P. Abgrall and M. Gué, Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem???a review, C.1.2 Notion de résistance hydraulique Bibliographie, pp.15-49, 2007.
DOI : 10.1088/0960-1317/17/5/R01

A. , S. Et, U. , and J. , The growth and dissolution of sodium chloride in a fluidized bed crystallizer, Journal of Crystal Growth, vol.234, issue.1, pp.237-246, 2002.

. Azimi, Buried centimeter-long micro- and nanochannel arrays in porous silicon and glass, Lab on a Chip, vol.104, issue.12, pp.142081-2089, 2014.
DOI : 10.1039/c4lc00062e

. Berthier, A generalization of the Lucas???Washburn???Rideal law to composite microchannels of arbitrary cross section, Microfluidics and Nanofluidics, vol.5, issue.44, pp.497-507, 2015.
DOI : 10.1007/s10404-014-1519-3

A. Berthoud, Théorie de la formation des faces d ' un cristal, Journal de Chimie Physique, vol.10, pp.624-635, 1912.

. Bird, Transport Phenomena, 1960.

. Bocquet, . Charlaix, L. Bocquet, C. Et, and E. , Nanofluidics, from bulk to interfaces, Chem. Soc. Rev., vol.318, issue.3, pp.1073-1095, 2010.
DOI : 10.1039/B909366B

URL : http://arxiv.org/abs/0909.0628

L. Bocquet, T. Et, and P. , Physics and technological aspects of nanofluidics, Lab on a Chip, vol.103, issue.17, pp.3143-3158, 2014.
DOI : 10.2118/165360-MS

H. Bruus, Theoretical Microfluidics, 2008.

. Camassel, Evaporation in a capillary tube of square cross-section: application to ion transport, Chemical Engineering Science, vol.60, issue.3, pp.815-826, 2005.
DOI : 10.1016/j.ces.2004.09.044

. Cambau, Capillary rise between flexible walls, EPL (Europhysics Letters), vol.96, issue.2, p.9624001, 2011.
DOI : 10.1209/0295-5075/96/24001

. Chapuis, Two-phase flow and evaporation in model fibrous media, Journal of Power Sources, vol.178, issue.1, pp.258-268, 2008.
DOI : 10.1016/j.jpowsour.2007.12.011

. Chauvet, Three Periods of Drying of a Single Square Capillary Tube, Physical Review Letters, vol.103, issue.12, p.124502, 2009.
DOI : 10.1103/PhysRevLett.103.124502

URL : https://hal.archives-ouvertes.fr/hal-01359837

. Chauvet, Roles of gas in capillary filling of nanoslits, Soft Matter, vol.6, issue.41, pp.10738-10749, 2012.
DOI : 10.1039/c2sm25982f

URL : https://hal.archives-ouvertes.fr/hal-00920951

C. Chen, Evaporation au sein de systèmes microfluidiques : des structures capillaires à gradient d'ouverture aux spirales phyllotaxiques, Thèse de doctorat, 2012.

C. Et-baldas-]-colin, S. Et, B. , and L. , Effets de rar??faction dans les micro-??coulements gazeux, Comptes Rendus Physique, vol.5, issue.5, pp.521-530, 2004.
DOI : 10.1016/j.crhy.2004.04.005

C. Et-steinborn-]-correns, C. W. Et, S. , and W. , Experimente zur Messung und Erklärung der sogenannten Kristallisationskraft, pp.117-133, 1939.

. Corti, . Krieger, T. Corti, K. Et, and U. K. , Improved inverted bubble method for measuring small contact angles at crystal-solution-vapor interfaces, Applied Optics, vol.46, issue.23, p.465835, 2007.
DOI : 10.1364/AO.46.005835

. Courson, Low-cost multilevel microchannel lab on chip: DF-1000 series dry film photoresist as a promising enabler, RSC Adv., vol.12, issue.97, pp.54847-54853, 2014.
DOI : 10.1039/C4RA09097G

URL : https://hal.archives-ouvertes.fr/hal-01082670

J. Crank, The mathematics of diffusion, 1975.

J. Daïan, Equilibre et transferts en milieux poreux I-Etats d'équilibre, 2010.

H. Darcy, Les fontaines publiques de la ville de Dijon, 1856.

. Datta, Fluid breakup during simultaneous two-phase flow through a three-dimensional porous medium, Physics of Fluids, vol.26, issue.6, p.62004, 2014.
DOI : 10.1063/1.4884955

URL : http://arxiv.org/abs/1406.7045

. De-gennes, Gouttes, bulles, perles et ondes, 2005.

. Deng, Influencing factors of micropores in the graptolite shale of Ordovician Pingliang Formation in Ordos Basin, NW China, Petroleum Exploration and Development, vol.43, issue.3, pp.416-424, 2016.
DOI : 10.1016/S1876-3804(16)30048-9

. Derluyn, Deformation and damage due to drying-induced salt crystallization in porous limestone, Journal of the Mechanics and Physics of Solids, vol.63, pp.242-255, 2014.
DOI : 10.1016/j.jmps.2013.09.005

URL : http://hdl.handle.net/1854/LU-4427651

. Desarnaud, Measurement of the Pressure induced by salt crystallization in confinement, Scientific reports, pp.23-26, 2016.

. Desarnaud, Metastability Limit for the Nucleation of NaCl Crystals in Confinement, The Journal of Physical Chemistry Letters, vol.5, issue.5, pp.890-895, 2014.
DOI : 10.1021/jz500090x

. Duan, Evaporation-induced cavitation in nanofluidic channels, Proceedings of the National Academy of Sciences, vol.109, issue.10, pp.3688-93, 2012.
DOI : 10.1073/pnas.1014075109

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3309726

. Duan, . Majumdar, C. Duan, M. Et, and A. , Anomalous ion transport in 2-nm hydrophilic nanochannels, Nature Nanotechnology, vol.208, issue.12, pp.848-52, 2010.
DOI : 10.1038/nnano.2010.233

. Duan, Review article: Fabrication of nanofluidic devices, Biomicrofluidics, vol.7, issue.2, p.26501, 2013.
DOI : 10.1063/1.4794973

. Duffy, Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane), Analytical Chemistry, vol.70, issue.23, pp.704974-4984, 1998.
DOI : 10.1021/ac980656z

J. A. Dziuban, Bonding in microsystem Technology Thermal aging and reduced hydrophobic recovery of polydimethylsiloxane, Sensors and Actuators, B : Chemical, vol.114, issue.1, pp.170-172, 2006.

. Eijkel, Strongly Accelerated and Humidity-Independent Drying of Nanochannels Induced by Sharp Corners, Physical Review Letters, vol.95, issue.25, p.95256107, 2005.
DOI : 10.1103/PhysRevLett.95.256107

. Espinosa-marzal, . Scherer, R. M. Espinosa-marzal, S. Et, and G. W. , Advances in Understanding Damage by Salt Crystallization, Accounts of Chemical Research, vol.43, issue.6, pp.897-905, 2010.
DOI : 10.1021/ar9002224

D. H. Everett, The thermodynamics of frost damage to porous solids, Transactions of the Faraday Society, vol.57, p.1541, 1961.
DOI : 10.1039/tf9615701541

. Flatt, Chemo-mechanics of salt damage in stone, Nature Communications, vol.25, issue.6, p.4823, 2014.
DOI : 10.1038/ncomms5823

. Gale, Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists, Optical Engineering, vol.33, issue.11, pp.333556-3566, 1994.
DOI : 10.1117/12.179892

J. Garside, The concept of effectiveness factors in crystal growth, Chemical Engineering Science, vol.26, issue.9, pp.1425-1431, 1971.
DOI : 10.1016/0009-2509(71)80062-3

. Gorce, Capillary Imbibition into Converging Tubes: Beating Washburn???s Law and the Optimal Imbibition of Liquids, Langmuir, vol.32, issue.6, pp.1560-1567, 2016.
DOI : 10.1021/acs.langmuir.5b04495

. Grossier, Predictive Nucleation of Crystals in Small Volumes and Its Consequences, Physical Review Letters, vol.107, issue.2, p.25504, 2011.
DOI : 10.1103/PhysRevLett.107.025504

URL : https://hal.archives-ouvertes.fr/hal-00624848

. Grossier, Ultra-fast crystallization due to confinement, Journal of Crystal Growth, vol.312, issue.4, pp.487-489, 2010.
DOI : 10.1016/j.jcrysgro.2009.12.020

URL : https://hal.archives-ouvertes.fr/hal-00453710

. Hamblin, Capillary flow in sacrificially etched nanochannels, Biomicrofluidics, vol.5, issue.2, pp.1-6, 2011.
DOI : 10.1063/1.3602858

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3138793

C. Han, J. Han, C. Et, and H. G. , Characterization and Optimization of an Entropic Trap for DNA Separation, Analytical Chemistry, vol.74, issue.2, pp.394-401, 2002.
DOI : 10.1021/ac0107002

. Haneveld, Capillary filling of sub-10nm nanochannels, Journal of Applied Physics, vol.104, issue.1, p.14309, 2008.
DOI : 10.1063/1.2952053

. Ho, 3D printed microfluidics for biological applications, Lab Chip, vol.34, issue.18, pp.153627-3637, 2015.
DOI : 10.1039/C5LC00685F

. Holtzman, . Juanes, R. Holtzman, J. Et, and R. , Crossover from fingering to fracturing in deformable disordered media, Physical Review E, vol.82, issue.4, p.46305, 2010.
DOI : 10.1103/PhysRevE.82.046305

. Hultmark, The influence of the gas phase on liquid imbibition in capillary tubes, Journal of Fluid Mechanics, vol.84, pp.600-606, 2011.
DOI : 10.1063/1.1707550

. Ildefonso, Using Microfluidics for Fast, Accurate Measurement of Lysozyme Nucleation Kinetics, Crystal Growth & Design, vol.11, issue.5, pp.1527-1530, 2011.
DOI : 10.1021/cg101431g

URL : https://hal.archives-ouvertes.fr/hal-00603265

. Iliescu, A practical guide for the fabrication of microfluidic devices using glass and silicon, Biomicrofluidics, vol.6, issue.1, p.16505, 2012.
DOI : 10.1063/1.3689939

. Johnston, Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering, Journal of Micromechanics and Microengineering, vol.24, issue.3, p.35017, 2014.
DOI : 10.1088/0960-1317/24/3/035017

. Ke, Rapidly Prototyped Three-Dimensional Nanofluidic Channel Networks in Glass Substrates, Analytical Chemistry, vol.77, issue.16, pp.775083-5088, 2005.
DOI : 10.1021/ac0505167

E. Keita, Physique du séchage des sols et des matériaux de construction, Thèse de doctorat, 2014.

. Kelly, Anomalous liquid imbibition at the nanoscale: the critical role of interfacial deformations, Nanoscale, vol.6, issue.5, pp.2751-2767, 2016.
DOI : 10.1039/C5NR04462F

. Kim, Aquifer-on-a-Chip: understanding pore-scale salt precipitation dynamics during CO2 sequestration, Lab on a Chip, vol.72, issue.13, pp.132421-2662, 2013.
DOI : 10.2118/99325-MS

J. Ku, Operating Characteristics of Loop Heat Pipes, SAE Technical Paper Series, p.16, 1999.
DOI : 10.4271/1999-01-2007

. Laval, Microfluidic Droplet Method for Nucleation Kinetics Measurements, Langmuir, vol.25, issue.3, pp.1836-1841, 2009.
DOI : 10.1021/la802695r

. Lee, Universal rescaling of drop impact on smooth and rough surfaces, Journal of Fluid Mechanics, vol.22, p.4, 2016.
DOI : 10.1098/rspa.2001.0923

. Lee, Solvent Compatibility of Poly(dimethylsiloxane)-Based Microfluidic Devices, Analytical Chemistry, vol.75, issue.23, pp.756544-6554, 2003.
DOI : 10.1021/ac0346712

P. Lefort, Etude des déplacements eau-gaz dans les argilites du callovo-oxfordien a l'aide de la théroie de percolation en gradient, 2014.

. Leng, . Salmon, J. Leng, S. Et, and J. , Microfluidic crystallization, Lab Chip, vol.196, issue.1, pp.24-34, 2009.
DOI : 10.1039/B807653G

. Lenormand, Numerical models and experiments on immiscible displacements in porous media, Journal of Fluid Mechanics, vol.291, issue.-1, pp.189165-187, 1988.
DOI : 10.1017/S0022112083003110

. Li, Achieving ??/20 Resolution by One-Color Initiation and Deactivation of Polymerization, Science, vol.324, issue.5929, pp.324910-913, 2009.
DOI : 10.1126/science.1168996

. Liao, Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration, Lab on a Chip, vol.378, issue.8, pp.131626-1631, 2013.
DOI : 10.1039/c3lc41171k

L. , S. Lin, C. Et, S. , and R. F. , An Application of White Light Interferometry in Thin Film Measurements, IBM Journal of Research and Development, vol.16, issue.3, pp.269-276, 1972.

. Lorthois, Simulation study of brain blood flow regulation by intra-cortical arterioles in an anatomically accurate large human vascular network: Part I: Methodology and baseline flow, NeuroImage, vol.54, issue.2, pp.541031-1042, 2011.
DOI : 10.1016/j.neuroimage.2010.09.032

M. J. Madou, Fundamentals of Microfabrication and Nanotechnology, 2011.

M. , H. Mao, P. Et, H. , and J. , Fabrication and characterization of 20 nm planar nanofluidic channels by glass-glass and glass-silicon bonding, Lab on a Chip, vol.5, issue.8, pp.837-881, 2005.

. Mcdonald, Fabrication of microfluidic systems in poly(dimethylsiloxane), Electrophoresis, vol.66, issue.1, pp.27-40, 2000.
DOI : 10.1002/(SICI)1522-2683(20000101)21:1<27::AID-ELPS27>3.0.CO;2-C

. Microchemicals-gmbh, Greyscale Lithography with Photoresists, 2013.

M. Mohajerani, Étude expérimentale du comportement thermo-hydroméecanique de l'argilite du Callovo-Oxfordien, Thèse de doctorat, 2011.

. Naillon, Evaporation with sodium chloride crystallization in a capillary tube, Journal of Crystal Growth, vol.422, pp.52-61, 2015.
DOI : 10.1016/j.jcrysgro.2015.04.010

URL : https://hal.archives-ouvertes.fr/hal-01330778

. Nge, Advances in Microfluidic Materials, Functions, Integration, and Applications, Chemical Reviews, vol.113, issue.4, pp.2550-2583, 2013.
DOI : 10.1021/cr300337x

. Nielsen, . Toft, A. E. Nielsen, T. Et, and J. M. , Electrolyte crystal growth kinetics, Journal of Crystal Growth, vol.67, issue.2, pp.278-288, 1984.
DOI : 10.1016/0022-0248(84)90188-X

. Noblin, The Fern Sporangium: A Unique Catapult, Science, vol.335, issue.6074, pp.3351322-1322, 2012.
DOI : 10.1126/science.1215985

URL : https://hal.archives-ouvertes.fr/hal-00826001

W. Noyes, A. A. Noyes, W. Et, and W. R. , THE RATE OF SOLUTION OF SOLID SUBSTANCES IN THEIR OWN SOLUTIONS., Journal of the American Chemical Society, vol.19, issue.12, pp.930-934, 1897.
DOI : 10.1021/ja02086a003

. Oh, Capillarity-driven dynamics of water???alcohol mixtures in nanofluidic channels, Microfluidics and Nanofluidics, vol.17, issue.3, pp.123-129, 2009.
DOI : 10.1007/s10404-009-0517-3

. Pagay, A microtensiometer capable of measuring water potentials below ???10 MPa, Lab on a Chip, vol.24, issue.15, pp.142806-142823, 2014.
DOI : 10.1039/c4lc00342j

. Patera, Influence of sorption hysteresis on moisture transport in wood, Wood Science and Technology, vol.81, issue.10, pp.259-283, 2016.
DOI : 10.1007/s00226-015-0786-9

. Perry, 3D Nanofluidic Channels Shaped by Electron-Beam-Induced Etching, Small, vol.17, issue.10, pp.1521-1526, 2012.
DOI : 10.1002/smll.201102240

. Persson, Double thermal oxidation scheme for the fabrication of SiO 2 nanochannels, Nanotechnology, issue.24, p.18245301, 2007.

. Phan, Capillary Filling in Nanochannels???Modeling, Fabrication, and Experiments, Heat Transfer Engineering, vol.7, issue.7-8, pp.7-8624, 2011.
DOI : 10.1080/01457632.2010.509756

. Phan, Capillary Filling in Closed End Nanochannels, Langmuir, vol.26, issue.16, pp.2613251-2613256, 2010.
DOI : 10.1021/la1010902

M. Prat, Recent advances in pore-scale models for drying of porous media, Chemical Engineering Journal, vol.86, issue.1-2, pp.153-164, 2002.
DOI : 10.1016/S1385-8947(01)00283-2

D. Quéré, Inertial capillarity, Europhysics Letters (EPL), vol.39, issue.5, pp.533-538, 1997.
DOI : 10.1209/epl/i1997-00389-2

. Quintard, Nonlinear, multicomponent, mass transport in porous media, Chemical Engineering Science, vol.61, issue.8, pp.612643-2669, 2006.
DOI : 10.1016/j.ces.2005.11.034

. Rammohan, One-step maskless grayscale lithography for the fabrication of 3-dimensional structures in SU-8, Sensors and Actuators B: Chemical, vol.153, issue.1, pp.125-134, 2011.
DOI : 10.1016/j.snb.2010.10.021

. Ranchon, DNA separation and enrichment using electro-hydrodynamic bidirectional flows in viscoelastic liquids, Lab Chip, vol.193, issue.7, pp.1243-1253, 2016.
DOI : 10.1039/C5LC01465D

URL : https://hal.archives-ouvertes.fr/hal-01306024

R. , D. , G. C. Et, D. , and P. S. , Permeation-driven flow in poly(dimethylsiloxane) microfluidic devices, Proceedings of the National Academy of Sciences of the United States of America, vol.102, issue.31, pp.10813-10818, 2005.

R. Et-radke-]-ransohoff, T. Et, R. , and J. , Laminar flow of a wetting liquid along the corners of a predominantly gas-occupied noncircular pore, Journal of Colloid and Interface Science, vol.121, issue.2, pp.392-401, 1988.
DOI : 10.1016/0021-9797(88)90442-0

. Reyssat, Imbibition in geometries with axial variations, Journal of Fluid Mechanics, vol.36, p.335, 2008.
DOI : 10.1007/BF01461107

URL : https://hal.archives-ouvertes.fr/hal-00714966

R. Bico, B. Roman, B. Et, and J. , Elasto-capillarity : deforming an elastic structure with a liquid droplet, Journal of Physics : Condensed Matter, issue.49, p.22493101, 2010.

G. W. Scherer, Crystallization in pores, Cement and Concrete Research, vol.29, issue.8, pp.1347-1358, 1998.
DOI : 10.1016/S0008-8846(99)00002-2

G. W. Scherer, Stress from crystallization of salt, Cement and Concrete Research, vol.34, issue.9, pp.1613-1624, 2004.
DOI : 10.1016/j.cemconres.2003.12.034

. Schoch, Transport phenomena in nanofluidics, Reviews of Modern Physics, vol.80, issue.3, pp.839-883, 2008.
DOI : 10.1103/RevModPhys.80.839

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

L. I. Segerink, E. Et, and J. C. , Nanofluidics in point of care applications, Lab Chip, vol.16, issue.17, 2014.
DOI : 10.1039/C4LC00298A

. Sekine, In situ observation of the crystallization pressure induced by halite crystal growth in a microfluidic channel, American Mineralogist, vol.96, issue.7, pp.961012-1019, 2011.
DOI : 10.2138/am.2011.3765

. Selimis, Direct laser writing: Principles and materials for scaffold 3D printing, Microelectronic Engineering, vol.132, pp.83-89, 2015.
DOI : 10.1016/j.mee.2014.10.001

. Sghaier, Evaporation-driven growth of large crystallized salt structures in a porous medium, Physical Review E, vol.90, issue.4, pp.1-6, 2014.
DOI : 10.1103/PhysRevE.90.042402

N. Shahidzadeh, D. Et, and J. , Damage in porous media: role of the kinetics of salt (re)crystallization, The European Physical Journal Applied Physics, vol.60, issue.2, p.24205, 2012.
DOI : 10.1051/epjap/2012120235

W. Shih, Collapse of microchannels during anodic bonding: Theory and experiments, Journal of Applied Physics, vol.95, issue.5, p.952800, 2004.
DOI : 10.1063/1.1644898

. Stavis, Separation and metrology of nanoparticles by nanofluidic size exclusion, Lab on a Chip, vol.177, issue.19, pp.102618-2621, 2010.
DOI : 10.1039/c0lc00029a

. Stavis, DNA molecules descending a nanofluidic staircase by entropophoresis, Lab on a Chip, vol.43, issue.6, pp.1174-1182, 2012.
DOI : 10.1039/c2lc21152a

. Stavis, Nanofluidic structures with complex three-dimensional surfaces, Nanotechnology, vol.20, issue.16, p.20165302, 2009.
DOI : 10.1088/0957-4484/20/16/165302

J. Stefan, Über die Verdampfung und die Auflösung als Vorgänge der Diffusion, Stefan Über die Verdampfung und die Auflösung als Vorgänge der Diffusion Sitzungsberichte der kaiserlichen Akademie der Wissenschaften Wien, pp.1418-144, 1889.

M. Steiger, Crystal growth in porous materials???I: The crystallization pressure of large crystals, Journal of Crystal Growth, vol.282, issue.3-4, pp.3-4455, 2005.
DOI : 10.1016/j.jcrysgro.2005.05.007

M. Steiger, Crystal growth in porous materials???II: Influence of crystal size on the crystallization pressure, Journal of Crystal Growth, vol.282, issue.3-4, pp.3-4470, 2005.
DOI : 10.1016/j.jcrysgro.2005.05.008

. Sugioka, . Cheng, K. Sugioka, C. Et, and Y. , Femtosecond laser three-dimensional micro- and nanofabrication, Applied Physics Reviews, vol.1, issue.4, p.41303, 2014.
DOI : 10.1063/1.4904320

P. Tabeling, Introduction à la microfluidique, 2003.

. Tas, Capillary filling speed of water in nanochannels, Applied Physics Letters, vol.85, issue.15, pp.853274-3276, 2004.
DOI : 10.1063/1.1804602

. Totsu, Fabrication of threedimensional microstructure using maskless gray-scale lithography. Sensors and Actuators A : Physical, pp.130-131387, 2006.

. Van-heeren, Microfluidic devices: a road forward by standardization of interconnects and classification, Microfluidics and Nanofluidics, vol.12, issue.6, pp.1203-1207, 2015.
DOI : 10.1007/s10404-015-1639-4

. Van-honschoten, Elastocapillary filling of deformable nanochannels, Journal of Applied Physics, vol.101, issue.9, p.94310, 2007.
DOI : 10.1063/1.2732539

. Veran-tissoires, . Prat, S. Veran-tissoires, P. Et, and M. , Evaporation of a sodium chloride solution from a saturated porous medium with efflorescence formation, Journal of Fluid Mechanics, vol.47, pp.701-749, 2014.
DOI : 10.1021/jz500090x

URL : https://hal.archives-ouvertes.fr/hal-01002166

. Verneuil, Permeation-induced flows: Consequences for silicone-based microfluidics, Europhysics Letters (EPL), vol.68, issue.3, pp.412-418, 2004.
DOI : 10.1209/epl/i2004-10221-7

. Vincent, The fast dynamics of cavitation bubbles within water confined in elastic solids, Soft Matter, vol.491, issue.10, pp.101455-1461, 2014.
DOI : 10.1039/c3sm52697f

URL : https://hal.archives-ouvertes.fr/hal-01082221

. Vincent, Drying by Cavitation and Poroelastic Relaxations in Porous Media with Macroscopic Pores Connected by Nanoscale Throats, Physical Review Letters, vol.113, issue.13, pp.1131-1136, 2014.
DOI : 10.1103/PhysRevLett.113.134501

. Vincent, Capillarity-driven flows at the continuum limit, Soft Matter, vol.455, issue.31, pp.6656-6661, 2016.
DOI : 10.1039/C6SM00733C

URL : http://arxiv.org/abs/1510.00411

. Vlassiouk, . Siwy, I. Vlassiouk, S. Et, and Z. S. , Nanofluidic Diode, Nano Letters, vol.7, issue.3, pp.552-556, 2007.
DOI : 10.1021/nl062924b

Z. Wang, Polydimethylsiloxane Mechanical Properties Measured by Macroscopic Compression and Nanoindentation Techniques, 2011.

E. W. Washburn, The Dynamics of Capillary Flow, Physical Review, vol.17, issue.3, pp.273-283, 1921.
DOI : 10.1103/PhysRev.17.273

. Wheeler, . Stroock, T. D. Wheeler, S. Et, and A. D. , The transpiration of water at negative pressures in a synthetic tree, Nature, vol.35, issue.7210, pp.455208-455220, 2008.
DOI : 10.1038/nature07226

. Wheeler, . Stroock, T. D. Wheeler, S. Et, and A. D. , Stability Limit of Liquid Water in Metastable Equilibrium with Subsaturated Vapors, Langmuir, vol.25, issue.13, pp.257609-257631, 2009.
DOI : 10.1021/la9002725

S. Whitaker, The Method of Volume Averaging, 1999.
DOI : 10.1007/978-94-017-3389-2

. Wu, Fabrication of Arrays of Microlenses with Controlled Profiles Using Gray-Scale Microlens Projection Photolithography, Langmuir, vol.18, issue.24, pp.18-9312, 2002.
DOI : 10.1021/la015735b

. Xia, . Whitesides, Y. Xia, W. Et, and G. M. , SOFT LITHOGRAPHY, Annual Review of Materials Science, vol.28, issue.1, pp.153-184, 1998.
DOI : 10.1146/annurev.matsci.28.1.153

. Yazdi, 3D printing: an emerging tool for novel microfluidics and lab-on-a-chip applications, Microfluidics and Nanofluidics, vol.56, issue.2, pp.1-18, 2016.
DOI : 10.1007/s10404-016-1715-4

W. B. Young, Analysis of capillary flows in non-uniform cross-sectional capillaries, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.234, issue.1-3, pp.1-3123, 2004.
DOI : 10.1016/j.colsurfa.2003.12.007

. Zhang, One-step fabrication of micro/nanotunnels in metal interlayers, Nanoscale, vol.34, issue.18, pp.58351-8354, 2013.
DOI : 10.1039/c3nr01677c

. Zhao, The mass transfer process and the growth rate of NaCl crystal growth by evaporation based on temporal phase evaluation, Optics and Lasers in Engineering, vol.50, issue.4, pp.540-546, 2012.
DOI : 10.1016/j.optlaseng.2011.07.013

. Zhong, Fabrication of PDMS microlens array by digital maskless grayscale lithography and replica molding technique, Optik - International Journal for Light and Electron Optics, vol.125, issue.10, pp.1252413-2416, 2014.
DOI : 10.1016/j.ijleo.2013.10.082