Integration of Zero Crossing Method in a Non-Uniform Sampling System using Optical Feedback Interferometry
Hajira S Bazaz, Mohaimen M Fatimah, Layba Asim, Usman Zabit, Olivier D Bernal

To cite this version:
Hajira S Bazaz, Mohaimen M Fatimah, Layba Asim, Usman Zabit, Olivier D Bernal. Integration of Zero Crossing Method in a Non-Uniform Sampling System using Optical Feedback Interferometry. IEEE Sensors Journal, 2023, 23 (13), pp.14397 - 14405. 10.1109/JSEN.2023.3275702. hal-04142296

HAL Id: hal-04142296
https://hal.laas.fr/hal-04142296
Submitted on 30 Jun 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Integration of Zero Crossing Method in a Non-Uniform Sampling System using Optical Feedback Interferometry

Hajira S. Bazaz$^1$, Mohaimen M. Fatimah$^1$, Layba Asim$^1$, Usman Zabit$^1$, and Olivier D. Bernal$^2$

$^1$Department of Electrical Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan
$^2$LAAS-CNRS, Université de Toulouse, CNRS, INP, Toulouse, France

DOI: 10.1109/JSEN.2023.3275702

Abstract—In this paper, a zero-crossings based method is proposed to improve the displacement sensing performance of non-uniform sampling (NUS) theory based use of optical feedback interferometry (OFI) under moderate optical feedback regime. The incorporation of zero-crossings as phase quantization levels allows doubling the samples for subsequent interpolation, without using any dithering scheme. When compared to the simple dither-free NUS method, the proposed method yields an overall improvement in RMS error over a wide range of target motion amplitudes and frequencies, with maximum improvement at low amplitudes. Experimentally, an improvement of up to 87% is obtained in precision as compared to simple NUS system for an OFI sensor with laser wavelength of 785 nm.

Index Terms—Non-uniform sampling, Optical feedback interferometry, Self-mixing, Zero crossings, Displacement measurement

I. INTRODUCTION

OPTICAL feedback interferometry (OFI) is a well-known method for displacement measurement using a laser diode (LD) as it benefits from its inherent self-aligned property as well as its low-cost [1], [2]. As a result, OFI has been applied in a wide range of sensing applications, including the measurement of distance [3], displacement [4], velocity [5], acceleration [6], flow [7], temperature [8], strain [9] vibration [10] and bio-sensing [11].

To retrieve the displacement information embedded in both the amplitude modulation (AM) and frequency modulation (FM) channel of OFI signals [12], different techniques have been developed over the years from basic fringe counting [13] to more advanced ones such as fringe-locking [14], fringe duplication [15] and phase unwrapping [16]–[19].

An open-loop approach based on the inherent non-uniform sampling (NUS) capability of the SM interferometer was recently proposed to recover sub-$\lambda_0/2$ displacement with precision down to the nanometer in the moderate feedback regime [4], [20] which corresponds to an optical feedback factor $C \in [1, 4.6]$. In this optical regime where the fringes are sawtooth like, optical feedback interferometers behave as an inherent NUS system with its own embedded phase level crossing detector. Consequently, it allows to perform compressed sensing as the displacement can be reconstructed from the information related to the fringe discontinuity locations only. The main limitation of the NUS method [4] is its degraded performance when the remote target’s displacement amplitude is such that there are not sufficient number of fringes needed to satisfy Nyquist’s sampling criterion [4]. So, when remote displacement amplitude becomes comparable to $\lambda_0/2$ then NUS based interpolation becomes imprecise. This limitation was addressed in [4] by using dithering techniques to increase the number of sampling events (or number of fringes). For example, [4] added a mechanical dither by vibrating the LD via an external shaker. However, this resulted in a bulky laser-shaker setup with a limited system bandwidth. In another work [20], phase dithering was used to introduce additional fringes by modulating the LD driving current instead of using an external shaker. Note that in both the cases [4], [20], the effect of dithering had to be removed before actual remote target’s motion could be measured.

This paper presents an alternate solution to dithering for improving the resolution and precision of the NUS-based approach. The proposed method incorporates the zero-crossings (ZC) of the OFI signal in addition to the fringe discontinuities to double the samples for interpolation. The aim is to increase the precision of recovered displacement around its local maxima and minima, especially when displacement amplitudes are comparable to $\lambda_0/2$.

The rest of the paper is organized as follows. Section
II provides a brief overview of the fundamentals of OFI and the theory behind NUS based OFI. Section III presents the methodology of the proposed zero-crossings based NUS method. In Section IV, the proposed method is tested on simulated signals and parametric sweeps have been presented to show its performance. Experimental results are presented in Section V followed by Discussion and Conclusion.

II. OFI AND NON-UNIFORM SAMPLING - REVIEW

A. OFI Overview

The basic principles of OFI have been thoroughly established, such as in [1]. A brief overview is as follows.

OFI involves directing a laser beam, with wavelength $\lambda_0$, at a remote target vibrating with a displacement $D(t)$, which then back-scatters the beam back into the laser cavity. The electrical and optical characteristics of the laser cavity are altered as a result of this feedback. The modulated OOP signal $P(t)$ is given in [1] as

$$P(t) = P_0[1 + m \cos(\phi_F(t))]$$

where $P_0$ is the emitted optical power under free-running conditions, $m$ is the modulation index, and $\phi_F(t)$ is the laser phase with optical feedback. The signal $P_N(t)$ is the normalized OOP, given by

$$P_N(t) = \cos(\phi_F(t))$$

$\phi_F(t)$ is related to the laser phase without feedback $\phi_0(t)$ through the Lang-Kobayashi excess phase equation [21], given as

$$\phi_0(t) = \phi_F(t) + C \sin(\phi_F(t) + \theta)$$

where $C$ is the optical feedback coupling factor [22] or Acket’s parameter [23], $\theta = \arctan(\alpha)$ and $\alpha$ is the linewidth enhancement factor or Henry’s factor [24]. These principal equations allow measuring $D(t)$ using the detected OOP signal since $\phi_0(t)$ can be expressed as

$$\phi_0(t) = \frac{4\pi}{\lambda_0} D(t)$$

B. Overview of OFI Non-Uniform Sampling

It has been shown in [4] that an SM interferometer can be considered as an inherent NUS system with its own built-in phase-level crossing detector. The phase quantization levels (PQLs) are represented by $\phi_{0D}(k)$ that occur at the fringe discontinuity points of the OOP signal. We refer to $\phi_{0D,R}(k)$ and $\phi_{0D,F}(k)$ as the phase $\phi_0$ when it is increasing and decreasing, respectively. In terms of $\phi_F$, the PQLs are completely defined in [25] as

$$\phi_{F,D,R}(k) = k\pi - \theta + \beta$$

$$\phi_{F,D,F}(k) = (k+2)\pi - \theta - \beta$$

where $k$ is an even integer and $\beta = \arctan(-\frac{1}{C})$. Substituting (5) and (6) in (3) gives us the PQLs in terms of $\phi_0$:

$$\phi_{0D,R}(k) = k\pi - \theta + \beta + \sqrt{C^2 - 1}$$

It has been shown in [4] that the values of $\phi_0$ at rising phase differ from those at falling phase by an amount, denoted as $\Delta \phi$, given by

$$\Delta \phi = \beta + \sqrt{C^2 - 1} - \pi$$

It was demonstrated in [26] that $C$ can be retrieved by estimating this phase level difference $\Delta \Phi$. Thus, the simple NUS based approach described in [4] interpolates just these discontinuity points to recover the phase signal $\phi_0(t)$. This interpolated signal is then used in [4] to recover $D(t)$, as shown in Fig. 1 (b).

It was discussed in [4] that the existing NUS method does not provide high measurement precision when the remote target motion is of low amplitude because the corresponding OFI signal has too few fringe discontinuity points available. The concept of dithering (via laser diode current modulation or mechanical dithering) [4], [20] was then used to increase the number of samples (by increasing the number of fringes) so that interpolation performance could be increased. The effect of introduced dithering then had to be subtracted before actual target motion could be recovered, as schematized in Fig. 2.

III. PROPOSED ZERO-CROSSING BASED NUS METHOD

In this paper, we propose to incorporate zero-crossings of the OFI signal in addition to the previously used fringe
discontinuities in the time-phase pairs. This results in doubling the number of detected samples/events so that better interpolation performance can be achieved for the same target motion without resorting to the use of dithering.

To achieve this objective, we need to first derive the laser phase values \( \phi_{F,k} \) and \( \phi_{O,k} \) at the zero-crossing points in a given moderate feedback regime OFI signal.

As per \cite{4}, the OFI signal, or OOP, is zero whenever

\[
\phi_{F,k} = \frac{(2k-1)\pi}{2}
\]

where \( k \) is an even integer. Incorporating (10) into (3), we get the phase \( \phi_{O,k} \) at zero-crossings for \( C > 1 \):

\[
\phi_{O,k} = \frac{(2k-1)\pi}{2} - C \cos(\theta)
\]

We then find the phase difference between the zero-crossings as in (11) and discontinuities as in (7) and (8) for increasing phase and decreasing phase, respectively:

\[
\Delta \phi_{DZ,R} = \phi_{O,k,R}(k) - \phi_{O,k}(k) = \frac{\pi}{2} - \theta + \beta + C \cos(\theta) + \sqrt{C^2 - 1}
\]

\[
\Delta \phi_{DZ,F} = \phi_{O,k,F}(k) - \phi_{O,k}(k) = \frac{3\pi}{2} - \theta - \beta + C \cos(\theta) - \sqrt{C^2 - 1}
\]

Note that \( C \) is needed in the derived expressions. Here, the \( C \) estimation method proposed in [26] is used, as shown in Fig. 3. The impact of error in \( C \) estimation on the reconstructed displacement has been analyzed in the following section.

Expressions (12) and (13) are then used in the ZC quantizer shown in Fig. 3 to incorporate the zero-crossing time-stamps \( t_{k,Z} \) provided by the zero-crossing detector. These new time-stamps are then incorporated alongside the previously obtained time-phase pairs \([t_{k}, \phi_{k}]\). This results in doubling the number of time-phase pairs \([t'_{k}, \phi'_{k}]\) as compared to the simple NUS method, as shown in Fig. 4 (c). All of these are then spline-interpolated to reconstruct the phase signal \( \phi_0(t) \) which provides displacement via (4). This process is schematized in Fig. 3.

IV. SIMULATED RESULTS

The newly derived ZC method and the simple dither-less NUS method \cite{4} were separately applied to recover the simulated displacement of a remote target vibrating at a frequency, \( f_s \), of 32 Hz with amplitude, \( A_s \), of 0.5 \( \mu \)m such that \( C = 2 \), \( \alpha = 5 \), \( \lambda_0 = 785 \) nm, and sampling frequency, denoted as \( F_s \), is 10 MHz. Using the reference displacement, error in reconstruction, denoted as \( \epsilon \), is computed for the two methods, as plotted in Fig. 4 (b). Comparison of the two methods indicates that the new method results in a 70% reduction in root-mean-square (RMS) error, \( \epsilon_{rms} \). Also, it can be observed in Fig. 4 that the new method is most beneficial around the so-called humps of the OFI signal (or around the maxima and minima of the remote vibration), where the previous method \cite{4} lacks samples for interpolation.

A detailed analysis of measurement performance of the proposed method, as a function of various system parameters, is now presented below.
A. Effect of C, Displacement Amplitude, and Frequency

Fig. 5 presents a comparison of simulation based RMS error between the proposed ZC method and the simple NUS method [4] as a function of C and A<sub>t</sub>. As compared to the simple NUS method, a 25% to 95% improvement in performance is observed with the ZC method for 0.4 μm ≤ A<sub>t</sub> ≤ 12 μm when λ<sub>0</sub> = 785 nm, equivalent to an OFI signal with approximately 2 to 60 fringes per cycle. A 50% reduction in ϵ<sub>rms</sub> is noted when A<sub>t</sub> = 0.4 μm, analogous to an OFI signal with approximately 2 fringes per cycle. Moreover, ϵ<sub>rms</sub> as low as 0.0645 nm is obtained over the defined range when using the proposed ZC method for C = 1 and A<sub>t</sub> = 11.2 μm.

Similarly, Fig. 6 features the simulation based ϵ<sub>rms</sub> comparison as a function of A<sub>t</sub> and f<sub>t</sub>. Here, A<sub>t</sub> spans 0.4 μm ≤ A<sub>t</sub> ≤ 12 μm while f<sub>t</sub> ranges over 2 Hz ≤ f<sub>t</sub> ≤ 110 Hz. F<sub>s</sub> = 10 MHz, while λ<sub>0</sub> = 785 nm, C = 2 and α = 5. Approximately 50% improvement in ϵ<sub>rms</sub> is observed for the specified ranges. A maximum of 94% improvement in ϵ<sub>rms</sub> is detected for A<sub>t</sub> = 2 μm and f<sub>t</sub> = 50 Hz. Furthermore, ϵ<sub>rms</sub> varies from a minimum value of 0.0078 nm, when A<sub>t</sub> = 13.2 μm and f<sub>t</sub> = 10 Hz, to a maximum value of 8.95 nm, when A<sub>t</sub> = 0.4 μm and f<sub>t</sub> = 10 Hz while using the ZC method.

B. Effect of error in C estimation

The new ZC method requires estimation of C and α to find the phase difference between the zero-crossing and the fringe discontinuity [12, 13]. So, simulations were conducted to test the robustness of the ZC method against possible errors in C and α estimations.

First, the impact of the C estimation error is analyzed. The proposed method was tested for two cases of C i.e., the original simulated OFI signal P<sub>org</sub>(t) has C = 1.5 and 3. The value of C, i.e., the estimated C value used in reconstruction, was varied by 2%, 5%, 10%, 20%, and 50% to recover the displacement. This was then compared with the original displacement to calculate the RMS error shown in Table II and percentage improvement as compared to the NUS method is shown in Table III. Here, the percentage improvement is defined as:

$$\% \text{Imp.} = \frac{\epsilon_{\text{rms, NUS}} - \epsilon_{\text{rms, ZC}}}{\epsilon_{\text{rms, NUS}}} \times 100$$ (14)

<table>
<thead>
<tr>
<th>% Error in C</th>
<th>C = 1.5</th>
<th>C = 3.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.50</td>
<td>4.4</td>
</tr>
<tr>
<td>5</td>
<td>1.53</td>
<td>4.1</td>
</tr>
<tr>
<td>10</td>
<td>1.58</td>
<td>4.0</td>
</tr>
<tr>
<td>20</td>
<td>1.65</td>
<td>4.5</td>
</tr>
<tr>
<td>50</td>
<td>2.25</td>
<td>7.2</td>
</tr>
<tr>
<td></td>
<td>19.0</td>
<td>45.0</td>
</tr>
</tbody>
</table>

The tabulated results show that for C = 1.5 there is no significant change in RMS error for up to 20% error in estimation of C but in the case of C = 3, there is a significant change in the RMS error for even 2% error in estimation of C. It is because of the shape and hysteresis in the OFI signal. For C = 1.5 the separation between the zero-crossing and fringe discontinuity is considerable (see Fig. 7 (a)) but as the value of C increases, the inter-fringe distance decreases which results in closely detected points on the rising phase (see Fig. 7 (c)) and this causes poor interpolation of the signal (see Fig. 7 (d)). In the second case, the error is caused by the detection of a fringe and discontinuity close to the hump. It is also visible in the second case that the simple NUS method gives better results for 20% or more inaccuracy in C estimation (see Table III). Here, a negative percentage improvement indicates that the NUS method performed better than the proposed method. For
TABLE II
SIMULATION BASED PERCENTAGE IMPROVEMENT IN RMS ERROR OF THE PROPOSED ZC METHOD AS COMPARED TO THE SIMPLE NUS METHOD AS A FUNCTION OF ERROR IN $C$ FOR A TARGET MOTION OF 0.5 $\mu$m AMPLITUDE AT 32 Hz AND $\alpha = 3$.

<table>
<thead>
<tr>
<th>% Error in $C$</th>
<th>$C = 1.5$</th>
<th>$C = 3.0$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$%$ Imp.</td>
<td>$%$ Imp.</td>
</tr>
<tr>
<td>0</td>
<td>1.50</td>
<td>3.00</td>
</tr>
<tr>
<td>2</td>
<td>1.53</td>
<td>3.06</td>
</tr>
<tr>
<td>5</td>
<td>1.58</td>
<td>3.15</td>
</tr>
<tr>
<td>10</td>
<td>1.65</td>
<td>3.30</td>
</tr>
<tr>
<td>20</td>
<td>1.80</td>
<td>3.60</td>
</tr>
<tr>
<td>50</td>
<td>2.25</td>
<td>4.50</td>
</tr>
</tbody>
</table>

example, this occurs when $C$ value is large and a large error in $C$ estimation also occurs. This happens due to the fact that for a large value of $C$, the distance between the ZC and the discontinuity is small and therefore any mis-estimation of $C$ can have a higher impact on the reconstructed displacement. Based on Table II, it appears that an accuracy of up to 5% in $C$ estimation should be sufficient to achieve high measurement precision with the proposed ZC method as compared to the NUS method.

C. Effect of error in $\alpha$ estimation

Similarly, tests were conducted to see the effect on RMS error in case there is error in estimation of $\alpha$. The original OFI signal has $\alpha = 3$. RMS error was calculated after using different values of $\alpha$, reported in Table III. Small inaccuracy in $\alpha$ does not cause much change in RMS error but large inaccuracy in $\alpha$ causes significant change in RMS error. Hence, for better measurement performance, accurate estimation of $\alpha$ is desired.

TABLE III
SIMULATION BASED RMS ERROR RESULTS AND PERCENTAGE IMPROVEMENT OF THE PROPOSED ZC METHOD AS COMPARED TO THE SIMPLE NUS METHOD AS A FUNCTION OF ERROR IN $\alpha$ FOR A TARGET MOTION OF 0.5 $\mu$m AMPLITUDE AT 32 Hz WITH $C = 1.5$ AND $\alpha = 3$.

<table>
<thead>
<tr>
<th>$\alpha$ (nm)</th>
<th>$\epsilon_{rms}$ (nm)</th>
<th>% Imp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0</td>
<td>4.4</td>
<td>88.8</td>
</tr>
<tr>
<td>3.3</td>
<td>7.0</td>
<td>82.0</td>
</tr>
<tr>
<td>3.6</td>
<td>9.5</td>
<td>75.5</td>
</tr>
<tr>
<td>4.0</td>
<td>12.4</td>
<td>68.0</td>
</tr>
<tr>
<td>5.0</td>
<td>17.9</td>
<td>53.9</td>
</tr>
<tr>
<td>6.0</td>
<td>21.7</td>
<td>44.2</td>
</tr>
<tr>
<td>7.0</td>
<td>24.4</td>
<td>37.1</td>
</tr>
</tbody>
</table>

D. Effect of time-varying $C$

A practical issue that arises in OFI is the occurrence of speckle which manifests itself as a time-varying $C$ such as caused by variation in roughness of the remote target surface [27]. For the proposed ZC method to perform well in a real-world scenario, it needs to be robust to possible variations in $C$ due to speckle. So, simulations were conducted for a 0.4 $\mu$m, 32 Hz displacement signal with $\lambda_0 = 785$ nm and $\alpha = 5$ such that $C$ is varied by 20% in a sinusoidal manner with a mean value of $C$, denoted as $C_m$, of 2 by using the model reported in [28] (see Fig. 8 (a)). The corresponding ZC method based recovered displacement signal in Fig. 8 (b) has a 75% lower RMS error as compared to the simple NUS method [4].

It is observed in Table IV that this improvement in reconstruction is most significant where $A_t$ is small and comparable to $\lambda_0/2$. For higher $A_t$ values, the simple NUS method performs better.

E. Effect of noise

The determination of the ZC events is affected by noise, thereby limiting the achievable performances by the proposed method as any quantization level uncertainty induces error in the reconstructed displacement [29]. Simulations with additive white noise displacements of different power spectrum density (PSD) were performed to assess the impact of noise and the results are summarized in Table V (Note that 100 $pm/\sqrt{Hz}$ is a typical PSD value for standard OFI signals whereas significantly lower PSD values of $\sim 1$ $pm/\sqrt{Hz}$ can be achieved for the FM channel of OFI [12].) Table V shows that when PSD is less than 100 $pm/\sqrt{Hz}$, the obtained performances with ZC are still about 40% better than without,
A. Experimental Setup

The proposed ZC method is tested on different experimentally acquired OFI signals to quantify its performance. The testbench shown in Fig. 9 was used to obtain the required signals. Hitachi HL7851G laser diode package was used in the experimental setup, having \( \lambda_0 = 785 \text{ nm} \) with an output power of 50 mW, and a typical threshold current of 45 mA. Physik Instrumente (P753.2CD) piezoelectric transducer (PZT) was used as the target, which consists of an internal capacitive position sensor with a 0.2 nm resolution and 2 nm repeatability. NI USB 6251 data acquisition system was utilized to acquire data that was sampled at the rate of 5x10\(^5\) samples/s with 16-bits resolution. The laser diode and the PZT were positioned 35 cm apart.

B. Results

The proposed ZC method was tested for two different PZT frequencies i.e., \( f_t = 10 \text{ Hz} \) and \( f_t = 60 \text{ Hz} \), and at three different amplitude values i.e., \( A_t = 0.25 \mu \text{m} \), \( A_t = 1 \mu \text{m} \), and \( A_t = 4 \mu \text{m} \) (see Table VI and Table VII). For every above-mentioned \{\( f_t, A_t \)\} case, 5 acquisitions of one-second duration each were saved, and used for the testing of the proposed method. By using the reference PZT measurement, RMS errors were quantified for each one-second long acquisition. Then, using the 5 acquisitions for every \{\( f_t, A_t \)\} case, mean and standard deviation (SD) was computed, and reported in Table VI and Table VII for \( C \) estimation and measurement error. Same process was repeated by using the simple NUS method without zero-crossings, and corresponding percentage improvement was also calculated. It can be seen from Table VI and Table VII that the proposed method gives improved results in all reported \{\( f_t, A_t \)\} cases. It is also apparent that the maximum improvement in measurement precision is obtained when the remote displacement has an amplitude comparable to \( \lambda_0/2 \), and this finding corroborates with the simulated results of the previous section.

Few specific cases are also discussed here. When the ZC method is applied to an experimental OFI signal corresponding to 0.25 \( \mu \text{m} \) amplitude at 10 Hz with \( \tilde{\alpha} = 5 \) and \( C = 1.78 \) (estimated by using the method reported in [26] with a precision of < 5\%), an improvement of 92\% in RMS error

<table>
<thead>
<tr>
<th>( f_t (\text{Hz}) )</th>
<th>( P (\text{mW}) )</th>
<th>( A_t (\mu \text{m}) )</th>
<th>( C (\mu \text{m}) )</th>
<th>( \text{RMS Error (nm)} )</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>50</td>
<td>0.25</td>
<td>( \lambda_0 )</td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>1</td>
<td>( \lambda_0 )</td>
<td>95</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>4</td>
<td>( \lambda_0 )</td>
<td>50</td>
</tr>
</tbody>
</table>

where: \( C \) is the capacitance of the target, \( \lambda_0 \) is the wavelength of the laser diode, and \( A_t \) is the amplitude of the target motion.
is observed (see also Fig. 10). For the given case, the simple NUS method only detects the fringe discontinuities in the OFI signal. On the other hand, the ZC method additionally detects zero-crossings at the ‘humps’ in the OFI signal (see Fig. 10 (a)) as well, thereby doubling the number of time-phase pairs that results in a better reconstruction of the displacement. The RMS error without ZC method is measured to be about 155 nm, whereas the RMS error with ZC method is around 12 nm (see Fig. 10 (c)).

Similarly, for the OFI signal acquired for $A_t = 1 \mu m$ at 60 Hz (5 fringes per cycle) with $\tilde{C} = 1.1838$, an improvement of 43% in RMS error was observed for this case (see Fig. 11).

### VI. DISCUSSION

The proposed method provides high measurement precision when the remote target motion is of low amplitudes. However, error in $C$ estimation will result in reconstruction error because of the erroneous calculation of phase difference between zero-crossings and fringe discontinuities. As a result, the improvement provided by the proposed ZC method becomes less relevant than the classical NUS approach whose precision directly benefits in case of increase in the number of crossed quantization levels occurring for higher displacement amplitude. Furthermore, the improvement is constrained by the shape of the OFI signal. Maximum improvement is observed when the so-called hump of the OFI signal cuts across the zero-line, an aspect dependent on $C$, $\alpha$ and initial phase value (e.g., the abrupt reduction in error observed in Fig. 5 and Fig. 6 (when $A_t$ is around 2 $\mu m$) for the proposed method is due to ZCs in the hump zones).

For a given remote motion, laser wavelength, and initial phase value, occurrence of zero-crossings in an OFI signal is a function of $C$ and $\alpha$ (see Fig. 12(a)). It can be seen that the upward and downward OFI fringes both cross the zero-line
only for certain combinations of \([ C \alpha ]\), shown as the green zone in Fig. 12 (a) obtained for a peak to peak displacement of \(4.1\lambda_0\) (so greater than \(\lambda_0/2\) to generate fringes). As \(C\) increases, due to the hysteresis in OFI signals, only upward fringes cross the zero-line, shown as the blue zone. For further increase in \(C\), neither upward nor downward fringes cross the zero-line, shown as the red zone. For the best performance of the proposed method, \([ C \alpha ]\) combination should be such that all possible zero-crossing points are available, i.e., the operating conditions correspond to the green zone. Then, in case of an increase in \(C\), if the sensor is operating in the blue zone then the proposed method still has zero-crossing points to improve the performance as compared with the simple NUS method. However, in case of strong feedback, it may so happen that there are no more zero-crossings in the OFI signal. This scenario is shown in Fig. 12 (b) where an OFI signal with \(C = 9\) and \(\alpha = 3\) has no zero-crossings due to high \(C\) value. This \([ C \alpha ]\) combination is represented by the yellow oval in Fig. 12 (a). Thus, the improvement provided by the proposed method decreases with increase in \(C\) and the performance eventually becomes comparable to the simple NUS method for very strong feedback. However, note that in case of strong optical feedback, phenomenon of fringe-loss [30] also appears which limits the performance of most motion retrieval algorithms. That is why, efforts have been previously made to ensure that the optical feedback strength is controlled to maintain the laser sensing in the moderate feedback regime, such as by using a liquid lens [31].

Note also that the lower detection limit of the proposed ZC method is the same as the NUS method in case of no dithering in either method. One quantization level corresponding to a fringe discontinuity is still required for the proposed ZC method. Without this quantization level, it is not possible to correctly quantify the amplitude of the displacement. But if dithering is done and that the resulting average sampling rate (fringes and ZC) of the input exceeds twice the input signal bandwidth, then the lower limit would be given by the noise-equivalent displacement. The ZC method will provide better reconstruction in the case dithering is performed.

The experimental signals also require precise noise removal filtering. Zero-crossings and fringe discontinuities can be detected incorrectly on noisy signals, and inaccurate detection of a single fringe-discontinuity or zero-crossing can degrade the interpolation. Regardless, the method has shown improvement in reconstruction compared to the simple NUS method over a wide range of \(C\), \(A_t\), and \(f_t\) values in simulations. Up to 85.5% improvement in RMS error is also reported for experimental signals. Therefore, due to the inherent simplicity of the proposed method and its ability to deal with small amplitudes by doubling the number of samples or events for NUS systems, the proposed method is considered to contribute to this area of sensing and instrumentation.

VII. Conclusions

The zero-crossing based non-uniform sampling method for OFI, proposed in this paper, has enabled higher measurement precision for such a system operating under moderate optical feedback regime.


