C. Neagle and «. Mwc, Solar panels built into smartphone screen », Network World, 05-mars-2015. [En ligne] Disponible sur: http://www.networkworld.com/article/2893712/opensource-subnet/solar-panels-built- into-smartphone-screen-to-solve-the-battery-life-crisis.html, pp.19-2016, 2015.

K. Akkaya, A survey on routing protocols for wireless sensor networks, Ad Hoc Networks, vol.3, issue.3, pp.325-349, 2005.
DOI : 10.1016/j.adhoc.2003.09.010

R. Montheard, « Récupération d'énergie aéroacoustique et thermique pour capteurs sans fil embarqués sur avion, 2014.

Q. Jiang and D. Manivannan, « Routing protocols for sensor networks, First IEEE Consumer Communications and Networking Conference, pp.93-98, 2004.

«. Sosus-the, Secret Weapon " of Undersea Surveillance ». [En ligne] Disponible sur, pp.7-2015

J. M. Kahn, R. H. Katz, and K. S. Pister, Next century challenges, Proceedings of the 5th annual ACM/IEEE international conference on Mobile computing and networking , MobiCom '99, pp.271-278, 1999.
DOI : 10.1145/313451.313558

B. A. Warneke, M. D. Scott, B. S. Leibowitz, L. Zhou, C. L. Bellew et al., Pister, « An autonomous 16 mm3 solar-powered node for distributed wireless sensor networks, Proceedings of IEEE Sensors, pp.1510-1515, 2002.
DOI : 10.1109/icsens.2002.1037346

A. A. Kumar-somappa, K. Øvsthus, and L. M. Kristensen, An Industrial Perspective on Wireless Sensor Networks — A Survey of Requirements, Protocols, and Challenges, Protocols, and Challenges, pp.1391-1412, 2014.
DOI : 10.1109/SURV.2014.012114.00058

M. P. Durisic, Z. Tafa, and G. Dimic, Milutinovic, « A survey of military applications of wireless sensor networks, 2012 Mediterranean Conference on Embedded Computing (MECO), pp.2012-196

P. Naz, S. Hengy, and E. P. Hamery, « Soldier detection using unattended acoustic and seismic sensors », présenté à Ground/Air Multisensor Interoperability, Integration, and Networking for Persistent ISR III, pp.83890-83890, 2012.
DOI : 10.1117/12.920449

W. M. Merrill, D. Mclntire, J. Elson, and E. W. Kaiser, Dynamic Networking and Smart Sensing Enable Next-Generation Landmines, IEEE Pervasive Computing, vol.3, issue.4, pp.84-90, 2004.
DOI : 10.1109/MPRV.2004.4

G. Werner-allen, K. Lorincz, M. Ruiz, O. Marcillo, J. Johnson et al., Deploying a wireless sensor network on an active volcano, IEEE Internet Computing, vol.10, issue.2, pp.18-25, 2006.
DOI : 10.1109/MIC.2006.26

X. Hu, B. Wang, and E. H. Ji, « A Wireless Sensor Network-Based Structural Health Monitoring System for Highway Bridges », Comput.-Aided Civ, Infrastruct. Eng, vol.28, issue.3, pp.193-209, 2013.
DOI : 10.1111/j.1467-8667.2012.00781.x

E. Setijadi, B. P. Suwadi, A. A. Slamet, . Muntaqo, A. E. In-'am et al., Design of large scale structural health monitoring system for long-span bridges based on wireless sensor network, 2013 International Joint Conference on Awareness Science and Technology & Ubi-Media Computing (iCAST 2013 & UMEDIA 2013), pp.169-174, 2013.
DOI : 10.1109/ICAwST.2013.6765428

T. Torfs, T. Sterken, S. Brebels, J. Santana, R. Van-den-hoven et al., Low Power Wireless Sensor Network for Building Monitoring, Low Power Wireless Sensor Network for Building Monitoring, pp.909-915, 2013.
DOI : 10.1109/JSEN.2012.2218680

J. Haule and K. Michael, Deployment of wireless sensor networks (WSN) in automated irrigation management and scheduling systems: a review, Proceedings of the 2nd Pan African International Conference on Science, Computing and Telecommunications (PACT 2014), pp.86-91, 2014.
DOI : 10.1109/SCAT.2014.7055144

S. Kim, S. Pakzad, D. Culler, J. Demmel, G. Fenves et al., Turon, « Structural Health Monitoring of the Golden Gate Bridge », Structural Health Monitoring of the Golden Gate Bridge

«. Millennial and N. ». Sub-meter-wi-lem, En ligne] Disponible sur: http://www.millennialnet.com/Energy-Management/Products, pp.8-2015

J. A. Paradiso and T. Starner, Energy Scavenging for Mobile and Wireless Electronics, IEEE Pervasive Computing, vol.4, issue.1, pp.18-27, 2005.
DOI : 10.1109/MPRV.2005.9

M. Kraemer, D. Dragomirescu, and E. R. Plana, Design of a very low-power, low-cost 60??GHz receiver front-end implemented in 65??nm CMOS technology, International Journal of Microwave and Wireless Technologies, vol.3, issue.02, pp.131-138, 2011.
DOI : 10.1109/JSSC.2008.917557

URL : https://hal.archives-ouvertes.fr/hal-00591033

A. Lecointre, D. Dragomirescu, and E. R. Plana, Largely reconfigurable impulse radio UWB transceiver, Electronics Letters, vol.46, issue.6, pp.453-455, 2010.
DOI : 10.1049/el.2010.0310

URL : https://hal.archives-ouvertes.fr/hal-00591004

F. Formosa and L. G. Fréchette, Scaling laws for free piston Stirling engine design: Benefits and challenges of miniaturization, Energy, vol.57, pp.796-808, 2013.
DOI : 10.1016/j.energy.2013.05.009

URL : https://hal.archives-ouvertes.fr/hal-00916011

C. Lee, L. G. Frechette, and «. A. , A Silicon Microturbopump for a Rankine-Cycle Power Generation Microsystem—Part I: Component and System Design, Journal of Microelectromechanical Systems, vol.20, issue.1, pp.312-325, 2011.
DOI : 10.1109/JMEMS.2010.2093561

R. Padbury and X. Zhang, Lithium???oxygen batteries???Limiting factors that affect performance, Journal of Power Sources, vol.196, issue.10, pp.4436-4444, 2011.
DOI : 10.1016/j.jpowsour.2011.01.032

J. Lee, S. T. Kim, R. Cao, N. Choi, M. Liu et al., Metal-Air Batteries with High Energy Density: Li-Air versus Zn-Air, Advanced Energy Materials, vol.47, issue.1, pp.16-2015
DOI : 10.1016/S0013-4686(02)00316-X

URL : http://onlinelibrary.wiley.com/doi/10.1002/aenm.201000010/pdf

R. Hahn, K. Marquardt, M. Thunman, M. Topper, M. Wilke et al., Silicon integrated micro batteries based on deep reactive ion etching and through silicon via technologies, 2012 IEEE 62nd Electronic Components and Technology Conference, pp.1571-1577, 2012.
DOI : 10.1109/ECTC.2012.6249045

«. Saft, -. Petits, and V. ». , En ligne] Disponible sur: http://www.saftbatteries.com/fr/recherche-batterie/mppetits-vl, Consulté le, pp.16-2015

J. Mouawad, Report on Boeing 787 Dreamliner Battery Flaws Finds Lapses at Multiple Points », The New York Times, pp.1-2014

A. Kirubakaran, S. Jain, and R. K. Nema, A review on fuel cell technologies and power electronic interface, Renewable and Sustainable Energy Reviews, vol.13, issue.9, 2009.
DOI : 10.1016/j.rser.2009.04.004

J. Xuan, M. K. Leung, D. Y. Leung, and E. M. Ni, A review of biomass-derived fuel processors for fuel cell systems, Renewable and Sustainable Energy Reviews, vol.13, issue.6-7, pp.6-7, 2009.
DOI : 10.1016/j.rser.2008.09.027

. Demirci-umit-bilge, « Piles à combustible alimentées par un combustible liquide », Tech : TIB503DUO, n o ref. article : re93, sept, Ing. Innov. En Nouv. Énerg, vol.base documentaire, 2007.

A. Kundu, J. H. Jang, J. H. Gil, C. R. Jung, H. R. Lee et al., Micro-fuel cells???Current development and applications, Journal of Power Sources, vol.170, issue.1, pp.67-78, 2007.
DOI : 10.1016/j.jpowsour.2007.03.066

C. M. Miesse, W. S. Jung, K. Jeong, J. K. Lee, J. Lee et al., Direct formic acid fuel cell portable power system for the operation of a laptop computer, Direct formic acid fuel cell portable power system for the operation of a laptop computer, pp.532-540, 2006.
DOI : 10.1016/j.jpowsour.2006.07.013

«. Intelligent-energy and ». , Disponible sur: http://www.intelligent-energy.com/our-divisions/consumerelectronics, Consulté le, pp.17-2015

S. Sundarrajan, S. I. Allakhverdiev, and E. S. Ramakrishna, Progress and perspectives in micro direct methanol fuel cell, International Journal of Hydrogen Energy, vol.37, issue.10, pp.8765-8786, 2012.
DOI : 10.1016/j.ijhydene.2011.12.017

E. Kjeang and N. Djilali, Microfluidic fuel cells: A review, Journal of Power Sources, vol.186, issue.2, pp.353-369, 2009.
DOI : 10.1016/j.jpowsour.2008.10.011

E. Kjeang, R. Michel, D. A. Harrington, and N. Djilali, Sinton, « A Microfluidic Fuel Cell with Flow-Through Porous Electrodes, J. Am. Chem. Soc, vol.130, pp.12-4000, 2008.

H. Wang, A. Bernarda, C. Huang, D. Lee, and J. Chang, Micro-sized microbial fuel cell: A mini-review, Micro-sized microbial fuel cell: A minireview, pp.235-243
DOI : 10.1016/j.biortech.2010.07.007

M. Simões and S. Baranton, Coutanceau, « Electro-oxidation of glycerol at Pd based nano-catalysts for an application in alkaline fuel cells for chemicals and energy cogeneration, Appl. Catal. B Environ, vol.93, 2010.

P. Sharma and T. S. Bhatti, « A review on electrochemical double-layer capacitors », Energy Convers, Manag, vol.51, issue.12, pp.2901-2912, 2010.
DOI : 10.1016/j.enconman.2010.06.031

S. Bose, T. Kuila, A. K. Mishra, R. Rajasekar, N. H. Kim et al., Carbon-based nanostructured materials and their composites as supercapacitor electrodes, J. Mater. Chem., vol.111, issue.98, pp.767-784, 2012.
DOI : 10.1021/jp069006m

M. Kaus, J. Kowal, and D. U. Sauer, Modelling the effects of charge redistribution during self-discharge of supercapacitors, Electrochimica Acta, vol.55, issue.25, pp.25-7516, 2010.
DOI : 10.1016/j.electacta.2010.01.002

J. Kowal, E. Avaroglu, F. Chamekh, A. ?enfelds, T. Thien et al., Detailed analysis of the self-discharge of supercapacitors, Journal of Power Sources, vol.196, issue.1, pp.573-579
DOI : 10.1016/j.jpowsour.2009.12.028

R. A. Dougal, L. Gao, and E. S. Liu, Ultracapacitor model with automatic order selection and capacity scaling for dynamic system simulation, Journal of Power Sources, vol.126, issue.1-2, 2004.
DOI : 10.1016/j.jpowsour.2003.08.031

L. Zubieta and R. Bonert, Characterization of double-layer capacitors for power electronics applications, IEEE Transactions on Industry Applications, vol.36, issue.1, pp.199-205, 2000.
DOI : 10.1109/28.821816

S. Roundy, P. K. Wright, and E. J. Rabaey, A study of low level vibrations as a power source for wireless sensor nodes, Computer Communications, vol.26, issue.11, 2003.
DOI : 10.1016/S0140-3664(02)00248-7

K. A. Cook-chennault, N. Thambi, and A. M. Sastry, Powering MEMS portable devices???a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems, Smart Materials and Structures, vol.17, issue.4, p.43001, 2008.
DOI : 10.1088/0964-1726/17/4/043001

X. W. Han-xiao, « A review of piezoelectric vibration energy harvesting techniques, Int. Rev. Mech. Eng, vol.8, issue.3, pp.609-620, 2014.

S. Roundy and P. K. Wright, A piezoelectric vibration based generator for wireless electronics, Smart Materials and Structures, vol.13, issue.5, p.1131, 2004.
DOI : 10.1088/0964-1726/13/5/018

A. Erturk and D. J. Inman, Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling, Journal of Sound and Vibration, vol.330, issue.10, pp.2339-2353, 2011.
DOI : 10.1016/j.jsv.2010.11.018

H. Liu, C. Lee, T. Kobayashi, C. J. Tay, and E. C. Quan, A new S-shaped MEMS PZT cantilever for energy harvesting from low frequency vibrations below 30??Hz, Microsystem Technologies, vol.158, issue.146, pp.497-506
DOI : 10.1016/j.sna.2010.01.002

Z. Chen, Y. Yang, Z. Lu, and Y. Luo, Broadband characteristics of vibration energy harvesting using one-dimensional phononic piezoelectric cantilever beams, Physica B: Condensed Matter, vol.410, pp.5-12
DOI : 10.1016/j.physb.2012.10.029

M. Pozzi, A. Canziani, and I. Durazo-cardenas, Zhu, « Experimental characterisation of macro fibre composites and monolithic piezoelectric transducers for strain energy harvesting, pp.834832-834832, 2012.

«. Mfc and ». , Disponible sur: http://www.smart-material.com/MFC-product-main.html, Consulté le, pp.2-2015

S. P. Beeby, M. J. Tudor, and N. M. White, Energy harvesting vibration sources for microsystems applications, Measurement Science and Technology, vol.17, issue.12, pp.12-175, 2006.
DOI : 10.1088/0957-0233/17/12/R01

S. Boisseau and G. Despesse, Ahmed, « Electrostatic Conversion for Vibration Energy Harvesting, Small- Scale Energy Harvesting, M. Lallart, Éd. InTech, 2012.
DOI : 10.5772/51360

URL : http://www.intechopen.com/download/pdf/40640

D. Kim, S. Yu, B. Kang, and K. Yun, Liquid-based electrostatic energy harvester using rotational motion of ferrofluid droplets, 2015 Transducers, 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), pp.59-61, 2015.
DOI : 10.1109/TRANSDUCERS.2015.7180860

Z. Yang, E. Halvorsen, and E. T. Dong, Electrostatic Energy Harvester Employing Conductive Droplet and Thin-Film Electret, Journal of Microelectromechanical Systems, vol.23, issue.2, pp.315-323
DOI : 10.1109/JMEMS.2013.2273933

G. Altena, D. Hohlfeld, R. Elfrink, M. H. Goedbloed, and R. Van-schaijk, Design, modeling, fabrication and characterization of an electret-based MEMS electrostatic energy harvester, 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference, pp.739-742, 2011.
DOI : 10.1109/TRANSDUCERS.2011.5969847

P. Basset, D. Galayko, A. M. Paracha, F. Marty, A. Dudka et al., A batch-fabricated and electret-free silicon electrostatic vibration energy harvester, Journal of Micromechanics and Microengineering, vol.19, issue.11, p.115025, 2009.
DOI : 10.1088/0960-1317/19/11/115025

URL : https://hal.archives-ouvertes.fr/hal-00692939

«. File, Lateral sliding mode of triboelectric nanogenerator.tif », Wikipedia, the free encyclopedia

F. Fan, Z. Tian, and Z. L. Wang, Flexible triboelectric generator, Flexible triboelectric generator, pp.328-334, 2012.
DOI : 10.1016/j.nanoen.2012.01.004

Z. L. Wang, Triboelectric Nanogenerators as New Energy Technology for Self-Powered Systems and as Active Mechanical and Chemical Sensors, ACS Nano, vol.7, issue.11, pp.9533-9557, 2013.
DOI : 10.1021/nn404614z

G. Zhu, Z. Lin, Q. Jing, P. Bai, C. Pan et al., Toward Large-Scale Energy Harvesting by a Nanoparticle-Enhanced Triboelectric Nanogenerator, Toward Large-Scale Energy Harvesting by a Nanoparticle-Enhanced Triboelectric Nanogenerator, pp.847-853, 2013.
DOI : 10.1021/nl4001053

T. Hou, Y. Yang, H. Zhang, J. Chen, L. Chen et al., Triboelectric nanogenerator built inside shoe insole for harvesting walking energy, Triboelectric nanogenerator built inside shoe insole for harvesting walking energy, pp.856-862, 2013.
DOI : 10.1016/j.nanoen.2013.03.001

«. Gt and . Georgia, Triboelectric Generators Capture Wasted Power ». [En ligne] Disponible sur: http://www.news.gatechharvesting- electricity-triboelectric-generators-capture-wasted-power, Consulté le, pp.2-2015, 2013.

«. Disney and R. , Paper Generators: Harvesting Energy from Touching, Rubbing and Sliding ». [En ligne]. Disponible sur: http://www.disneyresearch.com/project/paper-generators, Consulté le, pp.2-2015

«. Ferro-solutions and ». , En ligne] Disponible sur

«. Nrel, Photovoltaics Research Home Page ». [En ligne] Disponible sur: http://www.nrel.gov/pv, Consulté le, pp.7-2015

E. Donchev, J. S. Pang, P. M. Gammon, A. Centeno, F. Xie et al., ABSTRACT, MRS Energy & Sustainability, vol.1, 2014.
DOI : 10.1557/mre.2014.6

H. Sun, Y. Guo, M. He, and Z. Zhong, « Design of a High-Efficiency 2.45-GHz Rectenna for Low-Input-Power Energy Harvesting, IEEE Antennas Wirel. Propag. Lett, vol.11, pp.929-932, 2012.

M. Pinuela, P. D. Mitcheson, and E. S. Lucyszyn, Ambient RF Energy Harvesting in Urban and Semi-Urban Environments, IEEE Transactions on Microwave Theory and Techniques, vol.61, issue.7, pp.2715-2726
DOI : 10.1109/TMTT.2013.2262687

Y. Yang, W. Guo, K. C. Pradel, G. Zhu, Y. Zhou et al., Pyroelectric Nanogenerators for Harvesting Thermoelectric Energy, Pyroelectric Nanogenerators for Harvesting Thermoelectric Energy, pp.2833-2838, 2012.
DOI : 10.1021/nl3003039

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.654.3691

J. Lee, K. Y. Lee, M. K. Gupta, T. Y. Kim, D. Lee et al., Highly Stretchable Piezoelectric-Pyroelectric Hybrid Nanogenerator, Highly Stretchable Piezoelectric-Pyroelectric Hybrid Nanogenerator, pp.765-769
DOI : 10.1002/adma.200801831

V. Rajkumar, J. Durgamanian, R. K. Hariharavarshan, and . Sathiendran, Recovering energy from the exhaust heat in vehicles using thermo electric generator, 2015 International Conference on Circuits, Power and Computing Technologies [ICCPCT-2015], pp.2015-2016
DOI : 10.1109/ICCPCT.2015.7159267

Y. Wang, C. Dai, and E. S. Wang, Theoretical analysis of a thermoelectric generator using exhaust gas of vehicles as heat source, Applied Energy, vol.112, pp.1171-1180
DOI : 10.1016/j.apenergy.2013.01.018

«. Industrial-power, |. Industrial-waste-heat-recovery, |. Marlow, and ». , En ligne] Disponible sur: http://www.marlow.com/industries/industrial/exhaust-waste-heat-recovery.html, Consulté le, pp.13-2015

H. Bottner, Micropelt miniaturized thermoelectric devices: small size, high cooling power densities, short response time, ICT 2005. 24th International Conference on Thermoelectrics, 2005., pp.1-8, 2005.
DOI : 10.1109/ICT.2005.1519873

«. Micropelt-thermogenerator and ». , En ligne] Disponible sur, pp.25-2015

«. Kelk-ltd, > Product information on thermo modules ». [En ligne] Disponible sur, pp.3-2015

N. Bailly, J. Dilhac, C. Escriba, C. Vanhecke, N. Mauran et al., « Energy Scavenging Based On Transient Thermal Gradients: Application To Structural Health Monitoring Of Aircrafts. », présenté à 8th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications, 2008.

D. Samson, T. Otterpohl, M. Kluge, U. Schmid, and E. T. Becker, Aircraft-Specific Thermoelectric Generator Module, Journal of Electronic Materials, vol.16, issue.9, pp.2092-2095, 2009.
DOI : 10.1007/s11664-009-0997-7

A. Arnaud, S. Boisseau, S. Monfray, O. Puscasu, G. Despesse et al., Piezoelectric and electrostatic bimetal-based thermal energy harvesters, Journal of Physics: Conference Series, vol.476, issue.1, p.12062, 2013.
DOI : 10.1088/1742-6596/476/1/012062

URL : https://hal.archives-ouvertes.fr/hal-00994153

F. Maiorca, F. Giusa, C. Trigona, B. Andò, A. R. Bulsara et al., Diode-less mechanical H-bridge rectifier for ???zero threshold??? vibration energy harvesters, Sensors and Actuators A: Physical, vol.201, pp.246-253
DOI : 10.1016/j.sna.2013.07.021

A. Tariq and J. Asghar, Development of an Analog Maximum Power Point Tracker for Photovoltaic Panel, 2005 International Conference on Power Electronics and Drives Systems, pp.251-255, 2005.
DOI : 10.1109/PEDS.2005.1619694

W. Lin, C. Hong, and C. Chen, Neural-Network-Based MPPT Control of a Stand-Alone Hybrid Power Generation System, IEEE Transactions on Power Electronics, vol.26, issue.12, pp.12-3571, 2011.
DOI : 10.1109/TPEL.2011.2161775

I. Doms and . Merken, Van Hoof, « Comparison of DC-DC-converter architectures of power management circuits for thermoelectric generators, 2007 European Conference on Power Electronics and Applications, pp.1-5, 2007.

J. Kim, J. Kim, E. C. Kim, and «. A. , A Regulated Charge Pump With a Low-Power Integrated Optimum Power Point Tracking Algorithm for Indoor Solar Energy Harvesting, IEEE Transactions on Circuits and Systems II: Express Briefs, vol.58, issue.12, pp.12-802
DOI : 10.1109/TCSII.2011.2173971

P. Durand-estebe, V. Boitier, M. Bafleur, J. Dilhac, and E. S. Berhouet, Power supply for a wireless sensor network: Airliner flight test case study, 2014 International Power Electronics Conference (IPEC-Hiroshima 2014, ECCE ASIA), pp.707-711, 2014.
DOI : 10.1109/IPEC.2014.6869665

URL : https://hal.archives-ouvertes.fr/hal-01100084

S. Boisseau, P. Gasnier, and M. Gallardo, Self-starting power management circuits for piezoelectric and electret-based electrostatic mechanical energy harvesters, Journal of Physics: Conference Series, vol.476, issue.1, p.12080, 2013.
DOI : 10.1088/1742-6596/476/1/012080

URL : http://doi.org/10.1088/1742-6596/476/1/012080

C. Carvalho and N. Paulino, Start-up circuit for low-power indoor light energy harvesting applications, Electronics Letters, vol.49, issue.10, pp.669-671, 2013.
DOI : 10.1049/el.2012.3418

T. Becker, M. Kluge, J. Schalk, and T. Otterpohl, Hilleringmann, « Power management for thermal energy harvesting in aircrafts, IEEE Sensors, pp.681-684, 2008.
DOI : 10.1109/icsens.2008.4716533

«. Ansmann-rechargeable and . Battery, Nickel Metal Hydride, 2400 mAh, 1.2 V, AA, Raised Positive and Flat Negative ». [En ligne]. Disponible sur, pp.2-2016

V. Boitier, P. D. Estèbe, R. Monthéard, M. Bafleur, and J. M. Dilhac, Under Voltage Lock-Out Design Rules for Proper Start-Up of Energy Autonomous Systems Powered by Supercapacitors, Journal of Physics: Conference Series, vol.476, issue.1, p.12121, 2013.
DOI : 10.1088/1742-6596/476/1/012121

S. Maley, J. Plets, N. D. Phan, and «. Us, Navy Roadmap to Structural Health and Usage Monitoring ? The Present and Future, American Helicopter Society 63 rd Annual Forum, 2007.

R. D. Finlayson, M. Friesel, M. Carlos, P. Cole, and J. C. Lenain, « Health Monitoring of Aerospace Structures with Acoustic Emission and Acousto-Ultrasonics, 15th World Conference on NDT, 2000.

K. J. Atherton, C. Paget, E. W. O-'brien, and U. Et-airbus, Structural Health Monitoring of Metal Aircraft Structures with Modified Acoustic Emission, SEM X International Congress & Exposition on Experimental & Applied Mechanics, 2004.

C. Lerouge, Industrie Photovoltaïque (PV) aux Etats-Unis », SCIENCES PHYSIQUES ETATS-UNIS, 2006.

D. Meekhun, « Réalisation d'un système de conversion et de gestion de l'énergie d'un système photovoltaïque pour l'alimentation des réseaux de capteurs sans fil autonomes pour l'application aéronautique, 2011.

M. G. Villalva, J. R. Gazoli, and E. R. Filho, Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays, IEEE Transactions on Power Electronics, vol.24, issue.5, pp.1198-1208, 2009.
DOI : 10.1109/TPEL.2009.2013862

N. H. Reich, W. Van-sark, E. A. Alsema, S. Y. Kan, S. Silvester et al., « Weak light performance and spectral response of different solar cell types, Proceedings of the 20th European Photovoltaic Solar Energy Conference, pp.2120-2123, 2005.

E. Skoplaki and J. A. , On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations, Solar Energy, vol.83, issue.5, pp.614-624, 2009.
DOI : 10.1016/j.solener.2008.10.008

L. Chaar and L. A. Lamont, Review of photovoltaic technologies, Renewable and Sustainable Energy Reviews, vol.15, issue.5, pp.2165-2175, 2011.
DOI : 10.1016/j.rser.2011.01.004

«. Sunpower-la, meilleure technologie solaire à votre service ». [En ligne]. Disponible sur: http://www.sunpower.fr, Consulté le, pp.30-2015

J. L. Cruz-campa, G. N. Nielson, P. J. Resnick, C. A. Sanchez, P. J. Clews et al., Ultrathin Flexible Crystalline Silicon: Microsystems-Enabled Photovoltaics, Ultrathin Flexible Crystalline Silicon: Microsystems-Enabled Photovoltaics, pp.3-8, 2011.
DOI : 10.1109/JPHOTOV.2011.2162973

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.648.7002

C. Lin, Y. Chuang, W. Sun, C. Cheng, Y. Chen et al., Ultrathin single-crystalline silicon solar cells for mechanically flexible and optimal surface morphology designs, Microelectronic Engineering, vol.145, pp.128-132, 2015.
DOI : 10.1016/j.mee.2015.04.013

«. Epfl, Q. Nord-swisstech-convention-center, S. Retail, /. Housing, &. Richter-dahl-rocha et al., En ligne] Disponible sur: http://www.archdaily.com/519434/epfl-quartier-nord- swisstech-convention-center-retail-and-student-housing-richter-dahl-rocha-and-associes, Consulté le, pp.1-2015

N. Park, Perovskite solar cells: an emerging photovoltaic technology, Mater. Today, pp.65-72, 2015.
DOI : 10.1016/j.mattod.2014.07.007

URL : http://doi.org/10.1016/j.mattod.2014.07.007

«. Photovoltaïque:-la-fièvre-pérovskite and ». , [En ligne] Disponible sur: https://lejournal.cnrs.fr/articles/photovoltaique-la-fievre-perovskite, Consulté le, pp.1-2015

A. Hellemans and . Can, Organic Solar Cells Reach Old Age? [En ligne] Disponible sur: http://spectrum.ieee.org/energywise/green-tech/solar/can-organic-solar-cells-reach-old-age1, Consulté le, pp.17-2014

C. J. Brabec, Organic solar cell are 20 years of lifetime realistic ». [En ligne]. Disponible sur

S. Sudevalayam and P. Kulkarni, Energy Harvesting Sensor Nodes: Survey and Implications, IEEE Communications Surveys & Tutorials, vol.13, issue.3, pp.443-461, 2011.
DOI : 10.1109/SURV.2011.060710.00094

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.331.8359

W. S. Wang, T. O. Donnell, N. Wang, M. Hayes, B. O-'flynn et al., Design considerations of sub-mW indoor light energy harvesting for wireless sensor systems, ACM Journal on Emerging Technologies in Computing Systems, vol.6, issue.2, pp.1-6, 2008.
DOI : 10.1145/1773814.1773817

V. Raghunathan, A. Kansal, J. Hsu, J. Friedman, and M. B. Srivastava, Design considerations for solar energy harvesting wireless embedded systems, IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005., pp.457-462, 2005.
DOI : 10.1109/IPSN.2005.1440973

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.89.4757

M. Bronz and «. A. , Contribution to the Design of Long Endurance Mini Unmanned Aerial Vehicles », Theses, Institut Supérieur de l'Aéronautique et de l'Espace -ISAE, 2012.

A. Noth, « Design of Solar Powered Airplanes for Continuous Flight, 2008.

T. J. Silverman, M. G. Deceglie, B. Marion, S. Cowley, B. Kayes et al., Outdoor performance of a thin-film gallium-arsenide photovoltaic module, 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), pp.9-2015, 2013.
DOI : 10.1109/PVSC.2013.6744109

Y. Apertet, H. Ouerdane, O. Glavatskaya, C. Goupil, and E. P. Lecoeur, Optimal working conditions for thermoelectric generators with realistic thermal coupling, EPL (Europhysics Letters), vol.97, issue.2, p.28001, 2012.
DOI : 10.1209/0295-5075/97/28001

URL : http://arxiv.org/pdf/1108.6164

M. Chen, L. A. Rosendahl, T. J. Condra, and J. K. Pedersen, Numerical Modeling of Thermoelectric Generators With Varing Material Properties in a Circuit Simulator, Numerical Modeling of Thermoelectric Generators With Varing Material Properties in a Circuit Simulator, pp.112-124, 2009.
DOI : 10.1109/TEC.2008.2005310

J. Park, H. Lee, and E. M. Bond, « Uninterrupted thermoelectric energy harvesting using temperaturesensor-based maximum power point tracking system », Energy Convers, Manag, vol.86, pp.233-240
DOI : 10.1016/j.enconman.2014.05.027

«. Radioisotope and P. Systems, En ligne] Disponible sur: https://solarsystem.nasa.gov/rps/rtg.cfm, Consulté le, pp.27-2015

H. Bottner, Thermoelectric micro devices: current state, recent developments and future aspects for technological progress and applications, Twenty-First International Conference on Thermoelectrics, 2002. Proceedings ICT '02., pp.511-518, 2002.
DOI : 10.1109/ICT.2002.1190368

H. Bottner, J. Nurnus, A. Gavrikov, G. Kuhner, M. Jagle et al., New thermoelectric components using microsystem technologies, New thermoelectric components using microsystem technologies, pp.414-420, 2004.
DOI : 10.1109/JMEMS.2004.828740

H. Bottner, J. Nurnus, and A. Schubert, Volkert, « New high density micro structured thermogenerators for stand alone sensor systems, 26th International Conference on Thermoelectrics, pp.306-309, 2007.
DOI : 10.1109/ict.2007.4569484

M. Gmbh and «. Micropelt, Disponible sur: http://micropelt.com/downloads/datasheet_thermogenerator_package, ThermoGenerator in Package TGP-651, pp.25-2015

C. Navone, M. Soulier, J. Testard, and J. Simon, Optimization and Fabrication of a Thick Printed Thermoelectric Device, Journal of Electronic Materials, vol.39, issue.38, pp.789-793, 2011.
DOI : 10.1007/s11664-010-1187-3

M. Kim, M. Kim, S. Lee, C. Kim, and Y. Kim, Wearable thermoelectric generator for harvesting human body heat energy, Wearable thermoelectric generator for harvesting human body heat energy, pp.105002-2014
DOI : 10.1088/0964-1726/23/10/105002

S. Khan, R. S. Dahiya, and E. L. Lorenzelli, Flexible thermoelectric generator based on transfer printed Si microwires, 2014 44th European Solid State Device Research Conference (ESSDERC), pp.86-89, 2014.
DOI : 10.1109/ESSDERC.2014.6948764

D. Madan, Z. Wang, P. K. Wright, and J. W. Evans, Printed flexible thermoelectric generators for use on low levels of waste heat, Printed flexible thermoelectric generators for use on low levels of waste heat, pp.587-592
DOI : 10.1016/j.apenergy.2015.07.066

Y. Du, S. Z. Shen, K. Cai, and P. S. Casey, Research progress on polymer???inorganic thermoelectric nanocomposite materials, Research progress on polymer?inorganic thermoelectric nanocomposite materials, pp.820-841, 2012.
DOI : 10.1016/j.progpolymsci.2011.11.003

R. R. Søndergaard, M. Hösel, N. Espinosa, M. Jørgensen, and F. C. Krebs, Practical evaluation of organic polymer thermoelectrics by large-area R2R processing on flexible substrates, Energy Science & Engineering, vol.41, issue.2, pp.81-88, 2013.
DOI : 10.1088/0022-3727/41/13/135113

M. A. Kamarudin, S. R. Sahamir, R. S. Datta, B. D. Long, M. F. Sabri et al., Mohd Said, « A Review on the Fabrication of Polymer-Based Thermoelectric Materials and Fabrication Methods, A Review on the Fabrication of Polymer- Based Thermoelectric Materials and Fabrication Methods », Sci, World J. Sci. World J, vol.2013, pp.713640-2013, 2013.

F. Mazzamuto, J. Saint-martin, V. H. Nguyen, C. Chassat, and E. P. Dollfus, Thermoelectric performance of disordered and nanostructured graphene ribbons using Green???s function method, Journal of Computational Electronics, vol.8, issue.1, pp.67-77
DOI : 10.1038/nmat2378

P. Dollfus and V. H. Nguyen, Thermoelectric effects in graphene nanostructures, Journal of Physics: Condensed Matter, vol.27, issue.13, pp.133204-2015
DOI : 10.1088/0953-8984/27/13/133204

S. Lee, Optimum design and selection of heat sinks, IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A, vol.18, issue.4, pp.812-817, 1995.
DOI : 10.1109/95.477468

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.196.5115

L. Boltzmann and . Ableitung-des-stefan-'schen-gesetzes, Ableitung des Stefan'schen Gesetzes, betreffend die Abh??ngigkeit der W??rmestrahlung von der Temperatur aus der electromagnetischen Lichttheorie, Annalen der Physik, vol.17, issue.6, pp.291-294
DOI : 10.1002/andp.18842580616

A. Shrivastava, N. E. Roberts, O. U. Khan, D. D. Wentzloff, and B. H. Calhoun, A 10 mV-Input Boost Converter With Inductor Peak Current Control and Zero Detection for Thermoelectric and Solar Energy Harvesting With 220 mV Cold-Start and <formula formulatype="inline"><tex Notation="TeX">$-$</tex></formula>14.5 dBm, 915 MHz RF Kick-Start, IEEE Journal of Solid-State Circuits, vol.50, issue.8, pp.1820-1832, 2015.
DOI : 10.1109/JSSC.2015.2412952

E. J. Carlson, K. Strunz, and B. P. Otis, A 20 mV Input Boost Converter With Efficient Digital Control for Thermoelectric Energy Harvesting, IEEE Journal of Solid-State Circuits, vol.45, issue.4, pp.741-750, 2010.
DOI : 10.1109/JSSC.2010.2042251

Y. K. Ramadass and A. P. Chandrakasan, A batteryless thermoelectric energy-harvesting interface circuit with 35mV startup voltage, 2010 IEEE International Solid-State Circuits Conference, (ISSCC), pp.486-487, 2010.
DOI : 10.1109/ISSCC.2010.5433835

A. Montecucco and A. R. Knox, Maximum Power Point Tracking Converter Based on the Open-Circuit Voltage Method for Thermoelectric Generators, IEEE Transactions on Power Electronics, vol.30, issue.2, pp.828-839
DOI : 10.1109/TPEL.2014.2313294

H. Yamada, K. Kimura, T. Hanamoto, T. Ishiyama, T. Sakaguchi et al., A novel MPPT control method of thermoelectric power generation using state space averaging method, 2011 IEEE Ninth International Conference on Power Electronics and Drive Systems, pp.895-900, 2011.
DOI : 10.1109/PEDS.2011.6147361

C. Vanhecke, L. Assouère, M. Bafleur, J. Dilhac, and E. C. Rossi, « Convertisseur à faible consommation pour la récupération d'énergie ambiante combinant deux sources pour application aéronautique », présenté à 8ème journées d'étude Faible Tension Faible Consommation, p.80, 2009.

«. Convective and H. Transfer, Disponible sur: http://www.engineeringtoolbox.com/convective- heat-transfer-d_430.html, Consulté le, pp.27-2015