
HAL Id: hal-03626696
https://laas.hal.science/hal-03626696

Submitted on 31 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Towards an Intuitive and Iterative 6D Virtual Guide
Programming Framework for Assisted Human-Robot

Comanipulation
Susana Restrepo, Gennaro Raiola, Joris Guerry, Evelyn d’Elia, Xavier Lamy,

Daniel Sidobre

To cite this version:
Susana Restrepo, Gennaro Raiola, Joris Guerry, Evelyn d’Elia, Xavier Lamy, et al.. Towards an Intu-
itive and Iterative 6D Virtual Guide Programming Framework for Assisted Human-Robot Comanipula-
tion. Robotica, 2020, Human–robot interaction, 38 (10), pp.1778-1806. �10.1017/S0263574720000016�.
�hal-03626696�

https://laas.hal.science/hal-03626696
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

doi: xxx

Towards an Intuitive and Iterative 6D Virtual
Guide Programming Framework for Assisted
Human-Robot Comanipulation
Susana Sánchez Restrepo1,2, Gennaro Raiola1,3 ∗, Joris
Guerry4, Evelyn D’Elia3, Xavier Lamy1 and Daniel
Sidobre2

1 Interactive Robotics Laboratory (LRI), CEA-List, Gif-sur-Yvette, France
2 LAAS-CNRS, University of Toulouse, CNRS, UPS, Toulouse, France
3 Department of Advanced Robotics, Istituto Italiano di Tecnologia, Genoa, Italy
4 EDF R&D, Chatou, France

SUMMARY
In human-robot co-manipulation, virtual guides are an important tool used to assist the
human worker as they constrain the movement of the robot to improve the task accuracy
and to avoid undesirable effects, such as collisions with the environment. Consequently, the
physical effort and cognitive overload is reduced during accomplishment of co-manipulative
tasks. However, construction of virtual guides often requires expert knowledge and modeling
of the task, which restricts the usefulness of virtual guides to scenarios with fixed constraints.
Moreover, few approaches have addressed the implementation of virtual guides enforcing
orientation constraints, and when done, these approaches have treated translation and
orientation separately, and consequently there is no synchronization of the translational and
rotational motions. To overcome these challenges and enhance the programming flexibility of
virtual guides, we present a new framework that allows the user to create 6D virtual guides
through XSplines which we define as a combination of Akima splines for the translation
component, and spherical cubic interpolation of quaternions for the orientation component.
For complex tasks, the user is able to initially define a 3D virtual guide and then use this
assistance in translational motion to concentrate only on defining the orientations along the
path. It is also possible for the user to modify a particular point or portion of a guide while
being assisted by it. We demonstrate in an industrial scenario that these innovations provide
an intuitive solution to extend the use of virtual guides to 6-DOF and increase the human
worker’s comfort during the programming phase of these guides in an assisted human-robot
co-manipulation context.

1. Introduction
Using virtual guides reduces the user’s physical effort and cognitive overload during the
execution of a task with a collaborative robot.1, 2 This kind of assistance can be used in
industry on manipulation tasks such as insertion, assembly, cutting, drilling and polishing.
As a reminder, this assistance superposes a synthetic force onto forces perceived by the
user through a haptic control interface on the robot. The applied force constrains the user’s
movements and consequently those of the controlled robot through a particular trajectory,
a surface or limited volume, ensuring motion guidance during the task completion.

An example of virtual guide from everyday life is the ruler, which allows the user to draw
very straight lines by constraining the movement of the pen tip along a 1-D trajectory on
the 2-D paper.

∗ E-mail: gennaro.raiola@gmail.com

2 Virtual Guide Programming Framework for Human-Robot Comanipulation

Fig. 1: (Left) Experimental setup for user study. (Right) ISybot 6-DOF Collaborative robot.

While using the kinesthetic programming technique3 to create complex virtual guides in
space and constrain both the Cartesian position and orientation of the tool, high levels of
user concentration and effort may be required, which could lead to trajectory encoding errors.

Thus, we propose to simplify the programming process by uncoupling Cartesian
positions and orientations during the demonstrations.

However, few approaches have addressed the implementation of virtual guides enforcing
orientation constraints, and when done, they have treated translation and orientation
separately so there is no synchronization of the translational and rotational motions. The
main contribution of this paper is the novel modeling and construction of 6D virtual guides
by introducing the concept of XSplines which are created through a combination of Akima
Splines for the position and spherical cubic interpolation of quaternions for the orientation.

Another known challenge with virtual guide assistance is programming the virtual guides
on the robot. At least one of the following requirements must be met:r expert knowledge of the task,r high technical expertise,r modeling of the task,r good programming skills.

Some of these requirements restrict the usefulness of virtual guides to scenarios with
unchanging constraints. However, many industrial applications require multiple operations
to perform a task which requires easy generation and modification of guides in order to adapt
to different situations, such as:r necessary changes on the work part (polish, sand, cut),r low production volumes due high variability of the product,r transporting an object to one of multiple possible positions orr performing sub-tasks in a different order depending on the availability of tools.

For these reasons, we propose a kinesthetic teaching framework to program virtual
guides in an intuitive and flexible way so they can be used by non-robotics experts
and be easily reprogrammed when needed.

Despite its strengths, there are also some limitations when using kinesthetic teaching.
The remaining inertia and articular friction of collaborative robots (cobots) – even after
application of gravity compensation and inertia masking techniques – can disrupt the fluent
execution of movements and hinder their manipulation. For example, it is difficult to impose
a rectilinear trajectory because the robot tends to follow curved trajectories due to joint space
friction. Also, it is sometimes difficult to perform slow and small displacements precisely. In
order to keep the desired trajectory, the user must exert additional effort and concentration.

Virtual Guide Programming Framework for Human-Robot Comanipulation 3

Moreover, most Programming by Demonstration (PbD) approaches using kinesthetic
teaching need several demonstrations to encode a trajectory. This could be exhausting for
the user and detract from the efficiency of using virtual guides.

Thus, we suggest that the operator must be assisted during the programming
phase. To this aim, we propose to use virtual guide programming in an iterative
way, which allows for easier refinement and modification.

Thanks to this novel iterative programming approach using XSplines, we are able to
prove in a simulated scenario with a collaborative robot that the cognitive load of users is
reduced and the user comfort is increased during the teaching process.

To summarize, the novel contributions of our work are:r construction of orientation constraint using quaternions for spline interpolation;r 6D virtual guide definition with separation of translation and orientation;r iterative programming of virtual guides while assisting the user;r experimental evaluation.
The rest of this work is structured as follows. In the next section, related work is discussed.

In Section 3, the implementation of virtual guides is presented. Multiple ways to define the
virtual guide constraints based on position, orientation, and pose are presented in Sections 4,
5 and 6. In Section 7 we present the iterative programming framework for 6D virtual guides.
This new iterative approach is validated with a 6-DOF ISybot robot, and the results are
presented in Section 8. Finally, this work is discussed and concluded in Section 9.

2. Related Work

2.1. Definition of virtual guides
Virtual guides are used to passively enforce virtual constraints on the movements of cobots,
in order to assist the user during a collaborative task. Virtual guides were first introduced
by Rosenberg4 as Virtual Fixtures. The fundamental concept is that virtual fixtures can
reduce mental workload, task time and errors during teleoperated manipulation tasks. After
Rosenberg’s initial work, the use of virtual fixtures has been extended to robotic surgery
under the name of active constraints5 and to industrial applications in the context of
Intelligent Assist Devices.6 Nowadays, virtual fixtures have been featured in several different
works, but unfortunately ”there is currently no definitive concept which unifies the field”7

because of the different definitions, applications and implementation methods. Generally,
virtual fixtures have been used in teleoperation,89 or co-manipulation contexts.1 The type
of assistance offered by the virtual fixtures can vary among different definitions,10 but in
general, they are either used to guide the user along a task-specific pathway11 or to limit
the user to move the robot within a safe region.12 In the first case, we refer to the virtual
fixtures as virtual guiding fixtures or simply as virtual guides.

The particular implementation of virtual guides we use is based on the work presented
by Joly,13 where a passive virtual mechanism is connected to the robot end-effector by a
spring-damper system in a teleoperation context. Virtual mechanisms have also been used
in,14 where they are called proxies. In addition, virtual guides have been implemented by
using anisotropic admittances to attenuate the non-preferred user force components.2 These
methods require sensing external inputs, such as the force or the velocity applied by the user
on the robot end-effector. This is not required in our control scheme.

2.2. Construction of virtual guides
There are many possible solutions to construct virtual guides. Usually, their creation method
is strictly related to the goals of the final application. In general, virtual guides have
often been limited to pre-defined geometric shapes11 or combinations of shapes15,16 well-
defined geometric models,13 high level task models,9 or shapes defined through vision based
algorithms.17 In a co-manipulation context, it is more natural to program virtual guides in the
real workspace rather than in a simulated one. Therefore, Programming by Demonstration

4 Virtual Guide Programming Framework for Human-Robot Comanipulation

(PbD)15, 18 appears as a promising strategy to program robots in a fast and simple way when
the task is known by the user. During PbD, the operator can directly manipulate the robot
end-effector to teach a desired movement.

In our previous work,3 we proposed a framework for multiple probabilistic virtual guides
where kinesthetic teaching and Gaussian Mixture Models (GMM) were used to implement
virtual guiding fixtures. This probabilistic framework involves modeling a demonstrated set of
guides with GMM and retrieving a generalized representation of the data set using Gaussian
Mixture Regression (GMR). Unfortunately, with the mentioned methods, a compromise must
be made between the number of demonstrations that demand time and effort and the level
of information in the training data.

In the same vein, the authors of19 treated the problem of incremental kinesthetic learning
of motion primitives based on Hidden Markov Models (HMM). The main goal is to transfer
human skills to a humanoid robot that will individually evolve later. This transfer is done
using a combination of observational learning and kinesthetic teaching to obtain natural
whole body motions. However, the motion refinement tube used in this work is different
from the trajectory virtual guide teaching we target in our programming approach. Both
approaches are similar on the concept of assistance during the teaching phase and the idea
of iterative refinement. However, our approach seeks the simplest way to program a virtual
guide while giving the whole responsibility of the gesture to the human worker.

2.3. Orientation constraints
2.3.1. Programming by demonstration literature. In PbD approaches, multivariate Gaussians
are widely used to encode robot behaviors. Such approaches do not provide the ability to
properly describe end-effector orientation, as the distance metric in the orientation space
is not Euclidean. In,20 the authors present an extension of common probabilistic imitation
learning techniques to Riemannian manifolds. This work shows the importance of being
able to represent end-effector orientations from user demonstrations, coupled with Cartesian
positions. However, it does not address the creation of virtual guides. Thus, the work of20

is useful to extend probabilistic virtual guides3 to a more general framework using also
orientation representation.

Other PbD approaches have focused on teaching also the required stiffness of the task. The
authors of21 present interfaces that allow a human operator to indicate compliance variations
during task execution by physical interaction. The difference between this approach and
ours is that the authors used an interface on a collaborative robot which represents a
supplementary cost for the system. In our work, we present a simple framework that can
be used without additional devices or sensors on a low-cost collaborative robot. Also, their
work targets tasks where stiffness variation during the task is of major importance which
makes it difficult to compare with our virtual guide programming framework. Moreover, their
approach does not consider rotations.

2.3.2. Virtual guide literature. Due to the task-dependent nature of virtual guides, most
experiments have tried to address the most general scenarios for their applications. Many
of these applications mainly consisted of general tasks such as path following, targeting and
object avoidance exercises in two dimensional environments22, 23 and in more complex 3D
environments.16, 24 Fewer applications have addressed the implementation of virtual guides
enforcing orientation constraints.25, 26 Traditional virtual guide implementations deal with
rotation and translation separately in R3 space; the interconnection between them is not
usually represented in the virtual guide design. The method presented in25 uses preferred
direction virtual guides, with an admittance control architecture, to constrain the user to
follow a curve, surface or orientation. In the experimental section of this work, rotational and
translational constraints are implemented separately. Autonomous error compensation was
used in27 to overcome human-related difficulties in simultaneously controlling the position
and orientation of a 6-DOF robot under the vision-based preferred direction virtual guides
presented in.25 The system uses computer vision to generate a reference trajectory, and
the virtual guide control algorithm then provides haptic feedback for implementing direct
shared manipulation. The authors found that in a system with both position or orientation

Virtual Guide Programming Framework for Human-Robot Comanipulation 5

reference direction fixtures, only position or orientation would be effectively constrained at a
time. They stated that this is due to the translational and rotational components of motion
being decoupled from each other in such a way that the user, focusing on moving one, will
not notice an error in the other. These works have addressed a different type of virtual guides
enforcing orientation constraints than those used in this work. They also address translation
and orientation separately. In the case of Dynamic Virtual Guides (DVG), the work of28, 29

extended dynamic frictional constraints to enforce the position or the orientation of a tool.
In contrast to our definition of virtual guides, DVGs are applied to environments which
deform or move over time (e.g., soft tissue in the context of robot assisted surgery), and
the constraints are not based on virtual mechanisms but on elasto-plastic friction models.
However, the definition of the position constraints in R3 and orientation constraints in SO(3)
are done independently, so there is no synchronization of the translational and rotational
movements, which is one of the central contributions of our work.

In,30 the structure of geometric and dynamic constraints of reference tasks is analyzed
using screw theory. Virtual guides using screw theory unify rotational and translational
constraints into one set. The spatial compliance/stiffness matrix synthesis for admittance and
impedance controlled devices was also studied. In more recent work,31 the authors studied the
application of virtual guides in the deforming environment, and proposed a novel framework
of DVG for admittance-type devices. This framework in the Euclidean Group SE(3) was
proposed to enhance the surgical operation accuracy of admittance-type medical robotics
in the deforming environment. This approach unites rotation and translation in a compact
form.

These aforementioned approaches show the importance of coupling translation and
orientation for virtual guide construction. However, they are based on dynamic virtual
guides which are different from our non-dynamic definition based on virtual mechanisms.
Nevertheless, our work is similar to,31 in the choice of orientation representation and distance
definition in SE(3).

2.4. Modification of virtual guides
The virtual guides obtained with the mentioned PbD approaches cannot be modified online.
If the task changes, the operator must make a new set of demonstrations with the robot to
obtain a new task representation. To overcome this lack of flexibility, in the two approaches
presented by Rozo et al.32 and Aarno et al.,15 the robot is able to automatically adapt.
In the first approach, this is done for tasks where initial and end points are more relevant
than the trajectory itself. In the second, the fixtures are made flexible and adaptive by
decomposing the trajectory into straight lines. The probability that the user is following
a certain trajectory is estimated and used to automatically adjust the compliance of the
virtual guide. Similarly to that approach, we previously explored in3 an iterative method
combining an incremental training and clustering of GMMs, but, given the probabilistic
nature of GMMs, multiple complete demonstrations are still needed to correctly modify the
guides.

From another point of view, the authors of33 introduced the concept of collaborative
learning to design ergonomic virtual guides for a tricycle cobot and adapt motion to changes
in the environment. PbD is used to teach the cobot a path to follow. A dedicated GUI path
editor is provided for offline definition and modification of guide paths. In the same manner,
it was suggested in34 that interaction in a PbD context could be improved by including a
GUI in the programming loop to show the learned information. A relevant difference between
the approaches of Boy et al.33 and Mollard et al.34 is that the second approach intends to
optimize the learning of a task aimed to be automatically reproduced by the robot, while the
first approach uses the operator not only as a part of the teaching phase but as a part of the
task execution. Thus, motion guidance is not implemented in.34 In our approach instead, we
suggest assisting the user throughout the teaching process. At first, virtual guide assistance
is created using PbD with only one demonstration or preprogrammed trajectory. Afterwards,
the user is able to modify the generated guide while the assistance is active by changing a
single point or section of it.

6 Virtual Guide Programming Framework for Human-Robot Comanipulation

Another iterative method is proposed in.35 In this work the authors propose to generate
motion primitives through a variable stiffness impedance controller. The idea is to increase
the stiffness after each demonstration, until the motion primitive is fully learned. In this way,
the first primitive is used as a guide for the following demonstrations. Although the idea of
assisting the human with an active guide during the demonstrations is similar to ours, the two
frameworks differ on their final goal: in our work, we create virtual guides to assist the human
operator during the task execution, instead, in,35 the guide is used ultimately to teach the
robot to autonomously perform the task. The authors of36 also proposed a human-in-the-loop
approach. However, there is no physical human-robot interaction since a haptic device is used
to teleoperate the robot. The advantage of teleoperation is that it allows a human operator
to program the robot by demonstration without being in the same physical location. This
is particularly needed for robots working in hazardous environments. However, in the case
of collaborative robots, using teleoperation adds more complexity and cost to the system.
In addition, since the virtual guides are not programmed into the real robot workspace,
it is possible to introduce position errors by the fact that the model may be misaligned
with reality. Moreover, the required information about the environment is interpreted at the
slave robot level, then transmitted to the master device, and finally presented to the user
by haptic feedback. This makes the process unintuitive. As in,35 this approach assists the
user during the teaching process by modulating the robot compliance based on the given
task requirements. However, the final goal is to teach a task that will be automatically
reproduced by the robot, so using motion primitives makes more sense in this case. In our
context, we want the user to be the master of the teaching process since our framework relies
on a human’s expert knowledge of the task. XSplines are therefore a more intuitive way for
the teacher to encode exactly the desired trajectory. Moreover, our method can generate a
guide with only one demonstration. If the task is complex, the user can teach the translation
movements first, and then while being assisted by the robot, teach the orientations. The
user can also refine the guide later without needing to perform full demonstrations of the
trajectory.

Under this perspective, the work in,37 is similar to our ideas since the virtual guides are
generated through a penalized regression spline fitting algorithm which can be successively
adapted online by recording new points. The main difference between this approach and
ours is that our framework allows separation between rotations and translations which is
useful to teach complex virtual guides in space. In this paper we show that decoupling the
teaching phase into two programming steps (translation and then orientation) results in
a more comfortable way for the worker to program the guide without loosing efficiency.
The user is also able to modify only one point or portion in translation or orientation
without modifying (and even while constraining) the other and generate a new virtual guide
ensuring synchronization of both motion components. Finally, in,38 a method was proposed
to make the kinesthetic teaching easier by assisting the user during teaching using virtual
tool dynamics.39 However, the amount of assistance is gradually increased based on the
accumulated demonstrations. Therefore, several demonstrations are still needed to refine the
task before getting the correct assistance. Moreover, after each iteration, it is the robot who
chooses an assistance and not the operator who decides where to refine the trajectory, which
might be counter-intuitive to the user. One of the advantages of our method is that the
operator is the master of the teaching and decides when and where a trajectory modification
has to be done.

3. Virtual Mechanisms as Virtual Guides
To implement the virtual guides, we use the concept of virtual mechanisms presented by
Joly.13 In this section we summarize the definition of virtual mechanisms and formalize our
implementation of virtual guides via these mechanisms. Our previous work presented this
implementation for 3D virtual guides,40 and we now present it for 6D virtual guides.

Virtual Guide Programming Framework for Human-Robot Comanipulation 7

Fig. 2: Virtual mechanism representation. The red curve represents the possible
configurations of the virtual mechanism in the Cartesian space Xvm, and because of the
spring-damper system linking, it represents the allowed configurations of the robot end-
effector X. The current position of the virtual mechanism is described by its parameterized
space by the parameter svm ∈ R.

Our implementation relays on the idea that the cobot end-effector is virtually connected
to a virtual mechanism through a spring-damper system. We use this concept to constrain
the movements of the cobot to a 6D path defined by position and orientation constraints
obtained by kinesthetic teaching. The cobot end-effector and the virtual mechanism are
coupled by a spring-damper system which corresponds to a proportional-derivative controller
whose coupling gains are the stiffness K and the damping B, as shown in Figure 2. If the
cobot end-effector moves, the virtual mechanism is pulled along the path in the direction of
the movement; also, the virtual mechanism pulls the cobot end-effector towards the path,
since the linking acts in both directions. The general effect is that the cobot end-effector can
be moved easily along the constraining path, but not away from it.

Notation: The Cartesian pose and velocity of the virtual mechanism and the cobot end-
effector are described by {Xvm ∈ SE(3), Ẋvm ∈ R(6)} and {X ∈ SE(3), Ẋ ∈ R(6)}
respectively. The Cartesian poses are defined by the translational and rotational components
of both virtual mechanism and cobot end-effector displacement as:

Xvm ,
{
Xvm,trans ∈ R3

Xvm,rot ∈ SO(3)

}

X ,
{
Xtrans ∈ R3

Xrot ∈ SO(3)

}

To avoid singularity in the representation of rotations (Xvm,rot,Xrot), we use unit
quaternions.41 A quaternion q can be considered to be the association of a scalar w ∈ R
and a vector a ∈ R3:

q ,
[
w
a

]

8 Virtual Guide Programming Framework for Human-Robot Comanipulation

The Cartesian velocities are defined by twists ∈ R(6) describing the instant movements
of the robot end-effector relative to the robot base. We choose to reduce the twists in
the center of the robot end-effector. The twists are then formed by the translational and
rotational components of the time derivatives of both virtual mechanism and cobot end-
effector displacements:

Ẋvm ,
{
vvm ∈ R3

ωvm ∈ R3

}

Ẋ ,
{
v ∈ R3

ω ∈ R3

}
The current position of the virtual mechanism is described by its parameterized space

svm ∈ R, and the evolution of the virtual mechanism is described by ṡvm ∈ R.

The direct geometric and kinematic models of the virtual mechanism are defined by Ls and
Js respectively. The geometric model allows to determine the pose of the virtual mechanism
Xvm according to the configuration of its links (in this case represented by svm), while the
kinematic model allows to determine the velocity of the virtual mechanism Ẋvm according
to the evolution of it (represented by ṡvm).
Geometric model:

Xvm = Ls(svm) (1)
Kinematic model:

Xvm = f(svm) (2)

Ẋvm = Jsṡvm (3)
where Js[6×1] is the virtual mechanism’s Jacobian, as defined in.42

Force on the cobot end-effector: The force Fc applied by the spring-damper system on the
cobot is given by:

Fc =K(Xvm−X) +B(Ẋvm− Ẋ) (4)
Where K ∈ R(6×6) and B ∈ R(6×6) are diagonal matrix. Ktrans ∈ R(3×3) represents the
stiffness gain in translation and is a symmetric definite positive matrix.

The notation (Xvm −X) may be abusive for rotations. More adequate angular error
computation can be used without restrictions.

Xvm−X ,
{
Xvm,trans−Xtrans

δ(qvm, q)

}
The Jacobian of the cobot is given by J [6×n] where n represents the number of DOFs of

the robot. We use the transposed Jacobian JT to transform the forces into a torque reference
for the controller.42 The torque applied to the joints of the cobot is described by τc:

τc = JTFc (5)

Virtual Guide Programming Framework for Human-Robot Comanipulation 9

Force on the virtual mechanism: the behavior of the virtual mechanism impedance is given
by:

τvm =Ks(scons−svm) +Bs(ṡcons− ṡvm) (6)

Where scons ∈ R and ṡcons ∈ R represent the reference position and the velocity along the
desired path, respectively. The gains Ks ∈ R and Bs ∈ R represent a stiffness-damping
coupling and define the impedance of the virtual mechanism.
Since the virtual mechanism is ideal, the efforts applied on it are null. The equilibrium of
the applied forces is given by:

JTs Fc = τvm (7)

Virtual boundary constraints: The purpose of ”virtual stops” is to limit the permissible
displacements of the tool. They can be defined in a complementary manner to a virtual
mechanism, for example imposing limits on the travel of the links that constitute it. More
generally, they can be described by surfaces delimiting an area of the working space in which
the effector must remain confined. In our implementation of virtual guides, it is possible to
specify the stiffness-damping coupling –Ks,Bs – between the virtual mechanism specification
and a reference position scons along the desired path (see Figure 3). It is then possible to
create virtual boundaries at the extremities of the path by applying to scons the following
law:r If svm ∈ [0,smax] then scons← svm.r If svm > smax then scons← smax.r If svm < 0 then scons← 0.

With these boundary constraints the user will feel a repulsive force (spring-damper effect)
when he/she reaches the beginning or the end of the path.

Control law: using equations (3), (4), (6) and (7), we obtain:

JTs (K(Xvm−X) +B(Jsṡvm− Ẋ)) =−Bsṡvm+Ks(scons−svm) +Bsṡcons (8)

Fig. 3: Lateral view of the physical analogy of a virtual mechanism. The desired path is
illustrated in red. The pose X of the cobotic system is linked to the pose Xvm of the virtual
mechanism by a spring-damper system. The current position of the virtual mechanism is
svm.

10 Virtual Guide Programming Framework for Human-Robot Comanipulation

By solving equation (8) with respect to ṡvm, we obtain a first order dynamical system that
expresses the evolution of the virtual mechanism:

ṡvm = (Bs+JTs BJs)−1(−JTs (K(Xvm−x)−BẊ)) +Ks(scons−svm) +Bsṡcons (9)

The matrix JTs BJs is symmetric, positive, definite because Js has full column rank and B
is symmetric, positive, definite.

svm can be determined at every instant by integrating the controller state equation (9)
in real time. Then, since svm and ṡvm are known, Xvm and Ẋvm can be computed based
respectively on equations (2) and (3). Finally, the driving force can be computed using (4).

From equations (1), (3), (4), (5), (6) and (9) we obtain the control law scheme presented in
Figure 4.

Fig. 4: Control law scheme of a 1-DOF virtual mechanism.

The gain specifications of the coupling – K and B – are independent from the virtual
guide specification – Ls, Ks and Bs. Gain tuning is similar to the tuning of a Cartesian PD
position loop. The higher the gains, the more the behavior of the robotic system will tend
to the one defined by the virtual mechanism. In general, the spring K is chosen as stiff as
possible.

The passivity of the virtual mechanism controller is proven by Joly,13 by using the
mechanical analogy of the system and studying the energy dissipation. Moreover, it was
proven by Hogan43 that the passivity of the system guarantees the stability of the controlled
system when it interacts with any passive environment, including a human operator.

4. Virtual Guides as Position Constraints
In this section we address the virtual guide construction as a position constraint. We do not
present any new contributions but recall from our previous work40 the main ideas for 3D
virtual guide construction since they will be needed in the following sections.

When the user manipulates the cobot and creates a displacement of the end-effector, the
force applied by the cobot on the virtual mechanism is expressed by a new value of the
phase svm by integrating the dynamical system defined in equation (9). We can use the
direct geometric model Ls (1) and the kinematic model Js (3) to compute the corresponding
pose Xvm and velocity Ẋvm of the virtual mechanism for a given value of the phase svm = s.
In this section we address the virtual guide construction as position constraints, thus we

Virtual Guide Programming Framework for Human-Robot Comanipulation 11

only focus on the translations of the cobot end-effector Xtrans ∈ R3 (the orientation of the
end-effector being fixed or free).

As presented in our previous work,40 we can define the kinematics of the position constraint
through PbD and Akima spline interpolation.44 During the kinesthetic teaching, the user
is able to show the cobot the desired trajectory by manually moving its end-effector.
The Cartesian position Xtrans of the cobot end-effector is recorded on user demand or
continuously with a determined sampling time. In both cases, the position Xtrans and a
recording parameter t are stored as a list of points.

When the recording of the trajectory is done by user demand, the recording parameter
starts at t0 = 0 and increases monotonically along with the recorded points. When the
recording is done continuously, the recording parameter corresponds to the recording time.

In order to create a virtual guide using the list of recorded points, we propose to use
an interpolation function that passes exactly through these points so the demonstrated
trajectory is encoded in a precise and smooth way. Using interpolation functions to describe
the geometric and kinematic models of virtual guides presents the following advantages:r only one demonstration without virtual guide assistance is needed,r the recorded trajectory depends entirely on the demonstration and not on any automatic

algorithm,r virtual guides defined through interpolation functions can be easily modified.

In our framework, we reconstruct position constraints from the stored points by using
a local cubic polynomial Akima interpolation. This method is a continuously differentiable
sub-spline interpolation. It is built from piecewise third order polynomials, where only data
from the next and previous two neighbor points is used to determine the coefficients of the
interpolation polynomial. The slope of the curve is locally determined at each given point
by the coordinates of five points centered on the studied point. This spline type creates a
smooth curve between the recorded points and always passes directly through them. Some
of the advantages of this interpolation method are:r it yields to a smooth natural-looking curve,r there is no need to solve large equation systems. It is therefore computationally very

efficient,r it reduces oscillatory effects,r local changes do not affect the interpolation beyond neighbor points,r Akima spline points are intuitive to use when modifying virtual guides.

Besides, the Akima spline interpolation method provides a curve of class C1 at least,
and as stated in,45 to define virtual mechanisms it is possible to use any curve defined by
a parametric function of class C1. When it comes to interpolation, a compromise must
be done between the smoothness of the curve and the robustness to local modifications.
For example, for path planning it is better to guarantee C2 continuity in order to ensure
continuous acceleration. For virtual guide implementation we need at least C1 continuity
and for our particular use of virtual guides we need for sure to locally modify the splines.

Finally, the direct geometric model Ls of the virtual mechanism (see Eq.1) is defined by
the Akima spline interpolation. Thus, the direct kinematic model Js (see Eq.3) is defined by
the spline’s derivate function.

5. Virtual Guides as Orientation Constraints
In this section we address the virtual guide construction in SO(3), focusing on the orientation
of the cobot end-effector, which is one of the main contributions of this work. The bases of
quaternion interpolation are presented at the beginning of the section (see 5.1 and 5.2) to
facilitate understanding of our contribution to orientation virtual guide construction (see
5.3).

12 Virtual Guide Programming Framework for Human-Robot Comanipulation

As previously explained in section 4, during kinesthetic teaching the user is able to show
the cobot the desired movements by manipulating its end-effector. The orientation Xrot of
the cobot end-effector is recorded by user demand or continuously with a predetermined
sampling time. In both cases, the orientation Xrot ∈ SO(3) and a recording parameter t ∈R
are stored as a list of points.

In order to create orientation constraints using the list of recorded points we propose
to use an interpolation function that exactly matches the recorded orientations in order to
encode the demonstrated movements in a precise and smooth way. We previously stated
the advantages of using interpolation functions for construction of position constraints. The
same advantages apply for orientation constraints.

Next, we present a possible representation of orientations based on unit quaternions
and different methods to interpolate them: the first method is SLERP (spherical linear
interpolation) which is equivalent to the linear interpolation between two points. Then,
we will discuss SQUAD (spherical quadrangle interpolation), which builds upon SLERP to
create an equivalent of a cubic interpolation. Finally, we present the method used in this
work to generate the orientation constraints, which is based on a spline of SQUADs. This
will be used to define the geometric and kinematic models of the virtual mechanism from
Eq. (1) and (3).

5.1. Interpolation between two quaternions (SLERP)
SLERP41, 46 of quaternions generates constant motion along the geodesic linking between
two unit quaternions. Here, we present the analogous quaternion formula of the Euclidean
expression for linear interpolation: x(t) = x0 + t(x1−x0). As the interpolation parameter t
uniformly varies between 0 and 1, the values Slerp(t) are required to uniformly vary along
the circular arc from p to q, where p and q are unit quaternions. SLERP can be written in
an exponential form41 as:

Slerp(t;p,q) = p(p−1q)t. (10)

An example of the application of (10) is shown in Figure 5.

Fig. 5: (Left) Example of the SLERP interpolation between two unit quaternions on the
sphere. (Right) Example of the SLERP (orange) and the SQUAD (blue) interpolations
between eight unit quaternions on the sphere. We can see that in contrast to the SLERP
curve, the SQUAD curve is smooth at the control points (red).

The first derivative of Eq. (10) along t41 is given by:

˙Slerp(t;p,q) = p(p−1q)tlog(p−1q). (11)

Although p and −p represent the same rotation, the values of Slerp(t;q,p) and
Slerp(t;q,−p) are not the same. Indeed, geometrically the geodesic is a 4D circle, so it can
be followed from q in two directions, arriving initially in p or in −p. This is a consequence
of SO(3), because in this set a rotation about some direction of 2π returns to the same

Virtual Guide Programming Framework for Human-Robot Comanipulation 13

orientation of origin. The shortest path can be established simply by comparing the distance
between p and q with the distance between −p and q. As explained in,47 it is customary to
choose the sign σ on p so that q ·(σp)≥ 0. In other words, the angle between q and σp is acute.
This implementation choice avoids extra spinning caused by the interpolated rotations.

5.2. Interpolation over a series of quaternions (SQUAD)
In the set of unit quaternions, the SLERP interpolation curve of two quaternions is a geodesic.
However, the simple juxtaposition of the successive geodesic interpolations joining a series
of orientations presents some limitations (see Figure 5):r the curve is not smooth at the control points,r the angular velocity is not constant.r the angular velocity is not continuous at the control points.

A reparametrization can easily ensure continuity across the entire interpolation, but fails
to fix the lack of smoothness at the control points.41 The smoothness is understood here as
the continuity of at least the first derivative (C1 continuity).

The spherical cubic interpolation called SQUAD46 ensures the smoothness of the curve.
It takes inspiration from Bezier curves, but involves spherical linear interpolations instead
of simple linear interpolations. The evaluation of SQUAD uses an iteration of three SLERP
similarly to the Casteljau algorithm48 :

1. Imagine four unit quaternions p, a, b, and q as the ordered vertices of a quadrilateral.
2. Interpolate the quaternion c along the ”edge” from p to q using Slerp(t;p,q).
3. Interpolate the quaternion d along the ”edge” from a to b using Slerp(t;a,b).
4. Now interpolate the edge interpolations c and d to get the final result e.

The end result (final interpolation) is denoted SQUAD and is given by:

Squad(t;p,a,b,q) = Slerp(2t(1− t));Slerp(t;p,q),Slerp(t;a,b)). (12)

We can use (10) to obtain the exponential form of SQUAD:

Squad= Slerp(t;p,q)(Slerp(t;p,q)−1Slerp(t;a,b))2t(1−t) (13)

The derivative of SQUAD in equation (13) is defined in47 as:

˙Squad(t;p,q,a,b) = d

dt
[UW 2t(1−t)], (14)

where

U(t) = Slerp(t;p,q),
V (t) = Slerp(t;a,b),

U̇(t) = U(t)log(p−1q),

V̇ (t) = V (t)log(a−1b),

W (t) = U(t)−1V (t),

and where ˙Squad is not a unit quaternion.

14 Virtual Guide Programming Framework for Human-Robot Comanipulation

It is also shown in47 that the derivatives of SQUAD at the endpoints are:

˙Squad(0;p,a,b,q) = p[log(p−1q) + 2log(p−1a)], (15)
˙Squad(1;p,a,b,q) = p[log(p−1q)−2log(q−1b)]. (16)

5.3. Orientation constraint construction through spherical cubic interpolation
Given a sequence of N unit quaternions {qn}n=0:N , we want to build an interpolation curve
between those quaternions, subject to the following conditions:r the spline must pass through the control points andr the first derivatives are continuous at the control points.

To this aim, the idea is to chose intermediate quaternions an and bn to allow control
of the derivatives at the endpoints of the spline segments. More precisely, let Sn(t) =
Squad(t;qn,an, bn+1, qn+1) be the spline segments. By definition of SQUAD, the last
quaternion of a previous segment n−1 is equals to the first quaternion of the current segment
n:

Sn−1(1) = qn = Sn(0) (17)

To obtain continuous derivatives at the endpoints we need to match the derivatives of two
consecutive spline segments:

Ṡn−1(1) = Ṡn(0) (18)

From Eq. (16) we can write:

Ṡn−1(1) = qn[log(q−1
n−1qn)−2log(q−1

n bn)] (19)

and

Ṡn(0) = qn[log(q−1
n qn+1) + 2log(q−1

n an)] (20)

The derivative continuity equation (18) provides one equation with the two unknowns an
and bn, so there is one degree of freedom. It is suggested in41 and47 to use an average Tn of
”tangents”, so Ṡn−1(1) = qnTn = Ṡn(0), where:

Tn =
log(q−1

n qn+1) + log(q−1
n−1qn)

2 (21)

With those two equations (18) and (21), an and bn can be determined as follows:

an = bn = qnexp

(
− log(q−1

n qn+1) + log(q−1
n qn−1)

4

)
(22)

and bn = an+1.
Thus, Sn(t) = Squad(t;qn,an,an+1, qn+1).
The expression of SQUAD is not defined in the first and last interval since qn−1 appears

in the expression for a0 and qn+1 appears in the expression for an. Therefore, it is necessary
to define bound values for a0 and an. This choice could have an impact on the resulting
interpolation curve continuity class and can be avoided during the implementation. We

Virtual Guide Programming Framework for Human-Robot Comanipulation 15

propose to add two points, before the beginning and after the end of the useful path, to
ensure continuity on the desired interval.

For n=−1, we define the interpolation as:

q(t) = interpolation(t;q−1, q0) = Slerp(t;q0, q1) (23)

and its derivative by:

q̇(t) = ˙Slerp(t;q0, q1) (24)

with t the interpolation parameter between two quaternions.
For n=N + 1, we define the interpolation as:

q(t) = interpolation(t;qN−1, qN) = Slerp(t;qN−2, qN−1) (25)

and its derivative by:

q̇(t) = ˙Slerp(t;qN−2, qN−1) (26)

where N represents the number of interpolation quaternions as if the quaternion value is
equivalent to q(s= smax).

5.3.1. Parameterization. Singularities can appear on the virtual mechanisms when the
Jacobian Js is not normalized. These singularities can disturb the interaction between the
user and the virtual guide controller. For the position constraints, we proposed a solution
based on the arc-length.40 Similarly, since the list of orientations recorded by the cobot is
obtained by user demonstrations, we can not guarantee the normality of Js for the orientation
constraints.

In order to guarantee a normalized Jacobian, it is desirable to evaluate the SQUAD at
orientations based on the arc-length of the curve instead of the recording sampling time. For
that matter, we propose to separate spacial and temporal aspects of the trajectory.

Let t be the time, sθ be the arc-length quaternion curvilinear parameter and PR the list
containing the SQUAD orientation waypoints qrot ∈ SO(3).

PR,i = {qrot,i}, (27)

with i= 0 :N−1, where N is the number of orientation waypoints. When the waypoints are
recorded manually, t= i.

The SQUAD curve parametrized with time t is defined by fθ:

fθ : R −→ SO(3),
t 7−→ PR.

The transformation function from the the arc-length curvilinear to time parameterization
is defined by gθ:

gθ : R −→ R,
sθ 7−→ t.

Where gθ corresponds to a monotonic cubic interpolation function.49 This kind of
interpolation is optimal for the transformation function since the resulting curve does not
present oscillations in the presence of outliers. In the context of rotations in SO(3), the
natural metric is equal to the angle between two rotations. Specifically, given two rotation
quaternions r and p, the product rp−1 is also a rotation by an angle θ ∈ [0,π] about some
axis. We chose to use the metric measure of quaternions d(r,p) as:

16 Virtual Guide Programming Framework for Human-Robot Comanipulation

d(r,p) = ‖log(r−1p)‖= θ. (28)

We approximate the computation of sθ with:

sθ,i+1 = sθ,i+d(qi, qi+1), (29)

where sθ,0 = 0 and i= 0 :N −1. The computation of d(qi, qi+1) is done using (28).
The result of this parameterization is an equal arc length quaternion curve subdivision,

and therefore a normalized Jacobian Js.
The SQUAD spline can now be defined as a composition of the initial curve parameterized

with time fθ and the space transformation function gθ as:

fθ(t) = fθ(gθ(sθ)) = fθ ◦gθ(sθ). (30)

The virtual guide is now described by the following data list of length N :

MR(ti,si) = {ti,si, qrot,i}i=0:N−1. (31)

5.3.2. Geometric and kinematic models. The above definitions of the interpolation function
for quaternions can be applied to the list of MR points where t values increase monotonically:

MR(ti) = {ti,xrot,i}i=0:N−1, (32)

where N represents the number of points.
We can now define the geometric model of the virtual mechanism Ls (1) as:

Ls : R −→ SO(3),
sθ 7−→ Squad(sθ;φ),

where φ represents the other function parameters needed to compute SQUAD.
Notice that the parameter svm of the virtual mechanism corresponds to the spline

parameter sθ. So we can then write:

Xvm,rot = Squad(gθ(svm),φ) . (33)

The kinematic model of the virtual mechanism Js (3) can be defined as the angular velocity
which can be obtained using the SQUAD discrete derivative defined as:

˙Squad(t;φ) = Squad(t+ ε;φ)−Squad(t− ε;φ)
2ε ×

(1
smax−smin

)
, (34)

In our implementation, a value of ε= 0.001 gave good results.
The kinematic model of the virtual mechanism Js can be defined using the instantaneous

angular velocity50 ω̂ ∈ R3, by:

Virtual Guide Programming Framework for Human-Robot Comanipulation 17

[
0
ω̂

]
= 2q̇ · q−1, (35)

Js = ω̂ =

ωxωy
ωz

 , (36)

˙Xvm,rot = Js ˙svm. (37)

6. Virtual Guides as 6D Constraints
In Section 4 and Section 5, we presented how to define and construct position and orientation
constraints. However, robotic applications usually use the pose of the end-effector (or the
calibrated tool). In this section, we present our new approach called XSplines based on
virtual mechanisms and interpolation functions.

6.1. 6D virtual guides through XSplines
To enforce 6D virtual guides we use the virtual mechanism controller presented in Section 3.

However, we must first define the virtual guides and implement their geometric and
kinematic models. To this aim, we developed the concept of XSplines.

XSplines are curves in SE(3), defined by both position interpolations in R3 and orientation
interpolations in SO(3) of poses of a robot obtained through kinesthetic teaching. In
other words, XSplines are a composition of SQUADS and Akima Splines which we will
call MDSplines (i.e. multi-dimensional splines). Figure 6 shows an illustration of this
concept. The advantage of XSplines is that they are parameterized in a way that allows
the synchronization of the translation and orientation movements. Thus, we will propose a
new parameterization that does the coupling and allows to keep a normalized Jacobian.

A pose X ∈ SE(3) is defined as:

X =
{
Xtrans ∈ R3

Xrot ∈ SO(3)

}
=

x
y
z
w
i
j
k

. (38)

Fig. 6: Illustration of a XSpline where both translation and orientation movements are
considered in a single 6D curve.

Parameterization: The space parameter sx is defined to vary depending on both the
translational and rotational components of a pose. This parameterization allows sx to evolve

18 Virtual Guide Programming Framework for Human-Robot Comanipulation

along the curve even if the movement is done only on one of the components. This feature
could be very useful when the movement is described by only a rotation along an axis without
any translation. In this case, since translation and rotation are coupled via an XSpline, the
curve parameter will continue to evolve.

This parameterization uses the previously defined parameterizations in R3 and SO(3). To
this aim, we define a scaling factor L between the two parameters, whose value depends on
the geometry of the tool used on the robot.

For two displacements e and u, we define the intermediate space parameter sx by using
the distance dx(e,u) between them, with:

dx(e,u) =
√
s2 +Ls2

θ, (39)

where:r s: represents the Cartesian translation parameter defined as the arc-length of the curve, as
presented in our previous work,40r sθ: represents the SO(3) rotation parameter defined in Section 5, andr L: represents the scaling factor between both parameters.
We approximate the computation of sx by:

sx,i+1 = sx,i+dx(xi,xi+1), (40)

where s0 = 0 and i = 0 : N − 1. The computation of dx(xi,xi+1) is done using (39). In our
implementation, L= 0.1 (corresponding to a lever arm of 10cm) gave good results.

This sx parameterization corresponds to the previously defined space parameter of the
virtual guides svm (see section 3 and figure 4):

svm = sx (41)

This new parameterization allows the synchronization of the translation and orientation
movements even if the components have been recorded separately.

6.2. Geometric and kinematic models
The above definition of XSplines can be applied to a list of MX poses where t values increase
monotonically.

MX(ti) = {ti,xi}i=0:N−1, (42)

where N represents the number of poses.
We can define the geometric model of the virtual mechanism Ls (1) as:

Ls : R −→ SE(3),
sx 7−→ XSpline(sx;λ),

where λ represents the other function parameters needed to compute XSpline: λ =
Xtrans,i,Xtrans,i+1,Xrot,i,ai,ai+1,Xrot,i+1.

As explained before, the parameter svm of the virtual mechanism corresponds to the curve
parameter sx. Then:

Xvm =XSpline(svm,λ) , (43)

Virtual Guide Programming Framework for Human-Robot Comanipulation 19

with:

XSpline(svm,λ) ,
{
MDSpline(g(svm)) ∈ R3

Squad(gθ(svm),λ) ∈ SO(3)

}
. (44)

The kinematic model of the virtual mechanism Js (3) can be defined using:

Js =
[˙MDSpline(g(svm))

ω̂

]
=

˙splinex(g(svm))
˙spliney(g(svm))
˙splinez(g(svm))

ωx
ωy
ωz

 , (45)

and:

Ẋvm = Jsṡvm. (46)

In sections 4, 5, and 6, we presented how the geometric and kinematic models of
virtual guides can be programmed through kinesthetic teaching and modeled
through interpolation functions. To construct position constraints we implemented
multi-dimensional Akima Spline interpolations. To construct orientation constraints in SO(3)
we used SQUAD interpolations. In both cases we proposed to separate the time and space
components of the curves to parameterize them in a way that guarantees the Jacobian
normality. We also proposed a definition of 6D virtual guides through XSplines,
based on both position interpolations – AkimaSpline∈R3 – and orientation interpolations –
Squad ∈ SO(3) – of poses obtained through kinesthetic teaching. The advantage of XSplines
is that they are parameterized in a way that allows the synchronization of the translation
and orientation movements.

7. Iterative Virtual Guides Programming
When asking a user to perform the ideal path he has in mind several times, there may be
many variations. These variations could exist due to the presence of friction and gravity
forces that the user must compensate, for the poor repeatability inherent to human gestures,
the variability of the task and, often, simply human concentration errors on a trajectory
portion. For these reasons and the ones outlined in Section 2, we suggest that users program
the virtual guides by iteratively modifying them while being assisted by the collaborative
robot. In our previous work,40 we presented a local guide refinement method. The refinement
is done directly on the workspace by manually manipulating the cobot end-effector to show
a new portion of the guide. During local refinement, the operator may be more focused than
during the previous demonstration since he is only able to demonstrate the portion again and
not the entire trajectory. The main advantage of this approach is that the worker is assisted
throughout the iterative teaching phase and only one entire demonstration of the task is
needed. An overview of this concept is introduced in this section to facilitate discussion of
the iterative programming framework.

7.1. Scaled force control
In order to show the new portion of the trajectory while the virtual guide is active, the user
needs to momentarily escape the guide. To allow this, we use the concepts of soft virtual
guides and force scaling presented in23 and3 to allow the user to go off the path and locally
modify the guide. When the user tries to go off the path, the guide controller’s force fades
proportionally with the distance between the guide’s pose Xvm and the current pose of the

20 Virtual Guide Programming Framework for Human-Robot Comanipulation

Fig. 7: Local refinement applied to the constraint points X1 and X2 lying on the base guide.
X

′

1 and X
′

2 are the initial and final points of the new guide portion.

robot end-effector X. The user would feel an attractive force F when escaping or approaching
the guide, up to a defined distance dmax.

F = β(Y)Fc, (47)

To benefit computational efficiency, β(Y) is defined as a 4th degree polynomial with Y =
‖X−Xvm ‖

dmax
, and null when Y > 1:

if Y <= 1 then
β(Y) = y4−2y2 + 1,

else
β(Y) = 0,

end if
The parameter dmax can be tuned manually to modify the basin of attraction of the virtual

guide.
Note: the notation (X−Xvm) may be abusive for rotations. More adequate angular error

computation can be used without restrictions.

X−Xvm ,
{
Xtrans−Xvm,trans

δ(q,qvm)

}
7.2. Local guide refinement of position constraints
Initial and final positions of the partial demonstration do not always match a control point
of the guide. To merge the new portion with the rest of the guide, we propose a method to
modify the closest points on the base guide to match the first and last points on the new
guide portion.

Let X1 and X2 be the constraint points of the current guide. X ′

1 and X
′

2 are the initial
and final points of the new guide portion, respectively (see Fig.7). The constraint points are
defined as the two base guide points which are closest to X ′

1 and X ′

2, respectively. We obtain
X1 and X2 by calculating the distance from X

′

1 and X
′

2 to the base guide control points.
Then we select the two control points of minimum distance. Displacement vectors #»

d1 and #»
d2

are determined between X1 and X
′

1, and between X2 and X
′

2. A radius of influence r must
be defined for both constraints. We choose the radius proportional to the magnitude of the
displacement vector.

#»
d 1 =

»

X1X
′

1; r1 = α1 ‖
#»
d 1 ‖,

#»
d 2 =

»

X2X
′

2; r2 = α2 ‖
#»
d 2 ‖.

The radii r1 and r2 allow a more intuitive control of the deformation. The only parameters
to tune are α1 and α2, where a compromise must be made between the smoothness of the
curve and the area of influence of the deformation, i.e, the neighbor points that will be

Virtual Guide Programming Framework for Human-Robot Comanipulation 21

deformed. We define a local deformation function F centered at the constraint points and
decreasing to zero for points beyond the radius. In order to obtain a smooth displacement
of the spline points, we determine a fourth degree polynomial as the deformation function
F (x), where x= (svm,i−svm,0)

r
. {svm,i}i=0:N−1 represent the curvilinear abscissa parameter

of the Akima spline, and N is equal to the number of interpolation points.
The deformation function F (x) is then defined as:

F (x) = f(x) #»
d .

With :

f(x) = x4−2x2 + 1.

The deformation function F (x) is applied to the X1 and X2 neighbor points within the
radius of influence r1 and r2, in order to obtain the new control points that now include
X

′

1 and X
′

2. These new guide control points are stored in a vector defined by the modified
base guide control points before X1 and after X2, along with the new guide portion’s control
points. Finally, we perform a new Akima spline interpolation to define the new virtual guide.

7.3. Refinement of orientation components
The same approach presented for the refinement of position constraints can be applied
to SE(3). Thus, the orientation components can also be refined locally or modified on a
portion of the 6D guide. The modification is done on the orientation of the closest key
point. However, it is also possible to add new key points if needed (e.g. if the closest point
is still too far from the current point, in which case a threshold might be defined). This
functionality can be used iteratively using the scaled force control.

7.4. Iterative programming of 6D virtual guides
During the execution of a complex task in space, it could be difficult to concentrate on
both translation and orientation of the robot. For this reason, we propose to realize the
trajectory programming in two phases to reduce the cognitive load on the user and enhance
the programming experience by separating the translation and rotation programming.

In the first phase we record both translation and orientation. The second time we use the
virtual mechanism’s translation only in order to modify the orientation.

1. The user does a first demonstration of the trajectory (positions) using the cobot in gravity
compensation mode.

2. A position constraint virtual guide is constructed and activated.
3. While being guided by the position constraint trajectory, the user does a demonstration

of the tool’s orientations.
4. A 6D virtual guide is constructed and activated.

A demonstration of this approach can be visualized using the following link:r 6D virtual guides iterative programming.

In this section we presented a new intuitive, iterative and assisted framework for
programming 6D virtual guides. We explained how virtual guides can be locally refined
or modified by the user in both Cartesian position and orientation. During this iterative
process, the user benefits from the virtual guide assistance. Also, the scaled force control
allows to scape the guide to modify it. Finally, we presented an iterative approach to program
6D virtual guides in two phases. This method aims to reduce the cognitive load of the
user and enhance the programming experience by separating the translation and
the rotation programming. In our framework, the human operator masters the action
plan and the cobot assists the human passively and under explicit demand.

https://www.youtube.com/watch?v=a7Q9veLbkrU

22 Virtual Guide Programming Framework for Human-Robot Comanipulation

8. Experimental Evaluation
A user study was designed in order to observe how novice users perceive the Iterative
Programming Mode and to analyze the impact of our approach on a comanipulation
programming task by comparing it to a classic programming mode used in the industry
that we refer here as One Shot.

The following hypotheses were tested:r H1: The Iterative Programming Mode reduces the programming time of the task,r H2: it improves the accuracy of the results,r H3: it is intuitive and comfortable to use,r H4: it is perceived as helpful by the users,r H5: and it reduces the user’s physical effort and cognitive overload to program the task.r H6: The co-manipulation task with the cobot is not perceived as stressful.

8.1. Task definition
The experience is conducted with the 6-DOF ISybot collaborative robot in Fig. 1 and a
scraper tool. The general task consists of programming the cobot to follow the contour of a
2cm thick wood part respecting two conditions. As shown in Fig. 8, participants have to:

1. Keep the tooltip orientation angle at 45° with the vertical axis (Figure 8(b)).
2. Stay parallel to the tangent of the curve at each point of the trajectory (Figure 8(c)).

(a) (b) (c)

Fig. 8: a) Programming task setup. The path to follow is highlighted in red. The arrow
indicates the record button. a) The orientation of the scraper tool, angle β, must be kept at
45° within the vertical plane. b) The scraper tool must be kept parallel to the tangent of the
curve at each point of the path.

An inclinometer is placed on the tool in order to help the users to maintain the 45° angle
instruction.

This task simulates the complexity of some manufacturing tasks such as: glue depositing
and joint installation (automobile industry), grinding, and polishing.

To program the cobot, participants used the Iterative Programming Mode explained in
Section 7. Users were able to record discrete key points of the trajectory using the record
button – the upper button placed on the 4th axis of the cobot, indicated by the red arrow in

Virtual Guide Programming Framework for Human-Robot Comanipulation 23

Figure 8(a). These points were then interpolated via XSplines and used to create 6D virtual
guides as explained in Section 6.

Participants were asked to program the task with a good accuracy/speed ratio. They were
reminded that in order to draw a line at least two points are needed, to draw an arc at least
3 points are needed and that there should be a good compromise between number of points
(precision) and the time recording them (speed).

A demonstration of the task can be visualized using the following links:

r 6D virtual guides iterative programming.r 6D Virtual guides visualization using augmented reality.

To analyze the impact of our Iterative Programming Mode, we compare it to a classic
programming mode used in the industry that we refer here as One Shot.

The One Shot programming mode allows only one demonstration with gravity
compensation assistance.

To program the cobot with this mode, participants were also able to record discrete key
points of the trajectory using the record button. They were given the same instructions
regarding the accuracy/speed ratio for learning the task.

For the virtual guides assistance used in our Iterative Programming Mode, the controller
gains were set as follows:

K = [10000 10000 10000 3000 3000 3000] N/m and N/m.rad

B = [150 150 150 30 30 30] N/m.s−1 and N/m.rad.s−1

Ks = [5000] N/m and N/m.rad

Bs = [5] N/m.rad.s−1

The sampling time was set to 1 ms.

8.2. Protocol
We recruited 17 participants from our research laboratory (between 20 and 53 years old,
7 females). All participants were asked to program the cobot to follow the contour of the
wood part, using both programming modes – One Shot and Iterative – resulting in two test
conditions. The two test conditions were presented in a randomized order to avoid biasing
the results towards the last mode tested. For each condition, the participants were asked
to program the cobot 2 times in a row (Repetitions). In total, the participants performed
4 = 2×2 (Mode × Repetition) cobot programming tasks.

At the beginning of each condition, the programming mode was presented to the
participants and the tested case was demonstrated to show the participants how to use
the cobot and the programming interface. Then, they were able to familiarize themselves
with the system and try the tested case on their own. After each repetition, the result was
shown to the participants i.e., they could feel the virtual guide they created and compare
the learned path with the real contour of the part thanks to the haptic feedback given by
the cobot. Finally, when a condition was completed, the participants were asked to complete
a post-condition survey – a Likert-scale survey with a rating from 1 (strong disagreement)
to 7 (strong agreement).

8.3. Measurements
To validate our hypotheses, we made the following measurements:

1. Programming time measured between the beginning of the programming task and the last
point saved, to validate H1 – The Iterative Programming Mode reduces the programming
time of the task.

http://bit.ly/6D_VG_task
https://www.youtube.com/watch?v=VOXsJyoHsmo

24 Virtual Guide Programming Framework for Human-Robot Comanipulation

2. RMSE of the angle and RMSE of the distance between the participants’ and the reference
paths, to validate H2 – The Iterative Programming Mode improves the accuracy of the
results.

3. Survey results, to validate H2, H3, H4, H5 and H6 – The Iterative Programming Mode
improves the accuracy of the results, is intuitive and comfortable to use, is perceived as
helpful by the users, reduces the user’s physical effort and cognitive overload to program
the task. The co-manipulation task with the cobot is not perceived as stressful.

8.3.1. Time. The programming time is measured in seconds and automatically recorded by
the cobot for each Programming Mode and each Repetition. It was measured between the
beginning of the programming task (one short click on upper button) and the last point
saved (one long click on upper button). For the Iterative Programming Mode, the total
programming time is the result of the addition of the two iterations.

8.3.2. Accuracy. To measure the accuracy of the programming task, two quantitative
variables were taken into account:r The RMSE of the angler The RMSE of the distance between the participants’ inputted paths and the reference

paths

Participants’ paths were saved after each programming task execution using MATLAB
through a RPC communication protocol with the cobot. The interpolation algorithm we
used gives us a 0.5 mm spatial resolution.

Fig. 9: Calibration points. The initial wood part measured 37x37x2 cm. It was then cut to
shape the contour to follow.

We defined a parametric model of the wood part based on its exact measures. Before the
experiment, we took nine calibration points with the tooltip of the cobot as shown in Figure
9. Using these nine recorded points, we computed the affine transformation to fit the cobot
reference frame to the MALTAB reference frame1. We applied this unique transformation
to every participant’s path for both Programming Modes and both Repetitions. We can now
compare the participant’s recorded re-aligned path to its corresponding model portion as
shown in Figure 10.

1 This calibration method has the drawback of being highly dependent on the calibration of the tooltip
and the mechanic flexibility of the cobot. However, these measures were used to do a comparison
between paths obtained under the same conditions and using the same calibration process. Also, we
used nine points for the calibration where three points could be enough.

Virtual Guide Programming Framework for Human-Robot Comanipulation 25

For all interpolation points of the reference path, we defined normal vectors #»nj , tangent
vectors #»

tj and the resulting vectors #»sj of the cross product of those (respectively in green,
black and magenta in Figure 10), thus resulting in a direct orthonormal basis.

For every interpolation point of a participant’s path, we defined the vector #»vj representing
the orientation of the tooltip (in dark yellow). In our case, this vector corresponds to the
third column of the rotation matrix representing the orientation quaternion at each point.

We define :r vtj = #»
tj · #»vj , the tangential component,r vnj = #»nj · #»vj , the normal component.

2.1 - Angle: The required angle βj was calculated as: βj = atan2d(vtj ,vnj). In other words, it
corresponds to the angle between the scraper tool and the vertical vector of the cobot frame
within the plane perpendicular to the trajectory. For this angle, we calculated the RMSE of
the angle δRMSE , between the 45° instruction and βj for each trajectory.

Fig. 10: Accuracy measures: d – distance between each recorded interpolation point and its
closest corresponding point on the reference path – and β – angle between the scraper tool
and the vertical vector of the cobot frame within the plane perpendicular to the trajectory.
Reference paths are plotted in red and participant’s paths are plotted in blue. The yellow
arrows represent the tool orientation vectors, green arrows represent the normal vectors to
the path, and the red arrows represent the normal vectors to the tangent of the path at each
interpolation point. Top-left figure: Perspective view of the wood part. Top-right figure: Top
view (x-y axis) of the representation of the followed path by participants. Distance values are
on cm. Bottom-left figure: Perspective view. The measure d is shown. Bottom-right figure:
Perspective view. The measure β is shown.

2.2 - Distance: As previously defined, the participant had also to precisely stick to the
contour of the part. Thus, we measured the distance d between each recorded interpolation
point and its closest corresponding point on the reference path as shown in Figure 10. We
computed the RMSE of the distance dRMSE for each trajectory.

Finally, we recorded the answers to the two post-condition surveys after each condition
was performed by the participant.

8.4. Results
We performed independent repeated-measures ANOVA tests for 3 dependent variables:

1. Time,
2. RMSE of the angle (δRMSE), and
3. RMSE of the distance (dRMSE)

26 Virtual Guide Programming Framework for Human-Robot Comanipulation

Each ANOVA test was performed for two factors (moreover, the participants were grouped
by age, gender and previous experience with robots, but we found that these factors did not
have any influence on the experiment results):
1. Modes
2. Repetitions

We performed independent repeated-measures ANOVA for each survey question on the
Mode.

We set our significance level at α= 0.05, which means there is at least 5% chance of having
a difference between means of the studied variables. We consider a result strongly significant
when p-value < 0.01 and poorly significant when p-value < 0.1. We use poorly significant
results to show trends and give further analysis of data, however we do not draw conclusions
based on these results. Post hoc pairwise comparisons were computed using non-pooled error
terms, i.e., by computing separate paired-sample t tests: we used a sequentially acceptive
step-up Benjamini51 procedure, with an alpha level of .05.

8.4.1. Time results. We found a significant main effect of the Programming Modes method
on the task execution time of the participants (p-value < .01). As we can see in Table I,
participants were faster with the Iterative Programming Mode than with the One Shot
Programming Mode. This indicates that the Iterative Programming Mode, using virtual
guides, reduced the programming time and also allowed more stable performance since the
standard deviation is 1.6 times smaller (see Fig. 11). This result validates hypothesis H1
–The Iterative Programming Mode reduces the programming time of the task.

Table I : Effect of the Programming Mode on the programming time.

Mode meanTime (s) σTime (s)
One Shot 248.08 93.67
Iterative 210.99 58.31

One shot Iterative

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

Programming mode

T
im

e
 (

s
)

(a) Box plot

2
0
0

2
2
0

2
4
0

2
6
0

2
8
0

Programming mode

T
im

e
 (

s
)

One shot Iterative

(b) Group means with confidence interval of 95%

Fig. 11: Effect of the Programming Mode on the programming time

We also found a strongly significant main effect of the Repetitions on the programming
time of the participants (p-value< .01). We can see in Table II and Figure 12, participants

Virtual Guide Programming Framework for Human-Robot Comanipulation 27

were slower during the first repetition. This result confirms there is a training effect through
Repetitions.

Table II : Effect of the Repetitions on the programming time.

Repetitions meanTime (s) σTime (s)
1st 242.89 85.07
2nd 216.90 72.97

First Second

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

Repetition

T
im

e
 (

s
)

(a) Box plot

2
0
0

2
2
0

2
4
0

2
6
0

Repetition

T
im

e
 (

s
)

First Second

(b) Group means with confidence interval of 95%

Fig. 12: Effect of Repetitions on the programming time

There is no significant effect of interaction between Repetitions and the Programming
Mode (p-value = 0.1204). However, we can say from Table III that participants were faster
during both Repetitions for the Iterative Programming Mode.

Table III : Interaction effect between Repetitions and Programming Modes on the
programming time

Mode Repetition meanTime (s) σTime (s)
One shot 1st 267.26 101.03
Iterative 1st 218.54 58.81
One shot 2nd 230.37 84.65
Iterative 2nd 203.44 58.59

In conclusion, the Iterative Programming Mode allowed the participants to execute the
task faster during both Repetitions, which shows that the general training effect between
Repetitions did not influence the effect of the Programming Mode on the time.

8.4.2. Accuracy results. To analyze the accuracy, we performed the following two quantitative
measures:r the RMSE of the angle (δRMSE),r the RMSE of the distance (dRMSE).

28 Virtual Guide Programming Framework for Human-Robot Comanipulation

There is no significant main effect of Programming Modes or Repetitions on the RMSE
of the angle. However, we can see in Table IV that the error was smaller when participants
used the Iterative Programming Mode.

Table IV : Effect of the Programming Modes on the RMSE of the angle

Programming Mode meanδRMSE
(°) σδRMSE

(°)
One Shot 2.93 1.83
Iterative 2.82 2.11

There is no significant main effect of Programming Modes or Repetitions on the RMSE
of the distance. However, Table V show that the RMSE of the distance is smaller when the
Iterative Programming Mode is used.

Table V : Effect of the Programming Modes on the RMSE of the distance

Programming Mode meandRMSE
(cm) σdRMSE

(cm)
One Shot 0.70 0.29
Iterative 0.64 0.22

In conclusion, there is no significant difference between the Iterative and the One Shot
Programming Modes on the accuracy of the task, so we cannot validate H2 – The Iterative
Programming Mode improves the accuracy of the results. However, quantitative results go
in the direction of H2 and show that participants had better results when they used the
Iterative Programming Mode. Some of the best participants’ qualitative results using both
Programming Modes are shown in Figure 13.

−5 0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

35

X [cm]

Y
 [
c
m

]

(a) One Shot

−5 0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

35

X [cm]

Y
 [
c
m

]

(b) Iterative

Fig. 13: Best qualitative results from two different participants. Top view (x-y axis) of the
representation of the followed trajectory by participants. The reference path is plotted in red
and participants’ paths are plotted in blue. The yellow arrows represent the tool orientation
vectors and the red arrows represent the normal vectors to the tangent of the path at each
interpolation point.

.

8.4.3. Survey results. For clarity, the answers to the 9 questions of our user study survey for
each Programming Mode are summarized in Table VI.

With this survey, we observed a significant effect of the Programming Mode on several of
the studied questions. The results of the survey are reported in the following summary.

Virtual Guide Programming Framework for Human-Robot Comanipulation 29

Table VI : Results of the user study survey for two Programming Modes

One Shot Iterative
Question Mean σ Mean σ p-value
Q1: Do you think that you performed the task well? 4.00 1.17 4.58 1 0.065
Q2: Do you think the task was easy to perform? 4.47 1.73 4.94 1.39 0.054
Q3: Do you think the robot was helpful during the task execution? 2.41 1.06 4.35 1.45 ≤0.0001
Q4: Did you feel comfortable with the robot while performing the task? 2.94 0.83 4.71 1.31 ≤0.0001
Q5: Do you think the programming interface was intuitive? 4.59 1.37 5.23 0.83 0.052
Q6: Do you think the robot was easy to manipulate? 2.65 1.17 4.12 1.41 ≤0.0001
Q7: Did you feel you had to exert a lot of physical effort to perform the task? 4.35 1.58 3.24 1.03 ≤0.01
Q8: Did you feel your level of concentration to perform the task was high? 5.88 1.26 3.88 0.93 ≤0.0001
Q9: Did you feel stressed using the robot while performing the task? 2.53 1.55 1.76 0.90 0.032

8.5. Summary of the experiment
Using the previous results, we can make the following conclusions about the initial hypotheses
of the experiment:

H1: The main effect of the Programming Mode on the time execution of the task validates
the hypothesis H1 – Iterative Programming Mode reduces the execution time of the task.

H2: Several results supported the hypothesis H2 – Iterative Programming Mode improves
the accuracy of the results. When participants used the Iterative Programming Mode,r the RMSE of the angle was smaller,r the RMSE of the distance was smaller, andr participants found that they performed the task better.

However, the ANOVA tests did not show a significant difference between both Programming
Modes for both accuracy variables or for Question Q1 (Do you think you performed the
task well?). Thus, we cannot validate H2. This lack of significance can be explained by the
number of participants in this experiment. We believe that our results show a trend and that
a user study with more participants could lead to the validation of this hypothesis.

H3: Several results supported the hypothesis H3 – The Iterative Programming Mode is
intuitive and comfortable to use – when the participants used the Iterative Programming
Mode,r it was easier to program the robot (Q2),r it was more comfortable to program the robot (Q4), andr it was more intuitive to program the robot (Q5).

H4: The positive results of the survey Q3 and Q6 (Do you think the robot was helpful
during the task execution?, Do you think the robot was easy to manipulate?) validates the
hypothesis H4 – The Iterative Programming Mode is perceived as helpful by the users.

H5: The results of the survey questions Q6, Q7 and Q8, validate the hypothesis H5 – The
Iterative Programming Mode reduces the user’s physical effort and cognitive overload when
programming the task (see table VI):r Q6: Do you think the robot was easy to manipulate?r Q7: Did you feel you had to exert a lot of physical effort to perform the task?r Q8: Did you feel your level of concentration to perform the task was high?

H6: For both Programming Modes the mean score on the survey question Q9 (Did you
feel stressed using the robot while performing the task?) was low. This result validates the
hypothesis H6 – The comanipulation task with the cobot is not perceived as stressful.

With this experiment we confirmed the advantages of using 6D virtual guides for
comanipulation tasks. We also showed the positive impact of our Iterative Programming
approach – divide the programming process in two phases: first positions and then
orientations. Participants found our method easier to use, more comfortable and more
intuitive than the One Shot method (that uses gravity compensation). Participants also found

30 Virtual Guide Programming Framework for Human-Robot Comanipulation

that our approach reduces physical effort and cognitive overload. Finally, the comanipulation
task with the cobot did not induce any stress on participants.

9. Conclusion
In this work we presented a kinesthetic teaching framework that uses virtual guiding
assistance to program virtual guides in an intuitive and flexible way. We proposed a novel
implementation of virtual guides using virtual mechanisms and XSplines to create 6D virtual
guide constraints. Our approach enables non-robotics experts users to create virtual guides by
demonstration. Users may also iteratively reprogram the constraints by modifying a portion
of the guide through physical interaction with the cobot. We suggested using a scaled force
control to escape the active guide in order to modify it. The experimental evaluation of the
system with several users showed an application of our approach with an assistance cobot
where the task is defined as a combination of position and orientation constraints, simulating
the complexity of some manufacturing tasks such as: glue depositing and joint installation
(automobile industry), grinding, and polishing. Furthermore, the user study demonstrates
that our iterative programming mode improves the programming time and is perceived as
intuitive, comfortable and helpful by the users. A first use case study of the use of the
Isybot cobot for the manufacturing industry using virtual guides has been presented in.52 In
future work, we plan to present a study of the impact of our 6D virtual guides programming
framework in a real-case scenario of assisted manufacturing tasks such as polishing, drilling
and deburring, and in the aeronautics industry for assembly of heavy parts.

References
1. H. C. Lin, K. Mills, P. Kazanzides, G. D. Hager, P. Marayong, A. M. Okamura, and R. Karam,

“Portability and applicability of virtual fixtures across medical and manufacturing tasks,” in
Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006.,
pp. 225–230, May 2006.

2. A. Bettini, P. Marayong, S. Member, S. Lang, A. M. Okamura, and G. D. Hager, “Vision assisted
control for manipulation using virtual fixtures,” in International Conference on Intelligent Robots
and Systems (IROS), pp. 1171–1176, 2004.

3. G. Raiola, S. S. Restrepo, P. Chevalier, P. Rodriguez-Ayerbe, X. Lamy, S. Tliba, and F. Stulp, “Co-
manipulation with a library of virtual guiding fixtures,” Autonomous Robots, vol. 42, pp. 1037–1051,
Jun 2018.

4. L. Rosenberg, “Virtual fixtures: Perceptual tools for telerobotic manipulation,” in IEEE Virtual
Reality Annual International Symposium, 1993.

5. B. Davies, M. Jakopec, S. J. Harris, F. R. Y. Baena, A. Barrett, A. Evangelidis, P. Gomes,
J. Henckel, and J. Cobb, “Active-constraint robotics for surgery,” Proceedings of the IEEE, vol. 94,
pp. 1696–1704, Sept 2006.

6. J. Colgate, M. Peshkin, and S. Klostermeyer, “Intelligent assist devices in industrial applications:
a review,” in 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003.
(IROS 2003). Proceedings, Oct. 2003.

7. S. A. Bowyer, B. L. Davies, and F. R. y Baena, “Active constraints/virtual fixtures: A survey,”
IEEE Transactions on Robotics, vol. 30, pp. 138–157, Feb 2014.

8. O. David, F.-X. Russotto, M. Da Silva Simoes, and Y. Measson, “Collision avoidance, virtual guides
and advanced supervisory control teleoperation techniques for high-tech construction: framework
design,” Automation in Construction, 2014.

9. T. Xia, S. Léonard, I. Kandaswamy, A. Blank, L. L. Whitcomb, and P. Kazanzides, “Model-based
telerobotic control with virtual fixtures for satellite servicing tasks,” in 2013 IEEE International
Conference on Robotics and Automation, pp. 1479–1484, May 2013.

10. J. Abbott, P. Marayong, and A. Okamura, “Haptic virtual fixtures for robot-assisted manipulation,”
Springer Tracts in Advanced Robotics, vol. 28, 2007.

11. P. Marayong, M. Li, A. M. Okamura, and G. D. Hager, “Spatial motion constraints: theory and
demonstrations for robot guidance using virtual fixtures.,” in ICRA, pp. 1954–1959, IEEE, 2003.

12. J. J. Abbott and A. M. Okamura, “Virtual fixture architectures for telemanipulation,” 2003.
13. L. Joly and C. Andriot, “Imposing motion constraints to a force reflecting telerobot through real-

time simulation of a virtual mechanism,” in , 1995 IEEE International Conference on Robotics and
Automation, 1995. Proceedings, May 1995.

14. Z. Pezzementi, G. D. Hager, and A. M. Okamura, “Dynamic guidance with pseudoadmittance
virtual fixtures,” in IEEE International Conference on Robotics and Automation, pp. 1761–1767,
2007.

Virtual Guide Programming Framework for Human-Robot Comanipulation 31

15. D. Aarno, S. Ekvall, and D. Kragic, “Adaptive Virtual Fixtures for Machine-Assisted Teleoperation
Tasks,” in Proceedings of the 2005 IEEE International Conference on Robotics and Automation,
2005. ICRA 2005, Apr. 2005.

16. A. Kuang, S. Payandeh, B. Zheng, F. Henigman, and C. MacKenzie, “Assembling virtual fixtures for
guidance in training environments,” in Haptic Interfaces for Virtual Environment and Teleoperator
Systems, 2004. HAPTICS ’04. Proceedings. 12th International Symposium on, pp. 367–374, March
2004.

17. V. Pruks, I. Farkhatdinov, and J.-H. Ryu, “Preliminary study on real-time interactive virtual
fixture generation method for shared teleoperation in unstructured environments,” in International
Conference on Human Haptic Sensing and Touch Enabled Computer Applications, pp. 648–659,
Springer, 2018.

18. S. Calinon, F. D’halluin, E. Sauser, D. Caldwell, and A. Billard, “Learning and Reproduction of
Gestures by Imitation,” IEEE Robotics Automation Magazine, 2010.

19. D. Lee and C. Ott, “Incremental kinesthetic teaching of motion primitives using the motion
refinement tube,” Autonomous Robots, vol. 31, no. 2-3, pp. 115–131, 2011.

20. M. J. Zeestraten, I. Havoutis, J. Silvério, S. Calinon, and D. G. Caldwell, “An approach for imitation
learning on riemannian manifolds,” IEEE Robotics and Automation Letters, vol. 2, no. 3, pp. 1240–
1247, 2017.

21. K. Kronander and A. Billard, “Learning compliant manipulation through kinesthetic and tactile
human-robot interaction,” IEEE transactions on haptics, vol. 7, no. 3, pp. 367–380, 2014.

22. A. Bettini, S. Lang, A. Okamura, and G. Hager, “Vision assisted control for manipulation
using virtual fixtures,” in Intelligent Robots and Systems, 2001. Proceedings. 2001 IEEE/RSJ
International Conference on, vol. 2, pp. 1171–1176, IEEE, 2001.

23. J. T. Nolin, P. M. Stemniski, and A. M. Okamura, “Activation cues and force scaling methods
for virtual fixtures,” in in Proc. 11th Int. Symp. Haptic Interfaces for Virtual Environment and
Teleoperator Systems, pp. 404–409, 2003.

24. R. Prada and S. Payandeh, “A study on design and analysis of virtual fixtures for cutting in training
environments,” in Eurohaptics Conference, 2005 and Symposium on Haptic Interfaces for Virtual
Environment and Teleoperator Systems, 2005. World Haptics 2005. First Joint, pp. 375–380, IEEE,
2005.

25. M. Li, M. Ishii, and R. H. Taylor, “Spatial motion constraints using virtual fixtures generated by
anatomy,” IEEE Transactions on Robotics, vol. 23, no. 1, pp. 4–19, 2007.

26. S. A. Bowyer and F. R. y Baena, “Dynamic frictional constraints for robot assisted surgery,” in
World Haptics Conference (WHC), 2013, pp. 319–324, 2013.

27. R. A. Castillo-Cruces and J. Wahrburg, “Virtual fixtures with autonomous error compensation for
human–robot cooperative tasks,” Robotica, vol. 28, no. 2, pp. 267–277, 2010.

28. S. A. Bowyer and F. R. y Baena, “Dynamic frictional constraints in translation and rotation,” in
Robotics and Automation (ICRA), 2014 IEEE International Conference on, pp. 2685–2692, IEEE,
2014.

29. S. A. Bowyer and F. R. y Baena, “Dissipative control for physical human–robot interaction,” IEEE
Transactions on Robotics, vol. 31, no. 6, pp. 1281–1293, 2015.

30. D. Zhang, L. Wang, J. Gu, Z. Li, and K. Chen, “Realization of spatial compliant virtual fixture using
eigenscrews,” in Engineering in Medicine and Biology Society (EMBC), 2012 Annual International
Conference of the IEEE, pp. 1506–1509, IEEE, 2012.

31. D. Zhang, Q. Zhu, J. Xiong, and L. Wang, “Dynamic virtual fixture on the euclidean group for
admittance-type manipulator in deforming environments,” Biomedical engineering online, vol. 13,
no. 1, p. 51, 2014.

32. L. Rozo, S. Calinon, and D. Caldwell, “Learning force and position constraints in human-robot
cooperative transportation,” in 2014 RO-MAN: The 23rd IEEE International Symposium on Robot
and Human Interactive Communication, Aug. 2014.

33. E. S. Boy, E. Burdet, C. L. Teo, and J. Colgate, “Investigation of Motion Guidance With Scooter
Cobot and Collaborative Learning,” IEEE Transactions on Robotics, 2007.

34. Y. Mollard, T. Munzer, A. Baisero, M. Toussaint, and M. Lopes, “Robot programming from
demonstration, feedback and transfer,” in 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Sept. 2015.

35. T. Kastritsi, F. Dimeas, and Z. Doulgeri, “Progressive automation with dmp synchronization and
variable stiffness control,” IEEE Robotics and Automation Letters, vol. 3, no. 4, pp. 3789–3796,
2018.

36. L. Peternel, T. Petrič, and J. Babič, “Human-in-the-loop approach for teaching robot assembly
tasks using impedance control interface,” in 2015 IEEE international conference on robotics and
automation (ICRA), pp. 1497–1502, IEEE, 2015.

37. M. Selvaggio, G. A. Fontanelli, F. Ficuciello, L. Villani, and B. Siciliano, “Passive virtual fixtures
adaptation in minimally invasive robotic surgery,” IEEE Robotics and Automation Letters, vol. 3,
no. 4, pp. 3129–3136, 2018.

38. A. M. Martin Tykal and V. Kyrki, “Incrementally assisted kinesthetic teaching for programming
by demonstration,” 2016 11th ACM/IEEE International Conference on Human-Robot Interaction
(HRI), 2016.

32 Virtual Guide Programming Framework for Human-Robot Comanipulation

39. K. Kosuge, T. Itoh, T. Fukuda, and M. Otsuka, “Tele-manipulation system based on task-
oriented virtual tool,” in , 1995 IEEE International Conference on Robotics and Automation, 1995.
Proceedings, May 1995.

40. S. Sanchez Restrepo, G. Raiola, P. Chevalier, X. Lamy, and D. Sidobre, “Iterative virtual guides
programming for human-robot comanipulation,” in IEEE International Conference on Advanced
Intelligent Mechatronics (AIM), 2017.

41. E. B. Dam, M. Koch, and M. Lillholm, Quaternions, interpolation and animation, vol. 2. Datalogisk
Institut, Københavns Universitet, 1998.

42. E. D. Wisama Khalil, Modélisation, identification et commande des robots. Paris: Hermès science,
janvier 1999.

43. N. Hogan, “On the stability of manipulators performing contact tasks,” IEEE Journal on Robotics
and Automation, 1988.

44. H. Akima, “A New Method of Interpolation and Smooth Curve Fitting Based on Local Procedures,”
J. ACM, 1970.

45. L. Joly, Commande hybride position/force pour la teleoperation: une approche basée sur des
analogies mécaniques. PhD thesis, Paris 6, 1997.

46. K. Shoemake, “Animating rotation with quaternion curves,” in ACM SIGGRAPH computer
graphics, vol. 19-3, pp. 245–254, ACM, 1985.

47. D. Eberly, “Quaternion algebra and calculus,” Magic Software Inc, 2002.
48. G. Farin, Curves and surfaces for computer-aided geometric design: a practical guide. Elsevier, 2014.
49. F. N. Fritsch and R. E. Carlson, “Monotone piecewise cubic interpolation,” SIAM Journal on

Numerical Analysis, vol. 17, no. 2, pp. 238–246, 1980.
50. A. J. Hanson, “Visualizing quaternions,” in ACM SIGGRAPH 2005 Courses, p. 1, ACM, 2005.
51. Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: A practical and powerful

approach to multiple testing,” Journal of the Royal Statistical Society. Series B (Methodological),
vol. 57, no. 1, pp. 289–300, 1995.

52. R. Farel, S. Kchir, X. Lamy, and M. Grossard, “Challenges in sustainable manufacturing
with industrial and collaborative robots: A case study,” in ASME 2018 International Design
Engineering Technical Conferences and Computers and Information in Engineering Conference,
pp. V004T05A040–V004T05A040, American Society of Mechanical Engineers, 2018.

	Introduction
	Related Work
	Definition of virtual guides
	Construction of virtual guides
	Orientation constraints
	Modification of virtual guides

	Virtual Mechanisms as Virtual Guides
	Virtual Guides as Position Constraints
	Virtual Guides as Orientation Constraints
	Interpolation between two quaternions (SLERP)
	Interpolation over a series of quaternions (SQUAD)
	Orientation constraint construction through spherical cubic interpolation

	Virtual Guides as 6D Constraints
	6D virtual guides through XSplines
	Geometric and kinematic models

	Iterative Virtual Guides Programming
	Scaled force control
	Local guide refinement of position constraints
	Refinement of orientation components
	Iterative programming of 6D virtual guides

	Experimental Evaluation
	Task definition
	Protocol
	Measurements
	Results
	Summary of the experiment

	Conclusion

