D. A. Doyle, The Structure of the Potassium Channel: Molecular Basis of K+ Conduction and Selectivity, Science, vol.280, issue.5360, pp.69-77, 1998.
DOI : 10.1126/science.280.5360.69

P. Stevenson, Visualizing KcsA Conformational Changes upon Ion Binding by Infrared Spectroscopy and Atomistic Modeling, The Journal of Physical Chemistry B, vol.119, issue.18, pp.5824-5831, 2015.
DOI : 10.1021/acs.jpcb.5b02223

URL : http://doi.org/10.1021/acs.jpcb.5b02223

B. Roux and R. Mackinnon, The Cavity and Pore Helices in the KcsA K+ Channel: Electrostatic Stabilization of Monovalent Cations, Science, vol.285, issue.5424, pp.100-102, 1999.
DOI : 10.1126/science.285.5424.100

R. Mancinelli, Hydration of Sodium, Potassium, and Chloride Ions in Solution and the Concept of Structure Maker/Breaker, The Journal of Physical Chemistry B, vol.111, issue.48, pp.13570-13577, 2007.
DOI : 10.1021/jp075913v

F. Hucho and C. Weise, Ligand-Gated Ion Channels, Angewandte Chemie International Edition, vol.411, issue.17, pp.3100-3116, 2001.
DOI : 10.1113/jphysiol.1996.sp021777

F. Bezanilla, Voltage-Gated Ion Channels, IEEE Transactions on Nanobioscience, vol.4, issue.1, pp.34-48, 2005.
DOI : 10.1109/TNB.2004.842463

E. S. Haswell, Mechanosensitive Channels: What Can They Do and How Do They Do It? Structure 19, pp.1356-1369, 2011.
DOI : 10.1016/j.str.2011.09.005

URL : http://doi.org/10.1016/j.str.2011.09.005

P. Cesare, Ion channels gated by heat, Proc. Natl. Acad. Sci. 96, pp.7658-7663, 1999.
DOI : 10.1038/18906

B. Rudy, Diversity and ubiquity of K channels, Neuroscience, vol.25, issue.3, pp.729-749, 1988.
DOI : 10.1016/0306-4522(88)90033-4

B. Martinac, Ion Channels in Microbes, Physiological Reviews, vol.88, issue.4, pp.1449-1490, 2008.
DOI : 10.1152/physrev.00005.2008

R. Hedrich, Ion Channels in Plants, Physiological Reviews, vol.92, issue.4, pp.1777-1811, 2012.
DOI : 10.1152/physrev.00038.2011

L. Leanza, Intracellular ion channels and cancer Mitochondrial Channels: Ion Fluxes and More, Front. Physiol. Physiol. Rev, vol.4, issue.94, pp.519-608, 2013.

S. K. Bagal, Ion Channels as Therapeutic Targets: A Drug Discovery Perspective, Journal of Medicinal Chemistry, vol.56, issue.3, pp.593-624, 2013.
DOI : 10.1021/jm3011433

C. A. Hübner and T. J. Jentsch, Ion channel diseases, Human Molecular Genetics, vol.11, issue.20, pp.2435-2445, 2002.
DOI : 10.1093/hmg/11.20.2435

T. J. Jentsch, Ion channels: Function unravelled by dysfunction, Nature Cell Biology, vol.103, issue.11, pp.1039-1047, 2004.
DOI : 10.1093/HMG/10.3.189

J. B. Reece, Neurons, Synapses and Signaling Resting and action potentials in single nerve fibres, Biology 9th Edition : Campbell Pearson Benjamin Cummings 25 Hille, p.176, 1945.

A. Hodgkin and A. Huxley, description of the time course of the current which flows through the mem, J Physiol, vol.16, pp.449-472, 1952.

A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, The Journal of Physiology, vol.117, issue.4, pp.500-544, 1952.
DOI : 10.1113/jphysiol.1952.sp004764

G. Ling and R. W. Gerard, The normal membrane potential of frog sartorius fibers, Journal of Cellular and Comparative Physiology, vol.21, issue.3, pp.383-396, 1949.
DOI : 10.1113/jphysiol.1930.sp002703

R. Brette and A. Destexhe, Intracellular recording, Handbook of Neural Activity Measurement pp. chapter, 2012.
DOI : 10.1017/CBO9780511979958.003

URL : https://hal.archives-ouvertes.fr/hal-00739663

E. Neher and B. Sakmann, Single-channel currents recorded from membrane of denervated frog muscle fibres, Nature, vol.253, issue.5554, pp.799-802, 1976.
DOI : 10.1113/jphysiol.1973.sp010213

F. J. Sigworth and E. Neher, Single Na+ channel currents observed in cultured rat muscle cells, Nature, vol.169, issue.5781, pp.447-449, 1980.
DOI : 10.1113/jphysiol.1963.sp007269

O. P. Hamill, Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches, Pfl??gers Archiv - European Journal of Physiology, vol.12, issue.2, pp.85-100, 1981.
DOI : 10.1038/287447a0

B. Sakmann and E. Neher, Patch Clamp Techniques for Studying Ionic Channels in Excitable Membranes, Annual Review of Physiology, vol.46, issue.1, pp.455-472, 1984.
DOI : 10.1146/annurev.ph.46.030184.002323

E. Neher, Ion channels for communication between and within cells, Neuron, vol.8, issue.4, pp.605-612, 1992.
DOI : 10.1016/0896-6273(92)90083-P

S. D. Demo and G. Yellen, The inactivation gate of the Shaker K+ channel behaves like an open-channel blocker, Neuron, vol.7, issue.5, pp.743-753, 1991.
DOI : 10.1016/0896-6273(91)90277-7

S. G. Cull-candy, Single glutamate-activated channels recorded from locust muscle fibres with perfused patch-clamp electrodes, The Journal of Physiology, vol.321, issue.1, p.195, 1981.
DOI : 10.1113/jphysiol.1981.sp013979

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1249621/pdf

K. Hu, Adenosine-induced activation of ATP-sensitive K+ channels in excised membrane patches is mediated by PKC, Am. J. Physiol. -Heart Circ. Physiol, vol.276, pp.488-495, 1999.

D. Colquhoun and F. J. Sigworth, Fitting and Statistical Analysis of Single-Channel Records Guide to Data Acquisition and Analysis, Single-Channel Recording Single-Channel Recording, pp.483-587, 1995.

J. L. Rae and R. A. Levis, A method for exceptionally low noise single channel recordings, Pfl???gers Archiv European Journal of Physiology, vol.31, issue.5-6, pp.618-620, 1992.
DOI : 10.1007/BF00374642

F. Parzefall, Single channel currents at six microsecond resolution elicited by acetylcholine in mouse myoballs, The Journal of Physiology, vol.481, issue.1, pp.181-188, 1998.
DOI : 10.1113/jphysiol.1987.sp016496

G. Shapovalov and H. A. Lester, Gating Transitions in Bacterial Ion Channels Measured at 3 ??s Resolution, The Journal of General Physiology, vol.49, issue.2, pp.151-161, 2004.
DOI : 10.1093/nar/gkg218

K. Sumikawa, Active multi-subunit ACh receptor assembled by translation of heterologous mRNA in Xenopus oocytes, Nature, vol.98, issue.5826, pp.862-864, 1981.
DOI : 10.1038/292862a0

C. B. Gundersen, Messenger RNA from human brain induces drug- and voltage-operated channels in Xenopus oocytes, Nature, vol.3, issue.5958, pp.421-424, 1984.
DOI : 10.1113/jphysiol.1982.sp014257

N. Gamper, The use of Chinese hamster ovary (CHO) cells in the study of ion channels, Journal of Pharmacological and Toxicological Methods, vol.51, issue.3, pp.177-185, 2005.
DOI : 10.1016/j.vascn.2004.08.008

N. Dascal, Oocytes for the Study of Ion Channel, Critical Reviews in Biochemistry, vol.51, issue.4, pp.317-387, 1987.
DOI : 10.1038/302249a0

J. N. Weiss, The Hill equation revisited: uses and misuses, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol, vol.11, pp.835-841, 1997.

L. J. Greenfield and R. L. Macdonald, Whole-cell and single-channel ??1 ??1 ??2S GABAA receptor currents elicited by a ???multipuffer??? drug application device, Pfl??gers Archiv - European Journal of Physiology, vol.423, issue.6, pp.1080-1090, 1996.
DOI : 10.1113/jphysiol.1990.sp018018

X. Dong, PI(3,5)P2 Controls Membrane Traffic by Direct Activation of Mucolipin Ca2+ Release Channels in the Endolysosome Pressure-sensitive ion channel in Escherichia coli, Proc. Natl. Acad. Sci, pp.52-2297, 1987.

R. Macarron, Impact of high-throughput screening in biomedical research, Nature Reviews Drug Discovery, vol.252, issue.3, pp.188-195, 2011.
DOI : 10.1126/science.1850553

D. Bruin and M. L. , Anti-HERG activity and the risk of drug-induced arrhythmias and sudden death, European Heart Journal, vol.26, issue.6, pp.590-597, 2004.
DOI : 10.1093/eurheartj/ehi092

X. Yajuan, A Comparison of the Performance and Application Differences Between Manual and Automated Patch-Clamp Techniques, Current Chemical Genomics, vol.6, pp.87-92, 2012.
DOI : 10.2174/1875397301206010087

M. Zagnoni, Miniaturised technologies for the development of artificial lipid bilayer systems, Lab on a Chip, vol.392, issue.6, p.1026, 2011.
DOI : 10.1038/33116

D. J. Hanahan, The isolation of egg phosphatidyl choline by an adsorption column technique, J. Biol. Chem, vol.192, pp.623-628, 1951.

J. Lindberg, Efficient Synthesis of Phospholipids from Glycidyl Phosphates, The Journal of Organic Chemistry, vol.67, issue.1, pp.194-199, 2002.
DOI : 10.1021/jo010734+

M. C. Stuart and E. J. Boekema, Two distinct mechanisms of vesicle-to-micelle and micelle-to-vesicle transition are mediated by the packing parameter of phospholipid???detergent systems, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1768, issue.11, pp.2681-2689, 2007.
DOI : 10.1016/j.bbamem.2007.06.024

P. Kongsuphol, Lipid bilayer technologies in ion channel recordings and their potential in drug screening assay, Sensors and Actuators B: Chemical, vol.185, pp.530-542, 2013.
DOI : 10.1016/j.snb.2013.04.119

T. Gutsmann, Protein reconstitution into freestanding planar lipid membranes for electrophysiological characterization, Nature Protocols, vol.165, issue.1, pp.188-198, 2015.
DOI : 10.1007/s002490050138

H. Bayley, Droplet interface bilayers, Molecular BioSystems, vol.317, issue.12, pp.1191-1208, 2008.
DOI : 10.1016/j.cbpa.2005.10.012

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2763081

A. Gómez-hens, M. Fernández-romero, and J. , The role of liposomes in analytical processes, TrAC Trends in Analytical Chemistry, vol.24, issue.1, pp.9-19, 2005.
DOI : 10.1016/j.trac.2004.07.017

O. Weso\lowska, Giant unilamellar vesicles?a perfect tool to visualize phase separation and lipid rafts in model systems, Acta Biochim Pol, vol.56, pp.33-39, 2009.

P. Walde, Giant Vesicles: Preparations and Applications, ChemBioChem, vol.4, issue.7, pp.848-865, 2010.
DOI : 10.1042/bj2560001

D. E. Orosz and K. D. Garlid, A Sensitive New Fluorescence Assay for Measuring Proton Transport across Liposomal Membranes, Analytical Biochemistry, vol.210, issue.1, pp.7-15, 1993.
DOI : 10.1006/abio.1993.1143

B. Chanda and M. K. Mathew, Functional reconstitution of bacterially expressed human potassium channels in proteoliposomes: membrane potential measurements with JC-1 to assay ion channel activity, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1416, issue.1-2, pp.92-100, 1999.
DOI : 10.1016/S0005-2736(98)00217-X

A. Schmidt, Streptavidin binding to biotinylated lipid layers on solid supports. A neutron reflection and surface plasmon optical study, Biophysical Journal, vol.63, issue.5, p.1385, 1992.
DOI : 10.1016/S0006-3495(92)81715-0

URL : http://doi.org/10.1016/s0006-3495(92)81715-0

D. Stroumpoulis, A kinetic study of vesicle fusion on silicon dioxide surfaces by ellipsometry, AIChE Journal, vol.124, issue.8, pp.2931-2937, 2006.
DOI : 10.1007/s00249-003-0349-0

J. Andrecka, Direct Observation and Control of Supported Lipid Bilayer Formation with Interferometric Scattering Microscopy, ACS Nano, vol.7, issue.12, pp.10662-10670, 2013.
DOI : 10.1021/nn403367c

C. Hsieh, Tracking Single Particles on Supported Lipid Membranes: Multimobility Diffusion and Nanoscopic Confinement, The Journal of Physical Chemistry B, vol.118, issue.6, pp.1545-1554, 2014.
DOI : 10.1021/jp412203t

URL : http://arxiv.org/abs/1312.6736

L. K. Tamm, Nanostructure of supported phospholipid monolayers and bilayers by scanning probe microscopy, Thin Solid Films, vol.284, issue.285, pp.284-285, 1996.
DOI : 10.1016/S0040-6090(95)08453-3

C. A. Keller and B. Kasemo, Surface Specific Kinetics of Lipid Vesicle Adsorption Measured with a Quartz Crystal Microbalance, Biophysical Journal, vol.75, issue.3, pp.1397-1402, 1998.
DOI : 10.1016/S0006-3495(98)74057-3

E. Sackmann, Supported Membranes: Scientific and Practical Applications, Science, vol.271, issue.5245, pp.43-48, 1996.
DOI : 10.1126/science.271.5245.43

J. Jackman, Biotechnology Applications of Tethered Lipid Bilayer Membranes, Materials, vol.5, issue.12, pp.2637-2657, 2012.
DOI : 10.1021/ja902783n

URL : http://doi.org/10.3390/ma5122637

M. Magliulo, Electrolyte-Gated Organic Field-Effect Transistor Sensors Based on Supported Biotinylated Phospholipid Bilayer, Advanced Materials, vol.21, issue.14, pp.2090-2094, 2013.
DOI : 10.1002/adma.200802733

S. J. Johnson, Structure of an adsorbed dimyristoylphosphatidylcholine bilayer measured with specular reflection of neutrons, Biophysical Journal, vol.59, issue.2, pp.289-294, 1991.
DOI : 10.1016/S0006-3495(91)82222-6

A. A. Brian and H. M. Mcconnell, Allogeneic stimulation of cytotoxic T cells by supported planar membranes., Proceedings of the National Academy of Sciences, vol.81, issue.19, pp.6159-6163, 1984.
DOI : 10.1073/pnas.81.19.6159

R. P. Richter and A. R. Brisson, Following the Formation of Supported Lipid Bilayers on Mica: A Study Combining AFM, QCM-D, and Ellipsometry, Biophysical Journal, vol.88, issue.5, pp.3422-3433, 2005.
DOI : 10.1529/biophysj.104.053728

N. Cho, Quartz crystal microbalance with dissipation monitoring of supported lipid bilayers on various substrates, Nature Protocols, vol.28, issue.6, pp.1096-1106, 2010.
DOI : 10.1016/j.virol.2007.05.038

W. Knoll, Functional tethered lipid bilayers, Reviews in Molecular Biotechnology, vol.74, issue.3, pp.137-158, 2000.
DOI : 10.1016/S1389-0352(00)00012-X

Y. Deng, Fluidic and Air-Stable Supported Lipid Bilayer and Cell-Mimicking Microarrays, Journal of the American Chemical Society, vol.130, issue.19, pp.6267-6271, 2008.
DOI : 10.1021/ja800049f

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2699764

M. Andersson, Detection of Single Ion Channel Activity on a Chip Using Tethered Bilayer Membranes, Langmuir, vol.23, issue.6, pp.2924-2927, 2007.
DOI : 10.1021/la063503c

F. Junge, Large-scale production of functional membrane proteins, Cellular and Molecular Life Sciences, vol.65, issue.11, pp.1729-1755, 2008.
DOI : 10.1007/s00018-008-8067-5

S. Demarche, Techniques for recording reconstituted ion channels, The Analyst, vol.130, issue.6, pp.1077-1089, 2011.
DOI : 10.1021/ja804968g

J. Rigaud and D. M. Lévy, Reconstitution of Membrane Proteins into Liposomes Controlled delivery of proteins into bilayer lipid membranes on chip, Lab. Chip, vol.372, issue.7, pp.65-86, 2003.

A. Studer, Integration and recording of a reconstituted voltage-gated sodium channel in planar lipid bilayers, Biosensors and Bioelectronics, vol.26, issue.5, pp.1924-1928, 2011.
DOI : 10.1016/j.bios.2010.06.008

P. Marius, Binding of Anionic Lipids to at Least Three Nonannular Sites on the Potassium Channel KcsA is Required for Channel Opening, Biophysical Journal, vol.94, issue.5, pp.1689-1698, 2008.
DOI : 10.1529/biophysj.107.117507

J. W. Whittaker, Cell-free protein synthesis: the state of the art, Biotechnology Letters, vol.40, issue.2, pp.143-152, 2013.
DOI : 10.1093/nar/gks568

F. Junge, Advances in cell-free protein synthesis for the functional and structural analysis of membrane proteins, New Biotechnology, vol.28, issue.3, pp.262-271, 2011.
DOI : 10.1016/j.nbt.2010.07.002

R. Sachse, Membrane protein synthesis in cell-free systems: From bio-mimetic systems to bio-membranes, FEBS Letters, vol.382, issue.17, pp.2774-2781, 2014.
DOI : 10.1016/j.jmb.2008.06.055

J. J. Wuu and J. R. Swartz, High yield cell-free production of integral membrane proteins without refolding or detergents, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1778, issue.5, pp.1237-1250, 2008.
DOI : 10.1016/j.bbamem.2008.01.023

S. Bhakdi and J. Tranum-jensen, Alpha-toxin of Staphylococcus aureus, Microbiol. Rev, vol.55, pp.733-751, 1991.

S. Kol, Heterologous expression and purification of an active human TRPV3 ion channel, FEBS Journal, vol.1818, issue.23, pp.6010-6021, 2013.
DOI : 10.1016/j.bbamem.2012.01.014

R. L. Rosenberg and J. E. East, Cell-free expression of functional Shaker potassium channels, Nature, vol.360, issue.6400, pp.166-169, 1992.
DOI : 10.1038/360166a0

M. Mayer, Microfabricated Teflon Membranes for Low-Noise Recordings of Ion Channels in Planar Lipid Bilayers, Biophysical Journal, vol.85, issue.4, pp.2684-2695, 2003.
DOI : 10.1016/S0006-3495(03)74691-8

M. Montal and P. Mueller, Formation of Bimolecular Membranes from Lipid Monolayers and a Study of Their Electrical Properties, Proc. Natl. Acad. Sci, pp.3561-3566, 1972.
DOI : 10.1073/pnas.69.12.3561

P. Mueller, Reconstitution of Cell Membrane Structure in vitro and its Transformation into an Excitable System, Nature, vol.190, issue.4832, pp.979-980, 1962.
DOI : 10.1085/jgp.42.1.137

P. Mueller, METHODS FOR THE FORMATION OF SINGLE BIMOLECULAR LIPID MEMBRANES IN AQUEOUS SOLUTION, The Journal of Physical Chemistry, vol.67, issue.2, pp.534-535, 1963.
DOI : 10.1021/j100796a529

J. E. Dalziel, Expression of human BK ion channels in Sf9 cells, their purification using metal affinity chromatography, and functional reconstitution into planar lipid bilayers, Journal of Chromatography B, vol.857, issue.2, pp.315-321, 2007.
DOI : 10.1016/j.jchromb.2007.07.033

X. Han, Nanopore Arrays for Stable and Functional Free-Standing Lipid Bilayers, Advanced Materials, vol.16, issue.8, pp.4466-4470, 2007.
DOI : 10.1002/adma.200700468

F. S. Cohen, Fusion of phospholipid vesicles with planar phospholipid bilayer membranes. II. Incorporation of a vesicular membrane marker into the planar membrane, The Journal of General Physiology, vol.75, issue.3, pp.251-270, 1980.
DOI : 10.1085/jgp.75.3.251

D. J. Woodbury, [17] Nystatin/ergosterol method for reconstituting ion channels into planar lipid bilayers, Methods Enzymol, vol.294, pp.319-339, 1999.
DOI : 10.1016/S0076-6879(99)94020-X

J. A. Costa, Wicking: A Rapid Method for Manually Inserting Ion Channels into Planar Lipid Bilayers The interactions of squalene, alkanes and other mineral oils with model membranes; effects on membrane heterogeneity and function, PLoS ONE J. Colloid Interface Sci, vol.8, issue.457, p.225, 2013.

A. Hirano-iwata, Free-Standing Lipid Bilayers in Silicon Chips???Membrane Stabilization Based on Microfabricated Apertures with a Nanometer-Scale Smoothness, Langmuir, vol.26, issue.3, pp.1949-1952, 2010.
DOI : 10.1021/la902522j

W. F. Wonderlin, Optimizing planar lipid bilayer single-channel recordings for high resolution with rapid voltage steps, Biophysical Journal, vol.58, issue.2, pp.289-297, 1990.
DOI : 10.1016/S0006-3495(90)82376-6

URL : http://doi.org/10.1016/s0006-3495(90)82376-6

M. Sondermann, High-resolution electrophysiology on a chip: Transient dynamics of alamethicin channel formation, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1758, issue.4, pp.545-551, 2006.
DOI : 10.1016/j.bbamem.2006.03.023

L. A. Geddes, Optimum electrolytic chloriding of silver electrodes, Medical & Biological Engineering, vol.22, issue.1, pp.49-56, 1969.
DOI : 10.6028/jres.022.034

J. K. Rosenstein, Integrated nanopore sensing platform with sub-microsecond temporal resolution, Nature Methods, vol.9, issue.5, pp.487-492, 2012.
DOI : 10.1021/nl070462b

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3648419

K. R. Benndorf, R. , and J. L. , Low-noise patch-clamp techniques The Axon guide for electrophysiology & biophysics laboratory techniques Access resistance of a small circular pore, In Methods in Enzymology J.E. J. Gen. Physiol, vol.293, issue.66, pp.129-145, 1975.

O. Gaßmann, The M34A mutant of Connexin26 reveals active conductance states in pore-suspending membranes, Journal of Structural Biology, vol.168, issue.1, pp.168-176, 2009.
DOI : 10.1016/j.jsb.2009.02.004

J. K. Rosenstein, Single Ion Channel Recordings with CMOS-Anchored Lipid Membranes, Nano Letters, vol.13, issue.6, pp.2682-2686, 2013.
DOI : 10.1021/nl400822r

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3683112

S. H. White, Analysis of the Torus Surrounding Planar Lipid Bilayer Membranes, Biophysical Journal, vol.12, issue.4, pp.432-445, 1972.
DOI : 10.1016/S0006-3495(72)86095-8

M. C. Peterman, Ion channels and lipid bilayer membranes under high potentials using microfabricated apertures, Biomedical Microdevices, vol.4, issue.3, pp.231-236, 2002.
DOI : 10.1023/A:1016004731691

R. Kawano, A Polymer-Based Nanopore-Integrated Microfluidic Device for Generating Stable Bilayer Lipid Membranes, pp.2100-2104, 2010.
DOI : 10.1002/smll.201090066

R. J. White, Single Ion-Channel Recordings Using Glass Nanopore Membranes, Journal of the American Chemical Society, vol.129, issue.38, pp.11766-11775, 2007.
DOI : 10.1021/ja073174q

T. Ide, Development of an Experimental Apparatus for Simultaneous Observation of Optical and Electrical Signals from Single Ion Channels, Single Molecules, vol.283, issue.1, pp.33-42, 2002.
DOI : 10.1002/1438-5171(200204)3:1<33::AID-SIMO33>3.0.CO;2-U

S. P. Rajapaksha, Suspended Lipid Bilayer for Optical and Electrical Measurements of Single Ion Channel Proteins, Analytical Chemistry, vol.85, issue.19, pp.8951-8955, 2013.
DOI : 10.1021/ac401342u

A. Honigmann, Characterization of Horizontal Lipid Bilayers as a Model System to Study Lipid Phase Separation, Biophysical Journal, vol.98, issue.12, pp.2886-2894, 2010.
DOI : 10.1016/j.bpj.2010.03.033

E. E. Weatherill and M. I. Wallace, Combining Single-Molecule Imaging and Single-Channel Electrophysiology, Journal of Molecular Biology, vol.427, issue.1, pp.146-157, 2015.
DOI : 10.1016/j.jmb.2014.07.007

H. Suzuki, Planar lipid bilayer reconstitution with a micro-fluidic system, Lab on a Chip, vol.4, issue.5, p.502, 2004.
DOI : 10.1039/b405967k

H. Suzuki, Electrophysiological recordings of single ion channels in planar lipid bilayers using a polymethyl methacrylate microfluidic chip, Biosensors and Bioelectronics, vol.22, issue.6, pp.1111-1115, 2007.
DOI : 10.1016/j.bios.2006.04.013

L. Pioufle and B. , Lipid Bilayer Microarray for Parallel Recording of Transmembrane Ion Currents, Analytical Chemistry, vol.80, issue.1, pp.328-332, 2008.
DOI : 10.1021/ac7016635

URL : https://hal.archives-ouvertes.fr/hal-00599949

W. Wang, Activity monitoring of functional OprM using a biomimetic microfluidic device, The Analyst, vol.185, issue.4, pp.847-852, 2012.
DOI : 10.1007/s00232-001-0113-2

URL : https://hal.archives-ouvertes.fr/hal-00739216

H. Suzuki, Highly Reproducible Method of Planar Lipid Bilayer Reconstitution in Polymethyl Methacrylate Microfluidic Chip, Langmuir, vol.22, issue.4, pp.1937-1942, 2006.
DOI : 10.1021/la052534p

S. C. Saha, Screening ion-channel ligand interactions with passive pumping in a microfluidic bilayer lipid membrane chip, Biomicrofluidics, vol.9, issue.1, 2015.
DOI : 10.1016/j.jmb.2008.01.066

K. Funakoshi, Lipid Bilayer Formation by Contacting Monolayers in a Microfluidic Device for Membrane Protein Analysis, Analytical Chemistry, vol.78, issue.24, pp.8169-8174, 2006.
DOI : 10.1021/ac0613479

S. A. Portonovo, hERG drug response measured in droplet bilayers, Biomedical Microdevices, vol.272, issue.3, pp.255-259
DOI : 10.1016/S0006-3495(98)77782-3

S. A. Portonovo and J. Schmidt, Masking apertures enabling automation and solution exchange in sessile droplet lipid bilayers, Biomedical Microdevices, vol.393, issue.1, pp.187-191, 2012.
DOI : 10.1007/s00216-008-2588-5

V. Vijayvergiya, Measurement of Ensemble TRPV1 Ion Channel Currents Using Droplet Bilayers, PLOS ONE, vol.104, issue.10, p.141366, 2015.
DOI : 10.1371/journal.pone.0141366.g004

S. Kresák, Giga-seal solvent-free bilayer lipid membranes: from single nanopores to nanopore arrays, Soft Matter, vol.18, issue.20, pp.4021-4032, 2009.
DOI : 10.1007/s002490050014

C. Schmidt, A Chip-Based Biosensor for the Functional Analysis of Single Ion Channels, Angewandte Chemie, vol.271, issue.17, pp.3267-3270, 2000.
DOI : 10.1007/978-1-4757-2065-5

M. Dezi, Detergent-mediated incorporation of transmembrane proteins in giant unilamellar vesicles with controlled physiological contents, Proc. Natl. Acad. Sci, pp.7276-7281, 2013.
DOI : 10.1016/j.jsb.2006.07.011

A. Varnier, A Simple Method for the Reconstitution of Membrane Proteins into Giant Unilamellar Vesicles, Journal of Membrane Biology, vol.7, issue.1-3, pp.85-92, 2010.
DOI : 10.1007/BF01871775

URL : https://hal.archives-ouvertes.fr/hal-00821162

P. Girard, A New Method for the Reconstitution of Membrane Proteins into Giant Unilamellar Vesicles, Biophysical Journal, vol.87, issue.1, pp.419-429, 2004.
DOI : 10.1529/biophysj.104.040360

URL : https://hal.archives-ouvertes.fr/hal-00314159

E. Briand, Combined QCM-D and EIS study of supported lipid bilayer formation and interaction with pore-forming peptides, The Analyst, vol.68, issue.2, pp.343-350, 2010.
DOI : 10.1021/ac951203m

S. Pace, by Reflective Interferometric Fourier Transform Spectroscopy (RIFTS), Langmuir, vol.28, issue.17, pp.6960-6969, 2012.
DOI : 10.1021/la301085t

URL : https://hal.archives-ouvertes.fr/hal-00721631

S. Steltenkamp, Mechanical Properties of Pore-Spanning Lipid Bilayers Probed by Atomic Force Microscopy, Biophysical Journal, vol.91, issue.1, pp.217-226, 2006.
DOI : 10.1529/biophysj.106.081398

K. Kumar, Formation of Nanopore-Spanning Lipid Bilayers through Liposome Fusion, Langmuir, vol.27, issue.17, pp.10920-10928, 2011.
DOI : 10.1021/la2019132

A. Kleefen, Multiplexed Parallel Single Transport Recordings on Nanopore Arrays, Nano Letters, vol.10, issue.12, pp.5080-5087, 2010.
DOI : 10.1021/nl1033528

M. Urban, Highly Parallel Transport Recordings on a Membrane-on-Nanopore Chip at Single Molecule Resolution, Nano Letters, vol.14, issue.3, pp.1674-1680, 2014.
DOI : 10.1021/nl5002873

URL : http://doi.org/10.1021/nl5002873

E. K. Schmitt, Impedance analysis of gramicidin D in pore-suspending membranes, Soft Matter, vol.53, issue.17, pp.3347-3353, 2009.
DOI : 10.1039/b901683j

E. K. Schmitt, Electrically insulating pore-suspending membranes on highly ordered porous alumina obtained from vesicle spreading, Soft Matter, vol.4, issue.2, pp.250-253, 2008.
DOI : 10.1089/adt.2006.4.575

C. E. Korman, Nanopore-Spanning Lipid Bilayers on Silicon Nitride Membranes That Seal and Selectively Transport Ions, Langmuir, vol.29, issue.14, pp.4421-4425, 2013.
DOI : 10.1021/la305064j

A. P. Quist, Atomic Force Microscopy Imaging and Electrical Recording of Lipid Bilayers Supported over Microfabricated Silicon Chip Nanopores:?? Lab-on-a-Chip System for Lipid Membranes and Ion Channels, Langmuir, vol.23, issue.3, pp.1375-1380, 2007.
DOI : 10.1021/la062187z

K. Buchholz, Silicon-on-insulator based nanopore cavity arrays for lipid membrane investigation, Nanotechnology, vol.19, issue.44, p.445305, 2008.
DOI : 10.1088/0957-4484/19/44/445305

P. Jo?-nsson, Sealing of Submicrometer Wells by a Shear-Driven Lipid Bilayer, Nano Letters, vol.10, issue.5, pp.1900-1906, 2010.
DOI : 10.1021/nl100779k

P. S. Cremer and S. G. Boxer, Formation and Spreading of Lipid Bilayers on Planar Glass Supports, The Journal of Physical Chemistry B, vol.103, issue.13, pp.2554-2559, 1999.
DOI : 10.1021/jp983996x

K. Furukawa, Supported Lipid Bilayer Self-Spreading on a Nanostructured Silicon Surface, Langmuir, vol.23, issue.2, pp.367-371, 2006.
DOI : 10.1021/la062911d

K. Zhou, Surface-Charge Induced Ion Depletion and Sample Stacking near Single Nanopores in Microfluidic Devices, Journal of the American Chemical Society, vol.130, issue.27, pp.8614-8616, 2008.
DOI : 10.1021/ja802692x

M. Tsutsui, Trapping and identifying single-nanoparticles using a low-aspect-ratio nanopore, Applied Physics Letters, vol.103, issue.1, pp.13108-13108, 2013.
DOI : 10.1038/srep00046

M. L. Kovarik and S. C. Jacobson, Integrated Nanopore/Microchannel Devices for ac Electrokinetic Trapping of Particles, Analytical Chemistry, vol.80, issue.3, pp.657-664, 2008.
DOI : 10.1021/ac701759f

A. A. Brian and H. M. Mcconnell, Allogeneic stimulation of cytotoxic T cells by supported planar membranes., Proceedings of the National Academy of Sciences, vol.81, issue.19, pp.6159-6163, 1984.
DOI : 10.1073/pnas.81.19.6159

W. Tscharnuter, Photon correlation spectroscopy in particle sizing Theoretical analysis of fluorescence photobleaching recovery experiments, Encycl. Anal. Chem. Biophys. J, vol.41, pp.95-97, 1983.

L. K. Tamm and H. M. Mcconnell, Supported phospholipid bilayers, Biophysical Journal, vol.47, issue.1, pp.105-113, 1985.
DOI : 10.1016/S0006-3495(85)83882-0

URL : http://doi.org/10.1016/s0006-3495(85)83882-0

N. Cho, Comparison of Extruded and Sonicated Vesicles for Planar Bilayer Self-Assembly, Materials, vol.367, issue.8, pp.3294-3308, 2013.
DOI : 10.1021/la001512u

E. Reimhult, Vesicle adsorption on SiO2 and TiO2: Dependence on vesicle size, The Journal of Chemical Physics, vol.387, issue.16, pp.7401-7404, 2002.
DOI : 10.1021/la0104222

N. Cho, Quartz crystal microbalance with dissipation monitoring of supported lipid bilayers on various substrates, Nature Protocols, vol.28, issue.6, pp.1096-1106, 2010.
DOI : 10.1016/j.virol.2007.05.038

T. Cha, Formation of Supported Phospholipid Bilayers on Molecular Surfaces: Role of Surface Charge Density and Electrostatic Interaction, Biophysical Journal, vol.90, issue.4, pp.1270-1274, 2006.
DOI : 10.1529/biophysj.105.061432

P. Nollert, Lipid vesicle adsorption versus formation of planar bilayers on solid surfaces, Biophysical Journal, vol.69, issue.4, p.1447, 1995.
DOI : 10.1016/S0006-3495(95)80014-7

M. Kyoung and E. D. Sheets, Vesicle Diffusion Close to a Membrane: Intermembrane Interactions Measured with Fluorescence Correlation Spectroscopy, Biophysical Journal, vol.95, issue.12, pp.5789-5797, 2008.
DOI : 10.1529/biophysj.108.128934

URL : http://doi.org/10.1529/biophysj.108.128934

M. C. Peterman, Ion channels and lipid bilayer membranes under high potentials using microfabricated apertures, Biomedical Microdevices, vol.4, issue.3, pp.231-236, 2002.
DOI : 10.1023/A:1016004731691

I. Reviakine and A. Brisson, Formation of Supported Phospholipid Bilayers from Unilamellar Vesicles Investigated by Atomic Force Microscopy, Langmuir, vol.16, issue.4, pp.1806-1815, 2000.
DOI : 10.1021/la9903043

K. Kumar, Formation of Nanopore-Spanning Lipid Bilayers through Liposome Fusion, Langmuir, vol.27, issue.17, pp.10920-10928, 2011.
DOI : 10.1021/la2019132

A. Kleefen, Multiplexed Parallel Single Transport Recordings on Nanopore Arrays, Nano Letters, vol.10, issue.12, pp.5080-5087, 2010.
DOI : 10.1021/nl1033528

P. S. Cremer and S. G. Boxer, Formation and Spreading of Lipid Bilayers on Planar Glass Supports, The Journal of Physical Chemistry B, vol.103, issue.13, pp.2554-2559, 1999.
DOI : 10.1021/jp983996x

P. Jo?-nsson, Sealing of Submicrometer Wells by a Shear-Driven Lipid Bilayer, Nano Letters, vol.10, issue.5, pp.1900-1906, 2010.
DOI : 10.1021/nl100779k

K. Furukawa, Supported Lipid Bilayer Self-Spreading on a Nanostructured Silicon Surface, Langmuir, vol.23, issue.2, pp.367-371, 2006.
DOI : 10.1021/la062911d

M. Wanunu, Nanopores: A journey towards DNA sequencing, Physics of Life Reviews, vol.9, issue.2, pp.125-158, 2012.
DOI : 10.1016/j.plrev.2012.05.010

K. Buchholz, Silicon-on-insulator based nanopore cavity arrays for lipid membrane investigation, Nanotechnology, vol.19, issue.44, p.445305, 2008.
DOI : 10.1088/0957-4484/19/44/445305

. Plasma-de-gravure, O2 (3 sccm), pression : 8.10 -3 mBar, puissance « ICP » : 450 W, puissance « bias » : 30 W. Plasma pour éliminer le reste de PMMA : 1 min, C4F8 (45 sccm), pp.3-35, 0200.

. La-gravure-humide-est-réalisée-immédiatement-après-le-dernier-plasma-de-nettoyage,-de-la-manière-suivante, Les échantillons sont immergés dans un bain d'acide fluorhydrique à 50 % en volume (KMG) pendant le temps de gravure spécifié dans le chapitre 2. Le bain est réalisé dans un bécher en téflon (environ 20 mL introduits) Lorsque plusieurs échantillons sont à graver, le même bain est utilisé pour tous les échantillons. 2 rinçages d'environ 10 secondes chacun sont réalisés en changeant la position de la pince entre les deux rinçages : le rinçage est effectué en

. Attaque-chimique-de-l, oxyde natif formé : immersion pendant 30 secondes dans un bain de solution d'acide fluorhydrique à 5 % en volume (KMG), réalisée dans un bécher en téflon

. Montée-en-température, 10°C/min) jusqu'à 1000°C sous une atmosphère N2 (10 SLM)

. La-caractérisation-de-l, épaisseur d'oxyde thermique a été réalisée par ellipsométrie (profilomètre Horiba Jobin Yvon Uvisuel à modulation de phase) Les spectres sont acquis sur une plage de 0

I. Le-dépôt-est-réalisé-par, Cependant, afin de ne pas endommager les structures à observer, avec le faisceau d'ions utilisé lors du dépôt, un premier dépôt (épaisseur 300 nm) est réalisé par EBID (Electron Beam Induced Deposition) Pour l'EBID, la tension d'accélération est 5 kV et le courant associé au faisceau d'électrons est 22 nA. Pour l'IBID, la tension d'accélération est 30kV, le courant associé au faisceau d'ions 2,5 nA. La coupe a ensuite été réalisée avec une tension d'accélération de 30 kV

. Afin-de-rendre-la-surface, SU-8 et silicium) du moule hydrophobe, ce qui est nécessaire pour faciliter le démoulage du PDMS après réticulation, une monocouche de FDTS (perfluorodécyltrichlorosilane)

. Le, PDMS est ensuite coulé sur le(s) moule(s)

S. Pour-les, diamètre nominal 80 nm), l'extrusion est réalisée en passant la suspension 31 fois (16 allers et 15 retours) au travers un filtre comprenant des pores de 100

L. Pour-les, diamètre nominal 180 nm), l'extrusion est réalisée en passant la suspension 15 fois (8 allers et 7 retours

. La-suspension-obtenue, mg/mL) est stockée à 4 °C et utilisée dans les trois jours. Les suspensions de concentration mentionnée dans le chapitre 4

. Le-dispositif-expérimental-est-obtenu-de-la-manière-suivante, Des lamelles de microscopes (Fisher, épaisseur 0,13 mm) sont rincées à l'eau purifiée « Milli-Q » (obtenu avec un système de purification Milli-Q, Merck Millipore) puis à l'éthanol (KMG) puis à nouveau à l

. De-même, dans le cas où le premier nanopore scellé est le nanopore le plus éloigné de Rnanocanal (n°5 sur la Figure 6)