
1

Large neighborhood search for a multi-mode resource
constrained scheduling problem with resource leveling

objective

Tom Portoleau1,2, Christian Artigues1, Tamara Borreguero Sanchidrián3,4, Alvaro García
Sánchez4, Miguel Ortega Mier4 and Pierre Lopez1

1 LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
{tom.portoleau,christian.artigues,pierre.lopez}@laas.fr

2 IRIT, CNRS and University of Toulouse, France
3 AIRBUS. Paseo John Lennon S/N. Getafe (28906) Spain

tamara.borreguero@airbus.com
4 Industrial Engineering and Logistics Research Group, ETSII, Universidad Politécnica de

Madrid. José Gutierrez Abascal 2 (28006) Madrid
{alvaro.garcia,miguel.ortega.mier}@upm.es

Keywords: multi-mode resource-constrained project scheduling, resource leveling, con-
straint programming, large neighborhood search.

1 Introduction

The aeronautical industry has experienced an in-depth transformation in the last years.
The demand for aircrafts has increased but also the complexity and customization of the
products. As a result, aircraft manufacturers have had to produce more units of more
complex aircrafts while trying to reduce time to market, production lead times and costs. In
line with these objectives, this paper proposes solution methods for the detailed scheduling
of stations in an aircraft final assembly line. This problem, described in (Borreguero et.
al. 2021), can be classified as a multi-mode resource-constrained project scheduling problem
(MMRCPSP) with a resource leveling objective. In (Gerhards 2020) the author proposes a
constraint programming (CP) model to solve the multi-mode resource investment problem
(MMRIP). Formally, this problem is very similar to the assembly line scheduling problem
at stake here. The notable differences are, firstly, the presence of non-renewable resources,
and secondly, a slightly different objective function, as it considers a weighted sum of the
maximums of the resources used, while the assembly line scheduling problem considers
the maximum peak objective without weights. We propose a large neighborhood search
(LNS) heuristic with neighborhoods tailored to the resource-leveling objective, with the
aim to improve the performance of the CP exact methods and of the heuristic approach
currently used by the company on large-scale industrial instances. As a result, the large-
neighborhood search approach significantly improves the heuristic currently used by the
aircraft manufacturer for assembly line scheduling. It also brings significant improvements
to the method proposed by (Gerhards 2020) in the multimode resource investment problem
when short CPU times are required.

2 Problem statement and constraint programming formulation

In the assembly line scheduling problem the maximum cycle time CT is fixed. We have a
set of tasksW with a release date 0 and a due date CT . We have a set P of operator profiles
and a set A of station areas. Each task w ∈ W can be performed by a subset Pw ⊆ P of
operators profiles and by a number of operators that must lie inMw = {MNw, . . . ,MXw}.
The baseline duration of a task w ∈ W is denoted by Dw. If task w ∈ W is performed

2

by o ∈ Mw operators of profile p ∈ Pw, we apply a reduction coefficient Γopw such that
its duration is equal to ΓopwDw. Furthermore, each task is performed in an area indicated
by Aaw = 1 if task is performed in area a ∈ A. Each area has a maximum capacity of Ca

operators. There is also a set PR of standard precedence constraints such that (w,w′) ∈ PR
means that w′ cannot start before the end of w, a set NP of non-overlapping constraints
between pairs of tasks such that {w,w′} ∈ NP means that w and w′ cannot be processed
in parallel and a set MT of maximal time lag constraints such that (w,w′) ∈ MT means
that the start time of w′ must not exceed the end time of w plus a fixed time lag ∆.

We formally define the problem through the presentation of its constraint programming
formulation. For modeling and solving, we use the CP Optimizer constraint-based schedul-
ing library (Laborie et. al. 2018). Below we refer to the basic modeling elements we use.
We refer to (Laborie et. al. 2018) for a more detailed definition of these elements. Each
task w ∈W is modeled as an interval decision variable Tw. Each possible mode of a task
(number of operators o and resource profile p) is modeled as an interval optional deci-
sion variable Twop linked to the task by an alternative constraint. Precedence constraints
and maximal time lag constraints are modeled by endBeforeStart and startBeforeEnd
constraints, respectively. Task consumption on a resource is modeled as a pulse function.
We use also noOverlap constraints for constraints related to set NP . The model comes as
follows:

min
∑

p∈P np
dvar interval Tw in 0..CT, ∀w ∈W
dvar interval optional Twop in 0..CT size ΓopwDw, ∀w ∈W, p ∈ Pw, o ∈Mw

alternative(Tw, (Twop)p∈Pw,o∈Mw
), ∀w ∈W

endBeforeStart(Tw, Tw′), ∀(w,w′) ∈ PR
startBeforeEnd(Tw′ , Tw,−∆), ∀(w,w′) ∈MT∑

w∈W |Aaw=1

∑
p∈Pw

∑
o∈Mw

pulse(Twop, o)≤ Ca, ∀a ∈ A∑
w∈W,o∈Mw

pulse(Twop, o)≤ np, ∀p ∈ P
noOverlap(Tw, Tw′), ∀{w,w′} ∈ NP

3 A large neighborhood search approach

LNS is generally applied to scheduling problems where the objective is to minimize a
time-related criterion or an outsourcing cost. A typical large neighborhood of a solution in
this context consists in selecting a time interval and fixing all activities scheduled outside
the interval and compacting as much as possible the activities scheduled over the interval, as
it was done for the RCPSP in (Palpant et. al. 2004). Notably, the default search of the IBM
CP Optimizer we used in the previous section also implements an LNS method based on this
principle (Laborie et. al. 2018). This is not what we should do for the considered problem,
as compacting a schedule as much as possible would inevitably increase the resource usage.
In the problem considered here, we aim at minimizing the maximal use of a given resource.
We aim at identifying the set of tasks that are involved in the maximal resource peaks.
Consider a solution S where each task w ∈ W has start time S̄w ∈ [0, CT], a number
of assigned operators ōw ∈ Mw for operator profile p̄w ∈ Pw and a maximal number of
operators n̄p for each operator profile p ∈ P . The set of peak tasks is the set of all critical
sets as defined below:

Definition 1. A critical set W̃ is a set of overlapping tasks that reaches the maximal
number of operators for at least one profile p ∈ P . More formally: ∃t ∈ [0, CT], ∃p ∈ P ,
∀w ∈ W̃ , p̄w = p, S̄w ≤ t < S̄w + Γōw p̄wwDw and

∑
w∈C ōw = n̄p.

3

In fact, the resource usage only changes at the beginning or the end of a task. Let T
denote the set of different start and end times of the tasks. The set of all critical sets can be
enumerated by a sweep algorithm that tests the condition of definition 1 for each set built
by the task that overlaps each time point in T . Algorithm 1 describes the sweep algorithm
that computes the set of all peak tasks C in O|W |2|P | time.

Algorithm 1 The sweep algorithm for peak task computation
Require: A problem P and a solution S = {(S̄w, p̄w, ōw)w∈W , (n̄p)p∈P }
C ← ∅
T ← {S̄w|w ∈W} ∪ {S̄w + Γōw p̄wwDw|w ∈W}
for p ∈ P do

for t ∈ T do
W̃ ← ∅; cons← 0
for w ∈W do

if p̄w = p and S̄w ≤ t < S̄w + Γōw p̄wwDw then
W̃ ← W̃ ∪ {w}; cons← cons+ ōw

end if
end for
if cons = n̄p then
C ← C ∪ W̃

end if
end for

end for
return C

In order to generate a high quality neighborhood, we let free all the tasks that contribute
to the maximal use of the objective resource (the ones belonging to the peak set computed
by the sweep algorithm) and the tasks that must precede them by a precedence constraint,
and we fix the others. We then solve this new problem given the bound provided by the
value of the initial solution and the constraints induced by the fixed tasks, within a limited
time. If a solution has been found, it replaces the initial solution as the best solution
and we start over. However, if no solution was found, we solve a new problem, fixing
fewer tasks and setting a greater solving time, using a self-adaptive principle (Palpant
et. al. 2004). To be more specific, each time the solver is unable to find a solution, we
fix 10% less activities and add 10 seconds to the maximum solving time. These values
were determined empirically using the instances from the benchmark considered in the
previous sections. In our implementation, we use CP Optimizer as a black box to solve
different generated subproblems using the constraint programming model described in
Section 2. Algorithm 2 provides the pseudo-code of our implementation of the LNS method
for the aircraft assembly line scheduling problem. Note that presenceOf(Twop) in the CP
Optimizer language is a constraint that enforces the presence of the optimal task Twop,
while startAt(Tw, t) is a constraint that fixes the start time of task Tw to value t. These
two constraints are used to fix the modes and the start times of the tasks in W \W ′ while
the tasks in W ′ are freed and form the LNS subproblem. Note that τ ′ is a value much
lower than τ giving the amount of time devoted to the CP solver to get an initial solution.

4 Experimental results

We first compare LNS with CP optimizer and with a heuristic used by the aircraft
manufacturer (Borreguero et. al. 2021) on a set of 7 industrial instances having from 90 up

4

Algorithm 2 LNS for the aircraft assembly line scheduling problem
Require: An aircraft assembly line scheduling problem P in the form of a constraint programming
model (Section 2) and a time limit τ
Initialize solution S∗ = {(S∗w, p∗w, o∗w)w∈W , (n∗p)p∈P } by solving P with CP Optimizer under
time limit τ ′

πratio ← 100; τbase ← 10; τinc ← 0
while elapsed time < τ do
W̃ ← sweep(P,Sbest) (get the peak tasks)
W ∗ ← W̃ ∪ {W ′ ∈W |(w′, w) ∈ PR} (add the tasks that precede them)
W ′ ← a subset of W ∗ where we randomly select πratio% tasks
P ′ ← P
for w ∈W \W ′ do
P ′ ← P ′ ∪ presenceOf(Two∗wp∗w)
P ′ ← P ′ ∪ startAt(Tw, S

∗
w)

end for
P ′ ← P ′ ∪ {

∑
p∈P np <

∑
p∈P n

∗
p }

Get solution S = {(S̄w, p̄w, ōw)w∈W , (n̄p)p∈P } by solving P ′ with CP Optimizer under time
limit min(tbase + tinc, T − elapsedtime)
if

∑
p∈P n̄p <

∑
p∈P n

∗
p then

S∗ ← S; τinc ← 0; πratio ← 100
else if S is empty then
τinc ← τinc + 10; πratio ← πratio − 10

end if
end while
return S∗

to 721 tasks. For a 15 min CPU time limit, LNS improves the CP optimizer solutions for 5
out of 7 instances from 5.2% to 17.6%. Compared to the heuristic used by the manufacturer,
the improvement on 4 out of 7 instances goes from 4.5% to 27.7% and for one instance
LNS finds a solution while the heuristic is unable to find one. We also compare LNS to the
CP optimizer model proposed in (Gerhards 2020) on the MMRIP. The results displayed
in Table 1 for different CPU times and numbers of tasks (from 30 to 100) show significant
improvements. Detailed results are given in (Borreguero et. al. 2021).

Table 1. LNS improvement over CP (Gerhards 2020) for the MMRIP

Instance set 1 min 15 min 30 min
MMRIP30 5.27% 11.15% 0.82%
MMRIP50 5.61% 15.47% 1.14%
MMRIP100 10.58% 17.46% 3.40%

References

Borreguero T., Portoleau T., Artigues C., García A., Ortega M., 2021, “Exact and heuristic
methods for an aeronautical assembly line time-constrained scheduling problem with mul-
tiple modes and a resource leveling objective”, LAAS report 21247, LAAS-CNRS, Toulouse,
https://hal.laas.fr/hal-03344445.

Gerhards P., 2020, “The multi-mode resource investment problem: a benchmark library and a
computational study of lower and upper bounds", OR Spectrum, Vol. 42, Num. 4, pp. 901-
933.

Palpant M., Artigues C., Michelon P., 2004, “LSSPER: Solving the resource-constrained project
scheduling problem with large neighbourhood search”, Annals of Operations Research, Vol.
131, Num. 1-4, pp. 237-257.

Laborie P., Rogerie J., Shaw P.,Vilím P., 2018, “IBM ILOG CP Optimizer for scheduling”, Con-
straints, Vol. 23, Num. 2, pp. 210-250.

