[r]

if x == l:

Simulate("Robot %s is already in location %s\n." %(r, l))

elif state.robotType[r] == ’uav’:

do_command(fly , r, x, l)

else:

do_command(fail)

def Rescue_Method1(r, p):

’’’ A UGV r helps a person after procuring medical supplies. ’’’

if state.robotType[r] != ’uav’:

if state.hasMedicine[r] == 0:

do_task(’getSupplies ’, r)

do_task(’helpPerson ’, r, p)

else:

do_command(fail)

def Rescue_Method2(r, p):

’’’ A UAV r delegates the rescuing task to a free ground robot.
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’’’

if state.robotType[r] == ’uav’:

do_task(’getRobot ’)

r2 = state.newRobot [1]

if r2 != None:

if state.hasMedicine[r2] == 0:

do_task(’getSupplies ’, r2)

do_task(’helpPerson ’, r2 , p)

state.status[r2] = ’free’

else:

Simulate("No robot is free to help person %s\n" %p)

do_command(fail)

def HelpPerson_Method1(r, p):

# Robot r helps an injured person p

do_task(’moveTo ’, r, state.loc[p])

do_command(inspectPerson , r, p)

if state.status[p] == ’injured ’:

do_command(giveSupportToPerson , r, p)

else:

do_command(fail)

def HelpPerson_Method2(r, p):

# Robot r helps a person p trapped inside some debri but not

injured

do_task(’moveTo ’, r, state.loc[p])

do_command(inspectLocation , r, state.loc[r])

if state.status[state.loc[r]] == ’hasDebri ’:

do_command(clearLocation , r, state.loc[r])

else:

CheckResult(state.loc[p])

do_command(fail)

def GetSupplies_Method1(r):

# UGV r gets medical supplies from nearby robots

r2 = None

nearestDist = float("inf")

for r1 in rv.WHEELEDROBOTS:

if state.hasMedicine[r1] > 0:

dist = SR_GETDISTANCE_Euclidean(state.loc[r], state.loc

[r1])

if dist < nearestDist:

nearestDist = dist

r2 = r1

if r2 != None:

do_task(’moveTo ’, r, state.loc[r2])

do_command(transfer , r2 , r)

else:

do_command(fail)

def GetSupplies_Method2(r):

# UGV r gets medical supplies from the base

do_task(’moveTo ’, r, (1,1))

do_command(replenishSupplies , r)

def CheckResult(l):
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’’’ Function to check whether a person is saved or not after

performing the rescue operations.’’’

p = env.realPerson[l]

if p != None:

if env.realStatus[p] == ’injured ’ or env.realStatus[p] == ’

dead’ or env.realStatus[l] == ’hasDebri ’:

Simulate("Person in location %s failed to be saved.\n"

%str(l))

do_command(deadEnd , p)

do_command(fail)

def Survey_Method1(r, l):

’’’ UAV r surveys location l with the help of the front camera.

’’’

if state.robotType[r] != ’uav’:

do_command(fail)

do_task(’adjustAltitude ’, r)

do_command(captureImage , r, ’frontCamera ’, l)

img = state.currentImage[r]

position = img[’loc’]

person = img[’person ’]

if person != None:

do_task(’rescue ’, r, person)

CheckResult(l)

def Survey_Method2(r, l):

’’’ UAV r surveys location l with the help of the bottom camera.

’’’

if state.robotType[r] != ’uav’:

do_command(fail)

do_task(’adjustAltitude ’, r)

do_command(captureImage , r, ’bottomCamera ’, l)

img = state.currentImage[r]

position = img[’loc’]

person = img[’person ’]

if person != None:

do_task(’rescue ’, r, person)

CheckResultl(l)

def GetRobot_Method1 ():

’’’ Finds a free robot to do some rescue task ’’’

dist = float("inf")

robot = None

for r in rv.WHEELEDROBOTS:

if state.status[r] == ’free’:

if SR_GETDISTANCE_Euclidean(state.loc[r], (1,1)) < dist

:

robot = r

dist = SR_GETDISTANCE_Euclidean(state.loc[r], (1,1)
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)

if robot == None:

do_command(fail)

else:

state.status[robot] = ’busy’

state.newRobot [1] = robot

def GetRobot_Method2 ():

’’’ Assigns the first robot from the list of UGVs to do a resue

task ’’’

state.newRobot [1] = rv.WHEELEDROBOTS [0]

state.status[rv.WHEELEDROBOTS [0]] = ’busy’

def AdjustAltitude_Method1(r):

’’’ Changes the altitude of an UAV r from high to low.’’’

if state.altitude[r] == ’high’:

do_command(changeAltitude , r, ’low’)

def AdjustAltitude_Method2(r):

’’’ Changes the altitude of an UAV r from low to high.’’’

if state.altitude[r] == ’low’:

do_command(changeAltitude , r, ’high’)

# ONE PROBLEM INSTANCE INCLUDES THE FOLLOWING

# Rigid variables

rv.WHEELEDROBOTS = [’w1’, ’w2’]

rv.DRONES = [’a1’, ’a2’]

rv.OBSTACLES = { (100, 100)}

# initial values state variables

state.loc = {’w1’: (15 ,15), ’w2’: (29 ,29), ’p1’: (28 ,30), ’p2’:

(10 ,30), ’a1’: (9,19), ’a2’: (4,5)}

state.hasMedicine = {’a1’: 0, ’a2’: 0, ’w1’: 0, ’w2’: 0}

state.robotType = {’w1’: ’wheeled ’, ’a1’: ’uav’, ’a2’: ’uav’, ’w2

’: ’wheeled ’}

state.status = {’w1’: ’free’, ’w2’: ’free’, ’a1’: UNK , ’a2’: UNK ,

’p1’: UNK , ’p2’: UNK , (28 ,30): UNK , (15, 15): UNK , (10, 30):

UNK}

state.altitude = {’a1’: ’high’, ’a2’: ’low’}

state.currentImage = {’a1’: None , ’a2’: None}

state.newRobot = {1: None}

# properties of the environment

env.realStatus = {’w1’: ’OK’, ’p1’: ’OK’, ’p2’: ’injured ’, ’w2’:

’OK’, ’a1’: ’OK’, ’a2’: ’OK’, (28, 30): ’hasDebri ’, (15, 15): ’

clear’, (10, 30): ’hasDebri ’}

env.realPerson = {(28 ,30): ’p1’, (15, 15): None , (10, 30): ’p2’}

env.weather = {(28 ,30): "foggy", (15, 15): "rainy", (10, 30): "

dustStorm"}

# tasks to accomplish

tasks = {

8: [[’survey ’, ’a1’, (15 ,15)], [’survey ’, ’a2’, (28 ,30)]],

20: [[’survey ’, ’a1’, (10 ,30)]]

}
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Appendix C. Table of Notation

Page
Notation Meaning defined

Σ = (Ξ, T ,M,A) an acting domain 12
s, S predicted state, set of states for the planner 9
X set of state variables 9
ξ, Ξ actual state, set of world states for the actor 9
τ , T task or event, set of tasks and events 12
m, M method/method instance, set of methods for T 12

M set of method instances of M 12
m[i] the ith step of m 14
Applicable(ξ, τ) set of method instances applicable to τ in state ξ 12
a, A action, set of actions 12
γ(ξ, a) possible states after performing a in ξ 12
σ refinement stack with tuples of the form (τ,m, i, tried) 13
ve, vs value functions for efficiency and success ratio 17
ve1 ⊕ ve2 cumulative efficiency value of two successive actions 17
vs1 ⊕ vs2 cumulative success ratio of two successive actions 18
I the identify element for ⊕, i.e. x⊕ I = x 18
U(m, s, σ) the utility of m for τ and σ 18
U∗(m, s, σ) the maximal expected utility of m for τ 19
USuccess, UFailure the utility of a success, the utility of a failure 21
m∗τ,s the optimal method instance for τ in s for utility U∗ 19
d, dmax, nro depth, max depth, number of rollouts 19
h(τ,m, s) heuristic estimate to solve τ with m in s 20
h0, hD always returns ∞, hand written heuristic 33
hLearnH learned heuristic 33
Qσ,s(m) approximation of U∗(m, s, σ) 21
C tradeoff between exploration and exploitation 21
µ, K suggested control parameters for nro 23
g(s, τ,m) default state after accomplishing τ with m in s 24
r a data record of the form ((s, τ),m) 25
ws, wτ , wm, wu One-Hot representations of s, τ , m, and interval(u) 26
vun uninstantiated method parameter 27
vτ list of values of task parameters 27
b value of the parameter vui 27
V number of state variables 26
nnπ MLP for Learnπ 26
nnvun MLP for each vun 27
Z Number of training records 29
Φ = (S, T ,M,A) a refinement planning domain 16
P (s, a, s′) probability that a’s execution in s returns s′ 54
Π = (Φ, s0, σ0, U) a refinement planning problem 54
ρ a rollout in Φ 56
R(Φ) the set of all refinement stacks that are reachable in Φ 54
R(s), C(s, a, s′) reward function, cost function 54
Ψ an MDP used in the appendix 55

68


	Introduction
	Related Work
	Architecture and Representation
	Architecture
	Hierarchical Operational Models

	Acting with RAE
	Planning for RAE
	Utility criteria and optimal approach
	A planning algorithm based on UCT

	Learning for RAE and UPOM
	Learning to choose methods (Learn)
	Learning to choose method instances (Learni)
	Learning a heuristic function (LearnH)
	Incremental online learning

	Experimental Evaluation
	Domains
	Planning parameters
	Assessment of UPOM
	Assessment of learning procedures

	Discussion
	Retrial in RAE
	Concurrency
	Learning operational models
	Potential and limitations
	Deployment in new applications

	Conclusion
	Asymptotic Convergence of UPOM
	Operational model for the S&R domain
	Table of Notation

