Temporal and hierarchical models for planning and acting in robotics

Arthur Bit-Monnot 1
1 LAAS-RIS - Équipe Robotique et InteractionS
LAAS - Laboratoire d'analyse et d'architecture des systèmes [Toulouse]
Résumé : Le domaine de la planification de tâches a vu de rapides développements au cours de la dernière décennie et des planificateurs sont maintenant capable de trouver des plans de centaines actions en quelques secondes. Malgré ces importants progrès, les systèmes robotiques dépendent toujours d'une architecture réactive avec peu de capacité de délibération sur les futures actions qu'ils pourraient entreprendre. Dans cette thèse, nous soutenons qu'une intégration réussie d'un planificateur avec un système robotique ne peut être réussie que si le planificateur a la capacité de raisonner sur des modèles temporels et hiérarchiques. Le temps est en effet une ressource centrale pour énormément d'activités autonomes tandis que les aspects hiérarchiques sont critiques pour l'intégration de modules de délibération à différents niveaux d'abstraction, dans lequel on reçoit une vue très abstraite d'une activité qui doit être affinée jusqu'à des commandes motrices. Comme première étape dans cette direction, nous commençons par présenter un modèle pour la planification temporelle qui unifie les approches génératives et hiérarchiques. Au centre de ce modèle sont des patrons d'actions temporelles, complétées par une spécification d'un état initial et de l'évolution attendue de l'environnement. De plus, notre modèle permet la spécification de connaissance hiérarchique sur tout ou partie du domaine. Ainsi, notre modèle généralise les approches génératives et hiérarchiques tout en supportant une représentation explicite du temps. Ensuite, nous introduisons un algorithme de planification adapté au modèle proposé. Pour supporter les caractéristiques hiérarchiques, nous étendons l'approche classique de planification en l'espace des plans, notamment utilisée dans les planificateurs basés sur les CSP, avec les notions de tâches et de décomposition. L'approche est implémentée dans FAPE (Flexible Acting and Planning Environment) conjointement avec des techniques pour l'analyse automatique de problèmes. Celles-ci sont utilisées au cours de la planification pour guider la recherche d'une solution. Nous montrons que FAPE a des performances comparables avec les meilleurs planificateurs actuels quand utilisé dans une optique de planification générative. L'ajout d'informations hiérarchiques permet de les surpasser en augmentant encore les performances. Nous étudions ensuite les méthodes habituellement utilisées pour raisonner sur l'incertitude temporelle en planification. Nous relâchons les suppositions classiques d'observabilité totale et proposons des techniques pour raisonner sur les observations nécessaires pour maintenir un plan exécutable. Nous montrons que la nécessité d’une observation peut être détectée durant la planification et traitée incrémentalement en considérant les actions de perceptions appropriées. Pour finir, nous discutons de la place du système de planification proposé comme composant central pour le contrôle d'un système robotique. Nous démontrons que la prise en compte explicite du temps facilite le monitoring et l'exécution d'actions quand le système doit prendre en compte des événements contingents qui nécessitent d'être observés. Nous bénéficions également des représentations hiérarchiques et par contraintes qui facilitent la réparation de plan et la possibilité d'affiner un plan durant l'exécution.
Type de document :
Thèse
Automatic. INP DE TOULOUSE, 2016. English
Liste complète des métadonnées

https://hal.laas.fr/tel-01444926
Contributeur : Arlette Evrard <>
Soumis le : mardi 24 janvier 2017 - 13:44:55
Dernière modification le : vendredi 15 juin 2018 - 01:19:47
Document(s) archivé(s) le : mardi 25 avril 2017 - 14:30:36

Identifiants

  • HAL Id : tel-01444926, version 1

Citation

Arthur Bit-Monnot. Temporal and hierarchical models for planning and acting in robotics. Automatic. INP DE TOULOUSE, 2016. English. 〈tel-01444926〉

Partager

Métriques

Consultations de la notice

190

Téléchargements de fichiers

223