J. Segalini, Étude de l'adsorption des ions dans des carbones microporeux: application aux supercondensateurs, 2012.

R. Donway, Benjamin Franklin Explains the Leyden Jar The Atlas Society. [Online] Available: http://atlassociety.org/commentary/commentary-blog/4935-benjamin-franklin-explains-the-leyden-jar, p.31, 2016.

J. Chmiola, C. Largeot, P. L. Taberna, P. Simon, and Y. Gogotsi, Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors, Science, vol.5, issue.5794, pp.480-483, 2010.
DOI : 10.1126/science.1132195

P. Simon and Y. Gogotsi, Materials for electrochemical capacitors, Nature Materials, vol.45, issue.11, pp.845-854, 2008.
DOI : 10.1038/nmat2297

T. Christen and M. W. Carlen, Theory of Ragone plots, Journal of Power Sources, vol.91, issue.2, pp.210-216, 2000.
DOI : 10.1016/S0378-7753(00)00474-2

J. R. Miller and P. Simon, MATERIALS SCIENCE: Electrochemical Capacitors for Energy Management, Science, vol.321, issue.5889, pp.651-652, 2008.
DOI : 10.1126/science.1158736

R. Kötz and M. Carlen, Principles and applications of electrochemical capacitors, Electrochimica Acta, vol.45, issue.15-16, pp.2483-2498, 2000.
DOI : 10.1016/S0013-4686(00)00354-6

A. G. Pandolfo and A. F. Hollenkamp, Carbon properties and their role in supercapacitors, Journal of Power Sources, vol.157, issue.1, pp.11-27, 2006.
DOI : 10.1016/j.jpowsour.2006.02.065

H. I. Becker, Low voltage electrolytic capacitor, Google Patents, 1957.

R. A. Rightmire, Electrical energy storage apparatus, Google Patents, 1966.

M. Endo, T. Takeda, Y. J. Kim, K. Koshiba, and K. Ishii, High power electric double layer capacitor (EDLC's); from operating principle to pore size control in advanced activated carbons, Carbon Sci, vol.1, issue.3&4, pp.117-128, 2001.

H. Helmholtz, Ueber einige Gesetze der Vertheilung elektrischer Str??me in k??rperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche, Annalen der Physik und Chemie, vol.75, issue.6, pp.211-233, 1853.
DOI : 10.1002/andp.18531650603

H. V. Helmholtz, Studien ??ber electrische Grenzschichten, Annalen der Physik und Chemie, vol.22, issue.5, pp.337-382, 1879.
DOI : 10.1002/andp.18792430702

M. Gouy, Sur la constitution de la charge ??lectrique ?? la surface d'un ??lectrolyte, Journal de Physique Th??orique et Appliqu??e, vol.9, issue.1, pp.457-468, 1910.
DOI : 10.1051/jphystap:019100090045700

O. Stern, Zur theorie der elektrolytischen doppelschicht, Z. Für Elektrochem. Angew. Phys. Chem, vol.30, pp.21-22, 1924.

D. C. Grahame, The Electrical Double Layer and the Theory of Electrocapillarity., Chemical Reviews, vol.41, issue.3, pp.441-501, 1947.
DOI : 10.1021/cr60130a002

E. Frackowiak and F. Beguin, Carbon materials for the electrochemical storage of energy in capacitors, Carbon, vol.39, issue.6, pp.937-950, 2001.
DOI : 10.1016/S0008-6223(00)00183-4

M. Inagaki, H. Konno, and O. Tanaike, Carbon materials for electrochemical capacitors, Journal of Power Sources, vol.195, issue.24, pp.7880-7903, 2010.
DOI : 10.1016/j.jpowsour.2010.06.036

P. Simon and A. F. Burke, Nanostructured carbons: double-layer capacitance and more, Electrochem. Soc. Interface, vol.17, issue.1, p.38, 2008.

P. Huang, M. Heon, D. Pech, M. Brunet, P. L. Taberna et al., Micro-supercapacitors from carbide derived carbon (CDC) films on silicon chips, Journal of Power Sources, vol.225, pp.240-244, 2013.
DOI : 10.1016/j.jpowsour.2012.10.020

URL : https://hal.archives-ouvertes.fr/hal-01159879

K. Naoi and P. Simon, New materials and new configurations for advanced electrochemical capacitors, J. Electrochem. Soc. JES, vol.17, issue.1, pp.34-37, 2008.

K. S. Sing, D. H. Everett, R. A. Haul, L. Moscou, R. A. Pierotti et al., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Provisional), Pure and Applied Chemistry, vol.54, issue.11, pp.603-619, 1984.
DOI : 10.1351/pac198254112201

K. S. Sing, Reporting Physisorption Data for Gas/Solid Systems, Handbook of Heterogeneous Catalysis, 2008.
DOI : 10.1002/9783527610044.hetcat0065

C. Largeot, C. Portet, J. Chmiola, P. Taberna, Y. Gogotsi et al., Relation between the Ion Size and Pore Size for an Electric Double-Layer Capacitor, Journal of the American Chemical Society, vol.130, issue.9, pp.2730-2731, 2008.
DOI : 10.1021/ja7106178

D. Aurbach, M. D. Levi, G. Salitra, N. Levy, E. Pollak et al., Cation Trapping in Highly Porous Carbon Electrodes for EDLC Cells, Journal of The Electrochemical Society, vol.8, issue.10, p.745, 2008.
DOI : 10.1016/j.electacta.2006.05.053

J. Chmiola, Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer, Science, vol.313, issue.5794, pp.1760-1763, 2006.
DOI : 10.1126/science.1132195

R. Lin, P. L. Taberna, J. Chmiola, D. Guay, Y. Gogotsi et al., Microelectrode Study of Pore Size, Ion Size, and Solvent Effects on the Charge/Discharge Behavior of Microporous Carbons for Electrical Double-Layer Capacitors, Journal of The Electrochemical Society, vol.112, issue.1, p.7, 2009.
DOI : 10.1021/la060860e

M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P. L. Taberna et al., Efficient storage mechanisms for building better supercapacitors, Nature Energy, vol.5, issue.6, p.16070, 2016.
DOI : 10.1073/pnas.1307251110

URL : https://hal.archives-ouvertes.fr/hal-01480941

N. Jäckel, P. Simon, Y. Gogotsi, and V. Presser, Increase in Capacitance by Subnanometer Pores in Carbon, ACS Energy Letters, vol.1, issue.6, pp.1262-1265, 2016.
DOI : 10.1021/acsenergylett.6b00516

J. Yan, Q. Wang, T. Wei, and Z. Fan, Recent Advances in Design and Fabrication of Electrochemical Supercapacitors with High Energy Densities, Advanced Energy Materials, vol.65, issue.196, p.1300816, 2014.
DOI : 10.1016/j.electacta.2012.01.076

B. E. Conway and E. Gileadi, Kinetic theory of pseudo-capacitance and electrode reactions at appreciable surface coverage, Transactions of the Faraday Society, vol.58, pp.2493-2509, 1962.
DOI : 10.1039/tf9625802493

B. E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, 1999.
DOI : 10.1007/978-1-4757-3058-6

B. E. Conway, Transition from ???Supercapacitor??? to ???Battery??? Behavior in Electrochemical Energy Storage, Journal of The Electrochemical Society, vol.138, issue.6, p.1539, 1991.
DOI : 10.1149/1.2085829

A. Rudge, I. Raistrick, S. Gottesfeld, and J. P. Ferraris, A study of the electrochemical properties of conducting polymers for application in electrochemical capacitors, Electrochimica Acta, vol.39, issue.2, pp.273-287, 1994.
DOI : 10.1016/0013-4686(94)80063-4

K. Naoi and M. Morita, Advanced polymers as active materials and electrolytes for electrochemical capacitors and hybrid capacitor systems, Electrochem. Soc. Interface, p.45, 2008.

C. Arbizzani, M. Mastragostino, and L. Meneghello, Polymer-based redox supercapacitors: A comparative study, Electrochimica Acta, vol.41, issue.1, pp.21-26, 1996.
DOI : 10.1016/0013-4686(95)00289-Q

C. Arbizzani, M. Mastragostino, and F. Soavi, New trends in electrochemical supercapacitors, Journal of Power Sources, vol.100, issue.1-2, pp.164-170, 2001.
DOI : 10.1016/S0378-7753(01)00892-8

I. Kim and K. Kim, Ruthenium Oxide Thin Film Electrodes for Supercapacitors, Electrochemical and Solid-State Letters, vol.80, issue.88, p.62, 2001.
DOI : 10.1016/0167-2738(95)00140-2

C. D. Lokhande, D. P. Dubal, and O. Joo, Metal oxide thin film based supercapacitors, Current Applied Physics, vol.11, issue.3, pp.255-270, 2011.
DOI : 10.1016/j.cap.2010.12.001

Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang et al., Progress of electrochemical capacitor electrode materials: A review, International Journal of Hydrogen Energy, vol.34, issue.11, pp.4889-4899, 2009.
DOI : 10.1016/j.ijhydene.2009.04.005

M. Wu, Y. Huang, C. Yang, and J. Jow, Electrodeposition of nanoporous nickel oxide film for electrochemical capacitors, International Journal of Hydrogen Energy, vol.32, issue.17, pp.4153-4159, 2007.
DOI : 10.1016/j.ijhydene.2007.06.001

B. Wahdame, D. Candusso, X. Francois, F. Harel, J. Kauffmann et al., Design of experiment techniques for fuel cell characterisation and development, International Journal of Hydrogen Energy, vol.34, issue.2, pp.967-980, 2009.
DOI : 10.1016/j.ijhydene.2008.10.066

URL : https://hal.archives-ouvertes.fr/hal-00467177

H. Li, R. Wang, and R. Cao, Physical and electrochemical characterization of hydrous ruthenium oxide/ordered mesoporous carbon composites as supercapacitor, Microporous and Mesoporous Materials, vol.111, issue.1-3, pp.1-3, 2008.
DOI : 10.1016/j.micromeso.2007.07.002

J. Luo, B. Gao, and X. Zhang, High capacitive performance of nanostructured Mn???Ni???Co oxide composites for supercapacitor, Materials Research Bulletin, vol.43, issue.5, pp.1119-1125, 2008.
DOI : 10.1016/j.materresbull.2007.06.006

H. Y. Lee, S. W. Kim, and H. Y. Lee, Expansion of Active Site Area and Improvement of Kinetic Reversibility in Electrochemical Pseudocapacitor Electrode, Electrochemical and Solid-State Letters, vol.75, issue.3, p.19, 2001.
DOI : 10.1016/S0022-0728(77)80071-5

T. Brousse, P. L. Taberna, O. Crosnier, R. Dugas, P. Guillemet et al., Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor, Journal of Power Sources, vol.173, issue.1, pp.633-641, 2007.
DOI : 10.1016/j.jpowsour.2007.04.074

Y. U. Jeong and A. Manthiram, Nanocrystalline Manganese Oxides for Electrochemical Capacitors with Neutral Electrolytes, Journal of The Electrochemical Society, vol.137, issue.11, p.1419, 2002.
DOI : 10.1006/jssc.1997.7656

T. Brousse, M. Toupin, R. Dugas, L. Athouël, O. Crosnier et al., Crystalline MnO[sub 2] as Possible Alternatives to Amorphous Compounds in Electrochemical Supercapacitors, Journal of The Electrochemical Society, vol.31, issue.12, pp.2171-2180, 2006.
DOI : 10.1016/S0378-7753(98)00038-X

R. N. Reddy and R. G. Reddy, Sol???gel MnO2 as an electrode material for electrochemical capacitors, Journal of Power Sources, vol.124, issue.1, pp.330-337, 2003.
DOI : 10.1016/S0378-7753(03)00600-1

F. Liu, Electrodeposition of manganese dioxide in three-dimensional poly(3,4-ethylenedioxythiophene)???poly(styrene sulfonic acid)???polyaniline for supercapacitor, Journal of Power Sources, vol.182, issue.1, pp.383-388, 2008.
DOI : 10.1016/j.jpowsour.2008.04.008

Q. Li, K. Li, J. Gu, and H. Fan, Preparation and electrochemical characterization of cobalt-manganese oxide as electrode materials for electrochemical capacitors, Journal of Physics and Chemistry of Solids, vol.69, issue.7, pp.1733-1739, 2008.
DOI : 10.1016/j.jpcs.2007.12.019

M. Sathiya, A. S. Prakash, K. Ramesha, J. Tarascon, and A. K. Shukla, -Anchored Carbon Nanotubes for Enhanced Electrochemical Energy Storage, Journal of the American Chemical Society, vol.133, issue.40, pp.16291-16299, 2011.
DOI : 10.1021/ja207285b

C. Hu, W. Chen, and K. Chang, How to Achieve Maximum Utilization of Hydrous Ruthenium Oxide for Supercapacitors, Journal of The Electrochemical Society, vol.149, issue.2, p.281, 2004.
DOI : 10.1149/1.1431575

W. Griffith and W. Griffith, The chemistry of the rarer platinum metals, 1967.

J. Emsley, Nature's Building Blocks: An A-Z Guide to the Elements, OUP Oxford, 2011.

. Goodenough, Magnetism and the Chemical Bond

. Goodenough, Transition-metal oxides with metallic conductivity

T. Wen and C. Hu, Hydrogen and Oxygen Evolutions on Ru-Ir Binary Oxides, Journal of The Electrochemical Society, vol.139, issue.8, pp.2158-2163, 1992.
DOI : 10.1149/1.2221195

J. W. Long, K. E. Swider, C. I. Merzbacher, and D. R. Rolison, Solids:?? The Nature of Capacitance in Nanostructured Materials, Langmuir, vol.15, issue.3, pp.780-785, 1999.
DOI : 10.1021/la980785a

I. Kim and K. Kim, Electrochemical Characterization of Hydrous Ruthenium Oxide Thin-Film Electrodes for Electrochemical Capacitor Applications, Journal of The Electrochemical Society, vol.106, issue.2, p.383, 2006.
DOI : 10.1149/1.1814593

M. Vukovi? and D. ?ukman, Electrochemical quartz crystal microbalance study of electrodeposited ruthenium, Journal of Electroanalytical Chemistry, vol.474, issue.2, pp.167-173, 1999.
DOI : 10.1016/S0022-0728(99)00332-0

J. A. Rard, Chemistry and thermodynamics of ruthenium and some of its inorganic compounds and aqueous species, Chemical Reviews, vol.85, issue.1, pp.1-39, 1985.
DOI : 10.1021/cr00065a001

K. Armstrong, L'électrodéposition d'oxyde de ruthénium sur des substrats interdigités pour le microstockage d'énergie, 2014.

J. P. Zheng and T. R. Jow, High energy and high power density electrochemical capacitors, Journal of Power Sources, vol.62, issue.2, pp.155-159, 1996.
DOI : 10.1016/S0378-7753(96)02424-X

X. Liu and P. G. Pickup, Ru oxide supercapacitors with high loadings and high power and energy densities, Journal of Power Sources, vol.176, issue.1, pp.410-416, 2008.
DOI : 10.1016/j.jpowsour.2007.10.076

C. Hu, M. Liu, and K. Chang, Anodic deposition of hydrous ruthenium oxide for supercapacitors, Journal of Power Sources, vol.163, issue.2, pp.1126-1131, 2007.
DOI : 10.1016/j.jpowsour.2006.09.060

C. Liu, D. Tsai, D. Susanti, W. Yeh, Y. Huang et al., Planar ultracapacitors of miniature interdigital electrode loaded with hydrous RuO2 and RuO2 nanorods, Electrochimica Acta, vol.55, issue.20, pp.5768-5774, 2010.
DOI : 10.1016/j.electacta.2010.05.015

V. D. Patake, S. M. Pawar, V. R. Shinde, T. P. Gujar, and C. D. Lokhande, The growth mechanism and supercapacitor study of anodically deposited amorphous ruthenium oxide films, Current Applied Physics, vol.10, issue.1, pp.99-103, 2010.
DOI : 10.1016/j.cap.2009.05.003

B. Park, C. D. Lokhande, H. Park, K. Jung, and O. Joo, Cathodic electrodeposition of RuO2 thin films from Ru(III)Cl3 solution, Materials Chemistry and Physics, vol.87, issue.1, pp.59-66, 2004.
DOI : 10.1016/j.matchemphys.2004.04.023

V. D. Patake, C. D. Lokhande, and O. S. Joo, Electrodeposited ruthenium oxide thin films for supercapacitor: Effect of surface treatments, Applied Surface Science, vol.255, issue.7, pp.4192-4196, 2009.
DOI : 10.1016/j.apsusc.2008.11.005

Y. Xie and D. Fu, Supercapacitance of ruthenium oxide deposited on titania and titanium substrates, Materials Chemistry and Physics, vol.122, issue.1, pp.23-29, 2010.
DOI : 10.1016/j.matchemphys.2010.03.011

C. Hu and Y. Huang, Cyclic Voltammetric Deposition of Hydrous Ruthenium Oxide for Electrochemical Capacitors, Journal of The Electrochemical Society, vol.146, issue.7, pp.2465-2471, 1999.
DOI : 10.1149/1.1391956

J. Jow, H. Lee, H. Chen, M. Wu, and T. Wei, Anodic, cathodic and cyclic voltammetric deposition of ruthenium oxides from aqueous RuCl3 solutions, Electrochimica Acta, vol.52, issue.7, pp.2625-2633, 2007.
DOI : 10.1016/j.electacta.2006.09.018

C. Hu and K. Chang, Cyclic voltammetric deposition of hydrous ruthenium oxide for electrochemical supercapacitors: effects of the chloride precursor transformation, Journal of Power Sources, vol.112, issue.2, pp.401-409, 2002.
DOI : 10.1016/S0378-7753(02)00397-X

I. Zhitomirsky and L. Gal-or, Ruthenium oxide deposits prepared by cathodic electrosynthesis, Materials Letters, vol.31, issue.1-2, pp.155-159, 1997.
DOI : 10.1016/S0167-577X(96)00262-5

T. Liu, W. G. Pell, and B. E. Conway, Self-discharge and potential recovery phenomena at thermally and electrochemically prepared RuO 2 supercapacitor electrodes, Electrochimica Acta, vol.42, pp.23-24, 1997.
DOI : 10.1016/s0013-4686(97)81190-5

C. Hu, M. Liu, and K. Chang, Anodic deposition of hydrous ruthenium oxide for supercapaciors: Effects of the AcO??? concentration, plating temperature, and oxide loading, Electrochimica Acta, vol.53, issue.6, pp.2679-2687, 2008.
DOI : 10.1016/j.electacta.2007.07.031

C. Hu, K. Chang, M. Lin, and Y. Wu, for Next Generation Supercapacitors, Nano Letters, vol.6, issue.12, pp.2690-2695, 2006.
DOI : 10.1021/nl061576a

J. P. Zheng, P. J. Cygan, and T. R. Jow, Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors, Journal of The Electrochemical Society, vol.142, issue.8, pp.2699-2703, 1995.
DOI : 10.1149/1.2050077

N. Srivastava, Challenges of next-generation wireless sensor networks and its impact on society, 2010.

M. Brunet and D. Pech, Micro-supercondensateurs : enjeux technologiques et applications | Techniques de l'Ingénieur, 2012.

S. Boisseau, A. Sylvestre, and G. Despesse, Récupération d'énergie vibratoire à électrets, 2011.

S. Roundy, P. K. Wright, and J. M. Rabaey, Energy Scavenging for Wireless Sensor Networks, 2004.
DOI : 10.1007/978-1-4615-0485-6

S. P. Beeby, M. J. Tudor, and N. M. White, Energy harvesting vibration sources for microsystems applications, Measurement Science and Technology, vol.17, issue.12, pp.175-195, 2006.
DOI : 10.1088/0957-0233/17/12/R01

H. Durou, Vers l'autonomie énergétique des réseaux de capteurs embarqués: conception et intégration d'un générateur piézoélectrique et d'un micro dispositif de stockage capacitif en technologie silicium, 2010.

B. E. Conway, V. Birss, and J. Wojtowicz, The role and utilization of pseudocapacitance for energy storage by supercapacitors, Journal of Power Sources, vol.66, issue.1-2, pp.1-14, 1997.
DOI : 10.1016/S0378-7753(96)02474-3

Y. S. Yoon, W. I. Cho, J. H. Lim, and D. J. Choi, Solid-state thin-film supercapacitor with ruthenium oxide and solid electrolyte thin films, Journal of Power Sources, vol.101, issue.1, pp.126-129, 2001.
DOI : 10.1016/S0378-7753(01)00484-0

J. H. Lim, D. J. Choi, H. Kim, W. I. Cho, and Y. S. Yoon, Thin Film Supercapacitors Using a Sputtered RuO[sub 2] Electrode, Journal of The Electrochemical Society, vol.19, issue.3, p.275, 2001.
DOI : 10.1002/sia.740190187

M. Lee, J. S. Kim, S. H. Choi, J. J. Lee, S. H. Kim et al., Characteristics of thin film supercapacitor with ruthenium oxide electrode and Ta2O5+x solid oxide thin film electrolyte, Journal of Electroceramics, vol.143, issue.2-4, pp.639-643, 2006.
DOI : 10.1007/s10832-006-7777-z

M. Kaempgen, J. Ma, G. Gruner, G. Wee, and S. G. Mhaisalkar, Bifunctional carbon nanotube networks for supercapacitors, Applied Physics Letters, vol.39, issue.26, p.264104, 2007.
DOI : 10.1016/j.jpowsour.2006.02.092

M. Xue, Z. Xie, L. Zhang, X. Ma, X. Wu et al., Microfluidic etching for fabrication of flexible and all-solid-state micro supercapacitor based on MnO2 nanoparticles, Nanoscale, vol.147, issue.7, p.2703, 2011.
DOI : 10.1149/1.1393216

F. Meng and Y. Ding, Sub-Micrometer-Thick All-Solid-State Supercapacitors with High Power and Energy Densities, Advanced Materials, vol.6, issue.35, pp.4098-4102, 2011.
DOI : 10.1038/nnano.2011.13

H. Durou, D. Pech, D. Colin, P. Simon, P. Taberna et al., Wafer-level fabrication process for fully encapsulated micro-supercapacitors with high specific energy, Microsystem Technologies, vol.32, issue.1, pp.467-473, 2012.
DOI : 10.1109/TADVP.2008.2006757

URL : https://hal.archives-ouvertes.fr/hal-01151753

H. Kim, T. Seong, J. Lim, W. I. Cho, and Y. Soo-yoon, Electrochemical and structural properties of radio frequency sputtered cobalt oxide electrodes for thin-film supercapacitors, Journal of Power Sources, vol.102, issue.1-2, pp.167-171, 2001.
DOI : 10.1016/S0378-7753(01)00864-3

C. C. Ho, D. A. Steingart, J. P. Salminen, W. H. Sin, T. M. Rantala et al., Dispenser printed electrochemical capacitors for power management of millimeter scale lithium ion polymer microbatteries for wireless sensors

D. Pech, M. Brunet, P. L. Taberna, P. Simon, N. Fabre et al., Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor, Journal of Power Sources, vol.195, issue.4, pp.1266-1269, 2010.
DOI : 10.1016/j.jpowsour.2009.08.085

URL : https://hal.archives-ouvertes.fr/hal-01443055

T. E. Sutto, M. Ollinger, H. Kim, C. B. Arnold, and A. Pique, Laser Transferable Polymer-Ionic Liquid Separator/Electrolytes for Solid-State Rechargeable Lithium-Ion Microbatteries, Electrochemical and Solid-State Letters, vol.14, issue.2, pp.69-71, 2006.
DOI : 10.1016/S0378-7753(03)00162-9

W. Gao, N. Singh, L. Song, Z. Liu, A. Reddy et al., Direct laser writing of micro-supercapacitors on hydrated graphite oxide films, Nature Nanotechnology, vol.8, issue.8, pp.496-500, 2011.
DOI : 10.1021/nl802558y

D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin et al., Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon, Nature Nanotechnology, vol.4, issue.9, pp.651-654, 2010.
DOI : 10.1038/nnano.2010.162

URL : https://hal.archives-ouvertes.fr/hal-00869530

C. Shen, X. Wang, W. Zhang, and F. Kang, Direct Prototyping of Patterned Nanoporous Carbon: A Route from Materials to On-chip Devices, Scientific Reports, vol.21, issue.1, 2013.
DOI : 10.1002/adma.200801492

W. Liu, Y. Feng, X. Yan, J. Chen, and Q. Xue, Superior Micro-Supercapacitors Based on Graphene Quantum Dots, Advanced Functional Materials, vol.2, issue.33, pp.4111-4122, 2013.
DOI : 10.1039/c2ra20182h

P. Huang, D. Pech, R. Lin, J. K. Mcdonough, M. Brunet et al., On-chip micro-supercapacitors for operation in a wide temperature range, Electrochemistry Communications, vol.36, pp.53-56, 2013.
DOI : 10.1016/j.elecom.2013.09.003

URL : https://hal.archives-ouvertes.fr/hal-00977350

J. J. Yoo, K. Balakrishnan, J. Huang, V. Meunier, B. G. Sumpter et al., Ultrathin Planar Graphene Supercapacitors, Nano Letters, vol.11, issue.4, pp.1423-1427, 2011.
DOI : 10.1021/nl200225j

M. F. El-kady and R. B. Kaner, Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage, Nature Communications, vol.11, p.1475, 2013.
DOI : 10.1021/cm981085u

T. M. Dinh, D. Pech, M. Brunet, and A. Achour, High resolution electrochemical micro-capacitors based on oxidized multi-walled carbon nanotubes, Journal of Physics: Conference Series, vol.476, p.12106, 2013.
DOI : 10.1088/1742-6596/476/1/012106

T. M. Dinh, K. Armstrong, D. Guay, and D. Pech, High-resolution on-chip supercapacitors with ultra-high scan rate ability, J. Mater. Chem. A, vol.96, issue.20, p.7170, 2014.
DOI : 10.1016/S0378-7753(00)00682-0

H. Kim, S. Cho, Y. Ok, T. Seong, and Y. S. Yoon, All solid-state rechargeable thin-film microsupercapacitor fabricated with tungsten cosputtered ruthenium oxide electrodes, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.21, issue.3, pp.949-952, 2003.
DOI : 10.1116/1.1565348

S. Makino, Y. Yamauchi, and W. Sugimoto, Synthesis of electro-deposited ordered mesoporous RuOx using lyotropic liquid crystal and application toward micro-supercapacitors, Journal of Power Sources, vol.227, pp.153-160, 2013.
DOI : 10.1016/j.jpowsour.2012.11.032

X. Wang, B. D. Myers, J. Yan, G. Shekhawat, V. Dravid et al., Manganese oxide micro-supercapacitors with ultra-high areal capacitance, Nanoscale, vol.22, issue.10, p.4119, 2013.
DOI : 10.1039/c2jm32456c

L. Cao, S. Yang, W. Gao, Z. Liu, Y. Gong et al., Films, Small, vol.9, issue.17, pp.2905-2910, 2013.
DOI : 10.1002/smll.201201161

URL : https://hal.archives-ouvertes.fr/jpa-00229627

M. Beidaghi, W. Chen, and C. Wang, Electrochemically activated carbon micro-electrode arrays for electrochemical micro-capacitors, Journal of Power Sources, vol.196, issue.4, pp.2403-2409, 2011.
DOI : 10.1016/j.jpowsour.2010.09.050

M. Beidaghi and C. Wang, Micro-Supercapacitors Based on Interdigital Electrodes of Reduced Graphene Oxide and Carbon Nanotube Composites with Ultrahigh Power Handling Performance, Advanced Functional Materials, vol.4, issue.21, pp.4501-4510, 2012.
DOI : 10.1109/MPRV.2005.9

J. R. Mcdonough, J. W. Choi, Y. Yang, F. L. Mantia, Y. Zhang et al., Carbon nanofiber supercapacitors with large areal capacitances, Applied Physics Letters, vol.95, issue.24, p.243109, 2009.
DOI : 10.1007/3-540-39947-X_3

P. L. Taberna, P. Simon, and J. F. Fauvarque, Electrochemical Characteristics and Impedance Spectroscopy Studies of Carbon-Carbon Supercapacitors, Journal of The Electrochemical Society, vol.9, issue.3, p.292, 2003.
DOI : 10.1007/978-1-4757-3058-6

URL : https://hal.archives-ouvertes.fr/hal-00420564

M. T. Taschuk, M. M. Hawkeye, M. J. Brett-a2-martin, and M. Peter, Chapter 13 -Glancing Angle Deposition, Handbook of Deposition Technologies for Films and Coatings, pp.621-678, 2010.
DOI : 10.1016/b978-0-8155-2031-3.00013-2

J. Takadoum, N. Martin, K. Robbie, and L. Carpentier, Nanomatériaux, traitement et fonctionnalisation des surfaces (Traité MIM, série Physique et mécanique des surfaces)

M. M. Hawkeye and M. J. Brett, Glancing angle deposition: Fabrication, properties, and applications of micro- and nanostructured thin films, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.25, issue.5, pp.1317-1335, 2007.
DOI : 10.1116/1.2764082

J. Nieuwenhuizen and H. Haanstra, Microfractography of thin films, 1966.

A. C. Van-popta, J. C. Sit, and M. J. Brett, Optical properties of porous helical thin films and the effects of post-deposition annealing, Organic Optoelectronics and Photonics, p.198, 2004.
DOI : 10.1117/12.545923

N. O. Young and J. Kowal, Optically Active Fluorite Films, Nature, vol.14, issue.4654, pp.104-105, 1959.
DOI : 10.1038/183104a0

H. Angerstein-kozlowska, B. E. Conway, A. Hamelin, and L. Stoicoviciu, Elementary steps of electrochemical oxidation of single-crystal planes of Au???I. Chemical basis of processes involving geometry of anions and the electrode surfaces, Electrochimica Acta, vol.31, issue.8, pp.1051-1061, 1986.
DOI : 10.1016/0013-4686(86)80020-2

C. Hu and Y. Huang, Cyclic Voltammetric Deposition of Hydrous Ruthenium Oxide for Electrochemical Capacitors, Journal of The Electrochemical Society, vol.146, issue.7, pp.2465-2471, 1999.
DOI : 10.1149/1.1391956

T. M. Dinh, K. Armstrong, D. Guay, and D. Pech, High-resolution on-chip supercapacitors with ultra-high scan rate ability, J. Mater. Chem. A, vol.96, issue.20, p.7170, 2014.
DOI : 10.1016/S0378-7753(00)00682-0

K. Armstrong, L'électrodéposition d'oxyde de ruthénium sur des substrats interdigités pour le microstockage d'énergie, 2014.

C. Hu and K. Chang, Cyclic voltammetric deposition of hydrous ruthenium oxide for electrochemical supercapacitors: effects of the chloride precursor transformation, Journal of Power Sources, vol.112, issue.2, pp.401-409, 2002.
DOI : 10.1016/S0378-7753(02)00397-X

C. Hu and Y. Huang, Effects of preparation variables on the deposition rate and physicochemical properties of hydrous ruthenium oxide for electrochemical capacitors, Electrochimica Acta, vol.46, issue.22, pp.3431-3444, 2001.
DOI : 10.1016/S0013-4686(01)00543-6

D. Ye, T. Lu, and T. Karabacak, Influence of Nanotips on the Hydrophilicity of Metallic Nanorod Surfaces, Physical Review Letters, vol.100, issue.25, 2008.
DOI : 10.1021/la048630s

P. Morrow, F. Tang, T. Karabacak, P. I. Wang, D. X. Ye et al., Texture of Ru columns grown by oblique angle sputter deposition, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.24, issue.2, pp.235-245, 2006.
DOI : 10.1116/1.2165661

R. Coloma-ribera, R. W. Van-de-kruijs, S. Kokke, E. Zoethout, A. E. Yakshin et al., Surface and sub-surface thermal oxidation of thin ruthenium films, Applied Physics Letters, vol.105, issue.13, p.131601, 2014.
DOI : 10.1088/0953-8984/20/18/184017

R. Warren, F. Sammoura, F. Tounsi, M. Sanghadasa, and L. Lin, Highly active ruthenium oxide coating via ALD and electrochemical activation in supercapacitor applications, Journal of Materials Chemistry A, vol.104, issue.30, pp.15568-15575, 2015.
DOI : 10.1063/1.470966

B. E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, 1999.
DOI : 10.1007/978-1-4757-3058-6

T. T. Dinh, Développement de filières technologiques pour la réalisation de microsupercondensateurs intégrés sur silicium, 2014.

B. E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, 1999.
DOI : 10.1007/978-1-4757-3058-6

R. Coloma-ribera, R. W. Van-de-kruijs, S. Kokke, E. Zoethout, A. E. Yakshin et al., Surface and sub-surface thermal oxidation of thin ruthenium films, Applied Physics Letters, vol.105, issue.13, p.131601, 2014.
DOI : 10.1088/0953-8984/20/18/184017

R. Warren, F. Sammoura, F. Tounsi, M. Sanghadasa, and L. Lin, Highly active ruthenium oxide coating via ALD and electrochemical activation in supercapacitor applications, Journal of Materials Chemistry A, vol.104, issue.30, pp.15568-15575, 2015.
DOI : 10.1063/1.470966

D. Pech, M. Brunet, T. M. Dinh, K. Armstrong, J. Gaudet et al., Influence of the configuration in planar interdigitated electrochemical micro-capacitors, Journal of Power Sources, vol.230, pp.230-235, 2013.
DOI : 10.1016/j.jpowsour.2012.12.039

URL : https://hal.archives-ouvertes.fr/hal-01753174

D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin et al., Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon, Nature Nanotechnology, vol.4, issue.9, pp.651-654, 2010.
DOI : 10.1038/nnano.2010.162

URL : https://hal.archives-ouvertes.fr/hal-00869530

W. Liu, Y. Feng, X. Yan, J. Chen, and Q. Xue, Superior Micro-Supercapacitors Based on Graphene Quantum Dots, Advanced Functional Materials, vol.2, issue.33, pp.4111-4122, 2013.
DOI : 10.1039/c2ra20182h

F. Thissandier, P. Gentile, T. Brousse, G. Bidan, and S. Sadki, Are tomorrow's micro-supercapacitors hidden in a forest of silicon nanotrees?, Journal of Power Sources, vol.269, pp.740-746, 2014.
DOI : 10.1016/j.jpowsour.2014.05.060

B. Shen, J. Lang, R. Guo, X. Zhang, and X. Yan, Using Ionic Liquid Gel Electrolytes, ACS Applied Materials & Interfaces, vol.7, issue.45, pp.25378-25389, 2015.
DOI : 10.1021/acsami.5b07909

J. P. Zheng and C. K. Huang, Electrochemical Behavior of Amorphous and Crystalline Ruthenium Oxide Electrodes, J. New Mater. Mater. Electrochem. Syst, vol.5, pp.41-46, 2002.

Z. Dai, C. Peng, J. H. Chae, K. C. Ng, and G. Z. Chen, Cell voltage versus electrode potential range in aqueous supercapacitors, Scientific Reports, vol.162, issue.1, p.9854, 2015.
DOI : 10.1002/smll.200700139

B. L. Ellis, P. Knauth, and T. Djenizian, Three-Dimensional Self-Supported Metal Oxides for Advanced Energy Storage, Advanced Materials, vol.159, issue.250, pp.3368-3397, 2014.
DOI : 10.1149/2.052203jes

URL : https://hal.archives-ouvertes.fr/hal-01418540

X. Lang, A. Hirata, T. Fujita, and M. Chen, Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors, Nature Nanotechnology, vol.147, issue.4, pp.232-236, 2011.
DOI : 10.1149/1.1393216

J. Han, Y. C. Lin, L. Chen, Y. C. Tsai, Y. Ito et al., On-Chip Micro-Pseudocapacitors for Ultrahigh Energy and Power Delivery, Advanced Science, vol.4, issue.5, p.1500067, 2015.
DOI : 10.1038/ncomms3923

URL : http://onlinelibrary.wiley.com/doi/10.1002/advs.201500067/pdf

X. Wang, Y. Yin, X. Li, and Z. You, Fabrication of a symmetric micro supercapacitor based on tubular ruthenium oxide on silicon 3D microstructures, Journal of Power Sources, vol.252, pp.64-72, 2014.
DOI : 10.1016/j.jpowsour.2013.11.109

A. Ponrouch, S. Garbarino, E. Bertin, and D. Guay, Ultra high capacitance values of Pt@RuO2 core???shell nanotubular electrodes for microsupercapacitor applications, Journal of Power Sources, vol.221, pp.228-231, 2013.
DOI : 10.1016/j.jpowsour.2012.08.033

W. Wang, S. Guo, I. Lee, K. Ahmed, J. Zhong et al., Hydrous Ruthenium Oxide Nanoparticles Anchored to Graphene and Carbon Nanotube Hybrid Foam for Supercapacitors, Scientific Reports, vol.3, issue.1, 2014.
DOI : 10.1126/science.1213003

T. M. Dinh, A. Achour, S. Vizireanu, G. Dinescu, L. Nistor et al., Hydrous RuO 2 /carbon nanowalls hierarchical structures for all-solid-state ultrahigh-energy-density micro-supercapacitors, Nano Energy, vol.10, pp.288-294, 2014.
DOI : 10.1016/j.nanoen.2014.10.003

B. J. Plowman, A. P. O-'mullane, P. Selvakannan, and S. K. Bhargava, Honeycomb nanogold networks with highly active sites, Chemical Communications, vol.18, issue.48, p.9182, 2010.
DOI : 10.1007/BF03215520

S. Cherevko and C. Chung, Direct electrodeposition of nanoporous gold with controlled multimodal pore size distribution, Electrochemistry Communications, vol.13, issue.1, pp.16-19, 2011.
DOI : 10.1016/j.elecom.2010.11.001

C. M. Parlett, K. Wilson, and A. F. Lee, Hierarchical porous materials: catalytic applications, Chem. Soc. Rev., vol.24, issue.124, pp.3876-3893, 2013.
DOI : 10.1021/cm300841v

A. Walcarius, Template-directed porous electrodes in electroanalysis, Analytical and Bioanalytical Chemistry, vol.8, issue.1, pp.261-272, 2010.
DOI : 10.1016/j.aca.2007.10.013

X. Li, D. Reinhoudt, and M. Crego-calama, What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces, Chemical Society Reviews, vol.23, issue.8, p.1350, 2007.
DOI : 10.1557/mrs2004.253

Y. Li, Z. Fu, and B. Su, Hierarchically Structured Porous Materials for Energy Conversion and Storage, Advanced Functional Materials, vol.42, issue.98, pp.4634-4667, 2012.
DOI : 10.1002/anie.200250816

B. J. Plowman, L. A. Jones, and S. K. Bhargava, Building with bubbles: the formation of high surface area honeycomb-like films via hydrogen bubble templated electrodeposition, Chemical Communications, vol.38, issue.723, pp.4331-4346, 2015.
DOI : 10.1039/B802654H

H. Vogt, Ö. Aras, and R. J. Balzer, The limits of the analogy between boiling and gas evolution at electrodes, International Journal of Heat and Mass Transfer, vol.47, issue.4, pp.787-795, 2004.
DOI : 10.1016/j.ijheatmasstransfer.2003.07.023

N. D. Nikoli?, K. I. Popov, L. J. Pavlovi?, and M. G. Pavlovi?, Phenomenology of a formation of a honeycomb-like structure during copper electrodeposition, Journal of Solid State Electrochemistry, vol.10, issue.5, pp.667-675, 2007.
DOI : 10.1007/s10008-006-0222-z

J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. R. Chen et al., Trends in the Exchange Current for Hydrogen Evolution, Journal of The Electrochemical Society, vol.107, issue.3, p.23, 2005.
DOI : 10.1149/1.1856988

S. Trasatti, Work function, electronegativity, and electrochemical behaviour of metals, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.39, issue.1, pp.163-184, 1972.
DOI : 10.1016/S0022-0728(72)80485-6

L. Huang, H. Wei, F. Ke, X. Fan, J. Li et al., Electrodeposition and lithium storage performance of three-dimensional porous reticular Sn???Ni alloy electrodes, Electrochimica Acta, vol.54, issue.10, pp.2693-2698, 2009.
DOI : 10.1016/j.electacta.2008.11.044

D. H. Nam, R. H. Kim, D. W. Han, and H. S. Kwon, Electrochemical performances of Sn anode electrodeposited on porous Cu foam for Li-ion batteries, Electrochimica Acta, vol.66, pp.126-132, 2012.
DOI : 10.1016/j.electacta.2012.01.084

R. Kim, D. Han, D. Nam, J. Kim, and H. Kwon, Effects of Substrate Morphology and Postelectrodeposition on Structure of Cu Foam and Their Application for Li-Ion Batteries, Journal of The Electrochemical Society, vol.10, issue.5, p.269, 2010.
DOI : 10.1149/1.1569477

S. Eugénio, T. M. Silva, M. J. Carmezim, R. G. Duarte, and M. F. Montemor, Electrodeposition and characterization of nickel???copper metallic foams for application as electrodes for supercapacitors, Journal of Applied Electrochemistry, vol.32, issue.17, pp.455-465, 2014.
DOI : 10.1016/j.ijhydene.2007.06.001

X. H. Xia, J. P. Tu, Y. J. Zhang, Y. J. Mai, X. L. Wang et al., Nanoflake Composite Film: A Pseudocapacitive Material with Superior Performance, The Journal of Physical Chemistry C, vol.115, issue.45, pp.22662-22668, 2011.
DOI : 10.1021/jp208113j

M. Jeong, K. Zhuo, S. Cherevko, W. Kim, and C. Chung, Facile preparation of three-dimensional porous hydrous ruthenium oxide electrode for supercapacitors, Journal of Power Sources, vol.244, pp.806-811, 2013.
DOI : 10.1016/j.jpowsour.2012.12.037

H. Dong and X. Cao, Nanoporous Gold Thin Film: Fabrication, Structure Evolution, and Electrocatalytic Activity, The Journal of Physical Chemistry C, vol.113, issue.2, pp.603-609, 2009.
DOI : 10.1021/jp8086607

A. Sharma, J. K. Bhattarai, A. J. Alla, A. V. Demchenko, and K. J. Stine, Electrochemical annealing of nanoporous gold by application of cyclic potential sweeps, Nanotechnology, vol.26, issue.8, p.85602, 2015.
DOI : 10.1088/0957-4484/26/8/085602

C. Vericat, G. A. Benitez, M. E. Vela, R. C. Salvarezza, N. G. Tognalli et al., Restricted Surface Mobility of Thiolate-Covered Metal Surfaces:?? A Simple Strategy to Produce High-Area Functionalized Surfaces, Langmuir, vol.23, issue.3, pp.1152-1159, 2007.
DOI : 10.1021/la062006t

J. Liu, L. Cao, W. Huang, and Z. Li, Preparation of AuPt Alloy Foam Films and Their Superior Electrocatalytic Activity for the Oxidation of Formic Acid, ACS Applied Materials & Interfaces, vol.3, issue.9, pp.3552-3558, 2011.
DOI : 10.1021/am200782x

I. Najdovski, P. Selvakannan, S. K. Bhargava, and A. P. O-'mullane, Formation of nanostructured porous Cu???Au surfaces: the influence of cationic sites on (electro)-catalysis, Nanoscale, vol.110, issue.20, p.6298, 2012.
DOI : 10.1021/jp056050d

I. Najdovski, P. Selvakannan, A. P. O-'mullane, and S. K. Bhargava, Rapid Synthesis of Porous Honeycomb Cu/Pd through a Hydrogen-Bubble Templating Method, Chemistry - A European Journal, vol.5, issue.36, pp.10058-10063, 2011.
DOI : 10.1007/s100080000153

I. Najdovski, P. Selvakannan, and A. P. O-'mullane, Electrochemical formation of Cu/Ag surfaces and their applicability as heterogeneous catalysts, RSC Advances, vol.6, issue.456, p.7207, 2014.
DOI : 10.1049/mnl.2011.0593

A. Etiemble, J. Adrien, E. Maire, H. Idrissi, D. Reyter et al., 3D morphological analysis of copper foams as current collectors for Li-ion batteries by means of X-ray tomography, Materials Science and Engineering: B, vol.187, pp.1-8, 2014.
DOI : 10.1016/j.mseb.2014.04.006

URL : https://hal.archives-ouvertes.fr/hal-01538032

J. R. Izzo, A. S. Joshi, K. N. Grew, W. K. Chiu, A. Tkachuk et al., Nondestructive Reconstruction and Analysis of SOFC Anodes Using X-ray Computed Tomography at Sub-50???nm Resolution, Journal of The Electrochemical Society, vol.155, issue.5, p.504, 2008.
DOI : 10.1016/j.jeurceramsoc.2006.04.165

E. Maire, J. Buffiere, L. Salvo, J. J. Blandin, W. Ludwig et al., On the Application of X-ray Microtomography in the Field of Materials Science, Advanced Engineering Materials, vol.3, issue.8, pp.539-546, 2001.
DOI : 10.1002/1527-2648(200108)3:8<539::AID-ADEM539>3.0.CO;2-6

URL : https://hal.archives-ouvertes.fr/hal-00475297

E. Maire and P. J. Withers, Quantitative X-ray tomography, International Materials Reviews, vol.42, issue.3, pp.1-43, 2014.
DOI : 10.1016/j.jnucmat.2011.03.051

URL : https://hal.archives-ouvertes.fr/hal-01538208

W. G. Pell and B. E. Conway, Analysis of power limitations at porous supercapacitor electrodes under cyclic voltammetry modulation and dc charge, Journal of Power Sources, vol.96, issue.1, pp.57-67, 2001.
DOI : 10.1016/S0378-7753(00)00682-0

S. Ardizzone, G. Fregonara, and S. Trasatti, ???Inner??? and ???outer??? active surface of RuO2 electrodes, Electrochimica Acta, vol.35, issue.1, pp.263-267, 1990.
DOI : 10.1016/0013-4686(90)85068-X

J. Gaudet, A. C. Tavares, S. Trasatti, and D. Guay, Solid Solutions, Chemistry of Materials, vol.17, issue.6, pp.1570-1579, 2005.
DOI : 10.1021/cm048129l

C. Hu, W. Chen, and K. Chang, How to Achieve Maximum Utilization of Hydrous Ruthenium Oxide for Supercapacitors, Journal of The Electrochemical Society, vol.149, issue.2, p.281, 2004.
DOI : 10.1149/1.1431575

W. G. Pell and B. E. Conway, Analysis of power limitations at porous supercapacitor electrodes under cyclic voltammetry modulation and dc charge, Journal of Power Sources, vol.96, issue.1, pp.57-67, 2001.
DOI : 10.1016/S0378-7753(00)00682-0

H. Gao, Y. Ting, N. P. Kherani, and K. Lian, Ultra-high-rate all-solid pseudocapacitive electrochemical capacitors, Journal of Power Sources, vol.222, pp.301-304, 2013.
DOI : 10.1016/j.jpowsour.2012.08.096

R. Kötz and M. Carlen, Principles and applications of electrochemical capacitors, Electrochimica Acta, vol.45, issue.15-16, pp.2483-2498, 2000.
DOI : 10.1016/S0013-4686(00)00354-6

W. Cai, T. Lai, and J. Ye, A spinneret as the key component for surface-porous graphene fibers in high energy density micro-supercapacitors, Journal of Materials Chemistry A, vol.334, issue.9, pp.5060-5066, 2015.
DOI : 10.1126/science.1213003

L. Kou, T. Huang, B. Zheng, Y. Han, X. Zhao et al., Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics, Nature Communications, vol.38, 2014.
DOI : 10.1021/ma050823e

A. Ponrouch, S. Garbarino, E. Bertin, and D. Guay, Ultra high capacitance values of Pt@RuO2 core???shell nanotubular electrodes for microsupercapacitor applications, Journal of Power Sources, vol.221, pp.228-231, 2013.
DOI : 10.1016/j.jpowsour.2012.08.033

T. M. Dinh, A. Achour, S. Vizireanu, G. Dinescu, L. Nistor et al., Hydrous RuO 2 /carbon nanowalls hierarchical structures for all-solid-state ultrahigh-energy-density micro-supercapacitors, Nano Energy, vol.10, pp.288-294, 2014.
DOI : 10.1016/j.nanoen.2014.10.003

J. H. Pikul, H. Gang-zhang, J. Cho, P. V. Braun, and W. P. King, High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes, Nature Communications, vol.19, p.1732, 2013.
DOI : 10.1002/adma.200602792

URL : http://www.nature.com/articles/ncomms2747.pdf

D. Pech, M. Brunet, T. M. Dinh, K. Armstrong, J. Gaudet et al., Influence of the configuration in planar interdigitated electrochemical micro-capacitors, Journal of Power Sources, vol.230, pp.230-235, 2013.
DOI : 10.1016/j.jpowsour.2012.12.039

URL : https://hal.archives-ouvertes.fr/hal-01753174

P. Miribel-català, J. Colomer-fararons, J. L. Brinquis, and J. López-sánchez, Self-powered adaptive circuit sampling for a piezoelectric harvester, Design of Circuits and Integrated Systems, pp.1-6, 2014.
DOI : 10.1109/DCIS.2014.7035581

M. Bafleur and J. Dilhac, Towards Energy Autonomy of Wireless Sensors in Aeronautics Applications: SMARTER Collaborative Project, 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, pp.1668-1672, 2013.
DOI : 10.1109/GreenCom-iThings-CPSCom.2013.304

R. Monthéard, M. Bafleur, V. Boitier, X. Dollat, N. Nolhier et al., Abstract, Energy Harvesting and Systems, vol.27, issue.4, 2016.
DOI : 10.1088/0960-1317/19/9/094010

F. Mahboub, M. Bafleur, V. Boitier, A. Alvarez, J. Colomer et al., Self-Powered Adaptive Switched Architecture Storage, Journal of Physics: Conference Series, p.12103, 2016.
DOI : 10.1088/1742-6596/773/1/012103

M. Uno and H. Toyota, Equalization technique utilizing series-parallel connected supercapacitors for energy storage system, 2008 IEEE International Conference on Sustainable Energy Technologies, pp.893-897, 2008.
DOI : 10.1109/ICSET.2008.4747134

F. Mahboubi, V. Boitier, and M. Bafleur, Architecture de stockage adaptative, JNRDM, vol.2016, issue.725, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01746142