Benchmarking Whole Body controllers on the TALOS Humanoid Robot

Noelie Ramuzat, Olivier Stasse, Sebastien Boria

To cite this version:

HAL Id: hal-03614143
https://hal.laas.fr/hal-03614143
Submitted on 19 Mar 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Benchmarking Whole Body controllers on the TALOS Humanoid Robot

N. Ramuzat1,2, O. Stasse1,*, and S. Boria1

1LAAS-CNRS, Univ. of Toulouse, France
2Airbus, Toulouse, France

Correspondence*: Corresponding Author
ostasse@laas.fr

This paper is an evolved version of “Comparison of Position and Torque Whole Body Control Schemes on the TALOS Humanoid Robot” by N. Ramuzat, O. Stasse and S. Boria accepted to ICAR 2021 and available here: https://hal.archives-ouvertes.fr/hal-03145141. The novel part of this version is the experimental section.

ABSTRACT

This paper presents a comparison of three control schemes applied on the commercially available TALOS Humanoid Robot. The aim is to highlight the advantages and drawbacks of each model applied on three locomotion problems: walking on flat and non-flat terrain and climbing stairs. The different models are based on position control (first and second models) or torque control (third model). The first one uses a hierarchical quadratic program at velocity level. The second one employs a weighted quadratic program named Task Space Inverse Dynamic (TSID) at acceleration level. Finally, the last one also uses TSID but at torque level. The controllers performances are compared in simulation, using Gazebo, on the accuracy of their tracking, their energy consumption and their computational time execution.

Keywords: Humanoid robots, whole body control, benchmarking

1 INTRODUCTION

1.1 Goal

Bipedal locomotion of humanoid robots is considered as a difficult problem because of the complexity of the robot dynamics, the numerous constraints of the motion and the unknown environment. The design choice made when designing a robot may have a strong impact on the control law that are really working on the system, and the real performances. A recent example is the Digit robot which has very impressive capabilities by choosing a careful trade-off between the chosen actuation technology and the robot weight distribution [Robotics (2022). The robot is very robust to impact, is allowing torque control but is slightly limited by the payload it can carries (10 kg). Realizing torque control on electric based bipedal system is challenging. If it was successfully realized on the TORO robot [Englsberger et al. (2014)] for standing whole body control and walking, it is notoriously more difficult to achieve than position control. A striking example is giving by the iCub robot with which impressive Taichi motions have been realized [Pucci et al. (2016)] but where walking in torque control mode is still difficult to achieve [Romualdi et al. (2019)]. The goal of this paper is to report a similar evaluation with the commercially available TALOS robot from the PAL-Robotics company.
1.2 Motion execution pipeline

Three stages are usually considered to execute a motion on a humanoid robot: the contact sequence generation, the trajectory planning and the whole-body control.

Most of trajectory planning methods use the centroidal dynamics to generate consistent behaviors for a legged robot. In this work we use preplanned trajectories provided either by a standard walking pattern generator or by a multi-contact planner [Fernbach et al. (2020)]. The latter is used for a platform which can be easily rebuilt for benchmarking walking on uneven terrain. This planner provides a centroidal trajectory that is dynamically balanced on uneven terrain, and does not assume that the robot behaves completely like a Linear Inverted Pendulum (LIPM). Because the centroidal dynamics is planned and the setup limits the number of contacts to one or two it is still possible to apply the concept of Divergent Component of Motion (DCM) [Takenaka et al. (2009); Englsberger et al. (2015)] for control. The newly generated reference DCM is used for admittance control on the Center of Mass (CoM) as for [Caron et al. (2019); Romualdi et al. (2019)].

Then to track the reference trajectories a whole-body controller is needed. Whole-body controllers are based on the task function approach [Samson et al. (1991); Escande et al. (2014)] from which a quadratic program is formulated. Complex motions combine several nonlinear tasks and constraints. In this paper two types of QP formulations are compared, a Hierarchical QP which imposes a strict hierarchy between the tasks [Henze et al. (2016); Herzog et al. (2014)], and a weighted QP which sets weights to prioritise the tasks [Koolen et al. (2016); Cisneros et al. (2018)].

In the recent literature there is a growing number of implementations of torque based whole body control algorithms [Koolen et al. (2016); Herzog et al. (2014); Lee and Goswami (2012); Englsberger et al. (2015)]. Indeed, due to the intrinsic compliance of the torque control formulation, it is more suitable for interactions with humans and for multi-contact problems where external interactions and several contact points are needed. However, the transition from the simulations to the real experiments are harder due to inaccuracies on the actuation chain model [Ramuzat et al. (2020)]. Such inaccuracies do not appear when using position control.

1.3 Contributions

Following the existing benchmarking of humanoid robots control architectures [Romualdi et al. (2019); Stasse et al. (2018)] this paper contributes by benchmarking the TALOS humanoid robot. It is done by comparing three whole-body control schemes on the TALOS robot in simulation. Two are using position control associated with DCM and CoM admittance controls and one using torque control. The first one is based on a Lexicographic QP using Inverse Kinematics (denoted IK in this paper), while the second and the third one use a Weighted QP (WQP) with Inverse Dynamics and an Angular Momentum (AM) task (denoted respectively TSID position and TSID torque). They are evaluated in Gazebo simulations on three locomotion problems: walking on flat, uneven terrains and stairs (Fig. 1), on the criterion of trajectory tracking, energy consumption, passivity and computational cost. As a first consequence of our torque control scheme, we achieve the highest walking velocity for the robot TALOS in simulation: 0.6 m/s. We believe that the motion on uneven terrain with the platforms is novel and offers an interesting new benchmark. Finally we also provides an evaluation of the Passivity Gait Measure that we believe is interesting to measure the efficiency of a balance strategy in terms of energy.

We organize the article as follows: Section 2 recalls the centroidal dynamics equations, the DCM control and the AM task. Section 3 details the three task-space whole-body control schemes compared in this paper.
Section 4 presents the energy criterion employed. Section 5 describes the planning methodologies used to obtain the reference trajectories for the simulations. Then, Section 6 presents these simulations results and Section 7 describes the experiments achieved on TALOS and their limitations.

2 CENTROIDAL DYNAMICS

The under-actuated part of the robot whole-body dynamics is called the centroidal dynamics. It uses the Newton-Euler equations of motion which couple the variations of the centroidal momentum with the contact forces [Orin et al. (2013)]:

\[
\begin{align*}
mc\ddot{c} + mc_x (\ddot{c} - g) + \dot{L} &= \sum_i f_i + mg \\
mc_x (\ddot{c} - g) + \dot{L} &= \sum_i (p_i - c_i) \times f_i + \tau_i &= \dot{c} \\
\end{align*}
\]

with \(c, \dot{c}, \ddot{c}\) the CoM position \(c = [c_x, c_y, c_z]\), velocity and acceleration, \(\dot{L} = \sum_k [R_k I_k \ddot{w}_k - R_k (I_k w_k) \times w_k]\) and \(g = [0, 0, -9.81]^T\), where \(R_k \in SO(3)\) is the 3d rotation matrix between the \(k^{th}\) body frame and the inertial coordinate frame, \(I_k\) its inertial matrix, \(w_k\) its angular velocity, \(m\) is the mass of the robot, \(f_i \in \mathbb{R}^3\) the vector of contact forces at contact point \(i\), \(p_i \in \mathbb{R}^3\) their positions and \(\tau_i \in \mathbb{R}^3\) their contact torque.
Sample et al.
Benchmarking Whole Body controllers on the TALOS Humanoid Robot

(represented at the inertial coordinate frame). \(l_c \) and \(k_c \in \mathbb{R}^3 \) are the linear and angular momentum around the CoM, and \(c = \begin{pmatrix} 0 & -c_z & c_y \\ c_z & 0 & -c_x \\ -c_y & c_x & 0 \end{pmatrix} \).

\[\begin{align*}
\dot{c} &= \omega (\xi - c) \\
\dot{\xi} &= \omega (\xi - z) \\
\xi &= c + \dot{c}
\end{align*} \]
(2)

2.1 Divergent Component of Motion

We use the DCM formulation for the admittance control of the CoM. Under the assumptions of the LIPM, one can obtain the following set of equations [Takenaka et al. (2009); Englsberger et al. (2015):]

\[\begin{align*}
\dot{z} &= z_{ref} - \left[1 + \frac{k_{z,dcn}}{\omega} \right] (z_{ref} - \xi) \\
&\quad + \frac{k_{z,dcn}}{\omega} (z_{ref} - z) - \frac{k_{c,dcn}}{\omega} \int (\xi_{ref} - \xi) \, dt
\end{align*} \]
(3)

with \(z, \xi \) respectively the Zero Moment Point (ZMP) and DCM and \(\omega = \sqrt{g/c_z} \). These equations show that the DCM is the divergent component of the LIPM model. Thus, the DCM needs to be controlled to stabilize the system [Kajita et al. (2010); Sugihara (2009); Englsberger et al. (2015); Mesesan et al. (2019); Caron et al. (2019); Romualdi et al. (2019)] proposes to use a Proportional–Integral (PI) control on the DCM (the integral term is used to eliminate the steady-state error). Romualdi et al. (2019) proposes an asymptotical criteria but other techniques which guarantees stability can be used.

In terms of ZMP, the obtained control law is [Caron et al. (2019):]

\[\ddot{z}^* = \ddot{z}_{ref} + k_{adm}(z - z^*) \]
(4)

The two position control schemes presented in this paper use this stabilization formulation. In the Fig 2, the Eq 3 is implemented in the DCM Ctrl blue block and the Eq 4 in the CoM Admittance Ctrl one. See Table 1 for the gains value used in the simulations.

2.2 Centroidal Momentum Tasks

The objective is to consider the angular momentum part of the Euler equation generated by the contact transition [Kajita et al. (2003b)]. Using the equation Eq 1, the centroidal dynamics is therefore defined by \(h_c = [l_c \ k_c]^T \in \mathbb{R}^6 \). In [Wensing and Orin (2013)], the task formulation of the centroidal dynamics control is given by \(h_c = A_{G}(q)\dot{q} \) where \(q, \dot{q} \) are the joint position and velocity vectors of the robot and \(A_{G} \) is the Centroidal Momentum Matrix [Orin et al. (2013)].

The tasks dynamics are given by the following equations:

\[\begin{align*}
\dot{l}_c &= m [\ddot{c}^* + K_{com}(\dot{c}^* - \dot{c}) + K_{com}(c^* - c)] \\
k_c &= \dot{k}_c^* + K_{am}(k_c^* - k_c)
\end{align*} \]
(5)
The angular momentum task in TSID is expressed as in the equation Eq. 5, successfully implemented in Lee and Goswami (2012) (the gains are defined in Table 1).

3 WHOLE-BODY CONTROLLER

3.1 Lexicographic Quadratic Programming

The first controller used is a Lexicographic QP task-based inverse kinematics described in Mansard et al. (2009). In this controller, the task errors e to be reduced in the cost function are implemented as velocity-based tracking laws in the Lie group $SE(3)$. Having the robot configuration vector q and the joint velocity \dot{q} as control input, a task-function is a derivable function $x(q)$ whose space is named the task-space.

And the task errors e are expressed as:

$$
\dot{e}(q, t) = \dot{x}(q) - \dot{x}^*(t)
$$

$$
\dot{x}(q) = J\dot{q}
$$

with $J = \frac{\partial e}{\partial \dot{q}} = \frac{\partial x}{\partial \dot{q}}$ the Jacobian according to the robot state vector.

The following dynamics is imposed on these errors:

$$
\dot{e}(q, t) = K_P (x(q) \ominus x^*(q)) \Leftrightarrow \dot{x}(q) = \dot{x}^*(t) + K_P (x(q) \ominus x^*(q))
$$

with \ominus the difference operator of Lie group.

Inverse Kinematics QP: IK - This control scheme is based on a DCM controller (Eq.3), a CoM admittance controller (Eq.4) and a Lexicographic QP solving the inverse kinematics of the robot (see Fig. 2). The authors have implemented this scheme in an open-source package GEPETTO Team LAAS-CNRS (2021c), based on the QP in Mansard et al. (2009), adding the DCM and CoM admittance controllers.

The tasks used during the simulations are (the priority 0 is the highest one):

- Feet tracking (priority 0)
- CoM height tracking (priority I)
- CoM lateral-sagittal tracking (priority II)
- Waist orientation (priority III)
- Posture regularization in half-sitting (priority IV)

The respective task gains are defined in Table 1.

3.2 Task Space Inverse Dynamics (TSID)

TSID Del Prete (2021) is a WQP which sums the task functions in a general cost function using weights to define their priorities (as opposed to the IK controller it is not a strict hierarchy, it has only two strict layers: the constraint and the cost). In this controller, the task errors e to be reduced are implemented as acceleration-based tracking laws in the task space. Having the robot configuration vector q and the joint acceleration \ddot{q} as control input, a task-function is a second-order derivable function x of q. And the task
errors e are expressed as:

$$
\begin{align*}
\dot{e}(q, t) &= \ddot{x}(q) - \ddot{x}^*(t) \\
\ddot{e}(q, t) &= (J\dot{q} + J\dot{q}) - \ddot{x}^*(t)
\end{align*}
$$

(8)

The following dynamics is imposed on these errors:

$$
\begin{align*}
\dot{e}(q, t) &= K_P(x(q) \otimes x^*) + K_D(\dot{x}(q) - \dot{x}^*(t)) \\
\Leftrightarrow \quad \ddot{x}(q) &= \ddot{x}^*(t) + K_P(x(q) \otimes x^*)(t) + K_D(\dot{x}(q) - \dot{x}^*(t))
\end{align*}
$$

(9)

TSID solves the inverse dynamics of the robot in rigid contact with the environment and has been successfully used on HRP-2 robot in.

Inverse Dynamics WQP: TSID Position - This control scheme is based on a DCM controller (Eq.3), a CoM admittance controller (Eq.4) and a WQP solving the inverse dynamics of the robot, see Fig.2. Compared to the previous controller, this one implements an AM task, which regulates the angular momentum to 0, using the formulation of Eq.5. The authors have implemented this controller using the TSID library in the same package than the controller TSID Torque, with the DCM and CoM admittance controllers.

The tasks considered during the simulations are:

- Feet tracking (priority 0)
- Feet contacts (priority 0)
- CoM height tracking (priority I, weight 10^3)
CoM lateral-sagittal tracking (priority I, weight 10^3)

- Waist orientation (priority I, weight 1)

- Posture regularization in half-sitting (priority I, weight 0.1)

- AM velocity-acceleration regularization (priority I, weight 2×10^{-2})

The respective task gains are defined in Table 1. The weights and gains have been chosen through trials and errors with an apriori heuristic.

Inverse Dynamics WQP: TSID Torque - This control scheme is based on a WQP solving the inverse dynamics of the robot (with an AM regularization task, using the formulation of Eq.5), as shown in Fig.3.

From the desired acceleration computed by the QP, TSID retrieves the associated torque by using the robot equation of the dynamics. The authors have implemented this controller using the TSID Del Prete (2021) library in the open-source package GEPETTO Team LAAS-CNRS (2020).

The tasks considered in the simulations are the same as TSID position, with different gains (see Table 1).

3.3 Remark on the state feedback

For position control, it is needed to integrate the result of the QP (one time for IK and two times for TSID position, see Fig.2) to obtain the desired command. To avoid instabilities, the control loop of both QP use these integrated values in the next iteration instead of the measured ones. The measured position and velocity of the robot are only used to compute the CoM, DCM and ZMP for the admittance control in the position schemes. In contrary, the torque control scheme uses the measured values at each iteration of the QP (see Fig.3) and in particular the position and velocity of the robot base (or free-flyer).
4 ENERGETIC COMPARISON CRITERION

4.1 Energy cost

Based on Torricelli et al. (2015), a relevant criteria to compare the energy consumption of the control schemes is the cost of transport. It can be computed as the energetic cost of transport C_{et} using the whole mechanical work of the actuation system E_m or as the mechanical cost of transport C_{mt} using only the positive one E_{m+}.

$$C_{et} = \frac{E_m}{mgD}, \quad C_{mt} = \frac{E_{m+}}{mgD}, \quad E_m = \int_0^T \sum_{i=0}^N |\tau_i(t)\omega_i(t)| dt, \quad E_{m+} = \int_0^T \sum_{i=0}^N \varrho_i(t) dt, \text{ if } \varrho_i(t) > 0$$

(10) with m the mass of the system, g the gravity constant, D the distance traveled by the system and τ_i, ω_i the respective torque and velocity of each robot joint for all (N) joints, and $\varrho_i(t) = \tau_i(t)\omega_i(t)$.

4.2 Passivity Gait Measure

Another interesting energetic criteria is the ability to minimize joint torques to increase the passivity of the walk Torricelli et al. (2015). The Passivity Gait Measure (PGM) Mummolo and Kim (2012) quantifies the passivity of a biped walking motion:

$$PGM = 1 - \frac{RMS(\tau_{sa})}{RMS(\tau_{tot})}$$

(11)

$$RMS(\tau_{tot}) = \sqrt{\frac{\int_0^T \left[\sum_{i=0}^N \tau_i(t)^2 \right] dt}{T}}$$

(12)

where RMS is the Root Mean Square along the period of time T, τ_{sa} stands for the torque on the stance ankle joint and τ_{tot} for the torque on all robot joints.

5 LOCOMOTION PLANNING

5.1 Walking Pattern Generator

The trajectories used in the straight walk simulations have been computed using the algorithm described in Kajita et al. (2003a), Stasse et al. (2008), GEPETTO Team LAAS-CNRS (2021a). This algorithm provides desired trajectories for the ZMP z^*, the CoM c^*, and the feet p_i^*, for a given set of foot steps (pre-defined in these simulations). This implementation uses the centroidal dynamics and the dynamic filter proposed in Kajita et al. (2003a) computed with the Recursive Newton-Euler Algorithm Featherstone (2008) implemented in the Pinocchio library Carpentier et al. (2019). The CoM trajectory is modified to take into account the momentum generated by the limbs motion. The desired DCM ξ^* is deduced from the desired CoM c^* and desired ZMP z^* trajectories (see Eq 2).

5.2 Multi-contact-locomotion-planning

The trajectories used in the tilted platforms and stairs simulations have been computed using the open-source framework multi-contact-locomotion-planning GEPETTO Team LAAS-CNRS (2021b). Given the
Table 1. Tasks gains of the control schemes. tilted platforms and stairs simulations use the same gains.

6 SIMULATION RESULTS

The simulations realized in this paper have been made using Gazebo. A video illustrating the simulations is available at the following link: https://peertube.laas.fr/videos/watch/4b5d3a5b-2355-47a0-8197-f41ed4f885c6. The chosen simulations are walking on flat or uneven terrains and stair climbing. Based on Torricelli et al. (2015), they cover different aspects of locomotion skills for a stationary environment with and without unexpected disturbances.

6.1 Straight walk of 20 cm steps

In the simulation, the robot executes 6 steps forward at 0.2 m/s and a final step (traveled distance of 1.2 m). The time distribution is 0.9 s for single support phase and 0.115 s for double support phase (leading to steps of approx. 0.20 m). The controllers have also been successfully tested on a faster walk with single/double support time of 0.711/0.089 s. The Fig. 4 presents a comparison of the three control schemes on their estimated ZMP, on the sagittal (x-axis, top curves on the figure) and lateral (y-axis, bottom curves) planes only, because the desired height of the CoM is constant. Fig. 5 shows the forces applied on the ground.

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Gains</th>
<th>IK (20 cm</th>
<th>stairs)</th>
<th>TSID position (20 cm</th>
<th>stairs)</th>
<th>TSID torque (20-60 cm</th>
<th>stairs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K_{p_{com}}$</td>
<td>100</td>
<td>1000</td>
<td>20</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K_{d_{com}}$</td>
<td>-</td>
<td>300</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K_{p_{comH}}$</td>
<td>100</td>
<td>1000</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K_{d_{comH}}$</td>
<td>-</td>
<td>300</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K_{p_{waist}}$</td>
<td>300</td>
<td>100</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K_{d_{waist}}$</td>
<td>-</td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K_{p_{contacts}}$</td>
<td>1000</td>
<td>30</td>
<td>30-100</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K_{d_{contacts}}$</td>
<td>-</td>
<td>11</td>
<td>11-0</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K_{p_{feet}}$</td>
<td>1000</td>
<td>2000</td>
<td>1200</td>
<td>500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K_{d_{feet}}$</td>
<td>-</td>
<td>20</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K_{p_{am}}$</td>
<td>-</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K_{p_{contact}}$</td>
<td>100</td>
<td>see below</td>
<td>see below</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K_{p_{posture}}$</td>
<td>-</td>
<td>$2\sqrt{K_{p_{posture}}}$</td>
<td>$2\sqrt{K_{p_{posture}}}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K_{p_{comAdm}}$</td>
<td>15/45</td>
<td>12</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K_{p_{dcm}}$</td>
<td>8/25</td>
<td>8</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K_{p_{idcm}}$</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K_{p_{zidcm}}$</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TSID Gains

| $K_{p_{posture}}$ | [10, 5, 5, 1, 10, 10] |
| | [100, 100] |

Arms

| $K_{p_{posture}}$ | [50, 10, 10, 10, 50, 10, 10, 10] |
| | [100, 100] |

Head

initial and final poses of the robot, the framework computes a reachabilility plan and a contacts sequence as in Tonneau et al. (2020). Then it optimizes the centroidal dynamics (see Section 2) using two convex relaxations based on trust regions Ponton et al. (2018). Similarly to the pattern generator method, it takes into account the momentum generated by the swing leg owning to iterations between a kinematic whole-body formulation and the centroidal dynamic optimization. In contrast, when solving Eq. 1, it does not assume that $\dot{L} = 0$ (see Section 2).
Table 2. ZMP error of the 20 cm step walk simulation.

<table>
<thead>
<tr>
<th>Control Scheme</th>
<th>Axis</th>
<th>Average (m)</th>
<th>Standard deviation (m)</th>
<th>Peaks (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IK x-axis</td>
<td>0.019</td>
<td>0.022</td>
<td>0.131</td>
<td></td>
</tr>
<tr>
<td>y-axis</td>
<td>0.022</td>
<td>0.026</td>
<td>0.150</td>
<td></td>
</tr>
<tr>
<td>TSID x-axis</td>
<td>0.028</td>
<td>0.025</td>
<td>0.142</td>
<td></td>
</tr>
<tr>
<td>position y-axis</td>
<td>0.025</td>
<td>0.027</td>
<td>0.138</td>
<td></td>
</tr>
<tr>
<td>TSID x-axis</td>
<td>0.026</td>
<td>0.021</td>
<td>0.078</td>
<td></td>
</tr>
<tr>
<td>position y-axis</td>
<td>0.011</td>
<td>0.014</td>
<td>0.078</td>
<td></td>
</tr>
</tbody>
</table>

The two position controllers achieve similar results, tracking correctly the ZMP reference of Eq. 3 with an average error of 2 cm (see Table 2). Noticeably, the torque control presents a ZMP which is close to the position control results in Fig. 4 even though there is no explicit control on the ZMP nor the DCM. In the Tables presenting the error on the ZMP, for the torque scheme, the estimated ZMP is compared to the desired ZMP (from the planning). In particular, in the lateral plane, the error is quite low, 1 cm in average.

The Fig. 5 illustrates the ground impacts problem in position control compared to the better foot landing observed in torque control. Indeed, each time the left foot comes into contact with the ground (1.5 s, 3.5 s, ...), the IK and TSID position schemes show peaks in the foot force (∼ 400 N) which are avoided in TSID torque. This explains also the peaks in the ZMP errors (around 15 cm) because during an impact the foot bounces on the ground. The force oscillations of the IK and TSID position controllers when the foot is in the air are due to the high control gains on the ankle (Proportional–Integral–Derivative (PID) gains of the low-level position control in Gazebo), it is mainly noises.

Sample et al. Benchmarking Whole Body controllers on the TALOS Humanoid Robot

Figure 4. ZMP estimation of the 20 cm step walk.
Figure 5. Z-axis left foot force of the 20 cm step walk.

<table>
<thead>
<tr>
<th>Axis</th>
<th>Average</th>
<th>Standard deviation</th>
<th>Peaks</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoM</td>
<td>x-axis</td>
<td>0.018m</td>
<td>0.013m</td>
</tr>
<tr>
<td></td>
<td>y-axis</td>
<td>0.004m</td>
<td>0.003m</td>
</tr>
<tr>
<td>Left Foot</td>
<td>x-axis</td>
<td>0.014m</td>
<td>0.013m</td>
</tr>
<tr>
<td></td>
<td>y-axis</td>
<td>0.001m</td>
<td>0.001m</td>
</tr>
<tr>
<td>Right Foot</td>
<td>x-axis</td>
<td>0.016m</td>
<td>0.016</td>
</tr>
<tr>
<td></td>
<td>y-axis</td>
<td>0.001m</td>
<td>0.001m</td>
</tr>
</tbody>
</table>

Table 3. CoM and Feet error of the 60 cm step walk.

6.2 Straight walk of 60 cm steps in torque control

In [Mesesan et al. (2019)](#), the humanoid robot TORO successfully performed a walk on flat terrain with a step length of 55cm (single/double support time of 1.1/0.4s). In the following simulation, the torque controller is pushed to its limits to show its capability to achieve a similar result. The robot TALOS executes 6 steps forward of 0.6m/s and a final one to go back to the initial position. The time distribution used is of 0.9s for single support phase and 0.115s for double support phase (leading to steps of approx. 60cm).

Figure 6 presents the results obtained on the tracking of the feet and the CoM (see Table 3); the ZMP and DCM estimations. The feet tracks well the desired trajectories along the y-axis (maximum error of 6mm) however, along the x-axis, they show some delay (maximum error of 6cm). Thus, it induces greater tracking errors on the x-axis for the CoM (peaks of 5cm along the x-axis and 1.5cm along the y-axis).

One can notice that the DCM and ZMP along the x-axis are more stable, whereas along the y-axis they present large oscillations (which are caused by the feet impacts on the ground when landing).
Figure 6. Feet, CoM, DCM and ZMP of the 60 cm step walk.

In Fig. 7, the AM behavior is shown along the three axes. The AM task minimizes the momentum to zero. The x and y momentum components are the most solicited, leading to the inclination of the torso forward and backward and to important moves of the arms to compensate the delay of the CoM and succeed the 60 cm steps. The authors observed that without this AM task, the walk cannot be achieved.

6.3 Walk on the tilted platforms: Uneven terrain

In this third simulation, the robot walks on tilted platforms which represent uneven terrain (Fig. 1). This walk is achieved using the multi-contact-locomotion-planning trajectories (see Section 5.2). The framework ensures the stability of the controllers on non-flat terrain when the feet are tilted.

Figure 8 illustrates the tracking performance of the controllers. The ones in position present the largest oscillations as TSID torque is the most stable (see Table 4). Both the IK and the torque control show oscillations at $t \approx 18s$; it corresponds to the worst case where the robot has its two feet tilted to keep its balance on two opposite platforms leading to small slippages of the feet (this behavior can be observed in the linked video). These oscillations are larger in the case of the IK scheme. Similar oscillations on the contact forces in this part of the motion have also been observed, which are smaller in the case of the torque control. Increasing the gains on the feet only generates more instability, but raising the ones on the DCM and admittance control lessen the oscillations (at the cost of a more rigid behavior).

Finally the same result on the feet forces is obtained in this simulation with respect to the 20 cm steps one. Due to the high gains on the DCM, to avoid the slippage of the robot, the IK control presents bigger peaks of force.
Table 4. ZMP error of the tilted platforms simulation.

<table>
<thead>
<tr>
<th>Control Scheme</th>
<th>Axis</th>
<th>Average</th>
<th>Standard deviation</th>
<th>Peaks</th>
</tr>
</thead>
<tbody>
<tr>
<td>IK</td>
<td>x-axis</td>
<td>0.021m</td>
<td>0.024m</td>
<td>0.278m</td>
</tr>
<tr>
<td></td>
<td>y-axis</td>
<td>0.016m</td>
<td>0.018m</td>
<td>0.118m</td>
</tr>
<tr>
<td>TSID</td>
<td>x-axis</td>
<td>0.012m</td>
<td>0.017m</td>
<td>0.197m</td>
</tr>
<tr>
<td>position</td>
<td>y-axis</td>
<td>0.015</td>
<td>0.019m</td>
<td>0.127m</td>
</tr>
<tr>
<td>TSID</td>
<td>x-axis</td>
<td>0.013m</td>
<td>0.021</td>
<td>0.107m</td>
</tr>
<tr>
<td>torque</td>
<td>y-axis</td>
<td>0.005m</td>
<td>0.006m</td>
<td>0.058m</td>
</tr>
</tbody>
</table>

6.4 Climbing Stairs

In the last simulation the robot is climbing 6 stairs of 10cm height and 30cm long (see Fig. 1). The trajectories are planned with the multi-contact-locomotion-planning. Fig. 9 shows the ZMP evolution of each controllers, where the result is similar to the uneven terrain simulation. The TSID torque scheme behave significantly better than the others, with a ZMP matching the one planned (errors lesser than 1cm, see Table 5). Noticeably, the IK scheme presents higher oscillations at the end of the move in the lateral plane. The robot ends displaced on the right compared to the desired trajectories, due to slippages of the feet when it finishes to climb a stair (shown in the linked video).

6.5 Energy cost and Passivity Gait Measure

The results obtained for the cost of transport of the four simulations are presented in the Table 6 depending on the control scheme. The results obtained for iCub in Romualdi et al. (2019) are also presented for comparison (computed using Eq. 10), as the human ones. The lower the energy consumption is, the better, and similarly, getting closer to the human cost of transport is an improvement.
Table 5. ZMP error of the \textit{stairs} simulation.

<table>
<thead>
<tr>
<th>Control Scheme</th>
<th>Axis</th>
<th>Average</th>
<th>Standard deviation</th>
<th>Peaks</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{IK}</td>
<td>x-axis</td>
<td>0.022m</td>
<td>0.026m</td>
<td>0.257m</td>
</tr>
<tr>
<td></td>
<td>y-axis</td>
<td>0.015m</td>
<td>0.017m</td>
<td>0.151m</td>
</tr>
<tr>
<td>\textit{TSID}</td>
<td>x-axis</td>
<td>0.009m</td>
<td>0.013m</td>
<td>0.151m</td>
</tr>
<tr>
<td>\textit{position}</td>
<td>y-axis</td>
<td>0.012m</td>
<td>0.015m</td>
<td>0.119m</td>
</tr>
<tr>
<td>\textit{TSID}</td>
<td>x-axis</td>
<td>0.008m</td>
<td>0.006m</td>
<td>0.049m</td>
</tr>
<tr>
<td>\textit{torque}</td>
<td>y-axis</td>
<td>0.006m</td>
<td>0.005m</td>
<td>0.047m</td>
</tr>
</tbody>
</table>

Compared to the results obtained on iCub, the control in torque has a similar cost for the 20cm steps simulation. However, the cost of the position controllers presented in this paper is higher, because of their higher gains. The human efficiency is closer to the torque control, walking with a C_{et} around $0.2\ J/kg/m$. Noticeably, the energy costs in torque for the \textit{tilted platforms} and \textit{stairs} trajectories are still less important than the simpler walk in position; the C_{mt} never exceeds 1, even for the 60 cm walk. Overall, the controller \textit{TSID position} consumes less energy than the \textit{IK}.

The Passivity Gait Measure comparison of the different simulations is reported in Table \ref{tab:passivity} for three gait stages: Single Support (Single S. corresponding to the stance ankle), Double Support (Double S.) and Flying Foot (Flying F. where the foot has no contact with the ground). The human results is given as an indicator \cite{Collins2005}. The robot behavior is expected to be similar during double support and flying foot phase where the ankle should be passive.

The results of the position control schemes show a behavior which is the opposite of the human one. The passivity of the ankle is higher during the stance phase because of the control of the ZMP which minimizes
Figure 9. ZMP estimation of stairs climbing.

<table>
<thead>
<tr>
<th>Control Scheme</th>
<th>Simulation</th>
<th>E_m [J]</th>
<th>E_{m+} [J]</th>
<th>C_{et} [J/kg/m]</th>
<th>C_{mt} [J/kg/m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>iCub position</td>
<td>20cm</td>
<td>-</td>
<td>-</td>
<td>0.49</td>
<td>0.26</td>
</tr>
<tr>
<td>iCub torque</td>
<td>20cm</td>
<td>-</td>
<td>-</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20cm</td>
<td>1983.9</td>
<td>1359.3</td>
<td>1.68</td>
<td>1.15</td>
</tr>
<tr>
<td>IK position</td>
<td>platforms</td>
<td>5418.7</td>
<td>3769.2</td>
<td>3.7</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>stairs</td>
<td>7249.5</td>
<td>2145.3</td>
<td>4.1</td>
<td>1.2</td>
</tr>
<tr>
<td>TSID position</td>
<td>20cm</td>
<td>2324.5</td>
<td>764.1</td>
<td>1.97</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td>platforms</td>
<td>5377.5</td>
<td>1413.6</td>
<td>3.6</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>stairs</td>
<td>6812.6</td>
<td>2059.6</td>
<td>3.8</td>
<td>1.2</td>
</tr>
<tr>
<td>TSID torque</td>
<td>20cm</td>
<td>521.8</td>
<td>259.3</td>
<td>0.44</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>60cm</td>
<td>3147.2</td>
<td>1583.8</td>
<td>0.89</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td>platforms</td>
<td>1378.6</td>
<td>668.5</td>
<td>0.93</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td>stairs</td>
<td>1861.1</td>
<td>1205.5</td>
<td>1.1</td>
<td>0.68</td>
</tr>
</tbody>
</table>

Table 6. Results of the specific cost of transport.

The ankle torque. And it is weaker during the double support and flying phases, due to the high PID gains of the low-level position control.

The control scheme in torque shows much more passive behavior (except on the stance foot), with a completely passive foot during the flying phase. During the double support phase, the ankle is almost passive ($PGM \sim 0.9$) which is close to the human result. These results are better than the one expected in Mummolo and Kim (2012), where the torque controlled robot has a higher control on its stance ankle ($PGM = 0.2$).
Table 7. Results of the PGM on three gait stages.

<table>
<thead>
<tr>
<th>Control Scheme</th>
<th>Simulation</th>
<th>20cm (60cm)</th>
<th>Platforms</th>
<th>Stairs</th>
</tr>
</thead>
<tbody>
<tr>
<td>IK</td>
<td>Average</td>
<td>0.5ms</td>
<td>0.7ms</td>
<td>0.6ms</td>
</tr>
<tr>
<td></td>
<td>Peaks</td>
<td>2ms</td>
<td>4ms</td>
<td>4ms</td>
</tr>
<tr>
<td>TSID</td>
<td>Average</td>
<td>1.2ms</td>
<td>1.2ms</td>
<td>1.2ms</td>
</tr>
<tr>
<td>position</td>
<td>Peaks</td>
<td>4.5ms</td>
<td>4.3ms</td>
<td>4.2ms</td>
</tr>
<tr>
<td>TSID</td>
<td>Average</td>
<td>1ms (1.4ms)</td>
<td>1.2ms</td>
<td>1.1ms</td>
</tr>
<tr>
<td>torque</td>
<td>Peaks</td>
<td>2.8ms (6ms)</td>
<td>5ms</td>
<td>5.5ms</td>
</tr>
</tbody>
</table>

Table 8. Comparison of the execution time.

Finally, on the uneven terrain, the double support phase corresponds to the worst case where the robot has its two feet tilted to keep its balance on two opposite platforms. This leads to a greater actuation than on flat floor (decreasing the passivity). Similarly, the stance phase corresponds to the left support phase on the final platform (highest slope), also leading to a bigger actuation of the ankle.

6.6 Execution time of the control schemes

The computational time obtained during the execution of one control loop of the three schemes are presented in Table 8 according to the simulations.

The computational time of the IK is better due to the computational efficiency of the null space projectors of the tasks. Exploiting this specific structure allows it to keep its control frequency higher than 1kHz in average with 4 hierarchy levels. In TSID this method can only be used once because it is composed of two strict layers: the constraints and the cost.

7 EXPERIMENTS REALIZED ON THE REAL ROBOT USING THE CONTROLLERS

In this section are presented the results we succeed to achieve on the real robot TALOS and the difficulties we encountered. These experiments are intermediate steps towards transferring the whole simulated results on the real robot. We detail the blocking points preventing us to successfully achieve these complete experiments.

7.1 TALOS robot

Our robot TALOS is an humanoid robot of 1.75m tall and about 100kg, composed of 32 joints and an under-actuated part called floating-base (38 Degrees-of-Freedom in total). It provides the possibility...
to control the actuators in position control and torque control modes. It is performed owing to torque
sensors on all the actuators but the head and the wrists. Humanoid robots often have flexible or compliant
components. For instance, the actuators stiffness of the robot WALKMAN [Negrello et al. (2017)] can be
directly tuned, creating an intended flexibility. Another example of humanoid robot with compliant material
is HRP-2 [Nakaoka et al. (2007)]. It includes a bush rubber in the ankle in order to smooth impacts. In the
robot TALOS, a non-intended flexibility on the hip link has been observed and impacts meaningfully the
control of its legs and, therefore, its balance and locomotion. Indeed, this flexibility (not modeled in the
simulator) leads to errors in the landing positions of the feet on the real robot. However, the deflection is
not directly measurable by the encoders and cannot be directly modified.

7.2 Position Control

7.2.1 Static stabilization

Using the whole body admittance control and the stabilizer described as the \(\text{IK} \) scheme in the Section 3,[3] the team achieved good results for balancing during quasi-static moves and standing position. Indeed, the admittance control at the CoM allows a quick reaction when applying external perturbations such as pushing the robot. Fig.[10] presents the reactive balancing of the TALOS humanoid robot when it is pushed from the front and from the side while standing on one foot. A video about this experiment is available at the following link: https://peertube.laas.fr/videos/watch/2dec7dba-cc57-4df4-8f10-a7d387404301

In the video is shown push-recovery experiments while the robot is standing on both feet and with one foot raised. One can notice that the robot is more stable with both feet on the ground, nonetheless, the \(\text{IK} \) scheme allows a good stabilization at the CoM level. The stabilizer correctly achieves the balance of the robot: it controls the DCM such that the CoM does not diverge and applies correct contact wrenches to avoid falling (no slipping, not too much forces on one foot which imbalance the robot). It is important to underline that the admittance control is only implemented on the CoM, thus the robot is stiff on its upper parts while more compliant on its lower parts (in particular the hips and ankles). This is why in the video pushing the robot arm produce motions on the whole robot and in particular its CoM.

The robot can achieve tasks with its upper body while external perturbations occur and keep its balance. It can also stabilize itself when non-dynamic trajectories are asked to the legs, or with no contact with the ground (for instance execute a swing on its foot). The difficulties appear when dynamic tasks are asked and involve the creation of contacts with the ground, typically during walking.

7.2.2 Dynamic stabilization

The dynamic stabilization of the robot is an ongoing work. The actual implementation of the stabilizer should allow the robot to achieve this goal, however this is compromised by the flexibility in the hip of the robot TALOS. By tuning the gains of the admittance controller, the team manages to achieve once a straight walk of 20 cm using a WPG reference trajectories. The video of this success is available at the following link: https://peertube.laas.fr/videos/watch/b56d80ed-7c6c-46a7-8750-fdb7ea6d1636

Later on, we successfully achieved a repeatable on spot walking which is quite stable (See Fig.[11]). The video of this on spot walking is available at the following link: https://peertube.laas.fr/videos/watch/1a920902-c75f-4fb0-a638-33bb9b48d649. One can notice that the left wrist of the robot is tilted, indeed, its absolute and relative encoders did not send the same value. Thus, when controlling its position, the wrist had an abnormal behavior as its returned position was not the good one. We had to deactivate its control for the experiment and then fix the offset of the relative encoder.
In both videos the impacts on the ground are large and lead to instabilities, in particular slippage (which can also be caused by the flexibility in the hip). The robot has to move its upper body to compensate for them, because of that, at the end of the 20cm walk the robot almost fall. These impacts are partly due to the wrong positions of the feet when making contacts with the ground. The flexibility in each hip of the robot cannot be measured by the encoders, then it is creating an error between the positions given by the encoders and the real ones. These displacements at the hips are small, but transferred at the feet positions it can lead to errors of up to 5cm. Thus, the controller is assuming a false position of the feet, and the robot enters in contact with the ground at a wrong position (even at the wrong moment, sooner if the displacement is in the direction of the walk or later in the opposite case). This is creating the large impacts and slippage, which prevents us to achieve a successful walking, this is why compensating this flexibility is necessary. In the next subsection is presented the experiment realized to compensate it with a fixed value.

An additional way to cope with the stabilization problem would be to reschedule the footsteps and their location according the landing time.
7.2.3 Fixed compensation of the flexibility

We first try to compensate the flexibility by using a feed-forward on the commanded position of the hip taking into account the torsional stiffness and the measured torque. However, because of the noises on the torque sensors, we had to filter it which lead the compensation to be applied with delay. We also tried to activate this compensation only on single support phases and not on double support ones to avoid accumulation of internal efforts (on double support the robot will try to correct its hip position while having its feet in contact with the ground and thus not moving, leading to this accumulation of energy). Even with such modifications the results were not enough to successfully perform repeatable walk.

Thus, we then tried to impose a fix compensation of the flexibility without taking into account the measured torque. With a leg of 1m weighting 20kg, we fixed the compensation on the hip to \(\Delta q^{\text{hip}} = \frac{20}{K} \approx 0.021 \text{rad} \). Only a repeatable one step forward walk in position control has been successfully achieved with this method, see the video at the following link: https://peertube.laas.fr/videos/watch/08db3177-372b43cc-85da-2009a267b5c9.

7.3 Torque Control

7.3.1 PAL robotics low-level controller

To achieve torque control on the real robot, it is needed to transform the joint torque commands to motor currents. We decided to use the PAL robotics constructor low-level controller, which computes new commands respecting the robot actuators dynamics. This low-level controller is a proprietary black-box, which use a ros-control hardware interface to communicate with the robot. To interface our control scheme (based on the SoT with the WPG), we had to create a new version of the roscontrol-sot package. Indeed, our control scheme needs no more to communicate directly with the robot but with the PAL robotics controller, which implements different functions and formulations. One of the major difficulty is that the proprietary code source is not available, we only had access to its C++ headers and some basic tutorials. Developing this interface to keep all the functionalities implemented in the roscontrol-sot package (for instance to keep the recording of the logs and creating all the necessary signals needed by the SoT in the dynamic-graph structure), take us months of work (including the following remark).
Moreover, as the robot has a modified operating system called ferrum (equivalent to ubuntu), we created a Docker Merkel (2014) container to have exactly the same environment as the one on the robot to test our codes. Installing the SoT packages on this environment was not trivial as some packages had conflicting dependencies with the PAL robotics packages. Finally, we succeeded to test in this Docker container our interface and our torque controller using the PAL simulator available on ferrum. An additional difficulty is that the simulator renders the behavior at a rate five times slower than the reality. Then, a small and slow oscillation in the simulator is in fact a high frequency one in reality and can lead to dangerous behaviors.

One has to note that, in Dantec et al. (2021), the MPC is not embedded on the robot and is interfaced with the PAL robotics low-level controller via a ROS topics. This simpler choice was made because it is a stand-alone package (no SoT or dynamic-graph framework) and does not send commands at high frequency (200Hz). ROS topics may induce latency and not allow to send high frequency commands leading to real-time issues.

7.3.2 Experiment Results on a Posture Task

Once we achieve satisfying results on the PAL robotics simulator, we tested the classical formulation of our torque controller using inverse dynamics on the real robot on a simple postural task. The tasks weights and gains used are presented in the Tables 9 and 10 as the “Fail” experiment.

After few repetitions of a sinusoidal motion on the robot arm, the system diverged brutally and blocked two of its harmonic drive: the waist and the right shoulder (we pushed the emergency button but the robot had the time to reach the harmonic drive blocks). The Fig 12 presents the result failure. After investigation it seems that the gains tuned in simulation (which simulates the actuation chains) were too high for the real robot. Thus, tuning the gains even on a proper simulator with the model of the actuators is not enough to ensure the safety of the solution. We know that some tuning is always necessary on the real robot, but we wrongly assumed that the solution would remain quite stable. Thus, to provide a safe and reliable interaction with the environment and possibly humans, we have looked for a way to ensure the system stability. The video of the failed experiment is available at this link: https://peertube.laas.fr/videos/watch/31fa2562-ba13-4043-a996-c2b8d5b21f4a. Unfortunately, it was not possible to repair the robot at the laboratory because the right shoulder and the torso were preventing the back cover of the robot to be removed (which needed to be removed to access the shoulder harmonic drive). Thus the robot had to be send back to PAL robotics for repair.

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Priority</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feet contacts</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Posture regularization in half-sitting</td>
<td>1</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 9. Set of tasks for the torque control scheme on the posture task.

<table>
<thead>
<tr>
<th>Experiments</th>
<th>Gains $K_{Pposture}$</th>
<th>Legs</th>
<th>Torso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fail</td>
<td>[800, 800, 800, 800, 800, 800]</td>
<td>[1000, 1000]</td>
<td></td>
</tr>
<tr>
<td>Success</td>
<td>[50, 50, 50, 50, 50]</td>
<td>[100, 100]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arms</td>
<td>Head</td>
</tr>
<tr>
<td>Fail</td>
<td>[800, 800, 800, 800, 800, 800, 800, 800]</td>
<td>[100, 100]</td>
<td></td>
</tr>
<tr>
<td>Success</td>
<td>[50, 50, 50, 50, 50, 50, 50, 50]</td>
<td>[10, 10]</td>
<td></td>
</tr>
</tbody>
</table>

Table 10. Tasks gains of the torque control scheme for the posture task.
By lowering the gains value on the posture task, as presented in the Table[10], we succeed to have a stable and compliant behavior of the robot. A video demonstrating this compliant behavior is available at the following link: https://peertube.laas.fr/videos/watch/e9d8948d-08d5-4de9-8f42-2986fbbf0242 and depicted by the Fig[13]. At the end of the video, the robot falls because the contacts on the feet have been disturbed (the feet moved) breaking the constraint of the QP.

This small success encouraged us to add the CoM task for further tests. Unfortunately, this task does not work on the real robot. Instead of correcting the CoM error the QP seems to make it diverge. It is a behavior that is not appearing in the simulator, where the experiment is working. After investigations, this problem may be due to imprecise calibration or identification of the robot. The difficulty of performing this procedure once the robot is assembled, is to excite the parameters to be identified. For instance part the torso is particularly difficult to manipulate to observe the variables to be identified. It was the starting point of another research work outside the scope of this paper.

CONCLUSION

The contribution of this paper is the benchmarking of three whole-body control implementations on the commercially available humanoid robot TALOS. Two of them are position based (with DCM and CoM
admittance control): a Lexicographic QP using inverse kinematics and a WQP using TSID with an AM task. The last one is a WQP using TSID in torque with an AM task. They are evaluated in Gazebo on flat, uneven terrains and stairs climbing; on the criterion of trajectory tracking, energy consumption, passivity and computational cost.

In general, both position control schemes present the same results, with less energy consumption and higher passivity for the TSID position controller. A better tuning of the tasks gains may improve its results on the ZMP tracking.

On the other hand, the TSID torque controller shows better results in terms of smoothness of the trajectory tracking, energy consumption, passivity of the walk - without impacts and can achieve a 60cm walk with steps of 1s in simulation. This confirms the high capabilities of a torque control scheme coupled with an angular momentum regularization (see for instance Atlas in DARPA robotics challenge Koolen et al. (2016)). In average, the TSID controllers reach the 1kHz of control loop, necessary for real-time control, nonetheless, the IK scheme has the best computational time.

For our future works, we plan to control the hip flexibility of TALOS, so that we can evaluate the three controllers on the real robot. Moreover, it would be interesting to compare the controllers on different robotics platforms.
CONFLICT OF INTEREST STATEMENT

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

AUTHOR CONTRIBUTIONS

Noëlie Ramuzat is the first author of this work and did most of the new software development as well as the experimental results. Olivier Stasse and Sébastien Boria did the scientific and technical management for this project.

FUNDING

This work is funded by the ROB4FAM research agreement.

ACKNOWLEDGMENTS

TALOS is a robot created from the ACTANTHROPE ERC-Grant.

REFERENCES

Mesesan, G., Englsberger, J., Garofalo, G., Ott, C., and Albu-Schäffer, A. (2019). Dynamic walking on compliant and uneven terrain using dcm and passivity-based whole-body control. In Int. Conf. on Humanoid Robotics (ICHR)

FIGURE CAPTIONS