. Dans-ce-chapitre, analyser un ensemble de résultats faisant usage de notre logiciel de simulation, ALICKIA. Nous présentons ces résultats en deux parties. Tout d'abord nous détaillerons des résultats relatifs au modèle phénoménologique de combustion, sans considération de pertes thermiques, en nous [1] Carole Rossi. Nano matériaux énergétiques : perspectives d'intégration dans les microsystèmes. Techniques de l'ingénieur Nanotechnologies pour l'énergie, l'environnement et la santé, base documentaire : TIB514DUO(ref. article : nm5050), 2008.

H. Goldschmidt, Method of producing metals and alloys Cooperative Classification Y10S164, 1897.

K. Saita, K. Karimine, M. Ueda, K. Iwano, and T. Hiroguchi, Trends in Rail Welding Technologies and Our Future Approach. Nippon steel & sumitomo metal technical, 2013.

H. Goldschmidt, Method of uniting rails and the like, U.S. ClassificationDIG, vol.164549415012012, issue.164, p.0, 1914.

C. Rossi, D. Briand, M. Dumonteuil, T. Camps, P. Q. Pham et al., Matrix of 10 x 10 addressed solid propellant microthrusters : Review of the technologies. Sensors and Actuators A : Physical, pp.241-252, 2006.

S. Tanaka, R. Hosokawa, S. Tokudome, K. Hori, H. Saito et al., MEMS-Based Solid Propellant Rocket Array Thruster with Electrical Feedthroughs., TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, vol.46, issue.151, pp.47-51, 2005.
DOI : 10.2322/tjsass.46.47

URL : https://www.jstage.jst.go.jp/article/tjsass/46/151/46_151_47/_pdf

C. Hong, S. Murugesan, S. Kim, G. Beaucage, J. Choi et al., A functional on-chip pressure generator using solid chemical propellant for disposable lab-on-a-chip, Lab on a Chip, vol.3, issue.4, pp.281-286, 2003.
DOI : 10.1039/b306116g

O. Vasylkiv and Y. Sakka, Nanoexplosion Synthesis of Multimetal Oxide Ceramic Nanopowders, Nano Letters, vol.5, issue.12, pp.2598-2604, 2005.
DOI : 10.1021/nl052045+

K. S. Martirosyan, Nanoenergetic Gas-Generators: principles and applications, Journal of Materials Chemistry, vol.404, issue.1, p.9400, 2011.
DOI : 10.1016/S0040-6031(03)00144-8

L. Glavier, G. Taton, J. Ducere, V. Baijot, S. Pinon et al., Nanoenergetics as pressure generator for nontoxic impact primers : Bibliographie Comparison of Al

A. Sergey, A. Grinshpun, M. Adhikari, T. Yermakov, E. Reponen et al., Inactivation of Aerosolized Bacillus atrophaeus (BG) Endospores and MS2 Viruses by Combustion of Reactive Materials, Environmental Science & Technology, vol.46, issue.13, pp.7334-7341, 2012.

S. , R. Ahmad, and M. Cartwright, Laser Ignition of Energetic Materials, 2014.

C. Rossi, Conception et realisation d'un systeme de rehydratation pour patch transdermique a partir de micro actionneurs pyrotechniques, 1997.

C. Rossi and D. Estève, Micropyrotechnics, a new technology for making energetic microsystems : review and prospective. Sensors and Actuators A : Physical, pp.297-310, 2005.
DOI : 10.1016/j.sna.2005.01.025

URL : https://hal.archives-ouvertes.fr/hal-00150261

G. Taton, . Lagrange, . Conedera, C. Renaud, and . Rossi, Micro-chip initiator realized by integrating Al/CuO multilayer nanothermite on polymeric membrane, Journal of Micromechanics and Microengineering, vol.23, issue.10, pp.105009-2013
DOI : 10.1088/0960-1317/23/10/105009

L. Glavier, A. Nicollet, F. Jouot, B. Martin, J. Barberon et al., Nanothermite/RDX-Based Miniature Device for Impact Ignition of High Explosives, Propellants, Explosives, Pyrotechnics, vol.42, issue.3, pp.308-317
DOI : 10.1002/prep.201600154

S. Palopoli and T. Brill, Thermal decomposition of energetic materials 52. On the foam zone and surface chemistry of rapidly decomposing HMX, Combustion and Flame, vol.87, issue.1, pp.45-60, 1991.
DOI : 10.1016/0010-2180(91)90026-8

E. Kaisersberger and J. Opfermann, Kinetic evaluation of exothermal reactions measured by DSC, Thermochimica Acta, vol.187, pp.151-158, 1991.
DOI : 10.1016/0040-6031(91)87189-4

T. Sewell and D. Thompson, Classical dynamics study of unimolecular dissociation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), The Journal of Physical Chemistry, vol.95, issue.16, pp.6228-6242, 1991.
DOI : 10.1021/j100169a033

J. Cox and I. Hillier, Ab initio mo studies of the decomposition of energetic materials. I. Hydrogen transfer in tnt and in model systems, Chemical Physics, vol.124, issue.1, pp.39-46, 1988.
DOI : 10.1016/0301-0104(88)85080-8

E. B. Washburn, J. N. Trivedi, L. Catoire, and M. W. Beckstead, The Simulation of the Combustion of Micrometer-Sized Aluminum Particles with Steam, Combustion Science and Technology, vol.17, issue.8, pp.1502-1517, 2008.
DOI : 10.1080/00102208708947057

URL : https://hal.archives-ouvertes.fr/hal-01221133

M. W. Beckstead, Y. Liang, and K. V. Pudduppakkam, Numerical simulation of single aluminum particle combustion (review). Combustion, Explosion and Shock Waves, pp.622-638, 2005.
DOI : 10.1007/s10573-005-0077-0

S. Gordon and B. J. Mcbride, Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouguet Detonations, Interim Revision, 1976.

H. Wang, G. Jian, W. Zhou, J. B. Delisio, V. T. Lee et al., Metal Iodate-Based Energetic Composites and Their Combustion and Biocidal Performance, ACS Applied Materials & Interfaces, vol.7, issue.31, pp.17363-17370, 2015.
DOI : 10.1021/acsami.5b04589

X. Wang, T. Wu, and M. R. Zachariah, Doped Perovskites To Evaluate the Relationship between Fuel???Oxidizer Thermite Ignition and Bond Energy, Electronegativity, and Oxygen Vacancy, The Journal of Physical Chemistry C, vol.121, issue.1, pp.147-152, 2017.
DOI : 10.1021/acs.jpcc.6b10571

S. Fischer and M. Grubelich, A survey of combustible metals, thermites, and intermetallics for pyrotechnic applications, 32nd Joint Propulsion Conference and Exhibit, pp.9-40, 1996.
DOI : 10.1007/978-3-662-02293-1

M. Petrantoni, Nanomatériaux énergétiques sur puce : élaboration, modélisation et caractérisation, 2010.

L. Glavier, Conception et développement d'un micro détonateur électrique intégrant des nanothermites pour l'amorçage par impact d'explosifs secondaires, p.2017

T. Calais, Exploration des nanotechnologies ADN pour l'auto-assemblage de nanoparticules d'aluminium et d'oxyde de cuivre : application à la synthèse de matériaux énergétiques, pp.2017-2026

M. Guiltat, Développement d'une plateforme de simulation atomistique pour les procédés en phase vapeur par une approche multi-niveaux : application au dépôt de CuO sur Al, pp.2016-2025

G. Taton, Conception et réalisation d'un microsystème d'initiation pyrotechnique intelligent et sécurisé pour applications spatiales, 2013.

C. E. Aumann, G. L. Skofronick, and J. A. Martin, Oxidation behavior of aluminum nanopowders, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.13, issue.3, pp.1178-1183, 1995.
DOI : 10.1116/1.588232

L. Michelle, J. J. Pantoya, and . Granier, Combustion Behavior of Highly Energetic Thermites : Nano versus Micron Composites, Propellants, Explosives , Pyrotechnics, vol.30, issue.1, pp.53-62, 2005.

K. W. Watson, M. L. Pantoya, and V. I. Levitas, Fast reactions with nano- and micrometer aluminum: A study on oxidation versus fluorination, Combustion and Flame, vol.155, issue.4, pp.619-634, 2008.
DOI : 10.1016/j.combustflame.2008.06.003

B. Rufino, F. Boulc-'h, M. V. Coulet, G. Lacroix, and R. Denoyel, Influence of particles size on thermal properties of aluminium powder, Acta Materialia, vol.55, issue.8, pp.2815-2827, 2007.
DOI : 10.1016/j.actamat.2006.12.017

V. I. Levitas, J. Mccollum, and M. Pantoya, Pre-Stressing Micron-Scale Aluminum Core-Shell Particles to Improve Reactivity, Scientific Reports, vol.161, issue.1, 2015.
DOI : 10.1016/j.combustflame.2014.02.003

URL : http://www.nature.com/articles/srep07879.pdf

R. Shende, S. Subramanian, S. Hasan, S. Apperson, R. Thiruvengadathan et al., Nanoenergetic Composites of CuO Nanorods, Nanowires, and Al-Nanoparticles, Nanoenergetic Composites of CuO Nanorods, Nanowires, and Al- Nanoparticles, pp.122-130, 2008.
DOI : 10.1002/prep.200800212

J. Young-ahn, J. H. Kim, J. M. Kim, D. Woo-lee, J. K. Park et al., Combustion characteristics of high-energy Al/CuO composite powders : The role of oxidizer structure and pellet density, Powder Technology, vol.241, pp.67-73, 2013.

A. E. Gash, R. L. Simpson, and J. H. Satcher, Aerogels and Sol???Gel Composites as Nanostructured Energetic Materials, Aerogels Handbook, pp.585-606
DOI : 10.1007/978-1-4419-7589-8_25

M. Swati, M. Umbrajkar, E. L. Schoenitz, and . Dreizin, Exothermic reactions in Al-CuO nanocomposites, Thermochimica Acta, vol.451, issue.12, pp.34-43, 2006.

A. Rai, K. Park, L. Zhou, and M. R. Zachariah, Understanding the mechanism of aluminium nanoparticle oxidation. Combustion Theory and Modelling, pp.843-859, 2006.

V. I. Levitas, B. W. Asay, S. F. Son, and M. Pantoya, Melt dispersion mechanism for fast reaction of nanothermites, Applied Physics Letters, vol.89, issue.7, pp.71909-71919, 2006.
DOI : 10.1023/A:1022466319501

J. John, M. L. Granier, and . Pantoya, Laser ignition of nanocomposite thermites, Combustion and Flame, vol.138, issue.4, pp.373-383, 2004.

D. Prentice, M. L. Pantoya, and A. E. Gash, Combustion Wave Speeds of Sol???Gel-Synthesized Tungsten Trioxide and Nano-Aluminum:??? The Effect of Impurities on Flame Propagation, Energy & Fuels, vol.20, issue.6, pp.2370-2376, 2006.
DOI : 10.1021/ef060210i

A. Abraham, J. Obamedo, M. Schoenitz, and E. L. Dreizin, Effect of composition on properties of reactive Al??B??I2 powders prepared by mechanical milling, Journal of Physics and Chemistry of Solids, vol.83, pp.1-7, 2015.
DOI : 10.1016/j.jpcs.2015.03.005

V. , E. Sanders, B. W. Asay, T. J. Foley, B. C. Tappan et al., Reaction Propagation of Four Nanoscale Energetic Composites (Al/MoO3, Journal of Propulsion and Power, vol.23, issue.4, pp.707-714, 2007.

K. S. Martirosyan, L. Wang, A. Vicent, and D. Luss, Synthesis and performance of bismuth trioxide nanoparticles for high energy gas generator use, Nanotechnology, vol.20, issue.40
DOI : 10.1088/0957-4484/20/40/405609

B. S. Bockmon, M. L. Pantoya, S. F. Son, B. W. Asay, and J. T. Mang, Combustion velocities and propagation mechanisms of metastable interstitial composites, Journal of Applied Physics, vol.98, issue.6, p.64903, 2005.
DOI : 10.1016/S0082-0784(00)80297-0

M. R. Weismiller, J. Y. Malchi, J. G. Lee, R. A. Yetter, and T. J. Foley, Effects of fuel and oxidizer particle dimensions on the propagation of aluminum containing thermites, Proceedings of the Combustion Institute, pp.1989-1996, 2011.
DOI : 10.1016/j.proci.2010.06.104

S. Chowdhury, K. Sullivan, N. Piekiel, L. Zhou, and M. R. Zachariah, Diffusive vs Explosive Reaction at the Nanoscale, The Journal of Physical Chemistry C, vol.114, issue.20, pp.9191-9195, 2010.
DOI : 10.1021/jp906613p

A. Strachan, E. M. Kober, C. T. Adri, J. Van-duin, W. A. Oxgaard et al., Thermal decomposition of RDX from reactive molecular dynamics, The Journal of Chemical Physics, vol.216, issue.5, p.54502, 2005.
DOI : 10.1023/A:1020074113000

K. Joshi and S. Chaudhuri, Observation of deflagration wave in energetic materials using reactive molecular dynamics, Combustion and Flame, vol.184, pp.20-29
DOI : 10.1016/j.combustflame.2017.05.009

S. Izvekov, P. W. Chung, and B. M. Rice, Non-equilibrium molecular dynamics simulation study of heat transport in hexahydro-1,3,5-trinitro-s-triazine (RDX), International Journal of Heat and Mass Transfer, vol.54, issue.25-26, pp.5623-5632
DOI : 10.1016/j.ijheatmasstransfer.2011.06.040

O. Politano and F. Baras, Molecular dynamics simulations of self-propagating reactions in Ni???Al multilayer nanofoils, Journal of Alloys and Compounds, vol.652, pp.25-29
DOI : 10.1016/j.jallcom.2015.08.134

M. J. Cherukara, T. P. Weihs, and A. Strachan, Molecular dynamics simulations of the reaction mechanism in Ni/Al reactive intermetallics, Acta Materialia, vol.96, pp.1-9
DOI : 10.1016/j.actamat.2015.06.008

L. Lin, S. Hui, G. Lu, S. Wang, X. Wang et al., Molecular dynamics study of high temperature wetting kinetics for Al/NiAl and Al/Ni 3 Al systems: Effects of grain boundaries, Chemical Engineering Science, vol.174, pp.127-135
DOI : 10.1016/j.ces.2017.09.008

Z. Zhu, B. Ma, C. Tang, and X. Cheng, Molecular dynamic simulation of thermite reaction of Al nanosphere/Fe 2 O 3 nanotube, Physics Letters A, vol.380, issue.1-2, pp.194-199
DOI : 10.1016/j.physleta.2015.09.041

F. Shimojo, A. Nakano, R. K. Kalia, and P. Vashishta, Enhanced reactivity of nanoenergetic materials: A first-principles molecular dynamics study based on divide-and-conquer density functional theory, Applied Physics Letters, vol.95, issue.4, p.43114, 2009.
DOI : 10.1063/1.2200352

G. Sanford, M. Bonnie, and J. , Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications I. Analysis, 1994.

P. R. Santhanam, V. K. Hoffmann, M. A. Trunov, and E. L. Dreizin, Characteristics of Aluminum Combustion Obtained from Constant-Volume Explosion Experiments, Combustion Science and Technology, vol.90, issue.7, pp.904-921, 2010.
DOI : 10.1002/prep.200400083

K. T. Sullivan, N. W. Piekiel, S. Chowdhury, C. Wu, M. R. Zachariah et al., : A Potential Energetic Biocidal System, Combustion Science and Technology, vol.29, issue.3, pp.285-302, 2010.
DOI : 10.1002/rcm.3815

K. Sullivan and M. Zachariah, Simultaneous Pressure and Optical Measurements of Nanoaluminum Thermites: Investigating the Reaction Mechanism, Journal of Propulsion and Power, vol.29, issue.3, pp.467-472, 2010.
DOI : 10.1002/(SICI)1521-4087(199910)24:5<269::AID-PREP269>3.0.CO;2-4

J. Rohit, D. L. Jacob, K. R. Ortiz-montalvo, T. P. Overdeep, M. R. Weihs et al., Incomplete reactions in nanothermite composites, Journal of Applied Physics, vol.121, issue.5, p.54307, 2017.

G. Jian, N. W. Piekiel, and M. R. Zachariah, Time-Resolved Mass Spectrometry of Nano-Al and Nano-Al/CuO Thermite under Rapid Heating: A Mechanistic Study, The Journal of Physical Chemistry C, vol.116, issue.51, pp.26881-26887, 2012.
DOI : 10.1021/jp306717m

J. Siegel, Forensic Chemistry : Fundamentals and Applications. Forensic Science in Focus, 2015.
DOI : 10.1002/9781118897768

M. W. Beckstead and K. Puduppakkam, Piyush Thakre, and Vigor Yang. Modeling of combustion and ignition of solid-propellant ingredients, Progress in Energy and Combustion Science, pp.497-551, 2007.

X. Zhou, M. Torabi, J. Lu, R. Shen, and K. Zhang, Nanostructured Energetic Composites: Synthesis, Ignition/Combustion Modeling, and Applications, ACS Applied Materials & Interfaces, vol.6, issue.5, pp.3058-3074, 2014.
DOI : 10.1021/am4058138

A. B. Vorozhtsov, M. Lerner, N. Rodkevich, H. Nie, A. Abraham et al., Oxidation of nano-sized aluminum powders, Thermochimica Acta, vol.636, pp.48-56, 2016.
DOI : 10.1016/j.tca.2016.05.003

S. Dilip, P. Sundaram, V. Puri, and . Yang, A general theory of ignition and combustion of nano-and micron-sized aluminum particles, Combustion and Flame, vol.169, pp.94-109, 2016.

T. Mark, L. Swihart, and . Catoire, Thermochemistry of aluminum species for combustion modeling from ab initio molecular orbital calculations, Combustion and flame, vol.121, issue.1, pp.210-222, 2000.

M. W. Beckstead, A summary of aluminum combustion, 2004.

J. Glorian, L. Catoire, S. Gallier, and N. Cesco, Gassurface thermochemistry and kinetics for aluminum particle combustion, Proceedings of the Combustion Institute, pp.2439-2446
DOI : 10.1016/j.proci.2014.07.039

URL : https://hal.archives-ouvertes.fr/hal-01221250

Y. Liang and M. Beckstead, Numerical simulation of quasi-steady, single aluminum particle combustion in air, 36th AIAA Aerospace Sciences Meeting and Exhibit, 1998.
DOI : 10.1080/00102208708947057

Y. Liang and M. Beckstead, Numerical simulation of unsteady, single aluminum particle combustion in air, 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 1998.
DOI : 10.1016/0010-2180(69)90003-0

Y. Huang, G. A. Risha, V. Yang, and R. A. Yetter, Combustion of bimodal nano/micron-sized aluminum particle dust in air, Proceedings of the Combustion Institute, pp.2001-2009, 2007.
DOI : 10.1016/j.proci.2006.08.103

Y. Huang, G. A. Risha, V. Yang, and R. A. Yetter, Effect of particle size on combustion of aluminum particle dust in air, Combustion and Flame, vol.156, issue.1, pp.5-13, 2009.
DOI : 10.1016/j.combustflame.2008.07.018

M. Coulet, B. Rufino, P. Esposito, T. Neisius, O. Isnard et al., Oxidation Mechanism of Aluminum Nanopowders, The Journal of Physical Chemistry C, vol.119, issue.44, pp.25063-25070, 2015.
DOI : 10.1021/acs.jpcc.5b07321

URL : https://hal.archives-ouvertes.fr/hal-01416622

L. Zhou, N. Piekiel, S. Chowdhury, and M. R. Zachariah, Time-Resolved Mass Spectrometry of the Exothermic Reaction between Nanoaluminum and Metal Oxides: The Role of Oxygen Release, The Journal of Physical Chemistry C, vol.114, issue.33, pp.14269-14275, 2010.
DOI : 10.1021/jp101146a

G. Jian, S. Chowdhury, K. Sullivan, and M. R. Zachariah, Nanothermite reactions: Is gas phase oxygen generation from the oxygen carrier an essential prerequisite to ignition?, Combustion and Flame, vol.160, issue.2, pp.432-437, 2013.
DOI : 10.1016/j.combustflame.2012.09.009

G. Jian, L. Zhou, N. W. Piekiel, and M. R. Zachariah, Low Effective Activation Energies for Oxygen Release from Metal Oxides: Evidence for Mass-Transfer Limits at High Heating Rates, ChemPhysChem, vol.114, issue.8, pp.1666-1672, 2014.
DOI : 10.1021/jp906613p

L. Zhou, N. Piekiel, S. Chowdhury, and M. R. Zachariah, T-Jump/time-of-flight mass spectrometry for time-resolved analysis of energetic materials, Rapid Communications in Mass Spectrometry, vol.88, issue.1, pp.194-202, 2009.
DOI : 10.1002/rcm.3815

D. Stamatis, A. Ermoline, and E. L. Dreizin, A multi-step reaction model for ignition of fully-dense Al-CuO nanocomposite powders. Combustion Theory and Modelling, pp.1011-1028000311944700004, 2012.

A. Ermoline, D. Stamatis, and E. L. Dreizin, Low-temperature exothermic reactions in fully dense Al???CuO nanocomposite powders, Thermochimica Acta, vol.527, pp.52-58, 2012.
DOI : 10.1016/j.tca.2011.10.002

N. Cabrera and N. F. Mott, Theory of the oxidation of metals, Reports on Progress in Physics, vol.12163, issue.1, 1949.

V. I. Levitas, B. W. Asay, S. F. Son, and M. Pantoya, Mechanochemical mechanism for fast reaction of metastable intermolecular composites based on dispersion of liquid metal, Journal of Applied Physics, vol.18, issue.8, p.83524, 2007.
DOI : 10.1023/A:1022466319501

V. I. Levitas, M. L. Pantoya, and S. Dean, Melt dispersion mechanism for fast reaction of aluminum nano- and micron-scale particles: Flame propagation and SEM studies, Combustion and Flame, vol.161, issue.6, pp.1668-1677, 2014.
DOI : 10.1016/j.combustflame.2013.11.021

K. T. Sullivan, N. W. Piekiel, C. Wu, S. Chowdhury, S. T. Kelly et al., Reactive sintering: An important component in the combustion of nanocomposite thermites, Combustion and Flame, vol.159, issue.1, pp.2-15, 2012.
DOI : 10.1016/j.combustflame.2011.07.015

J. Rohit, G. Jacob, P. M. Jian, M. R. Guerieri, and . Zachariah, Energy release pathways in nanothermites follow through the condensed state, Combustion and Flame, vol.162, issue.36, pp.258-264, 2015.

R. David and . Lide, CRC Handbook of Chemistry and Physics, 87th Edition, 2006.

C. Boissière and G. Fiorese, Équation d'état des métaux prenant en compte les changements d'état entre 300 et 200 000 K pour toute compression, pp.857-872, 1977.

P. H. Zhang, R. Z. Chang, Z. Wei, H. Cao, and X. N. Zhou, The melting point, latent heat of solidification, and enthalpy for both solid and liquid ?-Al2O3 in the range 550?2400 K, International Journal of Thermophysics, vol.31, issue.4, pp.811-819, 1986.
DOI : 10.1007/BF00503838

R. D. Schmidt-whitley, M. Martinez-clemente, and A. Revcolevschi, Growth and microstructural control of single crystal cuprous oxide Cu2O, Journal of Crystal Growth, vol.23, issue.2, pp.113-120, 1974.
DOI : 10.1016/0022-0248(74)90110-9

T. V. Charlu and O. J. Kleppa, A calorimetric determination of the enthalpy of vaporization of MoO3, The Journal of Chemical Thermodynamics, vol.3, issue.5, pp.697-700, 1971.
DOI : 10.1016/S0021-9614(71)80092-7

S. H. Hosseini, M. Saghafi, and S. Heshmati-manesh, Nanopowder by the Evaporation???Condensation Technique, Materials and Manufacturing Processes, vol.27, issue.12, pp.1271-1275
DOI : 10.1016/j.msea.2003.10.290

A. H. Heuer, Oxygen and aluminum diffusion in ??-Al2O3: How much do we really understand?, Journal of the European Ceramic Society, vol.28, issue.7, pp.1495-1507, 2008.
DOI : 10.1016/j.jeurceramsoc.2007.12.020

A. E. Paladino and W. D. Kingery, Aluminum Ion Diffusion in Aluminum Oxide, The Journal of Chemical Physics, vol.4, issue.5, pp.957-962, 1962.
DOI : 10.1111/j.1151-2916.1961.tb13756.x

M. Garcia-mendez, N. Valles-villarreal, G. A. Hirata-flores, and M. H. Farias, Study of thermal diffusion between Al2O3 and Al thin films, Applied Surface Science, vol.151, issue.1-2, pp.139-147, 1999.
DOI : 10.1016/S0169-4332(99)00133-6

W. Zhou, J. B. Delisio, X. Wang, G. C. Egan, and M. R. Zachariah, Evaluating free vs bound oxygen on ignition of nano-aluminum based energetics leads to a critical reaction rate criterion, Journal of Applied Physics, vol.7, issue.11, pp.114303-62, 2015.
DOI : 10.1002/cphc.201301148

J. Drowart, G. Demaria, R. P. Burns, and M. G. Inghram, Using a Mass Spectrometer, The Journal of Chemical Physics, vol.118, issue.5, pp.1366-1372, 1960.
DOI : 10.1063/1.1700126

J. Guo, A. Goodings, and . Hayhurst, What are the main gas-phase species formed by aluminum when added to a premixed flame ? Combustion and Flame, pp.127-136, 2007.

W. Wang, R. Clark, A. Nakano, R. K. Kalia, and P. Vashishta, Effects of oxide-shell structures on the dynamics of oxidation of Al nanoparticles, Applied Physics Letters, vol.96, issue.18, pp.181906-2010
DOI : 10.1364/AO.44.003654

C. Badiola, R. J. Gill, and E. L. Dreizin, Combustion characteristics of micron-sized aluminum particles in oxygenated environments, Combustion and Flame, vol.158, issue.10, pp.2064-2070, 2011.
DOI : 10.1016/j.combustflame.2011.03.007

S. Goroshin, J. Mamen, A. Higgins, T. Bazyn, N. Glumac et al., Emission spectroscopy of flame fronts in aluminum suspensions, Proceedings of the Combustion Institute, pp.2011-2019, 2007.
DOI : 10.1016/j.proci.2006.07.175

N. Thuvan, F. C. Piehler, C. A. Delucia, B. E. Munson, A. W. Homan et al., Temporal evolution of the laserinduced breakdown spectroscopy spectrum of aluminum metal in different bath gases, Applied optics, vol.44, issue.18, pp.3654-3660, 2005.

M. Von, A. , and R. Ahlrichs, Performance of parallel TURBO- MOLE for density functional calculations, Journal of Computational Chemistry, vol.19, issue.15, pp.1746-1757, 1998.

M. Bär and R. Ahlrichs, Electronic structure calculations on workstation computers : The program system TURBOMOLE, Chemical Physics Letters, vol.162, issue.3, pp.165-169, 1989.

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters, vol.80, issue.18, pp.3865-3868, 1996.
DOI : 10.1063/1.446965

J. P. Perdew, M. Ernzerhof, and K. Burke, Rationale for mixing exact exchange with density functional approximations, The Journal of Chemical Physics, vol.47, issue.22, pp.9982-9985, 1996.
DOI : 10.1002/qua.560560422

F. Weigend and R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy, Physical Chemistry Chemical Physics, vol.110, issue.16, pp.3297-3305, 2005.
DOI : 10.1007/s002140050244

K. Eichkorn, O. Treutler, H. Ohm, M. Haser, and R. Ahlrichs, Auxiliary basis sets to approximate Coulomb potentials, Chemical Physics Letters, vol.240, issue.4, pp.283-290, 1995.
DOI : 10.1016/0009-2614(95)00621-A

K. Eichkorn, F. Weigend, O. Treutler, and R. Ahlrichs, Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials, Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), vol.97, issue.1-4, pp.119-124, 1997.
DOI : 10.1007/s002140050244

E. Bruce, A. S. Deal, and . Grove, General relationship for the thermal oxidation of silicon, Journal of Applied Physics, vol.36, issue.12, pp.3770-3778, 1965.

A. Nicollet, G. Lahiner, A. Belisario, S. Souleille, M. Djafari-rouhani et al., Investigation of Al/CuO multilayered thermite ignition, Journal of Applied Physics, vol.105, issue.3, p.34503, 2017.
DOI : 10.1134/S0018151X07060090

URL : https://hal.archives-ouvertes.fr/hal-01480996

C. Garth, M. R. Egan, and . Zachariah, Commentary on the heat transfer mechanisms controlling propagation in nanothermites, Combustion and Flame, vol.162, issue.7, pp.2959-2961, 2015.

L. André, Écoulement des fluides étude physique et cinématique . Techniques de l'ingénieur Fluides et combustion, base documentaire : TIB213DUO.(ref. article : be8151), pp.2017-149

R. Courant, K. Friedrichs, and H. Lewy, On the Partial Difference Equations of Mathematical Physics, IBM Journal of Research and Development, vol.11, issue.2, pp.215-234, 1967.
DOI : 10.1147/rd.112.0215