N
N

N

HAL

open science

Autonomous Navigation Strategy for Orchards Relying
on Sensor-based Nonlinear Model Predictive Control

Antoine Villemazet, Adrien Durand-Petiteville, Viviane Cadenat

» To cite this version:

Antoine Villemazet, Adrien Durand-Petiteville, Viviane Cadenat.
egy for Orchards Relying on Sensor-based Nonlinear Model Predictive Control. IEEE/ASME in-
ternational conference on Advanced Intelligent Mechatronics (AIM), Jul 2022, Sapporo, Japan.

10.1109/AIM52237.2022.9863243 . hal-03691877

HAL Id: hal-03691877
https://laas.hal.science/hal-03691877

Submitted on 9 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Autonomous Navigation Strat-

https://laas.hal.science/hal-03691877
https://hal.archives-ouvertes.fr

Autonomous Navigation Strategy for Orchards Relying on
Sensor-based Nonlinear Model Predictive Control

A. Villemazet!2, A. Durand-Petiteville’ and V. Cadenat!

Abstract—This paper deals with autonomous navigation
through orchards. It proposes a strategy based on a sensor-
based model predictive control law coupled with a spiral-based
framework allowing to deal in a similar manner with the two
main tasks: the in-row navigation and headland maneuvers.
The Model-based Predictive Control scheme allows to deal with
stability, boundaries of the actuators, and offers a solution to
switch between the different tasks. Simulation results based on
ROS and Gazebo are presented at the end of the paper.

I. INTRODUCTION

In this paper, we present a navigation strategy relying
on sensor-based model predictive control to make a robot
autonomously navigate in an orchard. This work belongs to
the movement seeking at dealing with the need of doubling the
worldwide food production by 2050 [1] via the mechanization
of the agricultural tools [2]. More specifically, one focuses on
the autonomous navigation challenge present in the mowing,
spraying, pruning, and harvesting processes. To achieve these
tasks, the robot has to autonomously drive from the entrance
of an alley to its exit, navigate in the headlands to reach
the entrance of the next row, and repeat these two steps to
cover the whole area of interest. While navigation systems
in open-field usually rely on GNSS receivers, this approach
may fail in the orchards because of the tree canopy which
may block the localization signal [3]. For this reason, orchard
navigation strategies mainly rely on embedded exteroceptive
sensors. Thus, the main approach to drive in the alleys consists
in detecting the tree rows, computing geometrical lines in the
robot’s coordinate frame and using them for guidance. There
exists numerous related works and a large spectrum of sensors
has been considered, such as vision or Lidar. Some of them
are briefly presented hereafter. In [4] and [5], a monocular
camera is used as the main sensor. In the first one, a sky-based
approach allows to compute the vehicle heading, while in the
second one, a medial axis-based machine vision is designed
to calculate the path to follow. In [6], the tree positions are
computed by detecting their shadows in a point cloud provided
by a RGB-D camera. Finally, in [7], a Time-of-flight camera
allows to compute an occupancy grid of the alley. Lidars
have also been used. In [8], the localization performances of
a particle filter and a Kalman filter are compared, while in
[9] lines, segments and circles are extracted to detect the tree
rows. Both works rely on 2D Lidar data. Despite the variety

'"Univ. de Toulouse, CNRS, UPS, Toulouse, France

2CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
{avillemaze, cadenat}[at]laas.fr

3Departamento de Engenharia de
dade Federal de Pernambuco UFPE,
adrien.durandpetiteville[at]ufpe.br

Universi-
Brazil

Mecinica,
Recife, PE,

of the approaches, none of the mentioned works deal with
the headland navigation problem. Thus, robust, accurate and
repeatable turning at the end of a row using relative positioning
information with respect to trees is very difficult[10]. A first
method proposed in [11] relies on dead reckoning with slip
compensation to perform the u-turn. [12] follows a similar
approach to execute maneuvers, despite the use of a 2D Lidar,
a camera and a tree-detection algorithm to detect the end
of the row. Another solution consists in introducing easily
distinguishable artificial landmarks at tree rows extremities
in order to detect the end of the current row, the entrance
of the next one, and localize the robot during turning, using
once again dead reckoning [13]. Finally, it was proposed to
perform the headland maneuvers (u-turn in [14] and Q-shape
turn in [15]) by following a spiral centered on the last tree of
the row. Its position is obtained thanks to a 2D Lidar and the
spiral is tracked using a non-linear output feedback controller.
These approaches thus allow to navigate in the headlands using
exteroceptive data, thus increasing the robustness and accuracy
of the maneuvers.

In this paper, we aim at continuing the works presented in
[14] and [15]. First, we propose to extend the spiral tracking
approach to the line following problem. Thus, both in-row
and headland navigation rely on the same framework: a spiral
tracking problem where the centers of the spirals are computed
based on the position of the surrounding trees. Next, the non-
linear output feedback controller is replaced by a Non-linear
Model-based Predictive Controller (NMPC) to perform the
spiral tracking. NMPC offers two advantages. First, it becomes
possible to take into account several constraints. In this work,
we include a terminal constraint to deal with the stability
of the spiral tracking, which was proven to be only local in
[14] and [15]. Moreover, we bound the control inputs to take
into account the actuator limitations. In the future, additional
constraints could be considered to deal with the presence of
obstacles or the field of view of the sensors. Second, a NMPC
scheme represents an interesting framework to deal with a
sequence of tasks. Finally, we present a task switching method
allowing to progressively modify the reference values in the
prediction horizon. Thus, it becomes possible to switch from
one task to another without creating discontinuities in the
control law.

The paper is organized as follows. In the next section, we
present the robotic system and the orchard environment. Next,
we present the proposed navigation framework and detail the
data extraction, the NMPC control and the task switching
method. Finally, simulation results are presented.

II. MODELLING

This section is devoted to the problem modelling. It presents
the considered robotic system together with the orchard and
introduces the required elements to build the navigation strat-

egy.
A. Robot modelling

(a) Agilex Hunter 2.0

robot.

(b) Robot model.

Fig. 1. The robotic system.

In this work we consider the Agilex Hunter 2.0 car-like
robotic platform (see Fig. 1(a)). It is equipped with a 270° field
of view laser range-finder positioned at its front allowing to
detect the surroundings. To model this system, let us define the
following frames (see Fig. 1(b)): F,, = (O, Xw,Yw,Zw) fixed to
the world, F, = (O,,Xy,¥r,Zr) attached to the robot, and F; =
(O1,x1,y1,21) linked to the laser. The robot pose is given by
x(t) = [x(¢),y(),08(t)] where x(z) and y(r) are the coordinates
of O, in F,, whereas 0(¢) is the angle between Xy and Xy.
The control vector is defined as U(¢) = [v(z),7(¢)] where v(7)
is the linear velocity along x; and y(¢) the angular position
of the steering angle. For such a system, with L the distance
between the front and rear wheel axes, the kinematic model

is given by:
(1) =v(t)cos(6(1))
(1) = D(t) n(6(1)) Q)
0(r) = % tan(y(1))
B. Orchard description
width centr:;)l line
x x
space[: ; ;
- * é lre.e“rank
% *

T
row
inner-row

bivol tree
I X point

headland tree

(b) General structure of an orchard.

(a) Orchard example.

Fig. 2. The orchard.

An orchard is shaped by the hand of man. Therefore, it is an
environment with a known general structure. Indeed, as shown
in Fig. 2, the trees are planted along parallel straight lines,
forming rows where the robot can navigate. The rows width

and the distance between two consecutive trees are considered
to be constant over the whole orchard and are supposed to be
roughly known. To navigate through the orchard, the robot has
to follow a row, switch to the next one and repeat these two
motions until the area is covered. In this work, it is proposed
that the first task is performed by following a row central line
defined by a set of points, named inner-row points. To realize
the row switching, the robot has to perform maneuvers in the
headlands (the free spaces in blue on Fig. 2). To do so, it is
proposed to define this task using the positions of the trees
located at the rows extremity, named pivot trees. Both these
latter and the inner-row points will be deduced from the laser-
range data, leading to a full sensor-based approach and thus a
better execution robustness. These aspects are detailed in the
next section.

ITII. NAVIGATION FRAMEWORK

This section presents the core of our contribution. It succes-
sively describes the proposed sensor-based navigation strategy,
the extraction of the required information from the sensory
data and the design of a suitable controller.

A. Approach presentation

Fig. 3. Spiral model.

To design the orchard navigation strategy, two cases are
considered: (i) in-row navigation, i.e., crossing from the en-
trance to the exit of an alley and (ii) headland navigation, i.e.,
driving from the current alley to the next one. In order to
mathematically define these two tasks, we rely on the spiral
method presented in [16]. As shown in Fig. 3, the position of
a point Oy in the robot frame F, can be expressed by its polar
coordinates Oy(r) = (au(t),d(t)), where ot) is the oriented
angle from the x, vector to the O-Os one, and d(¢) the distance
between the points O, and Oy. It is shown in [16] that if both
v(r) and o) are constant then O, describes a spiral, and the
following equation holds:

2

Thus, (2) shows that the type of spiral only depends on pa-
rameter o. Indeed, if o € [—m;0], then O, turns clockwise with
respect to Oy and counter-clockwise if a € [0;7]. Moreover, if
o] —-m—3[U]5 2, [, then the spiral is outward and inward if
o€]— %;0[10; % 537 It becomes a circle if o = i“, with a

d(t) = —vcos(a)

radius equal to d. Finally, if oo = 0, then O, follows a straight
line towards O; or away from it if o =T.
n:)vigm_i(!l path

~
N s N 4

NooX- K- X -% -

- X X=X % -
oo K- X -% -
S X XN % —

~ - ~ -

tree pivot tree Xinner-row point

Fig. 4. Example of navigation in the orchard.

This analysis allows to design the two previously mentioned
tasks. For the first one, i.e., in-row navigation, it is proposed
that the robot follows a path defined by a set of inner-row
points (see Fig. 4). To do so, we define o* =0 and d* =0
where o* and d* are the desired values respectively for o(r)
and d(t) for the considered inner-row point. Thus, regulating
or) and d(r) towards the desired values o* and d* allows
positioning the robot at a given position Oy. To cross the alley,
the robot must therefore perform a sequence of regulations
towards a point O defined for each regulation process by
the inner-row point immediately facing the robot. For the
second task, i.e., maneuvering in the headland, it is proposed
to follow a circle centered on a pivot tree (see Fig. 4). To do
so, following the analysis of (2), we impose a* = £+m/2 and
d* = r. where r. is the radius of the circle.

The adopted approach being stated, we now present the
different techniques allowing to implement this solution. First,
we detail the data processing methods used to compute the
points of interest, i.e. the inner-row points and the position of
the last trees in the row. Next, we introduce the sensor-based
NMPC scheme intended to regulate the current o(¢) and d(r)
towards their desired values a* and d*. Finally, we present
our strategy to deal with the sequence of tasks.

B. Data processing

The proposed navigation strategy relies on the position of
the trees in the robot frame. These data are computed from the
point-cloud provided by the on-board laser-range finder. The
points are first clustered using a distance criterion in order to
gather the ones related to the same tree. Next, the position of
each tree is calculated by averaging each cluster and expressed
using polar coordinates in F;.

Now that the positions of the surrounding trees are com-
puted, it is necessary to determine the lines Ay and A passing
through the left and right tree rows. To do so, we rely on the
normal parametrization proposed in [17]:

p = d;cos(o; — B) 3)

where (o;,d;) are the polar coordinates of a tree T; in F, p
the algebraic shortest distance from O, to the line and 3 the
angle from x; to the line normal (see Fig. 5).

First we consider that both tree rows are straight and
parallel, i.e., their models share the same value for while

© = d; cosla;-B) A x,
T

P))
9, 1 O,

Fig. 5. Normal parametrization of a line passing through the tree 7;.

p has two distinct values. Thus, by varying B from O to &
on the complete set of positions, the row orientation B, is
found when only two values of p are obtained. However, the
trees are never perfectly aligned and it is then impossible to
obtain only two distinct values of p. Thus, in order to find the
parameters of the two line models, it is necessary to look for
two clusters of p in place of two distinct values (see Fig. 6(b)
and 6(d)). Finally, we have to consider one special case for
the line parameters computation: mismatches at the end of the
rows when four or less trees are detected. In such cases, there
are two values B for which there exists two distinct values
of p after clustering. We select the value of B for which the
inter-clusters distance is the closest one to the row width! (see
Fig. 6(c) and 6(d)).

It is now necessary to compute Ay, the central line to Ay
and Ag. p is obtained by averaging py and pg and Py is
equal to By, to be parallel to both lines. Finally, the inner-
row points are obtained by orthogonally projecting the trees
on Ay (see Fig. 6(a) and 6(c)). Points relative to the same tree
rank are gathered when they are too close.

A, A, Ap
*K----- L
6
AP L > ﬂp cluster
N o TEEEEE e :
‘5’_ oPlg 777777 L p cluster
®,----- =2 3
a '
-6 ﬁ :
— 0, . o515 5 =
P Py Pr B (rad)

(a) 3D situation in the (b) Related (p,P) plane in the row.
TOW.

cluster
P £

A, A, A T 1

'|Inter-cluster

R - 2 ;
= | distance

E ‘

p cluster

=
Inter=cluster

~ 1
B % distance__ &1
row » Bmw: p cluster
_____ e 00 s 10 15 20 25 30
P Py PR B (rad)

(c) 3D situation at the (d) Related (p,[) plane at the end of
end of the row. the row

Fig. 6. Examples of result for data processing. For the two presented cases,
i.e. in the row and at its end, the color relies a tree position to its corresponding
inner-row point and to its projection on the (p,f) plane.

At this step, the positions of the inner-row and of the pivot
points have been computed from the laser range finder data.

The special case where the row width and tree distance are equal is not
taken into account in this work.

We now present how those information are used by the NMPC
scheme to allow the robot to navigate in the orchard.

C. Nonlinear Model Predictive Control

In order to achieve the two presented tasks, i.e., in-row and
headland navigation, we rely on NMPC and we consider the
following optimization problem:

U’ (k) = min(Jy, (O4(k),U(k))) 4)
U(k)
with
- k+Np—1 .
In, (05(k),U(Kk) = Y [0s(p)— 0" [0s(p) —O;] (5
p=k+1
subject to
O,(p+1) = £(O4(p),U(p)) (6a)
O, (k) = Oy(k) (6b)
Cc(U(.)<0 (6¢)

Thus NMPC consists in computing an optimal control se-
quence U" (k) of U(k), with U(k) = [U(k),...,U(k+Np—1)],
that minimizes the cost function Jy, over a prediction horizon
of N, steps while taking account the set of user-defined con-
straints C(U” (k)). The optimal control sequence is of length
N., which represents the control horizon. Thus, if N, > N,
then the last N, — N, predictions are all obtained using the
last control input of U (k).

Cost function: The cost function is the sum of the quadratic
difference between Oj(.), the predicted polar coordinates
(&d} of a given point of interest in a set of N, predicted
robot frames £ (.), and O} the desired coordinates of a point
Oy in the robot frame. These latter are equal to (0,0) to make
the robot cross the alley, and to (£7Z,r.) to drive the robot in
the headland.

Prediction model: In order to predict the polar coordinates
f)s(p+ 1) as shown in (6a), we proceed as follows. First, for a
command vector of the given sequence U(k) of N,, commands,
we compute the two dimensional homogeneous transformation
matrices H,|,1 such as

R T,
Hpjp+1 = [g ”f“] ™
where Ry, and T, are respe:ctively the Arotation matrix
and translation vector between F.(p) and F.(p+ 1), with
p €[l,...,Np]. They depend on Ax|, 1, Ayp|p+1 and A8, 1,
respectively the displacement along the x, and y, axis, and
the rotation around the z, axis between the frames £, (p) and
Fo(p+1). Axppi1. Aypjp+1 and AB,,, 1 can be obtained by
integrating the kinematic model given by (1) over a sampling
time 7 and considering a constant velocity vector U(p). Next,
we deduce the homogeneous Cartesian coordinates O¢(p)
from its polar ones Oy(p). It is then possible to predict the
homogeneous Cartesian coordinates of O in the predicted
frame F,(p+ 1) as follows:

Oi(p+1)=H,, ,0:(p) (8)

Finally, from O¢(p+ 1) we deduce O;(p+1). This process is
initialized using (6b) and is repeated for the N, steps.

Zero terminal equality constraint: The stability of the
NMPC schema on the finite horizon N, is obtained by adding a
zero terminal equality constraint. The respect of this constraint
at each iteration guarantees the recursive feasibility, i.e., there
exists a trajectory from the current state leading to the desired
one. It is defined as the error, in F,, between the Cartesian
coordinates (£(.),(.)) of a predicted position of the robot §(.)
and the desired one ¢zgc. The zero equality constraint is thus
expressed as:

[6(.) — dzec||=0 9)

In practice, the equality constraint is impossible to achieve and
the following inequality constraint is used instead:

16(.) — dzec||—dzpc <0

where &zpc is a user-defined threshold sufficiently small
to offer an efficient implementation of the constraint while
impacting the optimisation process as the equality constraint.
0zrc is different for each task. When regulating towards a
point, ¢zgc is set to the Cartesian coordinates of O to force the
robot to reach the point. When maneuvering in the headland,
0zEc is computed as the Cartesian coordinates of a point on the
desired spiral. This allows the robot to keep moving forward
even after reaching (a*,d™).
Input constraints: The constraints applied to the control
inputs allow to take into account the physical limits of the
actuators. Moreover, for the set of predictions, they bound the
optimization problem. They are defined as:

Pm—m

(10)

(an

mu@}go

where i € [1,N.], U; and U, the lower and upper boundaries.

D. Task switching

The presented control scheme allows to achieve two tasks:
tracking a ’flat spiral’ to reach a given position or tracking
a ’circle-shape spiral’ for the headland navigation. First, to
cross an alley, it is necessary to perform position regulations
one after the other with respect to a sequence of inner-row
points. Second, the robot has also to switch from the sequence
of position regulation tasks to the circle-shape tracking one,
and vice-versa. Thus, there exists threes cases for switching:
(1) from position regulation to position regulation, when the
robot crosses the alley, (ii) from position regulation to circle-
shape tracking, when the robot leaves the alley and enters
the headland, and (iii) from circle-shape tracking to position
regulation, when the robot leaves the headland and enters the
next alley (see Fig. 4). To make the robot switch from one task
to another one, it is necessary to update O;, a* and d*. We
now detail how the switch is performed for the three previously
mentioned cases.

For the first switching case, the robot is initially regulating
its position with respect to the first inner-row point in front of
it, here referred to as Oy, and the N, predictions are function

of the predicted polar coordinates of O;, o =0 and d* = 0.
While the robot drives towards Oj, the predicted trajectory
gets shorter and the n, last predicted positions, with n, > 1,
are equal, or extremely close, to the desired position. In such
a case, these n, predictions, which are no more useful to reach
the desired position Oy, are now used to track O,, the second
inner-row point in front of the robot. In other words, the n, last
terms of the cost function are now function of the predicted
polar coordinates of O, o* =0 and d* = 0. If necessary, the
cost function is modified at each iteration, up to obtaining a
cost function only depending of the coordinates of O;. In that
case, O; is now the main reference and the process is repeated
with O3, the next inner-point in front of the robot, until the
end of the row is reached.

For the second switching case, the robot is first navigating
with respect to the last inner-row point of the alley. Similarly
to the first case, when the robot begins to be close enough
to the point, the n, last predictions are equal, or extremely
close, to the desired position. In this case, these predictions
are used to track the circle-shape spiral centered on the pivot
tree. In other words, the n, last terms of the cost function are
now function of the predicted polar coordinates of the pivot
tree, 0 = £1/2 and d* = r.. If necessary, the cost function
is modified at each iteration, up to obtaining a cost function
only depending of the coordinates of the pivot tree.

For the last case, the robot is initially tracking the circle-
shape spiral with a terminal constraint with respect to a moving
point 0zgc belonging to the spiral. When the first inner-row
point of the next alley, here referred to as Op, becomes visible,
two changes are made. First, r, is modified to make the circle
pass through O;. Indeed, as the trees are not perfectly aligned
and spaced, it is necessary to adjust the circle radius to make
it pass through the inner-row point. O; is now candidate to
become the terminal constraint point ¢zgc. As soon as O
is closer to the robot than the current ¢zgc, it becomes the
terminal constraint point ¢zgc. This point defines the end of
the circle-shape spiral following and it is now possible to rely
on a switching strategy similar to the two other cases.

IV. SIMULATION
A. Simulation environment and parameters

The simulation robot is a car-like mobile base inspired by
the Hunter 2.0 robot (see Fig. 1(a)). Its wheelbase L is set to
0.65 meter, while the limits on the control inputs are defined
as follows: v(¢) € [0,vp] with vy = 1 m/s and Y(¢) € [—Ym,Yu]
with Yy = 0.69 rad. Finally, the embedded laser range finder
is located at the robot front, providing the necessary data to
detect the surrounding trees. Two examples of data acquisition
are shown in Fig. 7 and Fig. 8.

The orchard is composed of 4 rows made of 10 trees. The
rows are 20 meters long and 6 meters apart, whereas the
space between two successive trees is fixed to 2 meters. A
randomisation was applied on the tree positions (about 10
centimeters) and on their orientations (about 360 degrees). The
robot has to drive through the first alley, turn on the left to
reach the next alley, cross the second alley, turn to its right

Fig. 7. Data acquisition during the in-row navigation.

and finally drive through the last alley. The direction the robot
has to turn at the end of an alley are given.

Fig. 8. Data acquisition during the headland navigation.

The presented simulation is implemented with ROS and
coupled with Gazebo. The NMPC is implemented using the
Python 3.8 language and the cost function is minimised with
the SQP solver from the NLopt package [18].

Now, concerning the simulation parameters themselves, the
sampling period has been fixed to 7Ty = 0.2 second, and both
the prediction and control horizons have been taken equal to
12. Moreover, for the parameters of the NLopt, the stopping
criteria are the absolute tolerance on the cost function and the
maximum optimization time respectively set to 0.05 and 0.16
second, the zero equality constraint threshold dzgc = 0.006
and the boundaries of optimization problem are similar to the
control inputs ones.

B. Simulation results

The obtained results’ are presented in Fig. 9 where the
green vertical dashed lines represent the beginning of an in-
row navigation and the red ones the beginning of the maneuver
in the headland. In Fig. 9(a) we can see that the robot manages
to achieve the navigation task by crossing the three alleys and
maneuvering in the two headland sections, driving a total of
73.14 meters in 75.2 seconds. Regarding the control inputs, the
linear velocity computed by the optimization process remains
at its maximal value throughout the whole navigation (see
Fig. 9(b)). This is mostly due to the inclusion of the zero
terminal constraint that forces the robot to move forward to
reach the desired position. Regarding the steering angle, it
tends to O rad during the in-row navigation and to 0.2 rad
during the headland maneuvers, which is the expected value
to describe a circle of approximately 3 meters (width / 2)
(Fig. 9(b)). In Fig. 9(c), the distribution of the interest points,

2A video is also available https://youtu.be/YMKyckTEpSA

Arrival
—X

- - 0 L i L

100 200 300
) 0.5 f A: i
Start 0.0 Y W
D — [!

100 200 300
Iterations

y (rad)

(a) Robot trajectory. (b) Control inputs.

¢ 5 ; ;
10 | B W o | |

g0 | R B i ‘

B i i H h i —_ H 1

g - i 5 i i

g | H ; }: L ; ;

25 M TR \ 201 : g

2 > AUHI) S 1 : b
2 | I ! '
£, MR j,”JL,,}, 0.0 [T e
= 0 100 200 300 0 100 200 300

Iterations Iterations

(c) Distribution of the points of
interest. The blue and orange bars
denotes respectively the number
of predictions associated with the
first and second point in front of
the robot.

(d) Processing times. Blue line:
data processing time - Orange
line: NLopt solving time - Green
line: total processing time - Red
dotted line: T.

Fig. 9. Simulation results.

i.e., the tasks, is shown. During the in-row navigation, the
number of predictions assigned to the first inner-row point
decreases from its maximal value to zero. The second inner-
row points then becomes the first point of interest and the
process is repeated up to the end of the alley. Before entering
the headland (before the red dashed lines), we can see that
the pivot tree is progressively included as the second point of
interest. Once the robot starts the maneuver (red dashed lines),
the whole prediction set remains exclusively dedicated to the
circle tracking for a large period of time. It is only when the
first inner-row point can be calculated (before the green dashed
lines) that it is progressively included as the second point of
interest. When the robot enters the next alley (green dashed
lines) the transition on the prediction set is completed and it
only contains the first inner-row point as point of interest. It
should be noticed that despite the numerous switches between
the tasks, the robot manages to achieve the navigation task.
Finally, the processing times given in Fig. 9(d) show that the
proposed approach is compatible with a robotic application.
Indeed, the total processing time is lower than 100 ms, except
for a couple of peaks that could be managed with a time out,
offering a 10 hz command rate. Moreover, the solver does not
seem to be greatly disturbed by the numerous changes on the
optimization when switching tasks.

V. CONCLUSION

We have presented a navigation strategy relying on sensor-
based model predictive control to make a robot autonomously
navigate in an orchard. The proposed solution extends previous
works and offers a sole framework based on spirals to deal the
same way with both in-row and headland navigation tasks. It
also makes possible the task switching by an adequate update
of the spiral parameters and without risking to destabilize the
robot. Finally, the design of a sensor-based NMPC instead
of more classical non linear control law allows to explicitly

deal with several constraints such as stability and actuator
saturation. The obtained simulation results show the relevance
and the efficiency of the approach.

For future works, we plan to experiment this solution on
the Agilex Hunter 2.0 mobile base and test it in real orchards.
We aim also at benefiting from the NMPC control structure
to integrate new constraints allowing to avoid obstacles, thus
performing more complex navigation tasks.

REFERENCES

[1] J. A. Foley, N. Ramankutty, K. A. Brauman, E. S. Cassidy, J. S. Gerber,
M. Johnston, N. D. Mueller, C. O’Connell, D. K. Ray, P. C. West, et al.,
“Solutions for a cultivated planet,” Nature, vol. 478, no. 7369, p. 337,
2011.

[2] J.F. Reid, “The impact of mechanization on agriculture,” Bridge, vol. 41,
no. 3, pp. 22-29, 2011.

[3] M. Li, K. Imou, K. Wakabayashi, and S. Yokoyama, “Review of research
on agricultural vehicle autonomous guidance,” International Journal of
Agricultural and Biological Engineering, vol. 2, no. 3, pp. 1-16, 2009.

[4] J. Radcliffe, J. Cox, and D. M. Bulanon, “Machine vision for orchard
navigation,” Computers in Industry, vol. 98, pp. 165171, 2018.

[5] S. Opiyo, C. Okinda, J. Zhou, E. Mwangi, and N. Makange, “Medial
axis-based machine-vision system for orchard robot navigation,” Com-
puters and Electronics in Agriculture, vol. 185, p. 106153, 2021.

[6] A. Durand-Petiteville, E. Le Flecher, V. Cadenat, T. Sentenac, and
S. Vougioukas, “Tree detection with low-cost three-dimensional sensors
for autonomous navigation in orchards,” IEEE Robotics and Automation
Letters, vol. 3, no. 4, pp. 3876-3883, 2018.

[7] J. Gai, L. Xiang, and L. Tang, “Using a depth camera for crop row
detection and mapping for under-canopy navigation of agricultural
robotic vehicle,” Computers and Electronics in Agriculture, vol. 188,
p. 106301, 2021.

[8] P. M. Blok, K. van Boheemen, F. K. van Evert, J. IJsselmuiden,
and G.-H. Kim, “Robot navigation in orchards with localization based
on particle filter and kalman filter,” Computers and Electronics in
Agriculture, vol. 157, pp. 261-269, 2019.

[9]1 A. Danton, J.-C. Roux, B. Dance, C. Cariou, and R. Lenain, “De-

velopment of a spraying robot for precision agriculture: An edge

following approach,” in 2020 IEEE Conference on Control Technology

and Applications (CCTA). 1IEEE, 2020, pp. 267-272.

S. G. Vougioukas, “Agricultural robotics,” Annual Review of Control,

Robotics, and Autonomous Systems, vol. 2, pp. 365-392, 2019.

V. Subramanian and T. F. Burks, “Autonomous vehicle turning in the

headlands of citrus groves,” in 2007 ASAE Annual Meeting. American

Society of Agricultural and Biological Engineers, 2007, p. 1.

G. Bayar, M. Bergerman, A. B. Koku, and E. Ilhan Konukseven,

“Localization and control of an autonomous orchard vehicle,” Computers

and Electronics in Agriculture, vol. 115, pp. 118-128, 2015.

[13] J. Zhang, S. Maeta, M. Bergerman, and S. Singh, “Mapping orchards

for autonomous navigation,” in 2014 Montreal, Quebec Canada July

13-July 16, 2014. American Society of Agricultural and Biological

Engineers, 2014, p. 1.

A. Durand-Petiteville, E. Le Flecher, V. Cadenat, T. Sentenac, and

S. Vougioukas, “Design of a sensor-based controller performing u-turn

to navigate in orchards,” in International Conference on Informatics in

Control, Automation and Robotics, vol. 2, 2017, pp. 172-181.

E. Le Flecher, A. Durand-Petiteville, F. Gouaisbaut, V. Cadenat, T. Sen-

tenac, and S. Vougioukas, “Nonlinear output feedback for autonomous

u-turn maneuvers of a robot in orchard headlands,” in International Con-
ference on Informatics in Control, Automation and Robotics (ICINCO),

2019.

K. N. Boyadzhiev, “Spirals and conchospirals in the flight of insects,”

The college mathematics Journal, vol. 30, no. 1, p. 23, 1999.

P. E. H. R. O. Duda, “Use of the hough transformation to detect lines

and curves in pictures,” Communications of the ACM, vol. 15, no. 1, pp.

11-15, 1972.

S. G. Johnson, “The nlopt nonlinear-optimization package,” 2020.

[Online]. Available: http://github.com/stevengj/nlopt

[10]

(11]

(12]

[14]

[15]

[16]

[17]

[18]

