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Abstract

Autonomy is one of the major concerns during the planning of a space mission, whether its

objective is scientific (interplanetary exploration, observations, etc.) or commercial (service in

orbit). For space rendezvous, this autonomy depends on the on-board capacity of controlling

the relative movement between two spacecraft. In the context of satellite servicing (trou-

bleshooting, propellant refueling, orbit correction, end-of-life deorbit, etc.), the feasibility of

such missions is also strongly linked to the ability of the guidance and control algorithms to

account for all operational constraints (for example, thruster saturation or restrictions on the

relative positioning between the vehicles) while maximizing the life of the vehicle (minimizing

propellant consumption). The literature shows that this problem has been intensively studied

since the early 2000s. However, the proposed algorithms are not entirely satisfactory. Some

approaches, for example, degrade the constraints in order to be able to base the control

algorithm on an efficient optimization problem. Other methods accounting for the whole set

of constraints of the problem are too cumbersome to be embedded on real computers existing

in the spaceships.

The main object of this thesis is the development of new efficient and validated algorithms

for the impulsive guidance and control of spacecraft in the context of the so-called "hovering"

phases of the orbital rendezvous, i.e. the stages in which a secondary vessel must maintain

its position within a bounded area of space relatively to another main vessel. The first

contribution presented in this manuscript uses a new mathematical formulation of the space

constraints for the relative motion between spacecraft for the design of control algorithms

with more efficient computational processing compared to traditional approaches. The second

and main contribution is a predictive control strategy that has been formally demonstrated to

ensure the convergence of relative trajectories towards the "hovering" zone, even in the presence

of disturbances or saturation of the actuators. Specific computational developments have

demonstrated the embeddability of these control algorithms on a board containing a FPGA-

synthesized LEON3 microprocessor certified for space flight, reproducing the performance of

the devices usually used in flight. Finally, tools for rigorous approximation of functions were

used to obtain validated solutions of the equations describing the linearized relative motion,

allowing a simple certified propagation of the relative trajectories via polynomials and the

verification of the respect of the constraints of the problem.





Résumé

L’autonomie est l’une des préoccupations majeures lors du développement de missions spatiales

que l’objectif soit scientifique (exploration interplanétaire, observations, etc) ou commercial

(service en orbite). Pour le rendez-vous spatial, cette autonomie dépend de la capacité

embarquée de contrôle du mouvement relatif entre deux véhicules spatiaux. Dans le contexte

du service aux satellites (dépannage, remplissage additionnel d’ergols, correction d’orbite,

désorbitation en fin de vie, etc), la faisabilité de telles missions est aussi fortement liée à la

capacité des algorithmes de guidage et contrôle à prendre en compte l’ensemble des contraintes

opérationnelles (par exemple, saturation des propulseurs ou restrictions sur le positionnement

relatif entre les véhicules) tout en maximisant la durée de vie du véhicule (minimisation de

la consommation d’ergols). La littérature montre que ce problème a été étudié intensément

depuis le début des années 2000. Les algorithmes proposés ne sont pas tout à fait satisfaisants.

Quelques approches, par exemple, dégradent les contraintes afin de pouvoir fonder l’algorithme

de contrôle sur un problème d’optimisation efficace. D’autres méthodes, si elles prennent

en compte l’ensemble du problème, se montrent trop lourdes pour être embarquées sur de

véritables calculateurs existants dans les vaisseaux spatiaux.

Le principal objectif de cette thèse est le développement de nouveaux algorithmes efficaces

et validés pour le guidage et le contrôle impulsif des engins spatiaux dans le contexte des

phases dites de “hovering” du rendez-vous orbital, i.e. les étapes dans lesquelles un vaisseau

secondaire doit maintenir sa position à l’intérieur d’une zone délimitée de l’espace relativement

à un autre vaisseau principal. La première contribution présentée dans ce manuscrit utilise

une nouvelle formulation mathématique des contraintes d’espace pour le mouvement relatif

entre vaisseaux spatiaux pour la conception d’algorithmes de contrôle ayant un traitement

calculatoire plus efficace comparativement aux approches traditionnelles. La deuxième et

principale contribution est une stratégie de contrôle prédictif qui assure la convergence des

trajectoires relatives vers la zone de “hovering”, même en présence de perturbations ou de sat-

uration des actionneurs. Un travail spécifique de développement informatique a pu démontrer

l’embarquabilité de ces algorithmes de contrôle sur une carte contenant un microprocesseur

LEON3 synthétisé sur FPGA certifié pour le vol spatial, reproduisant les performances des

dispositifs habituellement utilisés en vol. Finalement, des outils d’approximation rigoureuse

de fonctions ont été utilisés pour l’obtention des solutions validées des équations décrivant le

mouvement relatif linéarisé, permettant ainsi une propagation certifiée simple des trajectoires

relatives via des polynômes et la vérification du respect des contraintes du problème.
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Nomenclature

∆V Vector of instantaneous velocity corrections

J Fuel consumption

µ Earth’s gravitational constant

ν True anomaly

Ω Longitude of the ascending node

ω Argument of perigee

∆V Thrusters saturation threshold

Φ, ΦD State-transition matrices

a Semi-major axis

D Deaconu’s vector of parameters

e Eccentricity

G Universal gravitational constant

i Orbit inclination

In Identity matrix of oder n

On Null matrix of oder n

X Relative state between spacecraft in the LVLH frame
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LODE Linear ordinary differential equations

LP Linear program

LTV Linear Time-Varying

LVLH Local-vertical / local-horizontal

MPC Model predictive control

RPA Rigorous polynomial approximation

SDP Semi-definite program

SIP Semi-infinite program





Introduction

Spacecraft autonomy has become an important feature in the development of space missions,

especially when ground operations are impracticable due to a large number of operations or

an elevated communication time. Efficient embedded algorithms dedicated to autonomous

decision making and maneuvering have already been used in many space projects, such as:

the Soyuz and ATV automated docking systems [37, 46], which are highly sophisticated

spacecraft capable of automatically docking to the International Space Station using their

own propulsion and navigation systems; and the Japanese Hayabusa asteroid touchdown

mission [61], during which a spacecraft was supposed to touch the surface of an asteroid with

its sample capturing device and then take off again.

Indeed, mastering the implementation of efficient embedded algorithms and assessing their

performance are crucial for the accomplishment of mission goals, but also open a venue of

economical opportunities and allow the feasibility of future space applications. One example

in the context of space exploration is the Mars Sample Return (MSR)1 joint mission between

ESA and NASA, during which a rover would be deployed on the surface of Mars to collect

samples that later would be sent back to Earth using a third orbiter spacecraft (Fig. 1).

Figure 1 – Illustration of the Mars Sample Return mission (property of NASA/JPL).

A trending topic that is currently being studied by several space agencies and private

companies is the on-orbit servicing. Two examples can be mentioned to illustrate this appli-

1https://www.jpl.nasa.gov/missions/mars-sample-return-msr/

https://www.jpl.nasa.gov/missions/mars-sample-return-msr/
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cation: the DARPA’s Robot Servicing of Geosynchronous Satellites (RSGS)2 program that

seeks to demonstrate the feasibility of a generic robotic servicing vehicle, with the ability of

executing a variety of on-orbit missions in different scenarios; and the ESA’s e.deorbit3 active

debris removal mission, in which a primary satellite would chase a secondary ESA-owned

uncooperative satellite in low orbit, capture it (using a net and the other a robotic arm) and

safely burn it up in a controlled atmospheric reentry (Fig. 2).

Figure 2 – Illustration of the e.deorbit mission (property of the European Space Agency).

The previously cited missions have at least one phase in which a spacecraft performs a

rendezvousing operation. The spacecraft rendezvous consists in a sequence of maneuvers

performed by an active follower satellite with the goal of getting closer or even docking to a

leader satellite (see Fig. 3).

Target

Earth

Follower

Figure 3 – Rendezvous scheme.

2https://www.darpa.mil/program/robotic-servicing-of-geosynchronous-satellites

3http://www.esa.int/Our_Activities/Space_Engineering_Technology/Clean_Space/e.Deorbit

https://www.darpa.mil/program/robotic-servicing-of-geosynchronous-satellites
http://www.esa.int/Our_Activities/Space_Engineering_Technology/Clean_Space/e.Deorbit
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These approaching maneuvers are divided into several phases which are defined according

to the inter-satellite distance, communication, visibility and other constraints. One of these

phases is the so-called hovering phase [54, 56–58, 71, 72, 74, 105] (see Fig. 4), in which the

follower spacecraft is required to remain in a delimited region of the space relatively to the

leader, while the mission control awaits for other events to be accomplished (measurements,

synchronization, mission control decisions, visibility, etc).

Target

Follower

Sation-keeping

Figure 4 – Hovering phases scheme.

One of the main objectives of this dissertation is the conception of autonomous guidance

and control algorithms capable of complying with the complex restrictions of the rendezvous

hovering phases, such as the time-continuous space constraints describing the hovering zone

and the limitations of the thrusters. Moreover, the computation of the control actions

must account for the minimization of fuel consumption, reducing the necessary fuel payload,

ensuring feasibility and increasing the lifetime of the missions.

Another major concern of this work is to demonstrate that the proposed algorithms can be

efficiently executed on devices dedicated to space applications. For this purpose, the control

algorithms presented herein have to comply with the performances of a board containing

a FPGA-synthesized LEON3 microprocessor. In fact, although this board is certified for

space flights, it lacks computational power when compared to generic commercially available

devices. The compilation chains and libraries used in the embedding of these algorithms are

also provided.

A final and essential feature investigated in this work is mission safety. In order to ensure

the successful mission accomplishment, the numerical results obtained during the execution of

the proposed guidance and control algorithms must be validated4. The final developments of

this thesis focus on the application of validation techniques for obtaining validated bounds for

the relative trajectories generated by the control actions computed by the proposed algorithms.

4i.e., the accuracy of the results must be verified by an estimation of the committed numerical error.



4 Introduction

In the next section, the organization and main contributions of this work are presented.

Organization and contributions

In Chapter 1, the context and assumptions adopted for the hovering phases of the spacecraft

orbital rendezvous missions are described and the mathematical formulation of the problem

is established. The concepts of synthesis and simulation models are also introduced. The

synthesis model is characterized by a structure which is adapted for the conception of con-

trol algorithms and model predictive control strategies thanks to the existence of a formal

propagation of the relative trajectories. On the other hand, the simulation model provides

a high fidelity description of the physical phenomena involved in the orbital motion and,

consequently, a more realistic representation of the spacecraft trajectories, being used to

simulate the relative motion under the action of guidance algorithms. A first contribution of

this work is the implementation of this simulation model in C and on Matlab R©/Simulink R©

software, which led to the release of the two following simulators (freely available on-line):

1. A Matlab R©/Simulink R© non-linear simulator for orbital spacecraft rendezvous applica-

tions5 [4];

2. A non-linear simulator written in C for orbital spacecraft rendezvous applications6 [5].

In the end of Chapter 1, the synthesis model is used in the formulation of the fixed-time

impulsive optimal guidance problem for relative motion in the context of the rendezvous

hovering zone phases.

In Chapter 2, the theoretical aspects of the resolution of the guidance problem formulated

in Chapter 1 are discussed. With the goal of producing efficient optimization-based algorithms,

three reformulations of the original problem are then proposed. The first reformulation is based

on traditional discretization techniques, leading to a linear program (LP). The second one

converts the original problem into a semi-definite program (SDP), using the relation between

the cone of non-negative univariate polynomials and the cone of semi-definite positive matrices.

The final proposition is an original contribution of this work, which consists in employing a

geometrical approach based on the computation of the envelopes of the families of inequalities

to describe the set of periodic constrained relative trajectories. This provides a reformulation

of the original problem which relies on semi-algebraic functions, leading to a non-smooth

optimization problem presented in the article:

5https://hal.archives-ouvertes.fr/hal-01413328

6https://hal.archives-ouvertes.fr/hal-01410075

https://hal.archives-ouvertes.fr/hal-01413328
https://hal.archives-ouvertes.fr/hal-01410075
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3. Model predictive control for rendezvous hovering phases based on a novel description

of constrained trajectories [7], joint work with M. Joldeş, C. Louembet and F. Camps

(research engineer, LAAS-CNRS), published in Proceedings of the 20th IFAC World

Congress (IFAC 2017).

Numerical methods for solving each of these optimization problems are given and their

practical aspects are considered. These optimization methods are then coded in C and em-

bedded on a board certified for space applications containing a FPGA-synthesized LEON3

microprocessor. The details about the employed libraries and compilation chains were pub-

lished in the following article:

4. Embedding an SDP-based control algorithm for the orbital rendezvous hovering phases

[24], joint work with F. Camps, M. Joldeş and C. Louembet, published in Proceedings

of the 2018 25th Saint Petersburg International Conference on Integrated Navigation

Systems (ICINS 2018).

In Chapter 3 a control strategy is proposed to steer the relative motion and keep it periodic

and included in a given hovering zone. This strategy consists of a closed-loop model predictive

control (MPC) algorithm, which is proven to make the relative movement converge to the

hovering zone even when the presence of saturation constraints on controls may make the

space window unreachable from the current state. The performance of this proposed control

strategy is assessed via processor-in-the-loop simulations: the control computation is executed

on a board containing an FPGA-synthesized LEON3 microprocessor and the propagation of

the disturbed relative motion under uncertainties is performed on the previously mentioned

simulators. These tests highlight the efficiency of the proposed control strategy in terms of

control quality, numerical burden and rejection of disturbances. These original developments

were presented in:

5. Stable Model Predictive Strategy for Rendezvous Hovering Phases Allowing for Control

Saturation [8], joint work with M. Joldeş, C. Louembet and F. Camps, submitted to the

2018 AIAA Journal of Guidance and Control and Dynamics and currently in revision

(JGCD 2018).

Chapter 4 is dedicated to the validation of numerical results obtained from the proposed

on-board executed algorithms. In fact, during guidance and control procedures of orbiting

spacecraft, the respect of positioning and space constraints is decisive for successful mis-

sions achievement. Since result accuracy is essential for these procedures, the prevention
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and estimation of errors arising from approximations and numerical computations become

critical. In this context, a symbolic-numerical method for validating the solutions generated

by the guidance and control algorithms is proposed. This approach provides error-bounded

polynomial for the solutions of the linear ordinary differential equations (LODE) describing

the linearized spacecraft relative motion. These developments led to the article:

6. Validated Semi-Analytical Transition Matrices for Linearized Relative Spacecraft Dy-

namics via Chebyshev Series Approximations [6], joint work with F. Bréhard (PhD

student, LAAS-CNRS) and C. Gazzino (post-doctoral researcher, Technion Israel In-

stitute of Technology), published in Proceedings of the 28th Space Flight Mechanics

Meeting of the AIAA SciTech Forum (AIAA 2018).
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Chapter 1
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1.1 Introduction

In order to study the rendezvous mission context of a leader and a follower spacecraft orbiting

a main body (the Earth, hereafter), mathematical models must be adopted to describe

the relative motion, the actuators and the technological constraints for different purposes.

Depending on the level of details and on the assumed hypothesis, several mathematical models

can be employed in the description of these phenomena. First, the relative motion can be

expressed by different state-space representations (e.g., Cartesian coordinates, orbital elements,

equinoctial elements), using nonlinear or linearized dynamics. Then, since the object of study

consists of mechanical systems, the significant forces acting over them must be inventoried.

Concerning the gravitational forces, for example, the attraction between spacecraft themselves

or between the spacecraft and other celestial bodies (Sun, Moon, Jupiter, etc.) can be taken

into account or neglected. Other effects such as the Earth’s oblateness and non-homogeneous

mass distribution, solar pressure or atmospheric drag may be taken into account as intrinsic

dynamics or exogenous disturbances to the system. While the follower is usually equipped
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with thrusters, the leader spacecraft can be considered active or passive depending on the

ability of controlling its inertial orbit. Moreover, the thrusters can be modeled in several

different ways, depending on the type of employed propulsion engines and their geometrical

disposition. Depending on the rendezvous phase, many type of constraints can be accounted

for: hovering zone, visibility cone, safety, orientation, control action dates, thrusters saturation

and dead-zone, etc. This chapter aims to set the choices and specify the framework of this

thesis.

In the sequel, the context and assumptions adopted for the hovering phases of the space-

craft orbital rendezvous missions are described and the mathematical formulation of the

problem is established. First, the concepts of simulation and synthesis models are introduced.

The simulation model is more comprehensive with respect to the physical phenomena involved

in the orbital motion and, consequently, provides a more realistic representation of the space-

craft trajectories, being used to simulate the relative motion under the action of the conceived

guidance algorithms; on the other hand, the synthesis model is less exhaustive and complex

and is characterized, in this work, by linearized differential equations, which provides both

a formal propagation and a structure adapted to the conception of control algorithms and

model predictive control strategies.

The simulation model is obtained by the study of the two-body problem under Keplerian

assumptions, which can be described by the Gauss planetary equations [47]. The orbital

disturbances, that are not accounted in these models, are introduced as exogenous distur-

bances and a simulator for the non-linear disturbed relative motion developed in C and on

Matlab R©/Simulink R© is presented.

In order to obtain a synthesis model, the non-linear Tschauner-Hempel equations [100]

are linearized [99, 109] and an analysis of the impact of the linearization hypothesis on the

evolution of the relative trajectories is carried out. Once a linear true anomaly-varying state-

space representation of the relative motion is obtained, a parametrization of the relative

trajectories is introduced [29]. This parametrization allows a straightforward characterization

of the periodicity property, which is a very desirable feature from the point of view of fuel

saving [44]. After that, the hovering region is described as a polytopic rectangular cuboid. The

nature and geometrical placement of the propellers are discussed and the equations providing

a characterization of the control actions and the fuel consumption are also exhibited. To

conclude, the fixed-time impulsive optimal guidance problem for relative motion in the context

of the rendezvous hovering zone phases is formulated.
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1.2 Relative motion

The objective of this section is to detail the mathematical models that will be further employed

in the description of the relative motion between spacecraft throughout this dissertation. In

the next developments, the approach synthesis-simulation models is adopted.

The simulation model is used to separately simulate more realistically the behavior of each

spacecraft involved in the rendezvous mission via the Gauss planetary equations (12 degrees

of freedom, 6 orbital elements for each spacecraft). This model accounts for the intrinsic

non-linearities and disturbances of the orbital motion. The relative motions is obtained by

performing the passage from orbital elements to inertial states, then computing the difference

between the positions and velocities of the leader and the follower spacecraft.

The synthesis model is obtained by performing a parametrization of the state vector

employed in the simplified linearized Tschauner-Hempel equations for the relative motion

(6 degrees of freedom, 3 relative position and 3 relative velocity coordinates). This variable

change allows the conversion of the current relative state into parameters that are directly

related to the shape of the relative orbits. This model is applied in the formulation of the

fixed-time impulsive optimal guidance problem for the rendezvous hovering phases.

This choice is motivated by the fact that each of the models has advantages that can be

exploited separately. The synthesis model is linear and admits a closed-form state-transition

matrix that describes the propagation of the relative trajectories departing from a given initial

state. This feature is interesting for model predictive control purposes, since it allows the

computation of the evolution of the relative trajectory after the application of a control action.

Moreover, the fact that this parametrization is related to the shape of the relative orbits leads

to a formal description of the periodic relative orbits included in the hovering zone. The

simulation model, even though more complex (since it does not admit a closed-from state

transition and requires numerical integration), describes with more verisimilitude the motion

and significant disturbances acting over each of the spacecraft separately. It provides, in a

certain sense, a way of testing the behavior and robustnesses of the control strategies that

are conceived and developed with less comprehensive models.

1.2.1 Simulation model

In this subsection, the simulation model is presented. It is obtained by first deducing the

equations describing the movement of a single spacecraft orbiting a massive body in a Keple-

rian framework. Then, the relevant orbital disturbances (the J2 effect and the atmospheric

drag) are included in these equations as exogenous accelerations. The obtained equations are
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then employed in the simulation of the dynamics of two spacecraft orbiting the same central

body and the relative motion is then obtained by performing the difference between their

trajectories. Finally, the obtained model for simulating the relative motion is implemented

on C and on Matlab R©/Simulink R©.

1.2.1.1 Keplerian hypothesis

Consider two bodies in space with homogeneous mass distribution (m1, m2) and suppose

that the first body is much more massive than the second m1 " m2 (e.g., the Earth and the

International Space Station in Fig. 1.1) and that the only forces present in this system are

the gravitational attractions (Keplerian motion).

Figure 1.1 – Two bodies in space.

In this case, the influence of the second body on the dynamics of the first one is considered

negligible. Take an arbitrary inertial frame fixed on the first body FE “ pO, ~I, ~J, ~Kq and let

~R be the position of the second body in this frame. By applying Newton’s second law of

movement, we obtain:

m2
d2

dt2
~Rptq “ ´Gm1m2

}~Rptq}3
~Rptq ñ d2

dt2
~Rptq “ ´ µ

}~Rptq}3
~Rptq, (1.1)

where G is the universal gravitational constant, µ “ Gm1 is the first body’s standard grav-

itational parameter (e.g., for the Earth, µC “ p398 600.4405 ˘ 0.001q km3 s´2 [92]). The

general solutions of 1.1 are trajectories that assume the form of conic sections: circles, ellipses,

parabolas and hyperbolas (more details in Fig. 1.2 and [13, Chapters 3-4]).
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Ellipse Hyperbola Parabola

Figure 1.2 – General solutions of the two body problem.

The following equation describes these general orbits in polar coordinates νptq and Rpνptqq:

Rptq “ }~Rptq} “ p

1 ` e cos νptq ,

e “ 0, circular orbit

0 ă e ă 1, elliptical orbit

e “ 1, parabolic orbit

e ą 1, hyperbolic orbit

(1.2)

where e is the eccentricity, ν is the true anomaly (position of the spacecraft on its orbit) and

p “ ap1 ´ e2q the is the so-called semilatus rectum. For the elliptical and circular cases, a

corresponds to the semi-major axis of the orbit.

In the sequel, we focus exclusively on the bounded periodic solutions: elliptical (and

circular) orbits. In Fig. 1.3 we depict a spacecraft moving in a generic elliptical orbit around

Earth.

Orbital plane

Equatorial plane

Line of nodes

Vernal equinox 
direction

North pole
direction

Perigee

Figure 1.3 – Orbital parameters.

The Earth centered equatorial inertial frame FE “ pO, ~I, ~J, ~Kq is such that ~I is the vector
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that lies on the equatorial plane and has the direction of the vernal equinox (can be seen

as the direction of the vector that goes from the center of the Earth to the center of the

Sun when both are located on the equatorial plane), ~K is a vector perpendicular to the

equatorial plane, pointing towards the north pole and ~J is a vector that lies on the equatorial

plane that completes the orthogonal basis. The Earth centered orbital plane inertial frame

FO “ pO, ~X, ~Y , ~Zq is such that ~X is equivalent to
ÝÝÑ
OP , pointing towards the perigee of the

trajectory, ~Z is perpendicular to the orbital plane and ~Y completes the orthogonal basis

(omitted in Fig. 1.3).

The rotations allowing the passage from the frame FE to FO are depicted in Fig. 1.3 and

given by:

»
———–

~X

~Y

~Z

fi
ffiffiffifl “

»
———–

1 0 0

0 cosω ´ sinω

0 sinω cosω

fi
ffiffiffifl

loooooooooooomoooooooooooon
rotation of ω around ~K

»
———–

cos i ´ sin i 0

sin i cos i 0

0 0 1

fi
ffiffiffifl

looooooooooomooooooooooon
rotation of i around ~J

»
———–

1 0 0

0 cos Ω ´ sin Ω

0 sin Ω cos Ω

fi
ffiffiffifl

loooooooooooomoooooooooooon
rotation of Ω around ~K

»
———–

~I

~J

~K

fi
ffiffiffifl (1.3)

The parameters describing the configuration of the elliptical orbit with respect to the

FE equatorial inertial frame and the position of the spacecraft on its orbit are the so-called

classical orbital elements [77]:

OEc “
”
a, e, i, Ω, ω, νptq

ıT

.

The size and shape of the orbit are given by the semi-major axis a and the eccentricity e.

The line of nodes is given by the intersection between the orbital plane and the equatorial

plane. The ascending node is the orbital position that lies on the line of nodes when the

satellite enters the north half-space defined by the equatorial plane separation of the space.

The orientation of the orbit with respect to the inertial frame is represented by the longitude

of the ascending node Ω (the angle between ~I and the ascending node), the argument of perigee

ω (the angle between the ascending node. and the perigee direction) and the inclination i

(the angle between the orbital plane and the equatorial plane). Finally, the position of the

satellite on its orbit is given by the true anomaly ν.

In absence of exogenous forces or disturbances, the free evolution of the position of a

spacecraft on its elliptical orbit is expressed via the orbital elements by (1.2):

Rptq “ }~Rptq} “ ap1 ´ e2q
1 ` e cos νptq ,
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where the evolution of the true anomaly is given by the expression of its rate of change (see

[37, Chapter 3.2] for further details):

dν

dt
“
c

µ

a3p1 ´ e2q3
p1 ` e cos νq2. (1.4)

Evidently, this orbit can also be represented in the FO and FE frames by simply projecting

the vector ~Rptq on the vectors composing their respective bases.

1.2.1.2 Non-Keplerian hypothesis

The previous obtained equations describe the shape of the spacecraft orbit as being a perfect

ellipse (1.2). The speed at which a spacecraft travels on its orbit are given by the second and

third Kepler’s laws (1.4). However, these equations do not account for all the effects acting

over a spacecraft in orbit. Among these effect are:

• the atmospheric drag, which consists in the deceleration of the motion in the sense of

the along track velocity provoked by the interaction of the spacecraft external area with

the particles present in the atmosphere;

• the Earth’s gravitational disturbances provoked by its inhomogeneous mass distribution;

• the gravitational pull of the Sun, the Moon and other planets;

• solar radiation pressure, which is the pressure applied on spacecraft’s surface provoked

by the exchange of momentum between the object and the incoming radiation beam.

These disturbances are included in the spacecraft orbital dynamics as accelerations pro-

voked by exogenous disturbing forces. The evolution of the spacecraft’s orbital elements under

these accelerations is given by the Gauss planetary equations [47]:

da

dt
“ 2

n
?

1 ´ e2
r´γz e sin ν ` p1 ` e cos νqγxs

de

dt
“

?
1 ´ e2

na

„
´γz sin ν `

ˆ
cos ν ` e` cos ν

1 ` e cos ν

˙
γx



di

dt
“ ´ R cos θ

na2
?

1 ´ e2
γy

dΩ
dt

“ ´ R sin θ

na2
?

1 ´ e2 sin i
γy

dω

dt
“

?
1 ´ e2

na e

„
γz cos ν `

ˆ
1 ` 1

1 ` e cos ν
sin ν

˙
γx


` R sin θ cos i

n a2
?

1 ´ e2 sin i
γy

dν

dt
“ n

p1 ` e cos νq2

p1 ´ e2q3{2
`

?
1 ´ e2

na e

„
´ cos ν γz ´ 2 ` e cos ν

1 ` e cos ν
γx


,

(1.5)
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where n “
c
µ

a3
, θ “ ν ` ω and ~γ “ rγx, γy, γzsT represents the sum of the accelerations

provoked by disturbances in the Local-Vertical/Local-Horizontal frame LV LH “ pSl, ~x, ~y, ~zq,
depicted in Fig. 1.4. Evidently, if ~γ “ ~0, the same motion described by (1.2) and (1.4) is

obtained:

da

dt
“ de

dt
“ di

dt
“ dΩ

dt
“ dω

dt
“ 0,

dν

dt
“
c

µ

a3p1 ´ e2q3
p1 ` e cos νq2.

Figure 1.4 – LVLH frame: the z-axis points from the spacecraft to the center of the Earth; the y-axis is
normal to the orbital plane, negative in the direction of the angular momentum; the x-axis is mutually
perpendicular to the y and z-axes.

The classical orbital elements employed in (1.5) may produce singularities (e “ 0 or i “ 0).

In order to avoid it, a variable change is performed and the classical orbital elements are

converted into the following modified equinoctial orbital elements:

OEeq “
”
p, f, g, h, k, L

ıT

, (1.6)

which can be obtained from the classical orbital elements via:

p “ ap1 ´ e2q
f “ e cospΩ ` ωq,
g “ e sinpΩ ` ωq,

h “ tanpi{2q cos Ω,

k “ tanpi{2q sin Ω,

L “ Ω ` ω ` ν.

(1.7)

The Gauss planetary equations (1.5) can then be rewritten using the equinoctial orbital

elements, which produces the following equations [104]:

dOEeq

dt
“ Aeq~γ `Beq (1.8)
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where:

Aeq “
c
p

µ

»
——————————————————————–

2p
w

0 0

pw ` 1q cosL` f

w

gph sinL´ k cosLq
w

´ sinL

pw ` 1q sinL` g

w
´fph sinL´ k cosLq

w
cosL

0 ´s2 cosL
2w

0

0 ´s2 sinL
2w

0

0 ´h sinL´ k cosL
w

0,

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

(1.9)

Beq “
„
0, 0, 0, 0, 0,

w2

p2

?
µp

T

, (1.10)

where w “ 1 ` f cosL` g sinL.

In [34, Section 16.4], the author demonstrates that for flights at height of a few thousands of

kilometers and less above the surface of the Earth, the perturbations related to the Moon and

Sun pull are insignificant compared to the gravity anomalies and the second zonal harmonic of

the geopotential (the so-called J2 effect). Also in [34, Section 17.3], it is shown that the solar

radiation pressure is relevant only for small light-weight satellites orbiting at flight heights

above 500 km. For all other satellites the perturbations produced by radiation pressure are

small compared to the other disturbing effects. For the simulations performed throughout

this dissertation, missions based on the International Space Station orbital parameters are

employed [80] and, given that its flight height is below 500 km1, only the J2 effect and the

atmospheric drag will be taken into account in the following developments:

• J2 disturbance: the acceleration provoked by the Earth’s flatness is given in the LVLH

frame by [10, 60]:

~γJ2
“ ´3µJ2R

2
e

2R4

»
——————–

8ph sinL´ k cosLqph cosL` k sinLq
p1 ` h2 ` k2q2

´4ph sinL´ k cosLqp1 ´ h2 ´ k2q
p1 ` h2 ` k2q2

12ph sinL´ k cosLq2

p1 ` h2 ` k2q2
´ 1

fi
ffiffiffiffiffiffifl

(1.11)

1https://www.heavens-above.com/IssHeight.aspx

https://www.heavens-above.com/IssHeight.aspx
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where J2 is the second degree term in Earth’s gravity potential and Re is the Earth’s

radius.

• Atmospheric drag: the disturbing acceleration provoked by the atmospheric drag is

given in the LVLH frame by [10, 60]:

~γd “ ´ρpRqSCd

2m
µ

p

a
1 ` 2pg sinL` f cosLq ` f2 ` g2

»
———–

1 ` f cosL` g sinL

0

´f sinL` g cosL

fi
ffiffiffifl , (1.12)

where ρpRq is the atmospheric density and m, S and Cd are respectively the mass, the

cross sectional area and the drag coefficient of the spacecraft. The atmospheric density

is given in function of the distance between the satellite and the center of the Earth by

the following equation:

ρpRq “ ρ̄ exp
ˆ
Re ´R ` 400000

46830

˙
, (1.13)

where ρ̄ is a constant that depends of the solar activity (2.2644 ˆ 10´12 for low and

3.5475 ˆ 10´11 for high solar activity).

1.2.1.3 Relative motion

In order to obtain the relative motion, the differential equations (1.8) are integrated for both

leader and follower spacecraft independently, leading to a 12 degree of freedom model. At

each integration step, the equinoctial orbital elements can be converted into the Cartesian

inertial position and velocity via the following transformation:

xFE
“ r

s2
pcosL` α2 cosL` 2hk sinLq

yFE
“ r

s2
psinL´ α2 sinL` 2hk cosLq

zFE
“ 2r

s2
ph sinL´ k cosLq

9xFE
“ ´ 1

s2

c
µ

p
psinL` α2 sinL´ 2hk cosL` g ´ 2fhk ` α2gq

9yFE
“ ´ 1

s2

c
µ

p
p´ cosL` α2 cosL´ 2hk sinL´ f ` 2ghk ` α2fq

9zFE
“ 2

s2

c
µ

p
ph cosL` k sinL` fh` gkq,

(1.14)

where r “ p{w, s2 “ 1 ` h2 ` k2, and α2 “ h2 ´ k2.
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Then, the vector X “ rx, y, z, 9x, 9y, 9zsT representing the difference between the spacecraft’s

positions and velocities projected on the leader’s LVLH frame is given by the following

relations:

»
————————————–

x

y

z

9x

9y

9z

fi
ffiffiffiffiffiffiffiffiffiffiffiffifl

“

»
————————————–

x~xl, ~pFE
y

´x~yl, ~pFE
y

x~zl, ~pFE
y

x~xl, ~vFE
y ` 9νlx~zl, ~pFE

y
´x~yl, ~vFE

y
x~zl, ~vFE

y ´ 9νlx~xl, ~pFE
y

fi
ffiffiffiffiffiffiffiffiffiffiffiffifl

(1.15)

where x¨, ¨y is the dot product in R
3,

~pFE
“ pxf

FE
´ xl

FE
, y

f
FE

´ yl
FE
, z

f
FE

´ zl
FE

q

is the difference between the positions of the follower and leader spacecraft in the inertial

frame,

~vFE
“ p 9x

f
FE

´ 9xl
FE
, 9y

f
FE

´ 9yl
FE
, 9z

f
FE

´ 9zl
FE

q

is the difference between the velocities of the follower and leader spacecraft in the inertial

frame, 9νl is the derivative with respect to time of the leader’s true anomaly and the unitary

vectors ~xl, ~yl, ~zl compose the leader’s LVLH frame orthonormal basis and are given by the

following expressions:

~zl “ ´
pxl

FE
, yl

FE
, zl

FE
qb

pxl
FE

q2 ` pyl
FE

q2 ` pzl
FE

q2
,

~xl “
~V

}~V }
,

~yl “ ´
~U

}~U}
,

where

~T “
p 9xl

FE
, 9yl

I , 9zl
FE

qb
p 9xl

FE
q2 ` p 9yl

FE
q2 ` p 9zl

FE
q2

~U “ ~T ˆ ~zl

~V “ ´~U ˆ ~zl

(1.16)

A simulator for the nonlinear disturbed movement based on the previously presented

equations (1.8), (1.11), (1.14) and (1.15) was developed on Matlab R©/Simulink R© and in C.

The Matlab R©/Simulink R© simulator is a modified version of the one proposed by Mounir
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Kara-Zaitri in his PhD thesis [60, Chapter 4]. Some adjustments were performed in order

to obtain a dedicated tool for simulating and developing control algorithms for the orbital

spacecraft rendezvous in the case where the leader spacecraft is passive and the control applied

on follower spacecraft is originally computed on the leader LVLH frame. On the other hand,

the C version of the simulator is an original contribution of this work. For a given orbital

rendezvous scenario, the output of both simulators is the evolution of the relative position

and velocity between the two spacecraft, obtained by the integration of the Gauss equations

for the orbital motion under the disturbances provoked by the Earth’s flatness (the J2 effect)

and the atmospheric drag. These simulators are available at:

• C version: https://hal.archives-ouvertes.fr/hal-01410075 [5].

• Matlab R©/Simulink R©: https://hal.archives-ouvertes.fr/hal-01413328 [4];

This simulator will be employed in the remainder of this dissertation for assessing the

behavior of the proposed control algorithms in a non-linear and disturbed context.

1.2.2 Synthesis model

In this section, the model representing the relative dynamics between spacecraft that will

be used throughout this dissertation for the development of control algorithms is presented.

Several representations can be used for this purpose. For example, in the literature the

differential orbital elements or modified versions of them are employed in formation flight

applications [2, 19]. Hereafter, the Cartesian local relative coordinates are chosen (6 degrees

of freedom, 3 position and 3 velocity coordinates) for the initial study of the relative motion

instead of the differential orbital elements. This choice is preferred for modeling problems

in which space restriction are present [31, 50, 52], just as the rendezvous hovering phases

problem. Nevertheless, later in this section, a parametrization of these Cartesian coordinates

is introduced exhibiting an intrinsic relation between the obtained parameters and the shapes

and boundedness of the relative orbits.

In the sequel, the equations describing the evolution of the relative motion between two

spacecraft on elliptical orbits are presented (the reader may consult Appendix A for more

details about the deduction of these equations). Let be Xptq “ rx, y, z, 9x, 9y, 9zsT the state

vector containing the relative positions and velocities in the leader’s Local-Vertical/Local-

Horizontal frame LV LH “ pSl, ~x, ~y, ~zq (see Fig. 1.5).

By applying Newton’s Second Law of motion to both spacecraft and subtracting the dy-

namics of the leader from the follower spacecraft, the following system of nonlinear differential

https://hal.archives-ouvertes.fr/hal-01410075
https://hal.archives-ouvertes.fr/hal-01413328
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Figure 1.5 – LVLH frame and rendezvous scheme.

equations is obtained [100]:

:x “ 2 9ν 9z ` :νz ` 9ν2x´ µxb
px2 ` y2 ` pR ´ zq2q3

:y “ ´ µyb
px2 ` y2 ` pR ´ zq2q3

:z “ ´2 9ν 9x´ :νx` 9ν2z ´ µpz ´Rqb
px2 ` y2 ` pR ´ zq2q3

´ µ

R2
,

(NLTH)

These are the so-called nonlinear Tschauner-Hempel equations. Assuming as linearization

hypothesis that the distance between spacecraft is much smaller that the distance from the

leader spacecraft to the center of the Earth:

a
x2 ` y2 ` z2 ! R, (1.17)

the linearized Tschauner-Hempel equations are obtained:

:x “ 2 9ν 9z ` :νz ` 9ν2x´ µ

R3
x

:y “ ´ µ

R3
y

:z “ ´2 9ν 9x´ :νx` 9ν2z ` 2µ
R3

z.

(LTH)

Let be X̃pνq “ rx̃, ỹ, z̃, x̃1, ỹ1, z̃1sT a new state vector such that:

X̃pνq “ T pνqXptq, Xptq “ T´1pνqX̃pνq, (1.18)
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where the similarity transformation T pνq is given by:

T pνq “

»
– ρνI3 03

´esνI3 pk2ρνq´1I3

fi
fl .

with k2 “
b

µ
a3p1´e2q3 , sν “ sinpνq and ρν “ p1 ` e cos νq.

By introducing these new variables in (LTH), the so-called simplified linearized Tschauner-

Hempel equations [99, 109] are obtained (for details, see Appendices A.2 and A.3):

x̃2 “ 2z̃1,

ỹ2 “ ´y,

z̃2 “ 3
ρν
z̃ ´ 2x̃1,

(SLTH)

where p¨q1 “ dp¨q
dν
, p¨q2 “ d2p¨q

dν2 ,
dp¨q
dt

“ p¨q1 9ν,
d2p¨q
dt2 “ p¨q2 9ν2 ` p¨q1:ν.

1.2.2.1 Evaluating the linearization hypothesis

In this section, the validity of the linearization hypothesis (1.17) is assessed. For

that, let there be an initial true anomaly ν0 “ 0˝ and an initial relative state

X0pnq “ r10n, 10n, 10n, 0, 0, 0s. For a “
 
7 ˆ 106, 8 ˆ 106

(
meters, e “ t0.04, 0.1u and

n “ t1, 2, 3u, the evolution of the relative trajectory is propagated during Tsim “ t200, 1500u
seconds, considering the nonlinear (NLTH) and the linearized (LTH) relative dynamics2. The

absolute difference between the final states is presented in Table 1.1 .

From Table 1.1 it is possible to remark that the absolute difference between the nonlinear

and the linearized dynamics increases as the simulation time, the initial relative distance and

the eccentricity increase; on the other hand, higher values of the semi-major axis result in

higher distances between the leader spacecraft and the Earth, which makes the linearization

hypothesis stronger and results in lower mismatches. For short simulation times (200 s), the

committed errors are of the order of the centimeters for all configurations of initial states

and eccentricities; however, for longer simulations (1500 s), the error can escalate to values

equivalent to the Earth radius (see Fig. 1.6).

As a consequence of this, for certain scenarios, the relative trajectories obtained via linear

propagation may present immense discrepancies with respect to those obtained via nonlinear

propagation. In order to avoid these inconsistencies, control laws and theoretical studies

synthesized using models based on the linearized Tschauner-Hempel equations should also be

2The MATLAB R© function ode45 is employed, with options RelTol “ 10´6 and AbsTol “ 10´6
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Table 1.1 – Evaluating the linearization hypothesis: difference between nonlinear and linearized
Tschauner-Hempel equations.

Tsim a e n |∆xf | |∆yf | |∆zf | |∆ 9xf | |∆ 9yf | |∆ 9zf |
200 7e`6 0.04 1 1.17e´6 1.19e´6 2.22e´7 1.17e´8 1.22e´8 3.59e´9
- - - 2 1.17e´4 1.19e´4 2.22e´5 1.17e´6 1.22e´6 3.59e´7
- - - 3 1.17e´2 1.19e´2 2.22e´3 1.17e´4 1.22e´4 3.59e´5

- - 0.1 1 1.52e´6 1.59e´6 3.44e´7 1.53e´8 1.69e´8 5.82e´9
- - - 2 1.52e´4 1.59e´4 3.44e´5 1.53e´6 1.69e´6 5.82e´7
- - - 3 1.52e´2 1.59e´2 3.43e´3 1.53e´4 1.69e´4 5.81e´5

- 8e`6 0.04 1 6.87e´7 6.96e´7 1.03e´7 6.87e´9 7.08e´9 1.63e´9
- - - 2 6.87e´5 6.96e´5 1.03e´5 6.87e´7 7.08e´7 1.63e´7
- - - 3 6.87e´3 6.96e´3 1.03e´3 6.87e´5 7.08e´5 1.63e´5

- - 0.1 1 8.91e´7 9.18e´7 1.56e´7 8.96e´9 9.59e´9 2.56e´9
- - - 2 8.91e´5 9.18e´5 1.56e´5 8.96e´7 9.59e´7 2.56e´7
- - - 3 8.92e´3 9.18e´3 1.56e´3 8.96e´5 9.60e´5 2.55e´5

1500 7e`6 0.04 1 6.77e´2 1.71e´4 1.31e´1 2.51e´3 7.65e´7 1.46e´3
- - - 2 6.67e`0 1.71e´2 1.14e`1 2.51e´1 7.65e´5 1.51e´1
- - - 3 5.43e`2 1.65e`0 1.29e`3 2.48e`1 7.56e´3 2.07e`1

- - 0.1 1 1.45e`2 9.09e´3 2.90e`3 1.16e`1 1.19e´4 4.66e`1
- - - 2 3.72e`4 4.79e´1 1.23e`5 2.89e`2 3.83e´3 1.90e`3
- - - 3 1.14e`6 5.01e`1 9.45e`5 5.19e`3 1.50e´1 1.25e`4

- 8e`6 0.04 1 6.48e´3 7.18e´5 1.55e´2 7.96e´5 4.75e´7 1.76e´5
- - - 2 6.46e´1 7.16e´3 1.55e`0 7.98e´3 4.75e´5 1.69e´3
- - - 3 6.29e`1 6.96e´1 1.56e`2 8.18e´1 4.67e´3 9.78e´2

- - 0.1 1 2.57e`1 1.28e´3 9.44e`0 7.70e´1 1.78e´6 2.77e´1
- - - 2 2.30e`3 1.34e´1 5.85e`2 5.77e`1 2.69e´4 2.64e`1
- - - 3 1.53e`5 2.25e`1 5.11e`3 2.20e`3 7.34e´2 5.66e`2

1495 1496 1497 1498 1499

Time

3.6

3.65

3.7

3.75

R
e
la

ti
v
e
 d

is
ta

n
c
e
 [

m
]

10 7

Nonlinear

Linear

1440 1460 1480 1500

Time

-1.95

-1.9

-1.85

-1.8

-1.75

R
e
la

ti
v
e
 x

 c
o
o
rd

in
a
te

 [
m

]

10 7

Nonlinear

Linear

1200 1300 1400 1500

Time

0

100

200

300
Nonlinear

Linear

1475 1480 1485 1490 1495 1500

Time

-3.4

-3.2

-3

-2.8

-2.6

-2.4

-2.2

10 7

Nonlinear

Linear

R
e
la

ti
v
e
 y

 c
o
o
rd

in
a
te

 [
m

]

R
e
la

ti
v
e
 z

 c
o
o
rd

in
a
te

 [
m

]

Figure 1.6 – Linear and nonlinear simulations (Tsim “ 1500, a “ 8e`6, e “ 0.1, n “ 3).
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tested on models based on the nonlinear dynamics. This conclusion corroborates the adopted

strategy of using a synthesis model for conception of control algorithms and a simulation

model for their "validation".

1.2.2.2 State-transition matrix

The linear true anomaly-varying system of equations (SLTH) can be expressed under the

following state-space representation:

X̃ 1pνq “

»
————————————–

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 2

0 ´1 0 0 0 0

0 0
3
ρν

´2 0 0

fi
ffiffiffiffiffiffiffiffiffiffiffiffifl

looooooooooooooooomooooooooooooooooon
Ãpνq

X̃pνq (1.19)

Yamanaka and Ankersen propose in [109] a fundamental solution matrix (ϕpνq P R
6ˆ6

non-singular, such that ϕpνq1 “ Ãpνqϕpνq) for this system:

ϕpνq “

»
—————————————–

1 0 ´cνp1 ` ρνq sνp1 ` ρνq 0 3ρ2
νJν0

pνq
0 cν 0 0 sν 0

0 0 sνρν cνρν 0 2 ´ 3esνρνJν0
pνq

0 0 2sνρν 2cνρν ´ e 0 3 ´ 6esνρνJν0
pνq

0 ´sν 0 0 cν 0

0 0 cν ` ec2ν ´sν ´ es2ν 0 ´3e
ˆ

pcν ` ec2νqJν0
pνq ` sν

ρν

˙

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffifl

, (1.20)

where sν “ sin ν and cν “ cos ν,

Jν0
pνq :“

ż ν

ν0

dτ

ρpτq2
“
c
µ

a3

t´ t0

p1 ´ e2q3{2
, (1.21)

and ν0 is an arbitrary initial true anomaly of reference.

The propagation of an initial trajectory X̃pν0q can be performed via the state-transition

matrix Φpν, ν0q “ ϕpνqϕ´1pν0q:

X̃pνq “ Φpν, ν0qX̃pν0q, (1.22)
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where ϕ´1pν0q is given by:

ϕ´1pν0q “

»
———————————————–

1 0 ´3esν0
p1 ` ρν0

q
ρν0

pe2 ´ 1q
esν0

p1 ` ρν0
q

e2 ´ 1
0

ecν0
ρν0

´ 2
e2 ´ 1

0 cν0
0 0 ´sν0

0

0 0
3sν0

pρν0
` e2q

ρνpe2 ´ 1q ´sν0
p1 ` ρν0

q
e2 ´ 1

0
2e´ cν0

ρν0

e2 ´ 1

0 0
3pe` cν0

q
e2 ´ 1

´2cν0
` ec2

ν0
` e

e2 ´ 1
0

sν0
ρν0

e2 ´ 1
0 sν0

0 0 cν0
0

0 0 ´3ecν0
` e2 ` 2

e2 ´ 1
ρ2

ν0

e2 ´ 1
0 ´esν0

ρν0

e2 ´ 1

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

. (1.23)

1.2.3 Deaconu’s parametrization and periodic relative trajectories

In this section, a transformation allowing the description of the relative state by a vector of

parameters is introduced. This parametrization is demonstrated to be in a half-way between

the representation of relative trajectories via Cartesian coordinates and via orbital elements,

since it provides both a representation of the relative position and velocity between spacecraft

and an interpretation of the shape and boundedness of these relative orbits.

In [28, Chapter 2], Deaconu remarked that the term ϕ´1pν0qX̃pν0q in (1.22) is a constant

that only depends on the evaluation of ϕ and X̃ at ν0. Inspired by this observation, the

author proposed the following variable change:

Dpνq“

»
———————————————–

0 0 ´3 ecν `e2`2
e2 ´ 1

ρ2
ν

e2 ´ 1
0 ´ esνρν

e2 ´ 1

0 0
3pe` cνq
e2 ´ 1

´2cν `ec2
ν `e

e2 ´ 1
0

sνρν

e2 ´ 1

0 0
3sνpρν `e2q
ρνpe2 ´ 1q ´sνp1`ρνq

e2 ´ 1
0

2e´ cνρν

e2 ´ 1

1 0 ´3 esνp1`ρνq
ρνpe2 ´ 1q

esνp1`ρνq
e2 ´ 1

0
ecνρν ´2
e2 ´ 1

0 cν 0 0 ´sν 0

0 sν 0 0 cν 0

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

looooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooon
Cpνq

X̃pνq, (1.24)

where Dpν0q “ rd0pν0q, d1pν0q, d2pν0q, d3pν0q, d4pν0q, d5pν0qsT and Cpνq is equivalent to

ϕ´1pνq, but with some lines permuted: 1 Ñ 4, 2 Ñ 5, 4 Ñ 2, 5 Ñ 6 and 6 Ñ 1. Although this

variable change may resemble like a mere replacement of the constant term ϕ´1pν0qX̃pν0q, the

parameterization of the trajectories X̃pνq by the vector Dpνq brings out many simplifications

and advantages on the modeling of the problem:

1. The entries of the vector Dpνq describe the shape and size of the trajectory:
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by replacing ϕ´1pν0qX̃pν0q by Dpν0q in (1.22), the following equations are obtained:

x̃pνq “ p2 ` e cνqpd1pν0q sν ´ d2pν0q cνq ` d3pν0q ` 3 p1 ` e cνq2 d0pν0qJν0
pνq,

ỹpνq “ d4pν0q cν ` d5pν0q sν ,

z̃pνq “ p1 ` e cνqpd2pν0q sν ` d1pν0q cν ´ 3 e sν d0pν0q Jν0
pνqq ` 2 d0pν0q.

(1.25)

and, as one can remark, the transition of the states x̃pνq, ỹpνq and z̃pνq depends linearly

on Dpν0q.

In Fig. 1.7 and Fig. 1.8, the shape of the relative trajectory associated to vector

Dpνq “ r0, 10, 10, 10, 10, 10sT for an eccentricity e “ 0.4 is illustrated by the contin-

uous red line. In each figure, the other two relative trajectories in blue dashed line and

black stars are obtained by changing one parameter of D at time.
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(a) Impact of d1 on the shape of the trajectory.
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(c) Impact of d3 on the shape of the trajectory.

Figure 1.7 – Impact of d1, d2 and d3 on the shape of the trajectory, d0 “ 0 and e “ 0.4.

From (1.24) and from Fig. 1.7 and Fig. 1.8, one can observe that the first four entries

of D (d0, d1, d2 and d3) characterize the shape of the trajectory in the XZ-plane and,

the las two entries (d4 and d5), the shape of the Y-axis motion.
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(a) Impact of d4 on the shape of the trajectory.
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(b) Impact of d5 on the shape of the trajectory.

Figure 1.8 – Impact of d4 and d5 on the shape of the trajectory, e “ 0.4.

2. A simple way to characterize the periodicity property: although the relative

motion between spacecraft is not generally periodic, the periodicity property is inter-

esting from the point of view of fuel consumption minimization [44]. This is mainly

because in the absence of exogenous disturbances, once both spacecraft start to describe

a periodic relative motion that respects the mission constraints, no further corrective

control actions are required.

Hence, several control algorithms which minimize the fuel consumption require the

generated relative trajectories to be periodic [7, 9, 22, 44]. In order to develop control

algorithms that minimize the fuel consumption, the generated relative trajectories are

required to be periodic. However, in order to integrate this constraint in the formulation

of the control algorithms, a mathematical description is needed.

One can observe that in (1.25), the only non-periodic divergent term in these equations

is Jν0
pνq, which always appears multiplied by the parameter d0pνq. Therefore, it is

evident that a sufficient condition to obtain a periodic relative trajectory is to have

d0pνq “ 0, for all ν (see Fig. 1.9). However, from (1.26) we observe that, if for some

ν, d0pνq “ 0, then d0pνq “ 0, for all ν. We conclude then that a relative trajectory

is periodic if and only if for some ν the computation of Dpνq “ CpνqX̃pνq produces a

parameter d0 “ 0.

3. The state propagation of the vector Dpνq is simpler than the dynamics of

X̃pνq: since for all ν, detpCpνqq ‰ 0, for a given ν, any vector X̃pνq has a single

correspondent Dpνq and vice-versa. This means that in order to study the evolution of

the state vector X̃pνq, it suffices to analyze the behavior of Dpνq.
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Figure 1.9 – Link between d0 and the periodicity property.

By manipulating (1.19) and (1.24) (see [28, Chapter 2] for details), we obtain the

following dynamical system and state propagation representing the evolution of the

vector of parameters:

D1pνq “

»
————————————–

0 0 0 0 0 0

0 0 0 0 0 0

´3e{ρ2
ν 0 0 0 0 0

3{ρ2
ν 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

fi
ffiffiffiffiffiffiffiffiffiffiffiffifl

looooooooooooooooomooooooooooooooooon
ADpνq

Dpνq, or Dpνq “

»
————————————–

1 0 0 0 0 0

0 1 0 0 0 0

´3eJν0
pνq 0 1 0 0 0

3Jν0
pνq 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

fi
ffiffiffiffiffiffiffiffiffiffiffiffifl

loooooooooooooooooooomoooooooooooooooooooon
ΦDpν,ν0q

Dpν0q,

(1.26)

and one can notice that the state propagation of Dpνq expressed in (1.26) is straight-

forward compared to the one corresponding to the vector X̃pνq, given by Φpν, ν0q “
ϕpνqϕ´1pν0q.

1.3 Guidance of the relative motion

The guidance problem for the rendezvous missions consists in computing the control actions

and the generated relative trajectories that satisfy a set of constraints over the actuators

and the trajectories, that are modeled by some system of nonlinear controlled dynamical

equations:

d

dt
Xptq “ fpXptq, tq `Bptquptq, (1.27)
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or by some Linear Time-Varying (LTV) system of equations (as in (1.22), for example):

d

dt
Xptq “ AptqXptq `Bptquptq, (1.28)

for which a linear state-transition is available for the modeling of the dynamics:

Xptq “ Φpt, t0qXpt0q `
ż t

t0

Φpt, sqBpsqupsqds (1.29)

where Xptq P R
6 is the relative state and uptq P R

3 is the vector that represents the control

actions (the free variable can be chosen as t or ν, since they are in a one-to-one correspondence).

As discussed previously, the dynamics presented in (1.26) are used in the sequel to model the

relative dynamics in the phase of conception of control algorithms and the disturbed nonlinear

Gauss equations in equinoctial orbital elements (1.8), to simulate and validate the execution

of the computed control actions.

So far, the nature of the terms Bptquptq and
şt

t0
Φpt, sqBpsqupsqds have not yet been

discussed. In this section, the physical model adopted to represent the spacecraft’s propellers,

the effect of the application of the control actions on the relative dynamics and the metrics

used to measure the fuel consumption is presented. Another subject treated in this section is

the set of constraints that must be respected by the control actions and relative trajectories.

The actuator constraints, as well as the space constraints of the rendezvous hovering phases,

are also introduced. By the end of this section, all the necessary elements for the formulation

of the guidance optimal problem for the rendezvous hovering phases will have been presented:

a model for the propagation of the relative controlled dynamics, the fuel consumption that

must be minimized, the space constraints describing the hovering zone and the restrictions

on the control actions.

1.3.1 Space constraints: describing the hovering region

Several different types of space constraints must be satisfied by the relative motion between

spacecraft during the rendezvous missions. Depending on the type of sensors used for the

estimation of the relative distance and velocity of the spacecraft, a field of view is imposed

to ensure the required conditions for the measurements (see Fig. 1.10). For close-range and

proximity operations, a safety radius distance is imposed in order to avoid collisions (see

Fig. 1.11). During the transition between checkpoints of the mission, the follower spacecraft

must keep station in a delimited zone of the space relative to the leader spacecraft, the

so-called hovering zone (see Fig. 1.12, more details in [37]). Hereafter, since the focus of
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the developments presented in this dissertation are the station-keeping capabilities during

the rendezvous hovering phases, only the restrictions constraining the relative motion to be

included in a delimited zone of the space relative to the leader spacecraft are considered. This

delimited zone, the hovering region, is assumed to be a rectangular cuboid.

Field of view

Target

Follower

Figure 1.10 – Field of view.

Safety radius

Target
Follower

Figure 1.11 – Safety radius.

Target

Follower

Sation-keeping

Figure 1.12 – Station-keeping.
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These space constraints are generally modeled as:

g1pxpνq, ypνq, zpνq, νq ď 0,

g2pxpνq, ypνq, zpνq, νq ď 0,
...

gmpxpνq, ypνq, zpνq, νq ď 0

@ν ě ν0, (1.30)

where the functions gi are parametrized by the true anomaly ν and represent the geometrical

restrictions that must be satisfied. For instance, the relative trajectories included in a

rectangular cuboid hovering zone (see Fig. 1.13) are defined by the following inequalities:

x ď xpνq ď x, y ď ypνq ď y, z ď zpνq ď z, @ν ě ν0. (1.31)
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Figure 1.13 – Trajectories included in the hovering region.

Remark 1.3.1. Hereafter d0 is assumed to be null, since only periodic relative trajectories

are considered.

These trajectories can be also defined as a function of the vector of parameters. Using the

relations (1.18) and (1.25) to replace xpνq, ypνq and zpνq in (1.31), the following inequalities

are obtained:

x ď MxpνqDpν0q ď x, y ď MypνqDpν0q ď y, z ď MzpνqDpν0q ď z, @ν, (1.32)

where:

Mxpνq “
„
0,

p2 ` e cνqsν

1 ` e cν
, ´p2 ` e cνqcν

1 ` e cν
,

1
1 ` e cν

, 0, 0


Mypνq “
„
0, 0, 0, 0,

cν

1 ` e cν
,

sν

1 ` e cν



Mzpνq “
„
0, cν , sν , 0, 0, 0


(1.33)
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The constraints presented in (1.32) can be seen as an infinite number of affine inequalities

on the entries of the vector Dpν0q parametrized by ν. This class of constraints is hard to

be treated in practice [68]. In the next chapters, alternative finite formulations for these

constraints are presented.

1.3.2 Actuators and fuel consumption

The goal of this section is to provide the mathematical models and assumptions adopted

for the actuators embedded on the spacecraft involved in the rendezvous missions. These

actuators are mainly characterized by the nature of their propulsion method and by their

geometrical configuration. Several propulsion methods can be adopted for spacecraft control,

amongst them: mono-propellant rockets, electrostatic ion thrusters, Hall-effect thrusters,

field-emission electric propulsion, etc. (see [23, 27, 75, 102] for more details). Concerning

the geometrical configuration of the actuators, the spacecraft may have propellers mounted

on each of its axes or be controlled by gimbaling and, for each case, an accurate criterion to

measure the fuel consumption must be adopted (see [94] and Fig. 1.14 for details).

1.3.2.1 Defining the fuel consumption cost

In equations (1.27) and (1.29), the control action was presented as uptq. In fact, this variable

can be seen as the quotient between the thrust provoking an instantaneous force F ptq and

the vehicle mass mptq:

uptq “ F ptq
mptq . (1.34)

The usual criterion adopted to measure the fuel consumption [94, Sec. II-III] is the

following one:

J puptqq :“
ˆż tf

t0

p|uxptq| ` |uyptq| ` |uzptq|qp dt

˙ 1

p

, (1.35)

where t0 and tf define the time interval over which the fuel consumption is computed and p

is a design parameter associated to the geometrical configuration of the propellers:

(a) if the vehicle is guided by one single gimbaled thruster, p is set to 2;

(b) if multiple ungimbaled thrusters are present, p is set to 1;

(c) if vehicle is guided by one main thruster accompanied by vernier engines, p is set to 8.

These configurations are illustrated in Fig. 1.14.
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(a) (b) (c)

Figure 1.14 – Thruster configurations: (a) p “ 2, (b) p “ 1 and (c) p “ 8.

Throughout this dissertation, the following assumptions are adopted:

1. the follower spacecraft is equipped with two identical thrusters symmetrically disposed

on each axis, which is equivalent to the configuration (b) presented in Fig. 1.14;

2. the spacecraft uses chemical propulsion, which is characterized by a high magnitude of

thrust and small changes in mass and small burn times. Given that, the characteristic

time of the dynamics of the propellers can be considered much smaller than the time

constant of the periodic relative motion (the interval of propulsion is of the order of the

second, while the orbital period is of the order of the hour) and the controlled relative

motion can be modeled as an impulsive system [11, 12, 38, 45];

3. a finite number N of control actions are applied at a priori fixed dates.

The first assumption indicates that the p “ 1 must be used in the definition of the fuel

consumption criterion (see Fig. 1.14):

J puptqq :“
ż tf

t0

p|uxptq| ` |uyptq| ` |uzptq|q dt, (1.36)

The second and third hypothesis provide a first motivation to model the control actions

as instantaneous velocity changes applied at specific a priori known dates. In fact, the

results presented by Neustadt in [82] corroborates this idea. The author demonstrates that

the optimal controls obtained for the minimum-fuel Keplerian linearized elliptic rendezvous

problem are purely impulsive and that the number of impulses is upper-limited by the

dimension of the fixed final conditions of the optimal guidance problem. However, the

algorithms proposed by Neustadt for generic functions representing the control actions uptq
are not capable of accounting for constraints on the relative dynamics or the saturation of

the propellers. Based on these results and, with the goal of obtaining a simple optimization

problem formulation capable of accounting for the problem constraints, the control actions
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are modeled as follows:

uptq “
Nÿ

i“1

∆V ptiq δpt´ tiq, (1.37)

where ∆V ptq “ r∆Vxptq, ∆Vyptq, ∆VzptqsT P R
3 represents the velocity change of a spacecraft

and δpt ´ tiq is the Dirac delta function representing an instantaneous pulse of magnitude

1 at ti. This choice provides two important assets: the optimization is no longer performed

over a space of functions uptq, but over the space of finite-dimension vectors

∆V :“ r∆V pt1qT , ∆V pt2qT , . . . , ∆V ptN´1qT , ∆V ptN qT sT ,

which is more efficiently tractable from a numerical point of view; moreover, this choice allows

a straightforward imposition and tractability of constraints on the relative movement and on

the control actions (as will be presented in Chapters 2 and 3).

Remark 1.3.2. The obtained control actions will be validated in Chapter 4 by a technique

based on simple computations (evaluation of polynomials and matrix multiplication using

interval arithmetics). This technique will also provide an a posteriori validation for the

continuous propagation of the relative trajectories.

Under the previous assumptions, the fuel consumption criterion is expressed as a function

of the vector ∆V :

J p∆V q :“
Nÿ

i“1

|∆Vxptiq| ` |∆Vyptiq| ` |∆Vzptiq|. (1.38)

1.3.2.2 Effect of the control actions on the relative dynamics

The evolution of the state X̃pνq can be formally described by the following impulsive system:

X̃ 1pνq “ Ã1pνqX̃pνq, ν ‰ νi

X̃`pνiq “ X̃pνiq ` T pνiqB∆V pνiq, i P N

(1.39)

where B “ r03 I3sT , pνiqiPN are the true anomaly instants at which control actions are applied

and X̃`pνiq “ limtÑν`

i
X̃pνiq represents the state obtained right after the application of an

impulse ∆V pνiq.

Performing the variable change Dpνq “ CpνqX̃pνq given in (1.24), the parameter vector
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obtained after the application of an impulse is given by:

D`pνiq “ Dpνiq `BDpνiq∆V pνiq, (1.40)

where BDpνiq “ CpνiqT pνiqB. Using the representation given in (1.26), the parameter vector

right after a sequence of impulses applied at ν1 . . . νN´1, νN can be expressed as follows:

D`pνN q “ ΦDpνN , ν1qDpν1q `
Nÿ

i“1

ΦDpνN , νiqBDpνiq∆V pνiq. (1.41)

1.3.2.3 Saturation of thrusters

Considering that the saturation limit for each propeller is ∆V ą 0, the saturation constraint

is formulated as:

|∆Vi,x| ď ∆V , |∆Vi,x| ď ∆V , |∆Vi,x| ď ∆V , i P t1, . . . , Nu , (1.42)

where ∆Vi,j “ ∆Vjptiq.

1.3.3 Optimal guidance problem formulation

At this point, all the relative dynamics, the behavior of the actuators and the saturations

and space constraints of the problem have been presented. The fixed-time impulsive optimal

guidance problem for the rendezvous hovering phases is then formulated as:

Problem 1.3.1 (Guidance problem). For a given scenario characterized by eccentricity e,

semi-major axis a and initial state Dpν1q “ Cpν1qT pν1qXpν1q P R
6, given N P N, find N

impulsive controls (represented by ∆V P R
3N ) applied at given fixed instants ν1, . . . , νN , such
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that:

min
∆V

J p∆V q

s.t.

$
’’’’’’’’’’’’’’’&
’’’’’’’’’’’’’’’%

D`pνN q “ ΦDpνN , ν1qDpν1q ` řN
i“1 ΦDpνN , νiqBDpνiq∆Vi, state propagation

d`
0 pνN q “ 0 periodicity

|∆Vi,j | ď ∆V ,
@i P t1, . . . , Nu
@j P tx, y, zu

thruster saturation

x ď MxpνqD`pνN q ď x

y ď MypνqD`pνN q ď y, @ν ě νN

z ď MzpνqD`pνN q ď z

space constraints

(GP)

1.4 Conclusion

This chapter presents the context and hypotheses adopted to address the rendezvous hovering

phases and the respective mathematical models for the relative motion, actuators and space

constraints. The study of the two-body problem under Keplerian assumptions leads to the

nonlinear Tschauner-Hempel equations. These resulting equations are then linearized and

an analysis of the impact of the linearization hypothesis on the evolution of the relative

trajectories is carried out. Simulations should account for the nonlinear dynamics in order to

avoid discrepancies between the linear predictions and the nonlinear behavior. The Deaconu’s

parametrization is introduced, simplifying the propagation of the relative trajectory dynamics

and bringing out the fact that the first parameter d0 is a straightforward way to assess the

periodicity feature for an arbitrary trajectory. The nature and geometrical placement of

the propellers are discussed, as well as the space constraints of the problem. The equations

providing a characterization of the control actions and the fuel consumption are exhibited.

Finally, the guidance problem for the relative motion is formulated.

These previously presented developments are the basis for the next chapters: with the

goal of obtaining problems that are more straightforward to be solved from a numerical point

of view, reformulations of the guidance problem are proposed in Chapter 2. Algorithms for

the resolution of these reformulated problems are also proposed therein, and their numerical

efficiency is evaluated on a board certified for spatial applications. In Chapter 3, a model

predictive control strategy is proposed to allow for the convergence of the relative motion

towards the hovering region even under saturation of the propellers and under the presence of

disturbances that are not taken into account by the synthesis model. In Chapter 4 a rigorous
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function approximation technique is employed to produce validated solutions of the simplified

linearized Tschauner-Hempel equations, providing certified bounds for the propagated relative

trajectory that can be used to assess the violation of the imposed space constraints.
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Chapter 2

Solving the guidance optimization

problem
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2.1 Introduction

In the previous chapter, the mathematical models for the constrained spacecraft relative

motion were introduced. These models were employed in the formulation of the fixed-time

impulsive optimal guidance problem for the rendezvous hovering phases. In this formulation,

the relative trajectory solutions of this problem must satisfy infinitely many affine inequality

constraints representing the hovering zone restriction. This makes this problem cumbersome

to be solved from a numerical point of view (this type of optimization problems is known as

a semi-infinite program (SIP) [14, 68]). Hence, this formulation is not directly suitable for



38 Chapter 2. Solving the guidance optimization problem

efficient autonomous control algorithms. For this reason, this chapter is dedicated to providing

alternative formulations of the guidance problem GP, allowing for the use of optimization

techniques that are efficiently tractable by computing devices usually employed in space

applications.

Firstly, the theoretical aspects of the resolution of GP are discussed. We present a brief

literature survey of techniques for guiding and maintaining the relative trajectories inside the

hovering zone. Then, we discuss the conservativeness of these approaches compared to the ones

employing generic periodic constrained relative trajectories, such as in the formulation of GP.

Then, problem GP is reformulated in three different ways, which provide a finite description

(i.e. description via a finite number of constraints) of the relative constrained orbits. The first

reformulation is obtained by a discretization of the infinitely many constraints of the SIP,

leading to a linear program (LP). This is a discretized version of the original problem, while the

other two proposed reformulations are completely equivalent to the original one. The second

one converts the GP problem into a semi-definite program (SDP), using the relation between

the cone of non-negative univariate polynomials and the cone of semi-definite positive matrices.

Finally, our new geometrical approach is based on the computation of the envelopes of the

families of inequalities describing the set of periodic constrained relative trajectories. This

provides a reformulation which relies on semi-algebraic functions, leading to a non-smooth

optimization problem.

Secondly, numerical methods for solving each of these optimization problems are given and

their practical aspects are considered. These optimization methods are then coded in C and

embedded on a board certified for space applications containing a FPGA-synthesized LEON3

microprocessor. To conclude, the performances of the proposed approaches are assessed and

compared for four different rendezvous scenarios.

2.2 Hovering zone guidance methods: bibliographic review

Let us briefly discuss the existing approaches for guiding and maintaining the relative trajec-

tories between two spacecraft orbiting a central body inside a hovering zone.

A first series of works is based on the computation of a sequence of impulsive control

actions generating segments of trajectories whose initial and final positions are located on

the border of the hovering region [54, 56–58, 71, 72, 74, 105]. These control actions must

minimize a criterion defined by the ratio between the fuel consumption and the sum of the

free-flight durations inside the hovering zone:
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Jp∆V q “
˜

Nÿ

i“1

}∆V }2

¸M˜
Nÿ

i“1

Ti

¸
,

where Ti represents the amount of time the trajectory remains inside the hovering region

before reaching one of its bounds again for the i-th segment of trajectory. One example of

this kind of approach is the “teardrop” strategy, which consists in computing an impulsive

thrust such that the initial and final relative positions on the bounds of the hovering zone are

equal for a given period of flight [57, 58] (see Fig. 2.1).

1st maneuver
2nd maneuver
3rd maneuver

Figure 2.1 – Illustration of the teardrop strategy.

Another technique, that can be seen as more general version of the “teardrop” one, is the

“pogo” strategy. It consists in computing an impulsive control each time the vehicle hits the

bounds of the lobe to maintain it inside the hovering zone as long as possible while minimizing

the fuel consumption [57, 74, 105] (see Fig. 2.2).

1st maneuver
2nd maneuver
3rd maneuver

Figure 2.2 – Illustration of the pogo strategy.

For spacecraft sharing the same circular orbit, another possible strategy is the one based

on “football” relative orbits [25, 106]. This technique is explained in [106, Section 2.2.2]

by Woffinden: both vehicles are supposed to be in the same circular orbit with the chaser

downrange; an impulsive velocity correction applied in radial direction makes the chaser
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increase in altitude (this maneuver only changes the direction of the chaser’s velocity vector

and, consequently, the chaser maintains the same semi-major axis and orbital period. The

shape of the orbit, however, is modified - the eccentricity of the chaser’s orbit increases,

causing apogee to increase and perigee to decrease as shown in Fig 2.3.

Figure 2.3 – Inertial and LVLH views of a “football” orbit (source [106], Fig. 2-6).

This change in apogee and perigee causes the football shaped relative trajectory, which are

in fact ellipses with 2:1 ratio of the semi-major axis to the semi-minor axis. This particular

repeating relative motion can then be employed to keep the chaser spacecraft in a holding

pattern downrange form the target for station-keeping, as shown in Fig. 2.4.

Figure 2.4 – Example of “football” orbit not centered at the target spacecraft (source [106], Fig. 2-7).

Techniques making use of relative orbital parameters, such as those presented by D’Amico

and Gaias in [33, 40], are also employed to keep the relative trajectories in restricted zones of

the space (see Fig. 2.5). Although these methods provide a straightforward characterization

of relative trajectories satisfying the visibility and safety constraints, they are not as adapted
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Figure 2.5 – Relative trajectories satisfying safety and visibility constraints (source [33], Fig. 3).

as the local relative Cartesian coordinates for the formulation of space constraints such as

those describing a generic hovering region, requiring further variable changes.

Compared to the approach considering periodic constrained relative trajectories described

in Chapter 1, these previously presented techniques are either harder to be numerically

solved on low-performance devices dedicated to space applications or less efficient from the

perspective of fuel saving. The “teardrop” and “pogo” strategies are numerically cumbersome,

since they are based on nonlinear and non-convex optimization programs. Moreover, they also

require the systematic application of impulses to keep the relative trajectory in the hovering

zone. The “football” approach requires the vehicles to share the same circular orbit and does

not account for all existent sizes and shapes of periodic relative orbits. The methods using

relative orbital parameters cannot be directly employed in the formulation of the constraints

describing the hovering region.

2.3 Proposed methods to solve the guidance problem

The developments presented in [7, 9, 22, 29, 30] have employed the naturally periodic relative

orbits presented in Sec. 1.2.3 to design hovering control laws, showing the advantage of

this approach with respect to the previously mentioned strategies. These periodic relative
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trajectories were employed in Section 1.3.3 for the formulation of the fixed-time impulsive

optimal guidance problem for the rendezvous hovering phases:

Problem 2.3.1 (Guidance problem). For a given scenario characterized by eccentricity e,

semi-major axis a and initial state Dpν1q “ Cpν1qT pν1qXpν1q P R
6, given N P N, find N

impulsive controls (represented by ∆V P R
3N ) applied at given fixed instants ν1, . . . , νN , such

that:

min
∆V

J p∆V q

s.t.

$
’’’’’’’’’’’’’’’&
’’’’’’’’’’’’’’’%

D`pνN q “ ΦDpνN , ν1qDpν1q ` řN
i“1 ΦDpνN , νiqBDpνiq∆Vi, state propagation

d`
0 pνN q “ 0 periodicity

|∆Vi,j | ď ∆V ,
@i P t1, . . . , Nu
@j P tx, y, zu

thruster saturation

x ď MxpνqD`pνN q ď x

y ď MypνqD`pνN q ď y, @ν
z ď MzpνqD`pνN q ď z

space constraints

(GP)

In the following, this optimization problem GP is studied in detail. Several counterparts

are proposed. The first one is based on constraint discretization and provides a suboptimal

solution of the original problem, while the two others are strictly equivalent reformulations.

2.3.1 Discretization approach

The admissible set, i.e. the set of vectors D corresponding to periodic relative trajectories

included in the hovering zone, is described both by the equation d0 “ 0 and by the inequalities

in (1.32):

x ď MxpνqDpν0q ď x, y ď MypνqDpν0q ď y, z ď MzpνqDpν0q ď z, @ν.

Since these inequalities must be satisfied for infinitely many values of ν, they are difficult

to be addressed in practice. The traditional approach to take these space restrictions into

account is to take finitely many values of ν the interval and evaluate the inequalities only on
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these values [50, 90, 91]. In this case, the inequalities become:

x ď MxpνiqDpν0q ď x,

y ď MypνiqDpν0q ď y,

z ď MzpνiqDpν0q ď z,

,
νk P r0, 2πs,
@k P t1, . . . , Ndiscu

(2.1)

Using the previously provided discretized description of the admissible set, the (degraded)

fixed-time impulsive optimal guidance problem for the rendezvous hovering phases can then

be formulated as follows:

Problem 2.3.2 (LP). For a given scenario characterized by eccentricity e, semi-major axis

a and initial state Dpν1q “ Cpν1qT pν1qXpν1q P R
6, given N P N, find N impulsive controls

(represented by ∆V P R
3N ) applied at given fixed instants ν1, . . . , νN , such that:

min
∆V

J p∆V q

s.t.

$
’’’’’’’’’’’’’’’’’’’&
’’’’’’’’’’’’’’’’’’’%

Dpν1q “ Cpν1qX̃pν1q,
D`pνN q “ ΦDpνN , ν1qDpν1q ` řN

i“1 ΦDpνN , νiqBDpνiq∆Vi,

d`
0 pνN q “ 0

|∆Vi,j | ď ∆V ,
@i P t1, . . . , Nu
@j P tx, y, zu

x ď MxpνkqD`pνN q ď x

y ď MypνkqD`pνN q ď y

z ď MzpνkqD`pνN q ď z

, νk P r0, 2πs, @k P t1, . . . , Ndiscu

(LP)

The advantage of this approach is that only a finite number of linear inequalities must

be satisfied by the vector D, which can be easily treated in practice by the state-of-the-art

LP solvers. However, there is no a priori guarantee that the relative trajectory satisfies

the original inequalities constraints (1.32) for the values of ν that do not belong to tνiuiPI .

Since this approach produces an outer-approximation of the set of relative trajectories that

are enclosed in the hovering region, it leads to systematical violations of the original space

constraints. In fact, the solution of a minimization problem containing a convex criterion

function over polytopes described by finitely many affine inequalities generally lies on one of

its vertices, which does not belong to the original admissible set (see Fig. 2.6).
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Figure 2.6 – Original admissible set (dashed line) and admissible set obtained after discretization
(continuous lines).

2.3.2 Polynomial non-negativity approach

Another approach to address the infinitely many constraints in (1.32) is to perform a variable

change in order to obtain polynomial non-negativity constraints and convert them into linear

matrix inequalities (LMIs) using the result presented by Nesterov in [81]. This procedure

produces an exact and finite description of the periodic relative trajectories included in the

polytopic hovering region.

First, the tangent of the half-angle (Weierstrass) substitution is performed:

tanpν{2q “ w, cospνq “ 1 ´ w2

1 ` w2
, sinpνq “ 2w

1 ` w2
. (2.2)

The inequalities in (1.31) are then reformulated as univariate polynomial non-negativity

constraints:

ΓxpDpν0q, wq ě 0, ΓxpDpν0q, wq ě 0,

ΓypDpν0q, wq ě 0, ΓypDpν0q, wq ě 0,

ΓzpDpν0q, wq ě 0, ΓzpDpν0q, wq ě 0,

@w P R, (2.3)

where Γp¨qpDpν0q, wq are univariate polynomials in w whose coefficients depend linearly on

the vector Dpν0q (more details in [29] and [28, Chapter 3 and Appendix B]).

Then, using the relation between the cone of nonnegative univariate polynomials and the

cone of semi-definite positive matrices presented by Nesterov in [81, Theorems 9 and 10],
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these constraints can be converted into LMIs:

D Yy, Yy ľ 0 P R
2ˆ2, Yx, Yx, Yz, Yz ľ 0 P R

3ˆ3 s.t. :

γxpDpν0qq “ Λ˚pYxq, γxpDpν0qq “ Λ˚pYxq,
γypDpν0qq “ Λ˚pYyq, γypDpν0qq “ Λ˚pYyq,
γzpDpν0qq “ Λ˚pYzq, γzpDpν0qq “ Λ˚pYzq,

(2.4)

where γp¨qpDpν0qq is the vector of coefficients of the respective Γp¨qpDpν0q, wq polynomial and

the linear operator Λ˚p¨q is given in Appendix B. The admissible set, here denoted as Sp
D, can

then be defined as:

SD “
!
D P R

6 s.t d0 “ 0
ˇ̌
ˇ DYl ľ 0 s.t γlpDq “ Λ˚pYlq, @l P

 
x, x, y, y, z, z

()
(2.5)

and the fixed-time impulsive optimal guidance problem for the rendezvous hovering phases

can then be formulated as follows:

Problem 2.3.3 (SDP). For a given scenario characterized by eccentricity e, semi-major axis

a and initial state Dpν1q “ Cpν1qT pν1qXpν1q P R
6, given N P N, find N impulsive controls

(represented by ∆V P R
3N ) applied at given fixed instants ν1, . . . , νN , such that:

min
∆V

J p∆V q

s.t.

$
’’’’’’’’’’’’&
’’’’’’’’’’’’%

Dpν1q “ Cpν1qX̃pν1q,
D`pνN q “ ΦDpνN , ν1qDpν1q ` řN

i“1 ΦDpνN , νiqBDpνiq∆Vi,

d`
0 pνN q “ 0

|∆Vi,j | ď ∆V ,
@i P t1, . . . , Nu
@j P tx, y, zu

DYl ľ 0 s.t. γlpD`pνN qq “ Λ˚pYlq, @l P
 
x, x, y, y, z, z

(

(SDP)

This new approach replaces the verification of infinitely many inequalities depending on

ν by six semi-definite positive matrices of size at most 3 that must satisfy linear equalities

constraints involving the coefficients of the polynomials presented above. As well as the

discretization approach, this technique produces a finite description of the hovering region,

with the advantage of generating a reformulated admissible set which is equivalent to the

original admissible set.
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2.3.3 Envelopes

An original contribution provided in this thesis is a new finite description of the admissible set

different described in [30] that only depends on the evaluation of closed-form expressions on

the entries of the vector D and on the space constraints. The objective of this new description

is to provide an exact formulation that guarantees the non-violation of the constraints and

enables an efficient computation on spacecraft compatible devices.

This is a joint work with M. Joldeş, C. Louembet and F. Camps (research engineer, LAAS-

CNRS), presented in the 20th IFAC World Congress (IFAC 2017) under the title Model

predictive control for rendezvous hovering phases based on a novel description of constrained

trajectories [7].

Let us first denote by γwp¨q ď 0 each inequality of (1.32) where the index

w P tx, x, y, y, z, zu. One can remark that these inequalities describe a family of surfaces

(or lines) parametrized by ν. Moreover, the boundary of the set of points satisfying each of

these inequalities is included in the envelope associated to these family of surfaces.

Definition 2.3.1 (Envelopes). Let γpα1, . . . , αL, νq “ 0 be a family of one-parameter surfaces,

with L P N, L ď 3 depending on the parameter ν. Its envelope is the subset of points

pα1, . . . , αLq Ď R
L for which the following system of equations is satisfied:

γpα1, . . . , αL, νq “ Bγ
Bν pα1, . . . , αL, νq “ 0. (2.6)

For each constraint γwp¨q, w “ tx, x, y, y, z, zu, the resolution of (2.6) provides an implicit

equation gwpDq “ 0 for which the set of solutions contains a surface in space that separates

the points that satisfy the constraint inequality from those that do not.

Thus, a verification method is obtained for checking that the vector D belongs to SD:

D P SD ô (d0 “ 0 and @w, gwpDq ď 0).

Solving (2.6) for indices w P ty, y, z, zu and using Sylvester’s matrix implicitization method

(see [53]), the following expressions are obtained for the envelopes gwp¨q on y and z axis:

gypd4, d5q “ pd4 ´ eyq2 ` d2
5 ´ y2,

gypd4, d5q “ pd4 ´ eyq2 ` d2
5 ´ y2,

(2.7)

gzpd1, d2q “ d2
1 ` d2

2 ´ z2,

gzpd1, d2q “ d2
1 ` d2

2 ´ z2.
(2.8)
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Note that (2.7) and (2.8) describe circles in the pd4, d5q plane and pd1, d2q plane respectively

(see Fig. 2.7(a) and 2.7(b)). For instance the boundary of the admissible set for the constraint

γy is a circle of center pe.y, 0q and radius y.

(a) Contour lines gy “ gy “ 0 for e “ 0.8, y “ ´10,
y “ 10.

(b) Contour lines gz “ gz “ 0 for e “ 0.8, z “ ´8,
z “ 10.

Figure 2.7 – Contour lines for y and z coordinates.

Finding an implicit function for the x constraints requires further work. After solving the

system of equations from (2.6), a parametric description is obtained in function of ν, d3 and

x or x:

d1 “ pp2xm ´ 2d3qp1 ` ecνq ` e2xmc
2
νqsν

p2 ` ecνq2
,

d2 “ ´pp2xm ´ 2d3qp1 ` ecνq ` e2xmc
2
νqcν ` epd3 ` xmq

p2 ` ecνq2
,

(2.9)

where xm stands for x or x.

Using Sylvester’s matrix implicitization method, (2.9) produce a multivariate polynomial

in d1, d2, d3:

ĝxmpd1, d2, d3q “ ř
ξPN3 θξd

ξ1

1 d
ξ2

2 d
ξ3

3 . (2.10)

As shown in Fig. 2.8, the envelope gx “ 0 contains the boundary of the inner-convex set

of points satisfying the inequality x for all ν.

This set of solutions can be described by first remarking that the multivariate polynomial
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Figure 2.8 – Family of surfaces, envelope and boundary of admissible set for ĝx “ 0, with x “ 10,
e “ 0.9, d3 “ 5.

(2.10) can be seen as a fourth degree polynomial in d3:

ĝxmpd1, d2, d3q “ ř
0ďiď4 θ̄ipd1, d2q di

3
. (2.11)

Then, it suffices to choose the root of (2.11) that describes the inner convex set presented

in Fig. 2.8. Considering ĝxp¨q, the smallest real root is the one to be selected. Conversely,

the largest one is chosen when considering the envelope ĝxp¨q. This is done by choosing the

“right” roots of the fourth degree polynomial in d3 [1], producing the desired gxm functions

that describe the set of admissible points with respect to γxm ď 0:

gxpd1, d2, d3q “ rxpd1, d2, eq ´ d3,

gxpd1, d2, d3q “ d3 ´ rxpd1, d2, eq,
(2.12)

where rxpd2, d3, eq and rxpd2, d3, eq are the functions that return respectively the greatest real

root of ĝx and the lowest real root ĝx (2.11). In Fig. 2.9 an illustration of the geometrical

volumes containing the vectors D that respect the x and x restrictions is provided.

Using the functions gx, gx, gy, gy, gz and gz obtained previously, the admissible set can

be redefined as:

SD “
!
D P R

6 s.t d0 “ 0
ˇ̌
ˇ gwpDq ď 0,@w P

 
x, x, y, y, z, z

( )
, (2.13)

and the fixed-time impulsive optimal guidance problem for the rendezvous hovering phases

can then be formulated as follows:

Problem 2.3.4 (ENV). For a given scenario characterized by eccentricity e, semi-major axis
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Figure 2.9 – Isosurfaces gx “ gxmax “ 0 for e “ 0.8, x “ ´10, x “ 10.

a and initial state Dpν1q “ Cpν1qT pν1qXpν1q P R
6, given N P N, find N impulsive controls

(represented by ∆V P R
3N ) applied at given fixed instants ν1, . . . , νN , such that:

min
∆V

J p∆V q

s.t.

$
’’’’’’’’’’’’&
’’’’’’’’’’’’%

Dpν1q “ Cpν1qX̃pν1q,
D`pνN q “ ΦνN

ν1
Dpν1q ` řN

i“1 ΦνN
νi
BDpνiq∆Vi,

d`
0 pνN q “ 0

|∆Vi,j | ď ∆V ,
@i P t1, . . . , Nu
@j P tx, y, zu

gwpD`pνN qq ď 0, w P
 
x, x, y, y, z, z

(

(ENV)

2.3.4 Conclusions

Three distinct reformulations of the problem GP were proposed.

The first one is based on a discretization of the infinitely many constraints describing

the hovering zone, consecutively consisting in a degraded version of the original problem.

Although this process leads to a LP problem, which can be efficiently solved by numerical

methods, the loss of information provoked by the discretization cannot ensure the continuous

satisfaction of the space constraints.

Contrarily to the LP approach, the two other proposed counterparts of GP provide

perfectly equivalent reformulations. The SDP version is obtained by converting the infinitely

many inequalities present in GP into finitely many LMIs, using the results presented by

Nesterov in [81]. The numerical resolution of this class of problems requires complex iterative

algorithms that have not been extensively tested on space dedicated devices, which motivates
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the proposition of the last reformulation of problem GP, the ENV approach.

This last approach is an original contribution of this thesis, and relies on a geometrical

analysis of the set of periodic relative trajectories included in the hovering region (the admis-

sible set) to provide closed-form “check” functions that indicate the violation or satisfaction

of the constraints. One of the advantages of the ENV approach is that the numerical algo-

rithms that can be employed in the resolution of the associated optimization problem are lees

cumbersome than those used for the SDP approach, as will be discussed in the sequel.

2.4 Embedded algorithms

Hereafter the approach employed to address the optimization problems previously formulated

is outlined. The software and hardware environment on which their performances are assessed

is also presented.

This is a joint work with F. Camps (research engineer, LAAS-CNRS), M. Joldeş and

C. Louembet, under the title of Embedding a SDP-based control algorithm for the orbital

rendezvous hovering phases [24], presented in the 2018 25th Saint Petersburg International

Conference on Integrated Navigation Systems (ICINS 2018).

2.4.1 Test environment

The tests were performed on an AEROFLEX GAISLER GR-XC6S board (Fig. 2.10) that

contains a synthesized LEON3 microprocessor, which has a SPARC V8 architecture (see [84]

for further specifications), and supports a IEEE-754 compliant floating-point unit with single

and double precision (32- and 64-bit floats), running a Linux 2.6 environment that simulates

the performance of devices usually employed in space applications (see [35]). The compilation

chain and the used libraries are detailed hereafter.

2.4.2 Solving the LP problems

The LP problems are solved using the GLPK library, a linear programming kit intended for

solving large-scale linear programming (LP), mixed integer programming (MIP), and other

related problems [41]. The technique used for solving the problems is the primal simplex

method, with default GLPK parameters and stop criteria.

The GLPK library solves linear programs of the form:
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Figure 2.10 – AEROFLEX GAISLER GR-XC6S board.

max
x

cTx

Aeqx “ beq

Ainx ď bin

(GLPK)

where Aeqx “ beq represents a system of equations and Ainx ď bin represents a system of

inequalities that must be satisfied by the decision variables x.

In order to account for the absolute values appearing in the criterion

J p∆V q “ řN
i“1 |∆Vi,x| ` |∆Vi,y| ` |∆Vi,z| and in the saturation constraint |∆Vi,j | ď ∆V , the

saturation constraints are split into two inequalities:

|∆Vi,j | ď ∆V ô
´∆Vi,j ` ∆V ě 0

∆Vi,j ` ∆V ě 0
(2.14)

and the slack variables Zi,j ě 0 are introduced, producing:

Jp∆V q “ řN
i“1 |∆Vi,x| ` |∆Vi,y| ` |∆Vi,z|

|∆Vi,j | ď ∆V

õ
JpZq “ řN

i“1 Zi,x ` Zi,y ` Zi,z

Zi,j ´ ∆Vi,j ě 0, Zi,j ` ∆Vi,j ě 0, Zi,j ď ∆V

(2.15)

which results in 9N affine inequalities to be satisfied.

Each of the inequalities describing the discretized admissible set produce Ndisc affine
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inequalities to be satisfied, which results in a total of 6Ndisc affine inequalities:

x ď MxpνiqDpν0q ď x,

y ď MypνiqDpν0q ď y,

z ď MzpνiqDpν0q ď z,

,
νk P r0, 2πs,
@k P t1, . . . , Ndiscu

One single equation must be satisfied, the one related to the periodicity constraint:

d`
0 pνN q “ 0.

In summary, the number of decision variables is 6N , the number of equality constraints

is equal to 1 and the number of inequality constraints is equal to 9N ` 6Ndisc.

2.4.3 Solving the SDP problems

Even though several libraries and solvers can be employed in the resolution of the SDP

problems (SeDuMi [97], SDPT3 [98], SDPA [39], MOSEK [3]), the CSDP [16, 17] library is

used throughout this work. This choice is motivated by the fact that the CSDP library is

open-source, available in C and can be cross-compiled for the SPARC V8 architecture of the

test environment previously presented in Sec. 2.4.1. This library executes the routines that

implement a predictor corrector variant of the interior-point algorithm of Helmberg, Rendl,

Vanderbei, and Wolkowicz for semidefinite programming [51].

The CSDP library solves semidefinite programs of the form:

max
X

trpCX q

trpAiX q “ αi, @i P t1, . . . ,mu
X ľ 0

(CSDP)

where αn P R and all the matrices C, An, and X are real and symmetric matrices (see [17]

for details). To write SDP in the form of CSDP, the decision variables must be identified:

Y l
x, Y

u
x , Y

l
z , Y

u
z P R

3ˆ3, Y l
y , Y

u
y P R

2ˆ2, ∆V P R
3N (2.16)

Since only equalities of the type trpAnX q “ αn and semi-definiteness constraints of the

type X ľ 0 can be used in CSDP, the variables of SDP must be modified in order to obtain

only symmetric semidefinite positive matrices (or positive scalars). The problem is then
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reformulated as follows: first the saturation constraints are split into two inequalities:

|∆Vi,j | ď ∆V ô
´∆Vi,j ` ∆V ě 0

∆Vi,j ` ∆V ě 0

Then the variables W´
i,j “ maxt0,´∆Vi,ju, W`

i,j “ maxt0,∆Vi,ju (which will be used

instead of ∆Vi,j , that will be lately reconstructed via the relation ∆Vi,j “ ´W´
i,j `W`

i,j) and

the auxiliary variables Zi,j and Z̄i,j are introduced, producing:

Jp∆V q “ řN
i“1 |∆Vi,x| ` |∆Vi,y| ` |∆Vi,z|

´∆Vi,j ` ∆V ě 0, ∆Vi,j ` ∆V ě 0

õ
JpZq “ řN

i“1 Zi,x ` Zi,y ` Zi,z

W´
i,j `W`

i,j “ Zi,j , Zi,j ` Z̄i,j “ ∆V

(2.17)

with W´
i,j ,W

`
i,j , Zi,j , Z̄i,j ě 0. The variables W´

i,j and W`
i,j play the role of the norm of the

negative and the positive part of ∆Vi,j , respectively; Zi,j are slack variables that assume the

value of |∆Vi,j |; Z̄i,j are the complementary of Zi,j with respect to ∆V (Zi,j ` Z̄i,j “ ∆V q.

Now that all the necessary variables have been introduced, X can be structured as a

symmetric semidefinite positive block-diagonal matrix:

X “ diagpY l
x, Y

u
x , Y

l
z , Y

u
z , Y

l
y , Y

u
y , W

´, W`,

Z, Z̄q P R
p16`12Nqˆp16`12Nq,

where W´ “ diagpW´
1,x, . . . ,W

´
N,zq and W`, Z, Z̄ are defined analogously. The fact that this

matrix is semidefinite positive accounts for the inequality constraints previously presented.

With these presented modifications, the equality constraints can then be written in the form

trpAnX q “ αn.

In summary, the total number of these constraints adds up to 27`6N : for each coefficient

of the polynomials Γk
j presented in SDP there is one equality constraint γk

j “ Λ˚pY k
j q involving

a semidefinite positive matrix. The polynomials related to the x and z constraints are of

degree 4, with 5 coefficients; the polynomials related to y are of degree 2, with 3 coefficients;

each axis has 2 inequality constraints, which results in a subtotal of 2p5 ` 5 ` 3q “ 26 equality

constraints; the periodicity constraint is expressed via one single equality constraint d0 “ 0,

which results in a subtotal of 26`1 “ 27 equality constraints; there are 3N equality constraints

W`
i,j ` W´

i,j “ Zi,j , which results in a subtotal of 27 ` 3N constraints; finally, there are 3N
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equality constraints Zi,j ` Z̄i,j “ ∆V , which results in a total of 27 ` 3N ` 3N “ 27 ` 6N

constraints.

Given that the criterion in CSDP is maximized and that JpZq “ řN
i“1 Zi,x ` Zi,y ` Zi,z

has to be minimized, the matrix C will be filled with ´1 in the entries that occupy the same

positions as the variables Zi,j in X and with zeros elsewhere.

2.4.4 Embedding the libraries for the LP and SDP methods

The detailed command descriptions for the installation of cross-compilers and libraries used

in the resolution of LP and SDP problems are available in Appendix D. Hereafter a brief

summary of this procedure is presented:

• Cross-compiler : in order to perform the tests in an environment as close as possible to

those employed in space systems, an embedded synthesized LEON3 microprocessor is

employed. The architecture of this microprocessor requires a particular X86/SPARC

cross-compiler. The first step to use this environment is to install the cross-compilers

proposed by AEROFLEX GAISLER1, which are then used for the cross-compilation of

computation libraries such as LAPACK.

• LAPACK2 and GLPK : LAPACK is a widely used Linear Algebra PACKage. Since

LAPACK is written in Fortran, it requires a Fortran cross compiler.

• CSDP3: a C Library for Semidefinite Programming, it also uses the LAPACK library.

• Embedding the libraries: The computation libraries must be installed on the board (in

the case of a non-static compilation) in the standard directory of the libraries.

2.4.5 Solving the ENV problems

The ENV problems are solved using a combination of a penalty technique and two non-smooth

optimization algorithms. The penalty technique consists in adding functions representing

the violation of the constraints to the minimization criterion, multiplying them by a big

penalty coefficient. The idea is to penalize any intermediary solution that does not satisfy

1http://gaisler.com/anonftp/linux/linux-2.6/toolchains/sparc-linux-4.4.2/

sparc-linux-ct-multilib-0.0.7.tar.bz2
2LAPACK official site: http://www.netlib.org/lapack/, Archives: http://www.netlib.org/lapack/

lapack-3.7.0.tgz

3CSDP official site : https://projects.coin-or.org/Csdp/

http://gaisler.com/anonftp/linux/linux-2.6/toolchains/sparc-linux-4.4.2/sparc-linux-ct-multilib- 0.0.7.tar.bz2
http://gaisler.com/anonftp/linux/linux-2.6/toolchains/sparc-linux-4.4.2/sparc-linux-ct-multilib- 0.0.7.tar.bz2
http://www.netlib.org/lapack/
http://www.netlib.org/lapack/lapack-3.7.0.tgz
http://www.netlib.org/lapack/lapack-3.7.0.tgz
https://projects.coin-or.org/Csdp/
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the constraints of the problem. This leads to an unconstrained optimization problem (see

Appendix E.1 for further details):

min
∆V

Jp∆V q ` η

˜
max

 
|d`

0 pνN q|, 0
(

`
ÿ

i,j

max
 

|∆Vi,j | ´ ∆V , 0
(

`
ÿ

w

 
gwpD`pνN qq, 0

(
¸

where D`pνN q “ ΦνN
ν1
Cpν1qX̃pν1q `řN

i“1 ΦνN
νi
BDpνiq∆Vi and η " 1 (hereafter η is set to 108).

As one can remark, the unconstrained problem contains a non-smooth objective function

(max, absolute value and the envelope functions gwp¨q). For the resolution of this type of

problems, two iterative algorithms with different properties are chosen to be employed: the

sub-gradient method proposed by Shor in [95], a first-order approach that resembles the

steepest descent optimization algorithm, but uses sub-gradients instead of gradients (see

Appendix E.2); and the BFGS quasi-Newton method proposed by Lewis and Overton in [64],

which consists in building local quadratic approximations of the penalized objective function

and computing descent steps using the sub-gradients and the inverse Hessian (see Appendix

E.3).

A hybrid method combining both algorithms (see Appendix E.4 for details) is employed

in order to take advantage of their distinct strengths:

The quasi-Newton algorithm benefits from a faster decrease of the penalized objective

function along the iterations, while only the sub-gradient method has guaranteed convergence,

being used to refine the approximated solution obtained in the previous step.

Since this approach does not require particular optimization solvers/libraries to be imple-

mented, it is completely coded using standard C functions (see Algorithm 5 in Appendix E.4).

This gives total control of the user interactivity, general behavior and termination conditions

of the algorithm (for example, a maximal computing time for solving the optimization problem

can be set as termination condition, with the option of allowing further iterations - which is

not the usual behavior for generic solvers).

2.5 Simulations and results

Hereafter the practical performances of the LP, SDP and ENV approaches are assessed for

the resolution of the rendezvous hovering phases problem by carrying out simulations on the

space dedicated test environment described in Sec. 2.4.1. These simulations account for four

distinct ISS rendezvous missions in which the follower spacecraft is maneuvered from four

different initial states X01 ´X04 to a periodic orbit enclosed by the hovering zone described by
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Algorithm 1: Solving non-smooth convex optimization problems

Input : ξ1 - initial point
Υp¨q - non-smooth convex function to minimize
gp¨q - oracle that returns one of the sub-gradients of Υp¨q at a given point
Iqn, Isg - number of iterations
σ - coefficient for the sub-gradient steps (set to 1 if not explicitly specified)

Output : ξ - solution

1 ξbest Ð ξ1

// Quasi-Newton method

2 H1 “ In;
3 for k “ 1 to Iqn do
4 ξk`1 Ð ξk ´ λkHkgpξkq, where λk ą 0 computed by inexact line search;
5 if Υpξk`1q ă Υpξbestq then
6 ξbest Ð ξk`1

7 end
8 Update Hk`1 as positive definite matrix satisfying secant condition

Hk`1pgpξk`1q ´ gpξkqq “ ´λkHkgpξk`1q;
9 end

10 ξ1 Ð ξbest;
// Subgradient method

11 for k “ 1 to Isg do
12 ξk`1 Ð ξk ´ σ 1

k
gpξkq

}gpξkq}2
;

13 if Υpξk`1q ă Υpξbestq then
14 ξbest Ð ξk`1

15 end
16 end
17 ξ Ð ξbest;
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the bounds given in the "Space constraints" section of Table 2.1. The actual orbital elements

obtained from [80] for the vector time GMT 2018/064/12:00:00.000 (section "Parameters" of

Table 2.1) are employed.

Table 2.1 – Scenarios

Parameters
a [m] e ν1 [rad] ∆ν [rad] N ∆V [m/s]

6777280 0.00039 π π{2 5 2

Initial states [m,m/s]
X01pν1q “ r 400, 300, ´40, 0, 0, 0sT

X02pν1q “ r ´800, 600, 200, 0, 0, 0sT

X03pν1q “ r ´1500, 1300, 150, 0, 0, 0sT

X04pν1q “ r 5000, 1300, 500, 0, 0, 0sT

Space constraints [m]
x “ 50, x “ 150, y “ ´25, y “ 25, z “ ´25, z “ 25

∆ν represents the true anomaly interval between two impulsive velocity corrections.

The C codes and the data files for the resolution of these scenarios are available at

http://homepages.laas.fr/fcamps/CSDP/test_files.zip.

In Table 2.2 and 2.3, the total computation time to solve the optimization problems (Time,

in seconds), the fuel consumption (Cons., in meters per second) and the maximal violation of

the space constraints (Viol., in meters) for a single run of each simulated case are presented

(particularly for ENV, the violation of the constraints is evaluated by computing |d0| and the

maximal value obtained for the envelope functions, presented in Table 2.2). Nine different

configurations based on the number of iterations of the BFGS (Iqn) and sub-gradient (Isg)

methods are adopted for the ENV method: Iqn “ t25, 50, 100u and Isg “ t250, 500, 1000u.
Figure 2.11 depicts the obtained periodic relative trajectory after the application of the

5 impulsive velocity corrections computed by the SDP algorithm departing from the initial

state X01.

In Table 2.2, an analysis of the performance of the ENV method, with different choices

for Iqn and Isg (number of iterations for the BFGS and sub-gradient methods respectively)

are presented. One can remark that, as the number of iterations is increased, the violation of

the constraints is reduced. For instance, for Iqn ě 100 and Isg ě 250, the hybrid algorithm

produced |d0| ă 10´3 and no violation of the space constraints for all four proposed scenarios.

Table 2.3 shows that both LP and SDP methods result in a equivalent fuel consumption up

to the third decimal case. The ENV method produces higher fuel consumptions for the three

first scenarios. However, for the fourth scenario, a small violation of the periodicity constraint

http://homepages.laas.fr/fcamps/CSDP/test_files.zip
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Table 2.2 – Results for the ENV method

X01 ENV
Iqn 25 25 25 50 50 50 100 100 100
Isg 250 500 1000 250 500 1000 250 500 1000

Time 2.064 2.900 4.669 2.181 2.562 3.344 2.164 2.578 3.353
Cons. 0.461 0.461 0.461 0.461 0.461 0.461 0.461 0.461 0.461

|d`
0 pνN q| 0.049 0.049 0.049 0.000 0.000 0.000 0.000 0.000 0.000

max
w

tgwpD`pνN qqu ď 0 ď 0 ď 0 ď 0 ď 0 ď 0 ď 0 ď 0 ď 0

X02 ENV
Iqn 25 25 25 50 50 50 100 100 100
Isg 250 500 1000 250 500 1000 250 500 1000

Time 2.048 2.466 3.325 2.328 2.865 3.776 2.334 2.862 3.763
Cons. 1.312 1.314 1.314 1.299 1.299 1.299 1.299 1.299 1.299

|d`
0 pνN q| 1.512 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

max
w

tgwpD`pνN qqu ď 0 ď 0 ď 0 ď 0 ď 0 ď 0 ď 0 ď 0 ď 0

X03 ENV
Iqn 25 25 25 50 50 50 100 100 100
Isg 250 500 1000 250 500 1000 250 500 1000

Time 2.064 2.957 4.702 2.196 2.695 3.477 2.186 2.696 3.484
Cons. 1.920 1.920 1.921 1.920 1.920 1.920 1.920 1.920 1.920

|d`
0 pνN q| 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

max
w

tgwpD`pνN qqu ď 0 ď 0 ď 0 ď 0 ď 0 ď 0 ď 0 ď 0 ď 0

X04 ENV
Iqn 25 25 25 50 50 50 100 100 100
Isg 250 500 1000 250 500 1000 250 500 1000

Time 2.107 2.987 4.877 2.487 3.188 3.997 2.796 3.455 4.345
Cons. 3.798 3.927 4.110 4.042 4.139 4.139 4.145 4.145 4.145

|d`
0 pνN q| 554.910 300.883 42.760 127.105 0.002 0.000 0.000 0.000 0.000

max
w

tgwpD`pνN qqu 0.367 ď 0 ď 0 0.516 ď 0 ď 0 ď 0 ď 0 ď 0
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Table 2.3 – Results for the LP, SDP and ENV methods

X01 LP SDP ENV
Ndisc “40 80 120 160 200 — Iqn “ 100, Isg “ 250

Time 1.156 3.714 7.309 12.228 17.834 5.043 2.164
Cons. 0.402 0.402 0.402 0.402 0.402 0.402 0.461
Viol. 0.152 0.037 0.016 0.009 0.006 0 see Table 2.2

X02 LP SDP ENV

Ndisc “40 80 120 160 200 — Iqn “ 100, Isg “ 250
Time 1.303 4.013 8.423 13.460 20.133 4.661 2.334
Cons. 1.103 1.103 1.103 1.103 1.103 1.103 1.299
Viol. 0.152 0.037 0.016 0.009 0.006 0 see Table 2.2

X03 LP SDP ENV

Ndisc “40 80 120 160 200 — Iqn “ 100, Isg “ 250
Time 0.892 2.815 5.895 10.910 16.353 4.684 2.186
Cons. 1.781 1.781 1.781 1.781 1.781 1.781 1.920
Viol. 0.015 0.015 0.015 0.009 0.006 0 see Table 2.2

X04 LP SDP ENV

Ndisc “40 80 120 160 200 — Iqn “ 100, Isg “ 250
Time 0.941 2.915 5.413 8.703 12.746 3.391 2.796
Cons. 4.204 4.204 4.204 4.204 4.204 4.204 4.145
Viol. 0.154 0.039 0.017 0.010 0.006 0 see Table 2.2

Figure 2.11 – Obtained relative trajectory for the initial state X01, SDP method.
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(0 ă |d0| ă 10´4) produces a lower fuel consumption for the ENV method. This is due to the

fact that while attempting to solve the penalized problem, the hybrid optimization algorithm

has to account for both the minimization of the fuel consumption and the satisfaction of the

constraints (by the minimization of the penalty functions) simultaneously. For the particular

case of the resolution of the fourth scenario, the iterations terminated during a phase in which

the fuel consumption was prioritized over the periodicity constraint.

Concerning the computation timings, the time spent on the computation of the solution

of the SDP problem is of the same order of magnitude of those of the resolution of the LP

problem with 80„120 discrete values of ν. Although the ENV method generally leads to

slightly higher fuel consumptions, its timings (for Iqn “ 100, Isg “ 250) are always lower

than those obtained for the SDP approach. This indicates that the SDP approach should be

employed in missions in which fuel saving has a high priority status, while the ENV approach

should be employed whenever the control of the computing time is a more important aspect.

Another important aspect is the fact that while the approaches SDP and ENV with

Iqn ě 100 and Isg ě 250 produce quasi-exact solutions (very small violation of the constraints),

the LP approach systematically produces residual violations of the space constraints, even

when a high number of discrete values of ν are employed (this is explained by the phenomenon

illustrated in Fig. 2.6). Since these systematical violations are not known a priori and the

timings of both SDP and ENV methods are lower those obtained for LP with Ndisc ě 120,

one can conclude that SDP and ENV are more adapted for the resolution of GP.

2.6 Conclusions

In this chapter, possible finite reformulations of the space constraints of the fixed-time im-

pulsive optimal guidance problem for the rendezvous hovering phases are presented. These

reformulations allow the numerical resolution of the problem via well-known state-of-the-art

optimization libraries and algorithms. The procedure to embed these libraries and algorithms

a board dedicated to space applications is also exhibited. The performance of the proposed

approaches are compared for four different scenarios. During numerical tests the SDP and

the ENV approaches showed a computation time of the order of magnitude of those obtained

for the LP method, with the advantage of not systematically violating the space constraints.

In the next chapter, a model predictive control strategy based on the optimization tech-

niques previously discussed in this chapter will be proposed, allowing the convergence of the

relative trajectories towards the admissible set of periodic constrained trajectories, even under

saturation of the propellers.
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3.1 Introduction

In the previous chapters, the guidance problem for the rendezvous hovering phases has been

introduced, reformulated and treated from a numerical point of view. However, this guidance

problem employs the simplified synthesis model for the relative motion, which does not account

for many of the disturbances and uncertainties occurring in the relative dynamics between

spacecraft. In other words, the open-loop use of the solution obtained by the resolution of the

guidance problem is not enough to ensure that the produced relative trajectory is periodic

and included in the hovering region.

The goal of this chapter is to propose an original feedback control strategy to control the

relative motion and keep it periodic and included in a given hovering zone. This adopted

control strategy consists in a closed-loop model predictive control (MPC) algorithm [70, 79],

which is proven to make the relative movement converge to the desired target region even when
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the presence of saturation constraints on controls may make the space window unreachable

from the current state. The performance of this proposed control strategy is assessed via

simulations that follow the FPGA framework of the tests carried out in [48, 49], where a

processor-in-the-loop is implemented: the control computation is executed on a synthesized

FPGA LEON3 board certified for spacecraft usage and the propagation of the disturbed

relative motion under uncertainties is performed on an external simulator. These tests

highlight the efficiency of the proposed control strategy in terms of control quality, numerical

burden and rejection of disturbances.

This is a joint work with M. Joldeş, C. Louembet and F. Camps (research engineer, LAAS-

CNRS), presented in the paper Stable Model Predictive Strategy for Rendezvous Hovering

Phases Allowing for Control Saturation, which was submitted to the 2018 AIAA Journal of

Guidance Control and Dynamics and is currently in revision (JGCD 2018)

3.2 Impulsive model predictive control

The MPC strategy employs a certain knowledge about the behavior of a system (for example,

a state-space model or a state-transition matrix) to predict its evolution and steer it to a

certain desired configuration (see Fig. 3.1).

Control 
Algorithm Thrusters Relative movement 

dynamicsComputed
impulse

Applied
impulseTrigger signal

t1 t2 t3 t4 t5 t6

Navigation
System

Real position
and velocities

Measured position
and velocities

Figure 3.1 – Model predictive control feedback scheme.

The idea is to iteratively solve an optimization problem over a fixed number of time

instants (the so-called time horizon). The decision variables are control actions and the

criterion to be minimized accounts for the difference between the current state and a reference

state. At each iteration, control actions are applied, the current state is updated and an

instance of the optimization problem is solved, bringing the system closer to the desired

reference configuration. This strategy is illustrated in Fig. 3.2.

The first works about this control strategy date back to the 1960s. It was widely used



3.3. The proposed model predictive control strategy 63

 Reference 

 Predicted 

 Measured

Past Future

Figure 3.2 – Trajectory evolution and control actions.

for the control of chemical processes during the 1980s and 1990s and, since then, became

very popular in many industrial fields and academic research (an overview of the origins and

history of MPC is given in [78]).

For the particular case of impulsive systems, different thematics have been using MPC:

drug/anesthesia administration [42, 93], networked multi-agent systems [111], spacecraft

rendezvous [7, 28] and others. For this class of systems, a theoretical study of properties such

as invariance and stability related to MPC strategies are present in the literature [85–87, 96].

In the next section, an MPC strategy is proposed for the rendezvous hovering phases.

We prove that the closed-loop system obtained by plugging this control strategy into the

system describing the evolution of the relative spacecraft trajectories produces a sequence

of relative trajectories that converges to the admissible set. Moreover, it is also proved that

for this closed-loop system the hovering region is an invariance set. The proofs are based

on the particular structure of the problem (the periodicity and the decoupling of the in and

out-of-plane motions) and geometrical arguments.

3.3 The proposed model predictive control strategy

In this section, the model predictive control strategy is presented for problem GP, which is

recalled for completeness:

Problem 3.3.1 (Guidance problem). For a given scenario characterized by eccentricity e,

semi-major axis a and initial state Dpν1q “ Cpν1qT pν1qXpν1q P R
6, given N P N, find N

impulsive controls (represented by ∆V P R
3N ) applied at given fixed instants ν1, . . . , νN , such
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that:

min
∆V

J p∆V q

s.t.

$
’’’’’’&
’’’’’’%

D`pνN q “ ΦDpνN , ν1qDpν1q ` řN

i“1
ΦDpνN , νiqBDpνiq∆Vi, state propagation

|∆Vi,j | ď ∆V ,
@i P t1, . . . , Nu
@j P tx, y, zu

thruster saturation

D`pνN q P SD periodicity + space constraints

(GP)

where J p∆V q is the fuel consumption given in (1.38), ΦDpνN , ν1q is the state-transition

matrix given in (1.41) and

SD “
 
D P R

6 s.t. d0 “ 0
ˇ̌
x ď MxpνqD ď x, y ď MypνqD ď y, z ď MzpνqD ď z, @ν

(

is the set of admissible trajectories satisfying the periodicity and space constraints.

This controller computes the sequences of impulses generating a sequence of states pDkqkPN

that, even under saturation of the actuators, iteratively converges to a state belonging to a

given non-empty admissible set SD. Recall that the admissible set also admits the equivalent

reformulations given in (2.5) and (2.13):

SD “
!
D P R

6 s.t d0 “ 0
ˇ̌
ˇ DYl ľ 0 s.t γlpDq “ Λ˚pYlq, l P

 
x, x, y, y, z, z

( )
,

SD “
!
D P R

6 s.t d0 “ 0
ˇ̌
ˇ gwpDq ď 0,@w P

 
x, x, y, y, z, z

( )
.

First, the formal version of the algorithm is presented and commented. In a second

moment, the main ideas used for its conception are discussed in more details.

3.3.1 Control algorithm

The proposed control algorithm is presented in Alg. 2. This algorithm takes as input a relative

state in the LVLH framework Xpν1q, a saturation threshold ∆V , a non-empty admissible

set SD described by x, x, y, y, z, z, a sequence of N true anomaly instants ν1, . . . , νN equally

spaced by a true anomaly interval τI , the true anomaly interval between impulses to generate

a periodic trajectory τP and the true anomaly interval between sequences of impulses τS

(these true anomaly intervals are illustrated in Fig. 3.4).

For a given vector of parameters Dpν1q and a sequence of impulse dates ν1, . . . , νN , the

functions γxz and γy provide respectively the in-plane and out-of-plane fuel-optimal sequences

of impulses generating admissible periodic relative trajectories. The function γ
∆V

scales down
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Algorithm 2: Model predictive control strategy

Require :Xpν1q, ∆V , SD ‰ H, τS , τP , τI P Rą0 s.t. @k P Zą0, τI ‰ kπ, N ě 3, ν1, . . . , νN s.t.
νk`1 “ νk ` τI

1 Dpν1q Ð Cpν1qT pν1qXpν1q;
2 ∆V ˚

xz Ð γxzpDxzpν1q, ν1, . . . , νN q;
3 ∆V ˚

y Ð γypDypν1q, ν1, . . . , νN q;
// If the saturation is violated by the in-plane impulses

4 if }∆V ˚
xz}8 ą ∆V then

// If the trajectory is periodic

5 if d0xz
pν1q ““ 0 then

6 ∆V ˚
xz Ð γ

∆V
p∆V ˚

xzq
// If the trajectory is not periodic

7 else
8 ∆V ˚

y Ð 0;
9 ∆V ˚

xz Ð γppd0xz
pν1q, ν1q;

10 if }∆V ˚
xz}8 ą ∆V then

11 ∆V ˚
xz Ð γ

∆V
p∆V ˚

xzq;
12 apply impulse ∆V ˚

xz and ∆V ˚
y at ν1

13 ν1 Ð ν1 ` τP ; // wait τP before call algorithm again

14 call Algorithm 2 with updated inputs ; // recursive call of the algorithm

// If the saturation is violated by the out-of-plane impulses

15 if }∆V ˚
y }8 ą ∆V then

16 ∆V ˚
y Ð γ

∆V
p∆V ˚

y q;
17 apply impulses ∆V ˚

xz and ∆V ˚
y at ν1 . . . νN

18 ν1 Ð νN ` τS ; // wait τS before call algorithm again

19 call Algorithm 2 with updated inputs; // recursive call of the algorithm

the vectors of impulses that do not comply with the saturation constraint, keeping their

original direction, but changing their magnitude so that their ℓ8 norm is equivalent to ∆V .

These γ-functions will be thoroughly defined and proved consistent in following sections.

The main ideas used in the conception of this control strategy are listed hereafter:

• Systematic computation of impulses that produce periodic orbits;

• Exploitation of the stability of the periodic orbits to stop the evolution and consequent

drift of the state;

• Once periodic orbits are obtained, the process of convergence to the admissible set is

initiated;

• Only feasible optimization problems are solved in the definition of the functions that

return the computed control actions γp, γxz and γy;

• The a posteriori saturation of the computed control actions does not impede the con-

vergence.



66 Chapter 3. Model predictive control strategy

3.3.1.1 Algorithm behavior

The behavior of Algorithm 2 is represented in Figure 3.3 and 3.4. One can observe that two

phases appear while converging to the admissible set. First, the state D is steered to the

plane d0 “ 0. In fact, recalling the transition matrix for the in-plane motion:

Dxzpνq “

»
——————–

1 0 0 0

0 1 0 0

´3eJν0
pνq 0 1 0

3Jν0
pνq 0 0 1

fi
ffiffiffiffiffiffifl

loooooooooooooomoooooooooooooon
ΦDxz pν,ν0q

Dxzpν0q. (3.1)

one can remark that if d0pν0q “ 0, the state vector D only evolves if d0 ‰ 0. This evolution

is illustrated in Fig. 3.3 by the trajectories beginning at a black star and finishing at a green

triangle in the admissible set. In order to eliminate this “drift” effect and keep the distance

between the vector of parameters and the admissible set constant, Algorithm 2 first focuses

on bringing d0 to 0, which is illustrated in Fig. 3.3 by the vertical lines linking red circles

and red triangles. The reaching of a periodic trajectory is illustrated by the green triangle

on the lower left side of the figure (this state does not freely evolve within time, only under

control actions). Once periodicity is obtained, the state is steered to the admissible, which is

represented in Fig. 3.3 by the sequence of green triangles.

Moreover, the MPC algorithm produces the pattern of impulsive velocity corrections

presented in Fig. 3.4, where the true anomaly intervals τP , τI and τS are shown.

Remark 3.3.1. The method requires the iterative application of a sequence of at least 3

impulsive velocity corrections separated by a true anomaly interval that is not a multiple

of π. Although for general MPC strategies one single control action is applied by iteration,

this approach is adopted because, once periodicity is achieved, at least 3 impulsive velocity

corrections separated by a true anomaly interval τI ‰ kπ, k P N are sufficient conditions for

reaching any state D P R
6, which can be seen as sufficient controllability conditions of the

system over the space of periodic orbits [82].

3.3.1.2 Achieving periodicity using the γp function

For the development of the control strategy, a non-saturated version of the guidance problem

GP is used. The idea is to obtain an optimization problem which is always feasible, as long as

the admissible set of periodic constrained trajectories is not empty. The ad hoc function γ
∆V
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Admissible set

Periodic states (d0=0)

States before impulses

State after impulses

Natural drift (continuous propagation)

Impulsive control

Initial state

Figure 3.3 – Generation of an admissible periodic trajectory.

Figure 3.4 – Pattern of impulsive velocity corrections along the true anomaly for a number of impulses
N “ 3.
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will account for these saturation constraints in the further developments. The non-saturated

problem is formulated as follows:

Problem 3.3.2 (Non-saturated guidance problem). For a given scenario characterized by

eccentricity e, semi-major axis a and initial state Dpν1q “ Cpν1qT pν1qXpν1q P R
6, given N P

N , find N impulsive controls (represented by ∆V P R
3N ) applied at given fixed instants

ν1, . . . , νN , such that:

min
∆V

J p∆V q

s.t.

$
’’’’’’’’’&
’’’’’’’’’%

D`pνN q “ ΦDpνN , ν1qDpν1q `Mpν1, . . . , νN q∆V, state propagation

d`
0 pνN q “ 0 periodicity

x ď MxpνqD`pνN q ď x

y ď MypνqD`pνN q ď y, @ν
z ď MzpνqD`pνN q ď z

space constraints

(NSGP)

where Mpν1, . . . , νN q∆V “ řN
i“1 ΦDpνN , νiqBDpνiq∆Vi represents the effect of the control

actions on the propagation of the trajectory.

Remark 3.3.2. Problem NSGP is always feasible as long as the admissible set SD ‰ H.

Remark 3.3.3. Problem NSGP accounts for both the in-plane and out-of-plane dynamics,

even though they can be solved separately (these dynamics are split and represented by the

functions γxz and γy respectively, defined in the sequel).

In the sequel, it is demonstrated that the periodicity equality constraint d`
0 pνN q “ 0 can

be systematically satisfied by considering only the impulsive velocity corrections that produce

periodic relative trajectories. This idea is a generalization of the developments presented

in [22] and consists in constructing a basis for the affine subspace to which the vectors of

impulsive velocity corrections such that d`
0 pνN q “ 0 belong.

In order to do so, the first line of the equation D`pνN q “ ΦDpνN , ν1qDpν1q `
Mpν1, . . . , νN q∆V is extracted:

d`
0 pνN q “ d0pν1q ` řN

i“1

1
k2pe2 ´ 1q

”
ρν ´esν

ı
∆Vxzpνiq. (3.2)

By defining the row vector

M0pν1, . . . , νN q :“ 1
k2pe2 ´ 1q

”
ρν1

, ´esν1
, . . . ρνN

, ´esνN

ı
,
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the expression given in (3.2) can be rewritten as:

d`
0 pνN q “ d0pν1q `M0pν1, . . . , νN q∆Vxz. (3.3)

Then ∆Vxz is expressed as:

∆Vxzpλq “

»
———–

| |
v1 . . . v2N´1

| |

fi
ffiffiffifl

loooooooooomoooooooooon
MK

0
pν1, ..., νN q

λ` ∆V0, (3.4)

where ∆V0 P R
2N is an arbitrary sequence of in-plane impulses producing a periodic rel-

ative trajectory (in other words, a particular solution of (3.3) with d`
0 pνN q “ 0) and

MK
0 pν1, . . . , νN qλ represents a linear combination of the vi vectors belonging to the ker-

nel of the row vector M0pν1, . . . , νN q, given by:

vi :“ r 0, . . . 0looomooon
pi´1q zeros

, ai`1, ´ai, 0, . . . 0looomooon
p2N´1´iq zeros

sT , (3.5)

where ai is the i-th entry of M0pν1, . . . , νN q.

Now that the periodicity constraint is systematically satisfied, it is demonstrated that

there always exist a single optimal impulse generating a periodic relative orbit. This is done

by introducing the function γp and by demonstrating that it is well-defined.

Proposition 3.3.1 (Optimal periodic impulse). Consider the function

γp : R ˆ R Ñ R
2

d0xz pν1q, ν1 ÞÑ argmin
∆V0

}∆V0}1

s.t. d`
0xz

pν1q “ d0xz pν1q `M0pν1q∆V0pν1q “ 0

(3.6)

For any set of inputs, the function γp is well-defined in the sense that the feasible set of

the minimization problem is not empty.

Proof. The line vector M0pν1q has the following expression:

M0pν1q “ pk2pe2 ´ 1qq´1
”
1 ` e cospν1q ´e sinpν1q

ı
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and since the term 1 ` e cospν1q ‰ 0, @ν1 (because 0 ă e ă 1), it is always possible to set:

∆V0 “ k2pe2 ´ 1q
”
´ d0xz pν1q

1`e cospν1q 0
ıT

,

satisfying the equation 0 “ d0xz pν1q `M0pν1q∆V0. �

Remark 3.3.4. Since the minimization problem in (3.6) contains ℓ1-norm criteria (which

are not strictly convex), infinitely many solutions may exist. In order to enforce uniquenesses,

the solution with minimal ℓ2-norm (which is strictly convex) could have been chosen. However,

for the sake of brevity, only one minimum is considered to be arbitrarily chosen in these

special cases.

3.3.1.3 Convergence to the admissible set under the control actions produced

by γxz and γy

The functions γxz and γy are responsible for generating optimal non-saturated in-plane and

out-of-plane sequences of impulses that generate periodic relative trajectories. They are

defined hereafter:

Proposition 3.3.2 (Optimal out-of-plane impulses). Given N ě 3, τI P Rą0 s.t. @k P
Zą0, τI ‰ kπ, and ν1, . . . , νN s.t. νk`1 “ νk ` τI , consider the function:

γy : R
2 ˆ R ˆ . . .ˆ R Ñ R

N

DypνN q, ν1, . . . , νN ÞÑ argmin∆Vy
}∆Vy}1

s.t. D`
y pνN q “ Dypν1q `Mypν1, . . . , νN q∆Vy P SDy

(3.7)

The function γy is well-defined if the feasible set SDy is not empty. Equivalently,

@Dy P R
2, D˚

y P SDy ‰ H, D∆Vy P R
N s.t. D˚

y “ Dy `Mypν1, . . . , νN q∆Vy.

Proof. The matrix Mypν1, . . . , νN q has the following expression:

Mypν1, . . . , νN q “ k´2

»
–´ sinpν1q

ρpν1q . . . ´ sinpνN q
ρpνN q

cospν1q
ρpν1q . . .

cospνN q
ρpνN q

fi
fl .

This matrix has rank 2, since detpMypν1, ν2qq “ sinpν2´ν1q
ρpν1qρpν2q ‰ 0 because of the hypothesis on

the impulse dates τI ‰ kπ. Then, @Dy, D
˚
y P R

2 the vector ∆Vy “ pMT
y Myq´1MT

y pD˚
y ´Dyq

is well-defined and satisfies D˚
y “ Dy ` Mypν1, . . . , νN q∆Vy. This is also particularly true if

D˚
y P SDy ‰ H. �
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Proposition 3.3.3 (Optimal in-plane impulses). Given N ě 3, τI P Rą0 s.t. @k P Zą0, τI ‰
kπ and ν1, . . . , νN s.t. νk`1 “ νk ` τI , consider the function:

γxz : R
4 ˆ R ˆ . . .ˆ R Ñ R

2N

Dxzpν1q, ν1, . . . , νN ÞÑ argmin∆Vxz
}∆Vxz}1

s.t. D`
xzpνN q “ Dxzpν1q `Mxzpν1, . . . , νN q∆Vxz P SDxz

(3.8)

Then the function γxz is well-defined if the feasible set SDxz is not empty. Equivalently,

@Dxz P R
4, D˚

xz P SDxz ‰ H, D∆Vxz P R
2N s.t. D˚

xz “ Dxz `Mxzpν1, . . . , νN q∆Vxz.

Proof. Consider ∆Vxz “ MK
0 pν1, . . . , νN qλ ` ∆V0 as in (3.4). As demonstrated in

Proposition 3.3.1 it is always possible to set d`
0xz

to 0 with a single impulse. Since

MK
0 pν1, . . . , νN qλ has no influence on the first entry of D˚

xz ´Dxz, one can conclude that ∆V0

can be chosen to set the first entry of D˚
xz ´Dxz to any arbitrary value.

Now, it is demonstrated that it is always possible to choose λ that allow the other three

entries of D˚
xz ´Dxz to be set to any arbitrary values. Computing MxzM

K
0 pν1, . . . , νN q, the

following expression is obtained:

MxzM
K
0 pν1, . . . , νN q “ 1

k6pe2 ´ 1q2

»
——————–

0 0 0 0 0 . . . 0 0
sinpν1q
ρpν1q ‹ sinpν2q

ρpν2q ‹ sinpν3q
ρpν3q . . . ‹ sinpνN q

ρpνN q

´ cospν1q
ρpν1q ‹ ´ cospν2q

ρpν2q ‹ ´ cospν3q
ρpν3q . . . ‹ ´ cospνN q

ρpνN q

1`ρpν1q
ρpν1q ‹ 1`ρpν2q

ρpν2q ‹ 1`ρpν3q
ρpν3q . . . ‹ 1`ρpνN q

ρpνN q

fi
ffiffiffiffiffiffifl
.

and this matrix has rank 3, since:

det

¨
˚̊
˚̋

»
———–

sinpν1q
ρpν1q

sinpν2q
ρpν2q

sinpν3q
ρpν3q

´ cospν1q
ρpν1q ´ cospν2q

ρpν2q ´ cospν3q
ρpν3q

1`ρpν1q
ρpν1q

1`ρpν2q
ρpν2q

1`ρpν3q
ρpν3q

fi
ffiffiffifl

˛
‹‹‹‚“ ´2

sinpν2 ´ ν1q ` sinpν3 ´ ν2q ´ sinpν3 ´ ν1q
k18pe2 ´ 1q6ρpν1qρpν2qρpν3q

“ ´8
sin ν2´ν1

2
sin ν3´ν2

2
sin ν3´ν1

2

k18pe2 ´ 1q6ρpν1qρpν2qρpν3q ‰ 0,

(3.9)

because of the hypothesis on ν1, . . . , νN .

This implies that @Dxz, D
˚
xz P R

4 it is possible to chose λ and ∆V0 in such a manner that

∆Vxzpλq “ MK
0 pν1, . . . , νN qλ` ∆V0 satisfies D˚

xz “ Dxz `Mxzpν1, . . . , νN q∆Vxz. This is also

particularly true if D˚
xz P SDxz ‰ H. �

Remark 3.3.5. Although only 2 impulses are needed to generate an out-of-plane admissible
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trajectory, N is set to a number greater or equal to 3 just like for the in-plane case for sake

of simplicity.

Remark 3.3.6. Similarly, in the minimization problems (3.7) and (3.8), one arbitrary min-

imum is chosen when the problem is not strictly convex.

Combined with the idea to first reach the periodic orbit set, the convergence of Algorithm 2

is based on the following idea that accounts for eventual saturation that is performed by

function γ
∆V

:

Definition 3.3.1 (Rescaling function). Consider the function

γ
∆V

: R
nz

 
~0
(

Ñ R
n

v ÞÑ ∆V
}v}8

.v,
(3.10)

This function is responsible for scaling down the vector of impulses that do not respect

the saturation constraint, keeping its direction, but reducing its magnitude so that its norm

is equivalent to ∆V .

Now, consider an arbitrary periodic relative trajectory parametrized by Dpν1q and a

sequence of impulses ∆V ˚ provided by the functions γxz and γy producing a trajectory

D˚pνN q belonging to the admissible set SD:

D˚pνN q “ ΦDpνN , ν1qDpν1q `Mpν1, . . . , νN q∆V ˚ P SD.

As previously discussed, since Dpν1q is a periodic trajectory, ΦDpνN , ν1qD1pν1q “ D1pν1q,
the previous equation can be rewritten as:

D˚pνN q “ Dpν1q `Mpν1, . . . , νN q∆V ˚.

If this sequence of impulses is scaled by a real number η between 0 and 1 (representing

the saturation), it generates a vector of parameters D˝pνN q, given by:

D˝pνN q “ Dpν1q ` ηMpν1, . . . , νN q∆V ˚.

This new vector of parameters D˝pνN q is closer to the admissible trajectory D˚pνN q than the

original Dpν1q:
}D˚pνN q ´D˝pνN q}2 ď }D˚pνN q ´Dpν1q}2,
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since

D˚pνN q ´Dpν1q “ Mpν1, . . . , νN q∆V ˚

and

D˚pνN q ´D˝pνN q “ p1 ´ ηqMpν1, . . . , νN q∆V ˚.

This idea basically expresses the fact that iterative application of Algorithm 2 produces

a sequence of states D that are closer and closer to the admissible set. In the next section,

convergence is proved in details.

3.3.2 Proof of convergence and invariance

In this section, the convergence of the previously described control strategy is proven by

demonstrating that the iterative application of the command actions computed in Algorithm

2 produces a sequence of states pDkqkPN that converges to an element of SD. Moreover, the

admissible set is proved to be invariant under the action of the proposed controller, which

guarantees that the state remains in the admissible set once the convergence is completed.

In Algorithm 2, if saturation constraints are complied, the convergence of the stateD to the

admissible set SD is trivial (by definition, one single call of γxz and γy is necessary to produce

an admissible state D). However, for the cases in which the magnitude of the computed

impulses goes beyond the saturation threshold, the convergence proof is based on a geometrical

property of convex sets: the idea is to prove that for a given convex K Ă R
n and any three

elements A,A
1

, C P R
n such that A P R

nzK, C P K and A
1 “ C ` λpA´ Cq, 0 ă λ ă 1, the

distance from A
1

to K is less than the distance from A to K (in the sense of the ℓ2 norm):

Proposition 3.3.4. Let K be a convex set in R
n, A P R

n not in K, C a point in K, B the

projection of A onto K, 0 ă λ ă 1, A
1 “ C ` λpA´ Cq and B

1

the projection of A
1

onto K.

Then, dist
K

pA1q “ }B1 ´A
1}2 ă }B ´A}2 “ dist

K
pAq.

Figure 3.5 – Illustration of points A, A
1

, B, B
2

, C and convex K
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Proof. Consider the point B
2 “ C ` λpB ´ Cq (see Figure 3.5). Since K is convex and B

2

belongs to the segment BC, B
2

is a point of K. By developing the difference B
2 ´A

1

:

B
2 ´A

1 “ λpB ´Aq ñ }B2 ´A
1}2 “ λ}B ´A}2.

But since B
1

is the projection of A
1

onto K:

}B1 ´A
1}2 ď }B2 ´A

1}2 “ λ}B ´A}2 ñ }B1 ´A
1}2 ă }B ´A}2.

�

The proof of convergence is split in two parts: first Algorithm 2 is demonstrated to bring

the out-of-plane related entries Dy to an element of SDy ; then, Algorithm 2 is demonstrated

to bring the in-plane related entries Dxz to an element of SDxz :

3.3.2.1 Convergence of the out-of-plane motion:

In the following proposition, the sequence pφkqkPN represents the iterative application of the

control Algorithm 2 on the state Dy related to the out-of-plane motion:

Proposition 3.3.5 (Convergence of the out-of-plane trajectory). Let be Dy P R
2, ν, τI , τS P

Rą0 s.t. @k P Zą0, τI ‰ kπ, N ě 3 and SDy ‰ H. Then, the following sequence:

pφkqkPN :“

$
’’’&
’’’%

φ0 “ Dy,

φk “ φk´1 `Mypνp1q
k , . . . , ν

pNq
k q∆Vyk

, if }∆Vyk
}8 ď ∆V

φk “ φk´1 `Mypνp1q
k , . . . , ν

pNq
k qγ

∆V
p∆Vyk

q, if }∆Vyk
}8 ą ∆V

,

where νpiq
k “ ν ` pi ´ 1qτI ` pk ´ 1qτS and ∆Vyk

“ γypφk´1, ν
p1q
k , . . . , ν

pNq
k q, converges to an

element of SDy .

Proof. From Proposition 3.3.2, the function γy returns a sequence of impulses that generates

an admissible trajectory, i.e. φk “ φk´1 ` Mypνp1q
k , . . . , ν

pNq
k q∆Vyk

P SDy . Given that, if for

some k˚ the impulse ∆Vyk˚ respects the saturation constraint, then @k ě k˚, φk P SD.

However, suppose that the saturation is always violated for any k P N (worst case scenario).

By writing the expressions of φk considering the non-scaled and the scaled sequence of

impulses:

φ˚
k “ φk´1 `Mypνp1q

k , . . . , ν
pNq
k q∆Vyk

φk “ φk´1 `Mypνp1q
k , . . . , ν

pNq
k q∆Vyk

∆V {}∆Vyk
}8
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By manipulating the previous equations, the following expression are obtained:

φ˚
k ´ φk “ p1 ´ ∆V {}∆Vyk

}8qpφ˚
k ´ φk´1q

From the saturation hypothesis ∆V ă }∆Vyk
}8 and consequently:

}φ˚
k ´ φk}2 “ p1 ´ ∆V {}∆Vyk

}8q}φ˚
k ´ φk´1}2 ă }φ˚

k ´ φk´1}2

Since φ˚
k belongs to SDy , which is a convex set, from Proposition 3.3.4, it is possible to

conclude that:

dist
SDy

pφkq ď p1 ´ ∆V {}∆Vyk
}8q dist

SDy

pφk´1q ă dist
SDy

pφk´1q

The following sets are then defined:

Pk :“
"
D P R

2

ˇ̌
ˇ̌ dist

SDy

pDq ď dist
SDy

pφk´1q
*
,

Qk :“
 
∆Vy P R

2
ˇ̌

D ν P R, DD P Pk s.t. ∆Vy “ γypD, ν, . . . , ν ` pN ´ 1qτIq
(
,

and ∆V ‹
yk

:“ max
∆VyPQk

}∆Vy}8. One can remark that since dist
SDy

pφkq ă dist
SDy

pφk´1q, the sets Qk

form a sequence of inclusions Qk`1 Ď Qk and, consequently, ∆V ‹
yk`1

ď ∆V ‹
yk

. Consider the

following two sequences:

pakqkPN :“

$
’&
’%

a0 “ dist
SDy

pφ0q,

ak “ αak´1

and pbkqkPN :“

$
’’&
’’%

b0 “ dist
SDy

pφ0q

bk “ dist
SDy

pφkq

where α “ p1 ´ ∆V {∆V ‹
y1

q. The sequence pakqkPN has a general term of the form ak “ αk a0

and converges to zero when k tends to infinite: α ă 1 ñ ak Ñ
kÑ8

0. The second sequence

represents the distance of the terms of the sequence φk to the admissible set SDy . Since the

saturation is supposed to be violated, the following inequalities hold:

∆V ă }∆Vyk
}8 ă ∆V ‹

yk
ď ∆V ‹

y1
, @k P N

Then, since dist
SDy

pφkq ď p1´∆V {}∆Vyk
}8q dist

SDy

pφk´1q and @k P N, p1´∆V {}∆Vyk
}8q ă α,

by comparing the sequences pakqkPN and pbkqkPN, it is possible to prove that bk Ñ
kÑ8

0, which

is equivalent to dist
SDy

pφkq Ñ
kÑ8

0.

�
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By demonstrating that the sequence pφkqkPN converges to a point in the admissible set

the MPC strategy is proven to be convergent for the out-of-plane motion.

3.3.2.2 Convergence of the in-plane motion:

If the initial state Dxz is not periodic and Algorithm 2 does not produce a sequence of impulses

that respects the saturation threshold, the algorithm is executed until the periodic trajectory

is generated. In the following proposition, the sequence pθkqkPN represents the behavior of

the first entry of the state vector Dxz during this process:

Proposition 3.3.6 (Convergence to a periodic trajectory). Let be d0xz P R, ν P R, τP P Rą0.

Then, the sequence pθkqkPN defined by:

pθkqkPN :“

$
’’’&
’’’%

θ0 “ d0xz ,

θk “ θk´1 `M0pνkq∆Vxzk
, if }∆Vxzk

}8 ď ∆V

θk “ θk´1 `M0pνkqγ
∆V

p∆Vxzk
q, if }∆Vxzk

}8 ą ∆V

,

where ∆Vxzk
“ γppθk´1, νkq and νk “ ν ` pk ´ 1qτP , converges to 0.

Proof. The proof is mutatis mutandis similar to that presented in Proposition 3.3.5. �

By demonstrating that the sequence pθkqkPN converges to zero, the iterative calls of the

MPC strategy is proven to produce a periodic trajectory. Once the trajectory becomes

periodic, the behavior of the state Dxz under iterative calls of Algorithm 2 can be represented

by the sequence pϕkqkPN introduced in the following proposition:

Proposition 3.3.7 (Convergence of the in-plane periodic trajectory to SDxz). Let be Dxz P R
4

s.t. d0xz “ 0, ν, τI , τS P Rą0 s.t. @k P Zą0, τI ‰ kπ, N ě 3 and SDxz ‰ H. Then, the

following sequence:

pϕkqkPN :“

$
’’’&
’’’%

ϕ0 “ Dxz,

ϕk “ ϕk´1 `Mxzpνp1q
k , . . . , ν

pNq
k q∆Vxzk

, if }∆Vyk
}8 ď ∆V

ϕk “ ϕk´1 `Mxzpνp1q
k , . . . , ν

pNq
k qγ

∆V
p∆Vxzk

q, if }∆Vxzk
}8 ą ∆V

,

where νpiq
k “ ν ` pi´ 1qτI ` pk ´ 1qτS and ∆Vxzk

“ γxzpϕk´1, ν
p1q
k , . . . , ν

pNq
k q, converges to an

element of SDxz .

Proof. The proof is mutatis mutandis similar to that presented in Proposition 3.3.5. �

By demonstrating that the sequence pϕkqkPN converges to a point in the admissible set,

the MPC strategy is proven to be convergent for the in-plane motion.
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3.3.2.3 Invariance

So far, only the convergence of the vector of parameters to an element of the admissible set

has been established. In the following it is demonstrated that once an admissible trajectory

is obtained, it is preserved by the proposed model predictive control algorithm. But first, let

notice that the SD is naturally invariant as a subset of the invariant set of periodic orbits.

Proposition 3.3.8 (Invariance). The set SD is invariant under the action of the instructions

defined in Algorithm 2.

Proof. This is evident, since D P SD ñ d0 “ 0 (periodicity), the function γp is never called;

the functions γy and γxz compute the fuel-optimal sequence of impulses that generate a

trajectory respecting the out-of-plane and the in-plane space constraints respectively. But

since

D P SD ñ x ď xpνq ď x, y ď ypνq ď y, z ď zpνq ď z, @ν,

the functions will return a sequence of null impulses. �

3.4 Simulations and results

Hereafter the results obtained by employing the proposed MPC algorithm to control the

relative motion between spacecraft during the rendezvous hovering phases are presented.

3.4.1 Processor-in-the-loop

The tests are performed in a processor-in-the-loop environment (see Fig. 3.6): each call of

the MPC algorithm is executed on the board dedicated to space applications presented in

Section 2.4.1; the computed control actions are sent via a network connection to a computer

running the simulation model that integrates the relative motion between spacecraft described

in Section 1.2.1.

Figure 3.6 – Processor-in-the-loop environment: network connection between board and simulator via
user datagram protocol.
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3.4.1.1 Software

Both the SDP and the ENV approaches are adopted to model the fuel-optimal control

problem. The SDP problems are solved via the CSDP library [16], using the standard options

and parameters. The envelope problems are solved by a combination of penalty method

with iterative optimization algorithms based on sub-gradients: the constraints are weighted

by a coefficient equivalent to 108 and added to the objective function and the resulting

unconstrained problem is solved by performing Iqn “ 50 iterations of the BFGS method,

followed by Iqn “ 500 iterations of the sub-gradient method (see Section 2.4.5 and Appendix

E for details). All embedded programs are coded in C.

3.4.1.2 Relative motion

Two types of simulator are used: the linear simulations are performed in order to verify

the theoretical results about the convergence provided the proposed algorithm. The non-

linear simulations assess the robustness of the proposed algorithm under disturbances and

nonlinearities that are not taken into account by the linear model.

1. The linear model representing the relative motion is given by equation (1.41), using the

vector of parameters or, equivalently, by equation (SLTH) in Cartesian coordinates;

2. The nonlinear simulator based on the Gauss planetary equations for the relative motion

that takes into account the effects of disturbances, such as the atmospheric drag, Earth’s

oblateness presented in Sec. 1.2.1.

In addition, navigation system uncertainties and errors on the application of control actions

are simulated along with the nonlinear simulator. A white noise on position and velocity is

added to the integrated relative state (standard deviations: dp “ 10´2 m, dv “ 10´5 m/s);

control mis-execution consist of errors are considered for the orientation and magnitude of

the applied impulsive velocity corrections (a mismatch of ˘1˝ in orientation and ˘1% in

magnitude is considered).

3.4.2 Scenarios

In order to compare the obtained results to those presented in [22], the same scenar-

ios (based on the PRISMA mission [15]) are studied: Earth’s gravitational constant:

µ “ 3.986004418 ˆ 1014; leader’s orbital parameters: e “ 0.004, a “ 7011 km, i “ 98˝,

Ω “ 0˝, ω “ 0˝; leader’s initial true anomaly ν0 “ 0˝; number of impulses adopted is N “ 3;
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true anomaly interval between impulses τI “ 120˝; true anomaly interval between sequence of

impulses τS “ 120˝; true anomaly interval to achieve periodicity τP “ 3, 6˝; space constraints:

x “ 50, x “ 150, y “ ´25, y “ 25, z “ ´25, z “ 25; propellers saturation threshold:

0.5 m/s; duration of simulation: 10 orbital periods; initial relative state:

X01 “ r 400, 300, ´40, 0, 0, 0sT

X02 “ r ´800, 600, 200, 0, 0, 0sT

X03 “ r ´1500, 1300, 150, 0, 0, 0sT

X04 “ r 5000, 1300, 500, 0, 0, 0sT

,

where the first three components of each vector represent the relative LVLH positions (in

meters) and the last three, the relative LVLH velocities (in meters per second).

3.4.3 Convergence definition

To evaluate the convergence, the mismatch ratio η is employed:

ηpνq :“
dist
SD

Dpνq
dist
SD

Dpν0q “
dist
SD

CpνqT pνqXpνq
dist
SD

Cpν0qT pν0qXpν0q , (3.11)

This is the ratio between the distance to the admissible set of the current and the initial

vector of parameters. For a given δ P r0, 1s the convergence time Tc is defined as:

Tcpδq P Rą0 s.t. @ν ě Tc, ηpνq ď δ. (3.12)

In the sequel, the convergence time is set to the time Tc at which δ “ 0.05.

3.4.4 Consumption, convergence time and running time

Convergence and hovering are obtained for all performed simulations. Table 3.1, presents

the obtained fuel consumption Jp∆V q. From this point of view, the SDP-based controller

is the best performing with respect to the ENV-based controller. This is due to the fact

that the limited number of iterations of the BFGS and sub-gradient algorithms generate

suboptimal solutions of ENV, while the SDP approach always returns the optimal solution of

SDP (recalling the numbers of iterations: Iqn “ 50 iterations of the BFGS method, followed

by Iqn “ 500 iterations of the sub-gradient method). Nevertheless, both approaches engender

fuel consumptions that are approximatively half of the lower values produced by any of the

three control laws proposed in [22].
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Convergence times Tc for each simulations are reported in Table 3.2. The non linear

simulation environment has little impact on convergence performances except for the initial

condition X04. Comparing with the hybrid controller developed in [22], the proposed ap-

proaches are not generally the best. For instance, for X01 the control law B in [22] generates

a convergence time equal to 0.34 orbits, while the proposed SDP and ENV approaches take

twice as much time to converge. This indicates that the proposed strategy gives more em-

phasis to reducing the consumption than producing short convergence times. Besides, when

the initial condition recedes from the hovering zone, the MPC controller abilities to account

for input constraints permit to ensure the convergence and limit the convergence time. On

the other hand, the behavior of hybrid controllers is degraded in terms of convergence and

consumption due to the presence of the saturation (one of the examples of application of the

hybrid controller even diverges).

Table 3.1 – Consumption J (m/s)

Initial SDP ENV
condition LIN NLIN LIN NLIN
X01 0.45 0.47 0.53 0.58
X02 1.20 1.25 1.31 1.32
X03 2.21 2.26 2.31 2.38
X04 4.75 4.71 5.41 6.69

Table 3.2 – Convergence time Tc (number of orbits)

Initial SDP ENV
condition LIN NLIN LIN NLIN
X01 0.66 0.66 0.64 0.69
X02 0.66 0.66 0.64 0.69
X03 1.65 1.65 1.65 1.65
X04 2.69 1.70 1.67 2.66

Table 3.3 and 3.4 permit one to compare the numerical performance both SDP and ENV

based controllers. For both approaches, the average time to compute a sequence of N “ 3

impulses is lower than 3.0 seconds and the maximal running time is never longer than 4.0

seconds (this time is negligible when compared to the orbital period T “ 2π
a
a3{µ « 5842

seconds). Moreover, the amount of memory allocated by the execution of the binaries are 5056

Kbyte for the SDP approach and 5584 Kbyte for the ENV approach - these are reasonable

values compared to the available memory of approximatively 90 Mbyte.

Table 3.3 – Average running time (s)

Initial SDP ENV
condition LIN NLIN LIN NLIN
X01 2.82 2.94 0.30 2.71
X02 2.82 2.86 0.31 2.68
X03 2.83 2.87 0.41 2.52
X04 2.70 2.89 1.54 2.81

Table 3.4 – Maximal running time (s)

Initial SDP ENV
condition LIN NLIN LIN NLIN
X01 2.93 3.31 3.05 2.91
X02 2.96 3.23 3.07 3.09
X03 2.93 3.05 3.23 3.12
X04 2.79 3.54 3.29 3.37
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3.4.5 Relative trajectories, impulses and distance to the admissible set

In Figures 3.7 - 3.10, the resulting 3D relative trajectories are exhibited (zoom into the hovering

region), the computed and applied impulses for the nonlinear simulations and the evolution of

the mismatching ratio ηpνq for the initial conditions X03 and X04. By observing the relative

trajectories obtained for the linear simulations, one can notice that the relative movement

converges to a periodic trajectory included in the hovering zone and, once this trajectory is

reached, it remains unchanged - this fact illustrates the convergence and invariance results

demonstrated in Prop. 3.3.5 - 3.3.8. The same behavior, however, is not observed for nonlinear

simulations: due to the presence of disturbances and uncertainties, the control actions are

not able to produce perfect periodic orbits. This is also observed in Fig. 3.11(a) where for

the nonlinear simulation, the mismatch ratio oscillates close to zero, but never reaches it.

Moreover, although some impulses are saturated (Fig. 3.7(b), 3.8(b), 3.9(b) and 3.10(b)), the

convergence is achieved for both linear and nonlinear simulations.

In Fig. 3.11(b) the four initial impulses applied in order to reduce the absolute value of d0

are shown in details (these impulses are computed via γp and are separated by true anomaly

intervals of τP , indicated in the figure; for nonlinear simulations, due to the disturbances,

the condition d0 “ 0 is never reached, being therefore replaced by another condition |d0| ă
threshold). In Fig. 3.12 it is demonstrated that after each sequence of N “ 3 impulses,

the distance to the admissible set decreases (indicated by the dotted lines). Furthermore,

during the interval between sequences of impulses (indicated by τS and the shaded zones),

the mismatch ratio remains constant.

3.4.6 Impact of parameters on fuel consumption

Hereafter, the effect of some parameters (eccentricity, number of impulses, initial true anomaly

and the three true anomaly intervals τP , τI , τS) on the total fuel consumption are evaluated.

Linear simulations using the SDP approach for the four initial states X01 ´X04 are performed;

one single parameter varies at time and the others are kept at the same values employed in

the previous simulations. The obtained results are presented in Fig. 3.14 - 3.18.

Fig. 3.13 indicates that a small number of impulses should be chosen, since the fuel

consumption increases with the growth of this parameter. The increase of the fuel consumption

with the eccentricity (Fig. 3.14) or with the reduction of the interval between impulses (Fig.

3.15) are consistent with results previously presented in the literature (similar behavior was

observed in [28, Section 6.4]). Different choices of initial true anomaly produce a sinusoidal

profile for the fuel consumption, which implies the existence of a fuel-optimal choice for
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(a) 3D Relative Trajectory.

(b) Computed and applied impulses during nonlinear simulation.

(c) Convergence to admissible set.

Figure 3.7 – Results for trajectory X03 (SDP approach).
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(a) 3D Relative Trajectory.

(b) Computed and applied impulses during nonlinear simulation.

(c) Convergence to admissible set.

Figure 3.8 – Results for trajectory X04 (SDP approach).



84 Chapter 3. Model predictive control strategy

(a) 3D Relative Trajectory.

(b) Computed and applied impulses during nonlinear simulation.

(c) Convergence to admissible set.

Figure 3.9 – Results for trajectory X03 (ENV approach).
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(a) 3D Relative Trajectory.

(b) Computed and applied impulses during nonlinear simulation.

(c) Convergence to admissible set.

Figure 3.10 – Results for trajectory X04 (ENV approach).
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(a) Effect of disturbances in nonlinear simulations.

(b) Impulses producing a periodic trajectory.

Figure 3.11 – Details of results obtained for trajectory X04 (SDP approach).

Figure 3.12 – Trajectory X04, linear simulation. Decrease of the mismatch ratio after each sequence
of 3 impulses (SDP approach).
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the initial firing instant ν0 (Fig. 3.16). In Fig. 3.17, the consumption increases until it

reaches its maximum around τp “ 2.4˝ or 0.042 rad, then starts to decrease; in order to

minimize consumption and convergence time, this parameter should be set to the smallest

value possible, which is defined by the physical limitations of the spacecraft propellers. The

profile of consumption obtained by varying the interval between sequences of impulses does

not present a particular shape or behavior and therefore no general conclusion can be obtained

from it (Fig. 3.18).

Remark 3.4.1. In Fig. 3.16 - 3.18, for each initial state, the fuel consumptions are normal-

ized between 0 and 1.

3.5 Conclusions

In this chapter, an original model predictive control strategy is proposed for the fixed-time

impulsive control of the spacecraft rendezvous hovering phases. A theoretical convergence

proof is provided, demonstrating that, even when the saturation of the propellers is taken into

account, the proposed strategy produces a sequence of control actions generating a periodic

relative trajectory included in the hovering region.

Processor-in-the-loop simulations using a LEON3 synthesized microprocessor reveal that

although the proposed approach may produce greater convergence times, it is more efficient

with respect to fuel consumption than other methods proposed in the literature. Moreover,

the timings obtained during these tests bring out the fact that this approach can be efficiently

embedded in space dedicated devices. An analysis of the impact of the parameters rendezvous

scenarios on the fuel consumption is also presented.

Although robustness is not demonstrated in this dissertation, the results show that, in

practice, the proposed control method is capable of providing convergence even under the

presence of disturbances. A theoretical evaluation of this robustness property should be

carried in future works.
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Figure 3.13 – Impact of number of impulses on fuel consumption.

Figure 3.14 – Impact of eccentricity on fuel consumption.

Figure 3.15 – Impact of true anomaly interval between impulses on fuel consumption.



3.5. Conclusions 89

Figure 3.16 – Impact of initial true anomaly on fuel consumption.

Figure 3.17 – Impact of true anomaly interval between impulses to generate peridic trajectories on
fuel consumption

Figure 3.18 – Impact of true anomaly interval between sequences of impulses on fuel consumption
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4.1 Introduction

The previous chapters treated the problematic of modeling, simulating and conceiving guid-

ance and control algorithms for the relative motion between spacecraft during the rendezvous

hovering phases. Another important aspect is the validation of numerical results obtained

from such on-board executed algorithms. In fact, during guidance and control procedures of

orbiting spacecraft, the respect of positioning and space constraints is decisive for successful

mission achievement. Since result accuracy is essential for these procedures, the prevention

and estimation of errors arising from approximations and numerical computations become

critical.

In this context, this chapter aims to provide a symbolic-numerical method for validating

the solutions generated by the previously presented guidance and control algorithms.
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The idea is to use the technique presented in [20, 21] to provide rigorous polynomial

approximations (RPA) for the solutions of the linear ordinary differential equations (LODE)

describing the linearized spacecraft relative motion. Specifically, RPA are polynomials together

with an error bound accounting for both approximation and rounding errors and can be

obtained using Chebyshev series.

This approach is chosen instead of conceiving validated numerical iterative schemes for

the integration of the LODE (like Euler or Runge-Kutta), because the number of needed

evaluation points used in these schemes can be prohibitive and the discretization error is

difficult to estimate precisely. Moreover, for guidance and control laws design purposes,

analytical solutions are preferable, since various constraints (such as saturation, restricted

space regions, etc.) can be satisfied on continuous time domains and not only on discretization

grids.

The choice for Chebyshev expansions instead of any other basis is motivated by recent

works that highlight the advantage of using Chebyshev series expansions in orbital mechan-

ics [89] and by the fact that they started to successfully replace the classical Taylor series

expansions based algebra for intrusive approaches, which has already many applications to

astrodynamics and optimal control for proximity operations [32, 65, 66], proving to be very

efficient and accurate.

This is a joint work with F. Bréhard (PhD student, LAAS-CNRS) and C. Gazzino (post-

doctoral researcher, Technion, Israel Institute of Technology), under the title of Validated Semi-

Analytical Transition Matrices for Linearized Relative Spacecraft Dynamics via Chebyshev

Series Approximations [6], presented at the 28th Space Flight Mechanics Meeting of the AIAA

SciTech Forum (AIAA 2018).

This chapter is organized as follows: first, a brief introduction on RPA and Chebyshev

truncated series is presented; then, the main ideas of the technique for obtaining RPAs of the

solutions of LODEs are exhibited; this technique is then used on the linearized Tschauner-

Hempel equations, producing a rigorous approximated state-transition matrix with polynomial

entries for the propagation of the spacecraft relative motion; this state-transition matrix is

then used in the conception of a guidance algorithm for the hovering phases of the rendezvous;

finally, a scenario is simulated to illustrate the application of the guidance algorithm and

validation technique.
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4.2 Rigorous approximations and Chebyshev polynomials

Hereafter some definitions and concepts are exhibited in order to provide the reader with

some mathematical background for the developments that will be presented in the sequel.

The aim is to provide a validation (an error-bounded approximation) of the solutions of

a system of linear ordinary differential equations representing the relative motion between

spacecraft. In a more generic framework, the following system can be considered:

Xprqptq `Ar´1ptqXpr´1qptq ` ¨ ¨ ¨ `A1ptqX 1ptq `A0ptqXptq “ Gptq, (d-LODE)

where the time variable belongs to the compact interval rt0, tf s, of unknown X : rt0, tf s Ñ R
d,

Ai : rt0, tf s Ñ R
dˆd and G : rt0, tf s Ñ R

d are at least Lipschitz-continuous.

Hereafter, a spectral method is adopted for validating the solutions of d-LODE. This

class of methods provide error-bounded approximations for the solutions of LODE over the

global time interval (in this case rt0, tf s), given as the linear combination of well chosen basis

functions, whose coefficients have to be computed [18, 43]. This choice is motivated by the fact

that, in situations where functions are smooth enough, spectral methods have the advantage

over iterative ones of providing a smooth approximation of the solution over the continuous

time range, which can be easily derived or integrated, for example.

For efficiency reasons among others, one often chooses families of polynomials for the

basis functions, since addition and multiplication composing them are the basic operations

implemented in floating-point units of processors. Besides that, the recent advances in

polynomial based optimization methods allowed for very efficient solutions in optimal control

problems (see [26, 36, 62] and references therein). This polynomial framework is adopted

hereafter.

Since a spectral method providing a representation of the approximated solution on a

polynomial basis is employed, the term rigorous polynomial approximation (adapted from

[59]) is employed in the sequel:

Definition 4.2.1 (Rigorous polynomial approximation - RPA). Let f be a function belonging

to some specified function class Ω over a given interval ra, bs and let P be a specified family of

polynomials with coefficients (in a given basis) exactly representable in some specified format

F . If p P P together with a "good" bound B are such that ||f ´ p|| ď B, where || ¨ || is an

appropriate norm1, then the couple pp, Bq is a rigorous polynomial approximation (RPA) of

the function f .

1the sup norm } ¨ }8 or the Ч
1-norm } ¨ }Ч1 defined later in this section in (4.1).
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The approximation problem that motivates this chapter is then formally formulated as

follows:

Problem 4.2.1 (RPAs of d-LODE solutions). Consider the system d-LODE. Let Φpt, t0q
be its exact state-transition matrix. Then, provide an approximate transition ma-

trix rΦpt, t0q P R
rdˆrd whose entries are polynomials and rigorous error bounds ǫij ě 0

(1 ď i, j ď rd) satisfying:

|rΦijpt, t0q ´ Φijpt, t0q| ď εij , 1 ď i, j ď d, t P rt0, tf s.

Each pair prΦij , ǫijq is denoted a Rigorous Polynomial Approximation (RPA) of Φij.

In this work, the Chebyshev polynomials are chosen. This choice is motivated by the fact

that this family of orthogonal polynomials has very convenient algebraic and approximation

properties. At first glance, working with polynomials in the standard monomial basis and

approximating functions with their Taylor development seems to be a convenient choice. In

practice, this method goes along with some shortcomings (approximation of non-smooth

functions, limited convergence radius due to complex singularities, numerical instability, etc.).

For these reasons, Chebyshev polynomials are preferable in the general case [18].

Hereafter, some definitions and properties related to Chebyshev polynomials are given:

Definition 4.2.2 (Chebyshev polynomials). The polynomials defined by the three-term re-

currence

Tn`2 “ 2XTn`1 ´ Tn,

with initial terms T0 “ 1 and T1 “ X are the so-called Chebyshev polynomials.

Definition 4.2.3 (Chebyshev coefficients). Let f be a continuous function over the interval

r´1, 1s. Then, its Chebyshev coefficients are given by:

rf s0 “ 1
π

ż π

0

fpcosϑqdϑ, rf sn “ 2
π

ż π

0

fpcosϑq cospnϑqdϑ pn ě 1q.

Definition 4.2.4 (Truncated Chebyshev series). Let f be a continuous function over the

interval r´1, 1s. Then, a truncated Chebyshev series of f is given by:

f rns “
nÿ

i“0

rf siTi,

which is simply the orthogonal projection of f onto the finite-dimensional subspace spanned

by T0, . . . , Tn.
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Analogously to Fourier series, Chebyshev series have excellent approximation proper-

ties [18]. For example, if f is of class Cr over r´1, 1s with r ě 1, then f rns uniformly converges

to f in Opn´rq. Moreover, at fixed degree n, the n-th truncated Chebyshev series f rns is a

near-best approximation of f among degree n polynomials, with a factor growing relatively

slowly, in Oplogpnqq [76].

Using these convergence results, one can easily identify a sufficiently smooth function space

with the space of corresponding Chebyshev coefficients. Let Ч1 be the Banach space of con-

tinuous functions with absolutely summable Chebyshev series, and define the associated norm

}f}Ч1 “ ř
iě0 |rf si|. Then, a Banach algebra structure is obtained, since }fg}Ч1 ď }f}Ч1}g}Ч1 .

Moreover, this norm is a safe overestimation of the supremum norm } ¨ }8 over r´1, 1s:

}f}Ч1 “
ÿ

iě0

|rf si| ě sup
´1ďtď1

ÿ

iě0

|rf siTiptq| ě sup
´1ďtď1

|fptq| “ }f}8. (4.1)

4.3 The approximation method

Now that a background on RPA and Chebyshev polynomials has been presented, the ap-

proximation method employed in this chapter is briefly explained. It is described in detail

in [20, 21] and its experimental C source code is available at http://perso.ens-lyon.fr/

florent.brehard.

For the sake of clarity, the one-dimensional case for Problem 4.2.1 is considered, that is

d “ 1:

xprqptq ` ar´1ptqxpr´1qptq ` ¨ ¨ ¨ ` a1ptqx1ptq ` a0ptqxptq “ gptq. (4.2)

over rt0, tf s “ r´1, 1s (up to a rescaling of the independent variable, if necessary), together

with prescribed initial values at ´1:

xp´1q “ v0, x1p´1q “ v1, . . . , xpr´1qp´1q “ vr´1, (4.3)

where ai, g : r´1,´1s Ñ R are functions in Ч1 approximated by a truncated Chebyshev series,

and x : r´1, 1s Ñ R is the unknown function which will be approximated with a truncated

Chebyshev series. For this, a common solution is to rephrase the differential equation (4.2)

into an equivalent integral equation. For instance, as detailed in [20, 21], one considers

ϕ “ xprq as the unknown function and expresses lower-order derivatives of x as integrals of ϕ.

http://perso.ens-lyon.fr/florent.brehard
http://perso.ens-lyon.fr/florent.brehard
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This gives:

ϕ` K ¨ ϕ “ ψ, where K ¨ ϕptq “
ż t

´1

kpt, sqϕpsqds, (4.4)

where kpt, sq is a bivariate polynomial computed from the polynomials aiptq and ψptq is a

univariate polynomial computed from the second member gptq, the polynomials aiptq and the

initial values vi (details in [21]). A symbolic computation shows that for i P N, K ¨ Ti is a

polynomial with non-zero Chebyshev coefficients between indices 0 and h (initial coefficients)

and between i ´ d and i ` d (diagonal coefficients), where the bandwidths h and d directly

depend on the maximum degree of the ai. Hence, the operator K : Ч1 Ñ Ч1 has a so-called

almost-banded structure [20, 21, 83] in the Chebyshev basis, which is depicted on Figure 4.1.

Figure 4.1 – Matrix representation of K in Chebyshev basis, truncated at order 20. Almost-banded
structure given by initial coefficients (blue) and diagonal ones (green)

Following the general scheme of spectral Galerkin methods [18], this problem is projected

onto a finite dimensional space by taking the truncated operator K
rns “ Пn ¨K ¨Пn where Пn

is the orthogonal projection from Ч1 to the finite-dimensional space spanned by T0, . . . , Tn.

Now, it remains to determine the n` 1 first (approximated) Chebyshev coefficients of ϕ by

solving the following finite-dimensional problem:

ϕ` K
rns ¨ ϕ “ ψ.

Such an almost-banded system is efficiently solved using the algorithm presented in [83].

The mathematical statements and proofs establishing the uniqueness of the solution and the

exponential convergence of the numerical truncated solutions to the exact one are to be found

in [20, 21].
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4.3.1 Principles of the validation method

The goal of validating techniques is to provide effective and rigorous error bounds for given

approximations. For the proposed method, an a posteriori validation method is employed.

This validation works in two steps: first, the user provides an approximation of the solution,

obtained with the procedure of his choice; then, the validation method computes a rigorous

error bound without knowing how this approximation was built.

The paradigm of a posteriori validation methods is particularly well suited for spectral

methods. Since it was explained in the previous section how to compute approximate solutions

for LODE (4.2), it can now be considered that some approximating truncated Chebyshev

series is given and focus on the validation method itself. A wide majority of a posteriori

validation methods are based on the Banach fixed-point theorem and variations around it.

This theorem can be stated in this simplified version:

Theorem 4.3.1. Let pE, } ¨ }Eq be a Banach space and T : E Ñ E an affine operator

whose linear part DT is a bounded linear endomorphism. If T is contracting, that is, if

}DT }E “ µ ă 1, then it admits a (necessarily unique) fixed point x˚ P E, which is a solution

of the equation:

T ¨ x “ x, (4.5)

and for a given x P E, the following enclosure holds for its distance to x˚:

}x´ T ¨ x}E

1 ` µ
ď }x´ x˚}E ď }x´ T ¨ x}E

1 ´ µ
. (4.6)

Hence, designing a fixed-point based validation method for a linear problem of the form

F ¨ x “ y essentially boils down to rephrasing it as a fixed-point equation T ¨ x “ x for

some contracting affine operator T , which has to be explicitly computable (in order to bound

}x ´ T ¨ x}E) and whose operator norm can be effectively upper-bounded so to obtain a

rigorous µ ă 1.

A rather generic way to design such a contracting method is to use an adaptation of

Newton’s method to find zeros of maps [108], which can be used even for non-linear problems.

Here the idea in the linear case is sketched. Consider the equation F ¨ x “ y, where F is

a linear automorphism. Let A be an approximation of its inverse F
´1. Then the unique
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solution is also the unique fixed-point of T defined by:

T ¨ x “ x´ A ¨ pF ¨ x´ yq, (4.7)

as soon as A is injective. The underlying idea is that if A is sufficiently close to the inverse

of F , then T will be contracting.

The remaining work then consists in finding an appropriate A and bounding the linear

part of the resulting T . Such techniques are widely advocated in, for example [108], but

quite often, technical tools to design such a Newton operator are treated by hand for precise

examples. On the contrary, the proposed method is fully algorithmic over the general case of

LODEs and implemented into a C library.

Consider again the integral reformulation (4.4) of the problem and choose a truncation

index n. The idea is to seek for an approximate inverse A of I ` K as an approximation of

the finite-dimensional truncated operator I ` K
rns. In [20, 21] the possibility to approximate

this inverse with an almost-banded matrix itself is discussed.

This A fully determines the Newton-like affine operator T : ϕ ÞÑ ϕ´ A ¨ pϕ` K ¨ ϕ´ ψq.
Its linear part I ´ A ¨ pI ` Kq may be bounded using the following decomposition of its

operator norm:

}I ´ A ¨ pI ` Kq}Ч1 ď }I ´ A ¨ pI ` K
rnsq}Ч1 ` }A ¨ pK ´ K

rnsq}Ч1 . (4.8)

• The first term is the approximation error, since A is only an approximation of

pI ` K
rnsq´1. It boils down to the computation of an n ` 1 order square matrix

using multiplications and additions, which is carried out using interval arithmetics to

avoid rounding errors.

• The second part is the truncation error, due to the fact that K
rns is only a finite-

dimensional approximation of K.

The difficulty lies in this second error term, obtained by uniformly bounding

}A ¨ pK ´ K
rnsq ¨ Ti}Ч1 with respect to i. A method for choosing a sufficiently small value

of n such that the Newton-like operator T be contracting, as well as its overall complexity

of is given in [20, 21]. While the worst-case bound of n is exponential with respect to the

magnitude of the Chebyshev coefficients of ai, in practice and for a wide range of examples,

this method is quite efficient and fully automated.

The sum of these two error terms provides the required Lipschitz constant µ. Next, take
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ϕ an approximate truncated Chebyshev series for the exact solution ϕ˚. Obtaining T ¨ ϕ
and then }ϕ ´ T ¨ ϕ}Ч1 only requires arithmetic operations for polynomials in Chebyshev

basis, plus a multiplication of a vector of coefficients by the matrix A. The computations

are rigorously performed using interval arithmetic. Applying Theorem 4.3.1, we obtain an

upper bound for the approximation error ϕ´ϕ˚, for the Ч1-norm, and hence for the uniform

norm. Integrating r times ϕ provides approximations of x˚pjq (0 ď j ď r), where x˚ is the

exact solution of (4.2) with initial conditions (4.3), together with rigorous error bounds with

respect to the uniform norm.

Finally, to solve Problem 4.2.1 in the one-dimensional case, the above approximation and

validation method is applied r times, for the canonical set of initial conditions. Since the

initial conditions appear in the integral equation (4.4) only in the right-hand side ψ, operators

K and hence T need to be computed and bounded only once for the r validation processes.

4.3.2 Extensions of the method

This method can be extended to the vectorial case, where X,G : r´1, 1s Ñ R
d and Ai :

r´1, 1s Ñ R
dˆd. To see this, first notice that the integral transform can be applied as in

the scalar case described above. The resulting operator K : pЧ1qd Ñ pЧ1qd is made of

d ˆ d (scalar) integral operators Kij : Ч1 Ñ Ч1, which are similar to the one presented in

Fig. 4.1. By rearranging the basis of pЧ1qd from T0e1, T1e1, T2e1, . . . , T0ed, T1ed, T2ed, . . .

to T0e1, . . . , T0ed, T1e1, . . . , T1ed, . . . , where pe1, . . . , edq designates the canonical basis of

R
d, we end up again with an almost-banded structure depicted in Figure 4.2. Hence, the

numerical solving essentially works as in the scalar case.

(a) Block matrix representation of vectorial K (b) Almost-banded structure of vectorial K in
the rearranged basis

Figure 4.2 – Two representations of vectorial integral operator K
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In many problems, including the spacecraft dynamics studied in this dissertation, the

coefficients and right hand side in LODE (4.2) are not polynomials but rational functions,

special functions, etc. If they belong to Ч1 and are given through truncated Chebyshev series

with a certified error bound with respect to the Ч1-norm, then the exact integral operator K

is non-polynomial but well approximated by the polynomial integral operator KP obtained

by replacing the exact coefficients by their polynomial approximations. An additional term

}A ¨ pK ´ KP q}Ч1 appends to the two others in (4.8), but the essential ideas of the method

remain unchanged.

4.4 Example: the simplified linearized Tschauner-Hempel

equations

Hereafter the usage of the approximation method is illustrated by employing it on the in-plane

motion described in the simplified linearized Tschauner-Hempel equations:

x̃2 “ 2z̃1,

z̃2 “ 3
1 ` e cos ν

z̃ ´ 2x̃1
(SLTH)

First of all, one can remark that the in-plane motion can be reformulated as follows:

x̃2 “ 2z̃1,

z̃2 “ 3
1 ` e cospνq z̃ ´ 2x̃1

ñ
x̃1 “ 2z̃ ` c

2
,

z̃2 `
ˆ

4 ´ 3
1 ` e cos ν

˙
z̃ “ c,

(4.9)

where c is an arbitrary integration constant. In the sequence, only the validation of a so-

lution for the z̃ coordinate is studied. Before running the method, the interval rν0, νf s
to r´1, 1s is rescaled by introducing the independent variable τ P r´1, 1s and letting

νpτq “ ν0p1 ´ τq{2 ` νf p1 ` τq{2 “ ωτ ` θ with ω “ pνf ´ ν0q{2, θ “ pν0 ` νf q{2, and

Zpτq “ z̃pνpτqq. The following equation is then obtained for the z̃ coordinate:

Z2pτq ` ω2

ˆ
4 ´ 3

1 ` e cos νpτq

˙
Zpτq “ ω2c, (4.10)

together with rescaled initial conditions:

Zp´1q “ zpν0q, Z 1p´1q “ ωz1pν0q.

In particular, one can observe that the magnitude of the coefficients in (4.10) grows quadrati-
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cally with the length of the interval rν0, νf s.

4.4.1 Rigorous approximation of the non-polynomial coefficient

Since the coefficient of (4.10) is not polynomial, the first step is to provide a rigorous polyno-

mial approximation for it. The cosine function τ ÞÑ cos νpτq is approximated by applying the

validation method to the harmonic oscillator differential equation:

ξ2pτq ` ω2ξpτq “ 0, ξp´1q “ cos ν0, ξ1p´1q “ ´ω sin ν0. (4.11)

From this, a rigorous approximation of τ ÞÑ 1 ` e cos νpτq is deduced.

Finally, it must be composed with the reciprocal function. Numerical approximations can

be obtained using interpolation at Chebyshev nodes, which is a very standard and rather

efficient method [18]. Validation is performed through another Newton-like fixed-point method

as follows. Let f be a function in Ч1, non-zero over r´1, 1s, to be inverted, and g “ 1{f the

solution function. The functional equation fg ´ 1 “ 0 of unknown g P Ч1 must be solved

(the fact that g “ 1{f belongs to Ч1 comes from Wiener’s Tauberian theorem). If g0 is a

polynomial approximation of g satisfying }1´g0f}Ч1 “ µ ă 1, then g is the unique fixed-point

of the affine operator T defined by T ¨ g “ g ´ g0pfg ´ 1q and of Lipschitz constant µ ă 1.

Hence, Theorem 4.3.1 applies and provides an error enclosure for any candidate approximation

g̃ of g. Figure 4.3 shows the evolution of the minimal degree p needed to approximate the

coefficient τ ÞÑ ω2p4 ´ 3{p1 ` e cos νpτqqq within a Ч1-error less than 1, in function of the

eccentricity e and the total time interval rν0, νf s.

4.4.2 Integral transform and numerical solution

Following the integral transform technique described above, consider ϕpτq “ Z2pτq, so that

Zpτq now becomes:

Zpτq “ Zp´1q`pτ `1qZ 1p´1q`
ż τ

´1

ż s

´1

ϕpuqdu “ Zp´1q`pτ `1qZ 1p´1q`
ż τ

´1

pτ ´sqϕpsqds.

Thus the following integral equation is obtained:

ϕpτq `
ż τ

´1

αpτqpτ ´ sqϕpsqds “ ω2c´ αpτqpZp´1q ` pτ ` 1qZ 1p´1qq,

where αpτq “ 4 ´ 3{p1 ` e cos νpτqq. For the numerical solving, replace αpτq by a polynomial

approximation apτq and proceed as in Section 4.3: truncate the resulting infinite-dimensional
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equations at a chosen index n and solve the resulting almost-banded system using the algo-

rithm presented in [83] to obtain a degree n polynomial approximation ϕ̃ of the solution.

4.4.3 Validation

The validation method presented in Section 4.3.1 is fully automated. Hence, in this practical

example, it suffices to provide to the implemented procedure the differential equation (4.10)

where αpτq is given as a polynomial approximation apτq together with the error bound ε, and

the candidate polynomial approximate solution ϕ̃ obtained above. The procedure will return

a rigorous upper bound of the approximation error, with respect to the Ч1-norm.

An important remark is that the timings strongly depend on the minimal value for the trun-

cation index that the method finds and which ensures that the obtained operator is contracting.

Figure 4.3 gives these values in function of the time interval νf ´ ν0 and the eccentricity e of

the target reference orbit. We remark that these values only depend on the equation (that

is, ν0, νf and e) and not on the degree of the candidate approximate solution ϕ̃, since the

contracting operator T is completely independent of this approximation. In Figure 4.3 the

evolution of the approximation degree p for the coefficient ω2p4 ´ 3{p1 ` e cos νpτqqq and the

truncation order n is a function of the eccentricity e and the total time.

4.5 Validated guidance algorithm

Hereafter, the validated guidance problem for the hovering phases of the orbital spacecraft

rendezvous missions is studied. The idea is to provide a validation of the trajectories generated

by the optimization algorithm that steers the follower satellite in a fuel-optimal way to the

hovering region.

4.5.1 Validated constrained relative dynamics

Let Φ̄pνf , ν0q be the real transition matrix of the simplified linearized Tschauner-Hempel

equations (SLTH) from an initial ν0 to a final νf . By considering N P N impulsive velocities

corrections applied at given fixed ν1, . . . , νN , the propagation of the state for ν ě νN is

formulated as:

X̄`pνN q “ Φ̄pνN , ν1qX̄pν1q ` řN
k“1 Φ̄pνN , νkqB̄pνkq∆Vk, @ν ě νN . (4.12)

By applying the Chebyshev series approximation method previously presented, one can

obtain rigorous polynomial approximations rΦpν, ν0q over an arbitrary interval rν0, νf s satisfy-



4.5. Validated guidance algorithm 103

 0

 50

 100

 150

 200

 250

 1  2  3  4  5  6  7  8  9  10

p

κ

e = 0.5
e = 0.4
e = 0.3
e = 0.2
e = 0.1

(a) Approximation degree p needed to approximate coefficient
τ ÞÑ ω2p4 ´ 3{p1 ` e cos νpτqqq with a Ч

1-error less than 1

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1  2  3  4  5  6  7  8  9  10

n

κ

e = 0.5

e = 0.4

e = 0.3

e = 0.2

e = 0.1

(b) Truncation order n needed to obtain a contracting Newton-like operator
for LODE (4.10)

Figure 4.3 – Parameters evolution during validation of LODE (4.10) in function of eccentricity e and
total time rν0, νf s “ r0, 2κπs



104 Chapter 4. Validated optimal guidance problem

ing:

|rΦijpν0, νq ´ Φ̄ijpν0, νq| ď εijpν0, νf q, @ν P rν0, νf s. (4.13)

Then, the approximated state propagation is given by:

rXpνq “ rΦpν, ν1qX̄pν1q ` řN
k“1

rΦpνN , νkqB̄pνkq∆Vk, ν P rνN , νN ` ∆νs, (4.14)

where ∆ν depends on the interval over which the approximation rΦpν, ν1q is valid.

During the rendezvous hovering phases, the follower spacecraft is required to steer and

remain in the interior of a certain limited region of the space. The idea is to compute a

sequence of N velocity corrections generating a relative trajectory that remains inside the

hovering region during the interval rtN , tN`1s.

t1

t2
t3

tN-1
tN+1

tN

Figure 4.4 – Steering into the hovering region within N velocity corrections

Assuming, as in previous chapters, that this hovering range is a rectangular cuboid:

x ď xptq ď x y ď yptq ď y z ď zptq ď z, @t P rtN , tN`1s. (4.15)

Changing the simplified coordinates back to the Cartesian coordinates (1.18):

”
xptq, yptq, zptq

ı
“ 1

1 ` e cos νlooooomooooon
P pνq

”
x̄pνq, ȳpνq, z̄pνq

ı
. (4.16)

Let rP pνq ą 0 be a positive RPA of P pνq on the interval rνN , νN`1s such that | rP pνq ´
P pνq| ă εP , @ν P rνN , νN`1s and the polynomials rPxpνq, rPypνq, rPzpνq defined as:

”
rPxpνq rPypνq rPzpνq

ıT

“
”
I3 O3

ı
rXpνq. (4.17)

Then, a certified rational polynomial approximation for the LVLH relative positions is given

by:

rxptq “ rPxpνq{ rP pνq, ryptq “ rPypνq{ rP pνq, rzptq “ rPxpνq{ rP pνq
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and the inequalities in (4.15) can be approximated by:

rPxpνq ´ rP pνqx ě 0, rP pνqx´ rPxpνq ě 0,

rPypνq ´ rP pνqy ě 0, rP pνqy ´ rPypνq ě 0,

rPzpνq ´ rP pνqz ě 0, rP pνqz ´ rPzpνq ě 0,

@ν P rνN , νN`1s. (4.18)

4.5.2 Fuel-optimal impulsive validated guidance problem

Using the developments presented in the previous section for obtaining a validated description

of the constrained relative trajectories, the fuel-optimal impulsive validated guidance problem

for the rendezvous hovering phases is formulated as follows:

Problem 4.5.1. (Validated guidance problem) Consider the scenario: eccentricity e, semi-

major axis a, initial state Xpν1q P R
6, number of control actions N P N and final true anomaly

νN`1. Find N impulses ∆V P R
3N applied at given fixed instants ν1, . . . , νN , such that:

argmin
∆V

J p∆V q

s.t.

$
’’’&
’’’%

rPxpνq ´ rP pνqx ě 0, rP pνqx´ rPxpνq ě 0,

rPypνq ´ rP pνqy ě 0, rP pνqy ´ rPypνq ě 0,

rPzpνq ´ rP pνqz ě 0, rP pνqz ´ rPzpνq ě 0,

@ν P rνN , νN`1s.
(P.SIP)

This problem is a semi-infinite program (SIP), since the space constraints must be satisfied

for infinitely many values of ν. However, the polynomial inequalities in P.SIP can be con-

verted into so-called linear matrix inequalities (LMIs) using the results on the parametrization

of non-negative polynomials on the cone of semi-definite positive matrices presented by [81,

Theorems 9 and 10], resulting in the semi-definite program (SDP) described in P.SDP (see

Appendix B).

Problem 4.5.2. Consider the scenario: eccentricity e, semi-major axis a, initial state

Xpν1q P R
6, number of control actions N P N and final true anomaly νN`1. Find N im-

pulses ∆V P R
3N applied at given fixed instants ν1, . . . , νN , such that:

argmin
∆V

J p∆V q

s.t.

$
’’’&
’’’%

rpx “ Λ˚pY1x, Y2xq, rpx “ Λ˚pY1x, Y2xq,
rpy “ Λ˚pY1y, Y2yq, rpy “ Λ˚pY1y, Y2yq,
rpz “ Λ˚pY1z, Y2zq, rpz “ Λ˚pY1z, Y2zq,

(P.SDP)

where rpw is the vector containing the coefficients of the respective non-negative polynomials
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in the SIP formulation and Λ˚ is a bilinear operator (more details in [28, 29, 81]).

The advantages of reformulating P.SIP are twofold:

• In the SIP formulation, the space constraints are described by infinitely many con-

straints on the true anomaly, requiring discretization techniques to efficiently compute

a “solution". This solution, however, will systematically violate the constraints of the

original problem. On the other hand, the SDP formulation provides a finite and exact

description of the constraints;

• In previous works [24, 29], SDP solvers were employed in the conception of control

strategies for the spacecraft rendezvous problems, showing good performances even in

environments with limited computational resources, such as devices dedicated to space

applications.

4.5.3 Results

Hereafter the results obtained by solving the validated guidance algorithm for the scenario

described by the parameters given in Table 4.1 are presented.

Table 4.1 – Scenario parameters

Semi-major axis: a “ 7011 km
Eccentricity: e “ 0.4
Initial true anomaly: ν1 “ 0 rad
Interval between impulses: ∆ν “ π{4 rad
Number of impulsive velocity corrections: N “ 3
Saturation: ∆V “ 1 m/s
Initial relative state [m, m/s]: Xpν1q “ r200, 150, 100, 0, 0, 0s
Hovering zone rx, x, y, y, z, zs [m]: r50, 150,´25, 25,´25, 25s
Degree of RPAs: 5, 7

The RPAs were computed by a C implementation of the Chebyshev approximation method

previously presented. The respective SDP problem was formulated in Matlab R© via Yalmip [67]

(https://yalmip.github.io/) and solved using the SDPT3 solver [103] (http://www.math.

nus.edu.sg/~mattohkc/sdpt3.html). The certificate enclosures are evaluated by treating

the bounds of the RPAs via arithmetic interval [101] with the help of the b4m interval

arithmetic toolbox library [110] (http://www.ti3.tu-harburg.de/zemke/b4m/).

In Fig. 4.5 the nominal relative trajectory obtained by simply propagating the initial state

under the effect of the control actions is presented. Fig. 4.6, 4.7 and 4.8 show the evolution

of the x, z and y coordinates of the relative trajectory and their respective certificates.

https://yalmip.github.io/
http://www.math.nus.edu.sg/~mattohkc/sdpt3.html
http://www.math.nus.edu.sg/~mattohkc/sdpt3.html
http://www.ti3.tu-harburg.de/zemke/b4m/
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(a) XY projection of obtained trajectory.
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Figure 4.5 – Obtained relative trajectory without certification.
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Figure 4.5 – Obtained relative trajectory without certification.
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From Fig. 4.5, one can remark that the computed impulses produce a relative trajectory

that enters the hovering region and remains therein for the imposed true anomaly interval.
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(a) X-trajectory, RPAs of degree 5.
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(b) X-trajectory, RPAs of degree 7.

Figure 4.6 – X-coordinate in function of true anomaly for RPAs of degrees 5 and 7.

From the figures depicting the evolution of the in-plane x and z coordinates trajectories,

one can remark that the increase of the degree of the RPAs produce tighter certificate envelopes

(in green) for the errors. This is well illustrated by comparing the detailed views presented in

Fig. 4.7: the RPAs of degree 5 produce a certificate of approximatively 5 m for the excursion
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(c) Final uncertainty for x-trajectory, RPAs of degree 5.
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Figure 4.6 – X-coordinate in function of true anomaly for RPAs of degrees 5 and 7.
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(a) Z-trajectory, RPAs of degree 5.
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(b) Z-trajectory, RPAs of degree 7.

Figure 4.7 – Z-coordinate in function of true anomaly for RPAs of degrees 5 and 7.
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(c) Excursion of z-trajectory, RPAs of degree 5.
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Figure 4.7 – Z-coordinate in function of true anomaly for RPAs of degrees 5 and 7.
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of the trajectory, while the RPAs of degree 7 produce a much lower excursion certificate of

approximatively 25 cm.
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(a) Y-trajectory, RPAs of degree 5.
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(b) Y-trajectory, RPAs of degree 7.

Figure 4.8 – Y-coordinate in function of true anomaly for RPAs of degrees 5 and 7.

From Fig. 4.8, it is possible to observe that the certificates for y are tighter than those

obtained for the in-plane coordinates x and y (the upper and lower certificates cannot even be

distinguished without zooming). This is explained by the fact that the out-of-plane dynamics

is described by a simpler harmonic oscillator as previously presented in (4.11), which can be
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efficiently approximated by low degree polynomials. For instance, both RPAs produce final

certificate enclosure of less than 2 cm for the relative trajectory.

4.6 Conclusions

An approximation method for obtaining rigorous polynomial approximations of the solutions of

LODE via Chebyshev series has been described in this chapter. An extension of this technique

for the case of multidimensional LODEs with non-polynomial coefficients was employed to

obtain a validated guidance algorithm based on SDP for the rendezvous hovering phases. The

use of the obtained RPAs and interval arithmetic allows the validation of the propagation of

the relative trajectories, providing an automated a posteriori certification method to certify

the computed control actions. Future experiments would assess the tractability of problem

P.SDP on devices dedicated to space applications, focusing on the analysis of the relation

between the computational burden and the precision of the polynomial approximations.



Conclusion and future works

The main goal of this work is the development of new validated optimization-based guidance

and control algorithms for the spacecraft rendezvous hovering phases. These algorithms are

both sufficiently comprehensive to account for all the complex constraints of the problem, and

efficient to be numerically solved in reasonable time on devices dedicated to space applications

(LEON3 microprocessors).

A model predictive control strategy is proposed, ensuring the convergence and station-

keeping of the relative motion inside the hovering region, even when the saturation of the

thrusters is taken into account. This control strategy is based on the iterative resolution of

an optimal fixed-time guidance problem that employs a simplified linearized synthesis model

(described in Chap. 1) to perform the propagation of the spacecraft relative trajectories. In

order to obtain efficient algorithms, we focused on several reformulations of this optimal

guidance problem. One of them (see Chap. 2) is an original contribution of this work,

and consists in a new exact and finite description of the set of admissible periodic relative

trajectories that only relies on closed-form expressions depending on the space constraints and

on the entries of the state vector. During numerical tests, this new finite approach showed

computation times of the order of magnitude of those obtained for traditional discretization

methods, with the advantage of not systematically violating the space constraints.

In future works, a further generalization of this optimal guidance problem could consider

that the control application dates are not a priori fixed and periodical. In this sense, we

proposed a very recent and preliminary result in [69]. Ideally, in order to reduce even more

the conservativeness, the number of control actions and their application dates could be set

as decision variables of the problem. This could, however, generate problems that are too

cumbersome to be solved in low-performance devices, and a trade-off remains to be found.

To assess the performance of our algorithms, a particular effort was devoted to the

construction of a processor-in-the-loop simulator, described in Chap. 3, which replicates the

behavior of control algorithms embedded on a real spacecraft. Its operation consists in a loop-

communication between the nonlinear simulator that computes the evolution of the spacecraft

relative trajectories and the device that employs the LEON3 microprocessor to compute the

control actions. Simulations performed in this processor-in-the-loop framework reveal that

although the proposed model predictive approach may produce greater convergence times, it is

more efficient with respect to fuel consumption than other methods proposed in the literature.

Moreover, this approach is numerically tractable in reasonable time when embedded in space
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dedicated devices. The proven convergence (see Chap. 3) of the proposed model predictive

control strategy intuitively suggests a certain level of robustness, which is observed in practice

during the simulations. An extension of our work will consist in a deeper theoretical study

of the properties of the closed-loop system, which should provide an idea of how robust the

system is to uncertainties.

Another important aspect treated in this thesis is mission safety. For this purpose, two

(ground support) validation strategies for our algorithms are presented: first, a “classical”

simulator (described in Chap. 1) relying on the numerical integration of the Gauss planetary

equations under disturbances provides a high fidelity reproduction of the (nonlinear, per-

turbed) relative motion. This is employed to validate via numerical simulations the relative

trajectories of the linearized synthesis model.

However, since these simulations contain numerical errors, we also focused on a validation

technique which takes both approximation and rounding errors into account. We debuted

our study in Chap. 4, with the validation of the relative trajectories generated by the control

actions computed at each call of the optimal guidance problem, and provided an automated

numerical certification method to inspect the satisfaction of the constraints of the problem.

This is based on rigorous polynomial approximations (error-bounded polynomials that approx-

imate functions on a given interval) of the linearized synthesis model and interval arithmetic.

In future works, we intend to develop validation techniques for the solutions of more general

differential equations, such as the disturbed nonlinear Tschauner-Hempel equations, which

would provide also a certification tool for the general simulation model.

Finally, synchronous programming languages would help to certify the proposed controller

codes from the industrial point of view. Then, these controller codes could be embedded on

small or end-of-life satellites for the accomplishment of short missions, which would allow

the evaluation of the behavior and robustness of the proposed techniques in a real space

environment.



Appendix A

Tschauner-Hempel equations

A.1 Nonlinear Tschauner-Hempel equations

Hereafter we deduce the equations describing the relative dynamics between two spacecraft

orbiting the Earth in elliptical orbits (see Fig. A.1).

Figure A.1 – Rendezvous illustration.

Let be the vectors ~rlf “ ÝÝÑ
SlSf , ~rel “ ÝÝÑ

OSl and ~ref “ ÝÝÑ
OSf . Supposing that the gravitational

attraction between the spacecraft is negligible and applying Newton’s second law of motion

to both of them, we obtain:

d2~rel

dt2

ˇ̌
ˇ̌
FO

“ ´ µ

}~rel}3
~rel,

d2~ref

dt2

ˇ̌
ˇ̌
FO

“ ´ µ

}~ref }3
~ref .

By subtracting the second equation from the first one, for the left-hand side we have:

d2~ref

dt2

ˇ̌
ˇ̌
FO

´ d2~rel

dt2

ˇ̌
ˇ̌
FO

“ d2 p~ref ´ ~relq
dt2

ˇ̌
ˇ̌
FO

“ d2~rlf

dt2

ˇ̌
ˇ̌
FO

.

Combining with the right-hand side, we obtain an expression for the dynamics of the
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relative motion in the ECI frame:

d2~rlf

dt2

ˇ̌
ˇ̌
FO

“ ´ µ

}~ref }3
~ref ` µ

}~rel}3
~rel. (A.1.1)

The relation between accelerations in the frames FO and FL is given by:

d2~rlf

dt2

ˇ̌
ˇ
FO

“ d2~rlf

dt2

ˇ̌
ˇ̌
FLlooomooon

Apparent acceleration

` 2~ΩFL{FO
ˆ d~rlf

dt

ˇ̌
ˇ̌
FLlooooooooooomooooooooooon

Coriolis acceleration

` d~ΩFL{FO

dt

ˇ̌
ˇ̌
ˇ
FL

ˆ ~rlf

loooooooooomoooooooooon
Euler acceleration

` ~ΩFL{FO
ˆ
´
~ΩFL{FO

ˆ ~rlf

¯

loooooooooooooooomoooooooooooooooon
centrifugal acceleration

.

Using the expressions of ~rlf and ~ΩFL{FO
in the LVLH frame:

~rlf |
FL

“
”
x, y, z

ıT

, (A.1.2)

~ΩFL{FO

ˇ̌
ˇ
FL

“
”
0, 0, ´ 9ν

ıT

,

each component of the acceleration can be computed as follows:

• The apparent acceleration:

d2~rlf

dt2

ˇ̌
ˇ̌
FL

“

»
———–

:x

:y

:z

fi
ffiffiffifl .

• The Coriolis acceleration:

2~ΩFL{FO
ˆ d~rlf

dt

ˇ̌
ˇ̌
FL

“ 2

»
———–

0

0

´ 9ν

fi
ffiffiffifl ˆ

»
———–

9x

9y

9z

fi
ffiffiffifl “

»
———–

´2 9ν 9z

0

2 9ν 9x

fi
ffiffiffifl .

• The Euler acceleration:

d~Ω
dt

ˇ̌
ˇ̌
ˇ
FL

ˆ ~rlf “

»
———–

0

0

´:ν

fi
ffiffiffifl ˆ

»
———–

x

y

z

fi
ffiffiffifl “

»
———–

´:νz

0

:νx

fi
ffiffiffifl .

• The centrifugal acceleration:

~ΩFL{FO
ˆ
´
~ΩFL{FO

ˆ ~rlf

¯
“

»
———–

0

0

´ν

fi
ffiffiffiflˆ

¨
˚̊
˚̋

»
———–

0

0

´ν

fi
ffiffiffifl ˆ

»
———–

x

y

z

fi
ffiffiffifl

˛
‹‹‹‚“

»
———–

0

0

´ν

fi
ffiffiffiflˆ

»
———–

´νz
0

νx

fi
ffiffiffifl “

»
———–

´ν2x

0

´ν2z

fi
ffiffiffifl .
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These accelerations add up to:

d2~rlf

dt2

ˇ̌
ˇ̌
FO

“

»
———–

:x´ 2 9ν 9z ´ :νz ´ ν2x

:y

:z ` 2 9ν 9z ` :νx´ ν2z

fi
ffiffiffifl

FL

. (A.1.3)

The expression of ~rel in the LVLH frame is:

~rel|FL
“
”
0, 0, ´R

ıT

, (A.1.4)

where Rptq “ }~Rptq} “ ap1 ´ e2q
1 ` e cos νptq .

By replacing (A.1.2), (A.1.3) and (A.1.4) in (A.1.1), we obtain:

:x “ 2 9ν 9z ` :νz ` 9ν2x´ µxb
px2 ` y2 ` pR ´ zq2q3

:y “ ´ µyb
px2 ` y2 ` pR ´ zq2q3

:z “ ´2 9ν 9x´ :νx` 9ν2z ´ µpz ´Rqb
px2 ` y2 ` pR ´ zq2q3

´ µ

R2
,

(NLTH)

the so-called nonlinear Tschauner-Hempel equations.

A.2 Linearized Tschauner-Hempel equations

Assuming that the distance between spacecraft is much smaller that the distance from the

leader spacecraft to the center of the Earth:

a
x2 ` y2 ` z2 ! R, (A.2.1)

we perform first order approximations of the nonlinear terms fxpx, y, zq “ ´ µx?
px2`y2`pR´zq2q3

,

fypx, y, zq “ ´ µy?
px2`y2`pR´zq2q3

and fzpx, y, zq “ ´ µpz´Rq?
px2`y2`pR´zq2q3

around the point

px, y, zq “ p0, 0, 0q via truncated Taylor series expansions:

fpx, y, zq « fp0, 0, 0q ` x
Bf
Bx

ˇ̌
ˇ̌
p0,0,0q

` y
Bf
By

ˇ̌
ˇ̌
p0,0,0q

` z
Bf
Bz

ˇ̌
ˇ̌
p0,0,0q

For fxpx, y, zq we have:

fxp0, 0, 0q “ 0,
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Bfx

Bx

ˇ̌
ˇ̌
p0,0,0q

“ ´µpR2 ´ 2Rz ´ 2x2 ` y2 ` z2qb
px2 ` y2 ` pR ´ zq2q5

ˇ̌
ˇ̌
ˇ̌
p0,0,0q

“ ´ µ

R3
,

Bfx

By

ˇ̌
ˇ̌
p0,0,0q

“ 3µxyb
px2 ` y2 ` pR ´ zq2q5

ˇ̌
ˇ̌
ˇ̌
p0,0,0q

“ 0,

Bfx

Bz

ˇ̌
ˇ̌
p0,0,0q

“ ´ 3µxpR ´ zqb
px2 ` y2 ` pR ´ zq2q5

ˇ̌
ˇ̌
ˇ̌
p0,0,0q

“ 0,

which adds up to:

fxpx, y, zq « fxp0, 0, 0q ` x
Bfx

Bx

ˇ̌
ˇ̌
p0,0,0q

` y
Bfx

By

ˇ̌
ˇ̌
p0,0,0q

` z
Bfx

Bz

ˇ̌
ˇ̌
p0,0,0q

“ ´ µ

R3
x. (A.2.2)

For fypx, y, zq we have:

fyp0, 0, 0q “ 0,

Bfy

Bx

ˇ̌
ˇ̌
p0,0,0q

“ 3µxyb
px2 ` y2 ` pR ´ zq2q5

ˇ̌
ˇ̌
ˇ̌
p0,0,0q

“ 0,

Bfy

By

ˇ̌
ˇ̌
p0,0,0q

“ ´µpR2 ´ 2Rz ` x2 ´ 2y2 ` z2qb
px2 ` y2 ` pR ´ zq2q5

ˇ̌
ˇ̌
ˇ̌
p0,0,0q

“ ´ µ

R3
,

Bfy

Bz

ˇ̌
ˇ̌
p0,0,0q

“ ´ 3µypR ´ zqb
px2 ` y2 ` pR ´ zq2q5

ˇ̌
ˇ̌
ˇ̌
p0,0,0q

“ 0,

which adds up to:

fypx, y, zq « fyp0, 0, 0q ` x
Bfy

Bx

ˇ̌
ˇ̌
p0,0,0q

` y
Bfy

By

ˇ̌
ˇ̌
p0,0,0q

` z
Bfy

Bz

ˇ̌
ˇ̌
p0,0,0q

“ ´ µ

R3
y (A.2.3)

For fzpx, y, zq we have:

fzp0, 0, 0q “ µ

R2
,

Bfz

Bx

ˇ̌
ˇ̌
p0,0,0q

“ 3µxpz ´Rqb
px2 ` y2 ` pR ´ zq2q5

ˇ̌
ˇ̌
ˇ̌
p0,0,0q

“ 0,

Bfz

By

ˇ̌
ˇ̌
p0,0,0q

“ 3µypz ´Rqb
px2 ` y2 ` pR ´ zq2q5

ˇ̌
ˇ̌
ˇ̌
p0,0,0q

“ 0,
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Bfz

Bz

ˇ̌
ˇ̌
p0,0,0q

“ ´ µp´2R2 ` 4Rz ` x2 ` y2 ´ 2z2qb
px2 ` y2 ` pR ´ zq2q5

ˇ̌
ˇ̌
ˇ̌
p0,0,0q

“ 2µ
R3

z,

which adds up to:

fzpx, y, zq « fzp0, 0, 0q ` x
Bfz

Bx

ˇ̌
ˇ̌
p0,0,0q

` y
Bfz

By

ˇ̌
ˇ̌
p0,0,0q

` z
Bfz

Bz

ˇ̌
ˇ̌
p0,0,0q

“ µpR ` 2zq
R3

(A.2.4)

Replacing (A.2.2), (A.2.3) and (A.2.4) in (NLTH), the linearized Tschauner-Hempel equa-

tions are obtained:

:x “ 2 9ν 9z ` :νz ` 9ν2x´ µ

R3
x

:y “ ´ µ

R3
y

:z “ ´2 9ν 9x´ :νx` 9ν2z ` 2µ
R3

z.

(LTH)

A.3 Simplified linearized Tschauner-Hempel equations

In [55], Humi performs a sequence of manipulations in order to produce a simplified version of

the linearized Tschauner-Hempel equations, in which the true anomaly appears as independent

variable. These manipulations are presented step-by-step hereafter:

Step 1: Replace 9ν “ k2ρ2
ν , where k2 “

b
µ

a3p1´e2q3 , and ρν “ p1 ` e cos νq in (LTH):

:x “ 2 9ν 9z ` :ν z ` p 9ν2 ´ k 9ν
3

2 qx
:y “ ´k 9ν

3

2 y

:z “ ´2 9ν 9x´ :ν x` p 9ν2 ` 2k 9ν
3

2 qz,

Step 2: Replace time by true anomaly as independent variable using the following relations:

p¨q1 “ dp¨q
dν

, p¨q2 “ d2p¨q
dν2

,
dp¨q
dt

“ p¨q1
9ν,

d2p¨q
dt2

“ p¨q2
9ν2 ` p¨q1

:ν,

obtaining the following expressions:

9ν2x2 ` :νx1 “ 2 9ν2z1 ` :νz ` p 9ν2 ´ k 9ν
3

2 qx
9ν2y2 ` :νy1 “ ´k 9ν

3

2 y

9ν2z2 ` :νz1 “ ´2 9ν2x1 ´ :νx` p 9ν2 ` 2k 9ν
3

2 qz,

where sν “ sin ν and cν “ cos ν.
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Step 3: Substitute 9ν by k2ρ2
ν :

k4ρ4
νx

2 ´ 2k4ρ3
νesνx

1 “ 2k4ρ4
νz

1 ´ 2k4ρ3
νesνz ` k4ρ3

νpρν ´ 1qx
k4ρ4

νy
2 ´ 2k4ρ3

νesνy
1 “ ´k4ρ3

νy

k4ρ4
νz

2 ´ 2k4ρ3
νesνz

1 “ ´2k4ρ4
νx

1 ` 2k4ρ3
νesνx` k4ρ3

νpρν ` 2qz.

Step 4: Divide both sides by k3ρ3
ν :

ρνx
2 ´ 2esνx

1 “ 2ρνz
1 ´ 2esνz ` ecνx

ρνy
2 ´ 2esνy

1 “ ´y
ρνz

2 ´ 2esνz
1 “ ´2ρνx

1 ` 2esνx` p3 ` ecνqz.

Step 5: Subtract ecν multiplied by the respective coordinate from each equation:

ρνx
2 ´ 2esνx

1 ´ ecνx “ 2pρνz
1 ´ esνzq

ρνy
2 ´ 2esνy

1 ´ ecνy “ ´ρνy

ρνz
2 ´ 2esνz

1 ´ ecνz “ ´2pρνx
1 ´ esνxq ` 3z.

(A.3.1)

Step 6: Let be Xptq “ rx, y, z, 9x, 9y, 9zsT and X̃pνq “ rx̃, ỹ, z̃, x̃1, ỹ1, z̃1sT . such that:

X̃pνq “ T pνqXptq, Xptq “ T´1pνqX̃pνq, (A.3.2)

where T pνq is given by:

T pνq “

»
– ρνI3 03

´esνI3 pk2ρνq´1I3

fi
fl .

This variable change induces the following relations:

x̃ “ ρνx

ỹ “ ρνy

z̃ “ ρνz

,

x̃1 “ ρνx
1 ´ esν x

ỹ1 “ ρνy
1 ´ esν y

z̃1 “ ρνz
1 ´ esν z

,

x̃2 “ ρνx
2 ´ 2esν x

1 ´ ecν x

ỹ2 “ ρνy
2 ´ 2esν y

1 ´ ecν y

z̃2 “ ρνz
2 ´ 2esν z

1 ´ ecν z,

By introducing these new tilde-variables in (A.3.1), we finally obtain the so-called simplified

linearized Tschauner Hempel equations::

x̃2 “ 2z̃1

ỹ2 “ ´y

z̃2 “ 3
ρν
z̃ ´ 2x̃1.

(SLTH)
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Univariate non-negative

polynomials

In [81, Theorems 9 and 10], Nesterov presents the conditions that an univariate polynomial

must satisfy in order to be non-negativity on finite, semi-infinite or infinite intervals of the

reals. These conditions are obtained by exploring the existent relations between the cone of

of non-negative polynomials and the cone of positive semi-definite matrices.

In the sequel, we present the linear matrix inequalities that the coefficients of a non-

negative univariate polynomial over the reals must satisfy. The reader is invited to consult

[81, Sections 3.1-3.3] and [28, Appendix B] for the other cases and further details.

Proposition B.1 (Non-negative univariate polynomials over the reals).

Let be an even n P N, the vector p “
”
p0 . . . pn

ıT

P R
n`1 and the polynomial

P pwq “
nÿ

i“0

piw
i, @w P R. Then, the condition for the non-negativity of P pwq is:

P pwq ě 0, @w P R ô DY ľ 0 s.t. p “ Λ˚pY q,

where Y P R
pn{2`1qˆpn{2`1q is a symmetric matrix and the operator Λ˚p¨q is given by Λ˚pY q “

”
trpY Hn{2`1,1q . . . trpY Hn{2`1,n`1q

ıT

, with

R
pm`1qˆpm`1q Q Hm,k “

$
’&
’%

Hm,kpi, jq “ 1, if i` j “ k ` 1

Hm,kpi, jq “ 0, otherwise.

Example B.1:

Consider the polynomial

Qpwq “ 232 ` 196w ` 77w2 ` 14w3 ` w4
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and the vector of its coefficients q “
”
232 196 77 14 1

ıT

. Let us verify if there

exists R
3ˆ3 Q Y ľ 0 that satisfies q “ Λ˚pY q:

232 “ tr

¨
˚̊
˚̋

»
———–

Y11 Y12 Y13

Y12 Y22 Y23

Y13 Y23 Y33

fi
ffiffiffifl

»
———–

1 0 0

0 0 0

0 0 0

fi
ffiffiffifl

˛
‹‹‹‚“ Y11 ñ Y11 “ 232

196 “ tr

¨
˚̊
˚̋

»
———–

Y11 Y12 Y13

Y12 Y22 Y23

Y13 Y23 Y33

fi
ffiffiffifl

»
———–

0 1 0

1 0 0

0 0 0

fi
ffiffiffifl

˛
‹‹‹‚“ 2Y12 ñ Y12 “ 98

77 “ tr

¨
˚̊
˚̋

»
———–

Y11 Y12 Y13

Y12 Y22 Y23

Y13 Y23 Y33

fi
ffiffiffifl

»
———–

0 0 1

0 1 0

1 0 0

fi
ffiffiffifl

˛
‹‹‹‚“ 2Y13 ` Y22 ñ 2Y13 ` Y22 “ 77

14 “ tr

¨
˚̊
˚̋

»
———–

Y11 Y12 Y13

Y12 Y22 Y23

Y13 Y23 Y33

fi
ffiffiffifl

»
———–

0 0 0

0 0 1

0 1 0

fi
ffiffiffifl

˛
‹‹‹‚“ 2Y23 ñ Y23 “ 7

1 “ tr

¨
˚̊
˚̋

»
———–

Y11 Y12 Y13

Y12 Y22 Y23

Y13 Y23 Y33

fi
ffiffiffifl

»
———–

0 0 0

0 0 0

0 0 1

fi
ffiffiffifl

˛
‹‹‹‚“ Y33 ñ Y33 “ 1

Let us choose Y13 “ 10 and Y22 “ 57 and test the positivity of the leading principal

minors of Y :
D1pY q “ 232 ą 0,

D2pY q “

ˇ̌
ˇ̌
ˇ̌
232 98

98 57

ˇ̌
ˇ̌
ˇ̌ “ 3620 ą 0,

D3pY q “

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

232 98 10

98 57 7

10 7 1

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

“ 272 ą 0.

Since all the leading principal minors of Y are positive, we conclude that Y is positive

definite and, consequently, Qpwq ě 0,@w P R.
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Envelopes and implicitization

C.1 Envelope definition

Let be X P R
n, p P R and F pX, pq an one-parameter function, differentiable with respect to

p. Let F pX, pq “ 0 be the equation that represents a family of hypersurfaces parametrized

by p in the n-dimensional Euclidean space.

Definition C.1.1 (Envelope of a family of hypersurfaces). The hypersurface tangent to each

of the hypersurfaces of the p-parametrized family F pX, pq “ 0 is called the envelope of F and

is given by the set of points E defined by:

E :“
"
X P R

n

ˇ̌
ˇ̌ F pX, pq “ 0,

BF
Bp pX, pq “ 0

*
. (C.1.1)

Example C.1: Envelope

Consider the function

F px, y, pq “ sinppqx` cosppqy ´ 1

and the associated family of lines given by F px, y, pq “ 0 depicted in Fig. C.1.
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x

-1.5 -1 -0.5 0 0.5 1 1.5

y

-1.5
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0

0.5

1

1.5

Figure C.1 – Family of lines sinppqx` cosppqy “ 1.

We remark in Fig. C.1 that the set of points at which two neighbor lines intersect are

exactly the circle of radius 1 centered at p0, 0q. In fact, we can prove that this circle

corresponds to the envelope of F px, y, pq using Def. C.1.1. In order to do so, it suffices

to compute the pairs px, yq for which F px, y, pq “ BF
Bp

px, y, pq “ 0 :

$
’&
’%

sinppqx` cosppqy “ 1

cosppqx´ sinppqy “ 0

squaringñ

$
’&
’%

sin2ppqx2 ` 2 sinppq cosppq ` cos2ppqy2 “ 1

cos2ppqx2 ´ 2 sinppq cosppq ` sin2ppqy2 “ 0

addingñ x2 ` y2 “ 1 .

Although Ex. C.1 illustrates with simplicity how one can obtain the expression of the

envelope of a family of curves, for more general cases these expression are not always straight-

forward to be computed. In the sequel we present an implicitization method that can be

employed for this purpose.

C.2 Implicitization method

After computing F pX, pq “ 0 and BF
Bp

pX, pq “ 0, we obtain two equations parametrized by p.

In some cases, it is not evident how to proceed in order to obtain an implicit expression for the

envelope from these equations. However, if both equalities can be reformulated as polynomial

equations with complex coefficients, we can employ Sylvester’s Matrix implicitization method

in order to do so.

We use the example given in [107, Section 2] to explain how this implicitization method

can be employed:
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Example C.2: Sylvester’s matrix implicitization method

Consider the parametric expressions:

$
’&
’%

x “ 0.4 ` 0.5 cosppq ´ 2 sinp2pq

y “ 0.6 ` 0.2 sinppq ` 0.7 sinp2pq,

producing the polar plot presented in Fig. C.2.

x
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

y

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure C.2 – Polar plot for x “ 0.4`0.5 cosppq ´2 sinp2pq and y “ 0.6`0.2 cosppq `0.7 cosp2pq.

In order to obtain polynomial equations with complex coefficients, we perform the

following change of variables:

cosppq “ exppitq ` expp´itq
2

“ z ` 1{z
2

and sinppq “ exppitq ´ expp´itq
2i

“ z ´ 1{z
2i

.

Then, multiplying the obtained equalities by z2, we obtain the following polynomial

equations:

$
’&
’%

pxpzq “ iz4 ` 0.25z3 ` p0.4 ´ xqz2 ` 0.25z ´ i “ 0

pypzq “ 0.35z4 ´ 0.1z3 ` p0.6 ´ yqz2 ` 0.1z ` 0.35 “ 0.

The implict expression producing the plot presented in Fig. C.2 can then be obtained

by evaluating the resultant of the polynomials pxpzq and pypzq, i.e., by computing the
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determinant of the following Sylvester’s Matrix:

S “

»
———————————————————–

´i 0.25 0.4 ´ x 0.25 i 0 0 0

0 ´i 0.25 0.4 ´ x 0.25 i 0 0

0 0 ´i 0.25 0.4 ´ x 0.25 i 0

0 0 0 ´i 0.25 0.4 ´ x 0.25 i

0.35 0.1i 0.6 ´ y ´0.1i 0.35 0 0 0

0 0.35 0.1i 0.6 ´ y ´0.1i 0.35 0 0

0 0 0.35 0.1i 0.6 ´ y ´0.1i 0.35 0

0 0 0 0.35 0.1i 0.6 ´ y ´0.1i 0.35

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

,

which produces the bivariate polynomial:

fpx, yq “ 2401
160000

x4 ` 49
200

x2y2 ` y4 ´ 2401
100000

x3 ´ 18879
64000

x2y ´ 49
250

xy2 ´ 77
32
y3 ´ 159927

8000000
x2`

18879
80000

xy ` 3036377
2560000

y2 ` 236759
10000000

x` 4743897
12800000

y ´ 358805651
6400000000

.

The pairs px, yq P R
2 such that fpx, yq “ 0 are exactly those generating the plot

presented in Fig. C.2.
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Embedding the libraries for the LP

and SDP methods

1. Cross-compiler : the architecture of the synthesized LEON3 microprocessor requires

a particular X86/SPARC cross-compiler. This cross-compiler1 is installed on a Linux

machine in the /opt directory using the following commands:

$ cd /opt

$ tar xvjf sparc´linux´ct´multilib´0.0.7.tar.bz2

$ export PATH=/opt/sparc´linux´4.4.2´toolchains/multilib/bin:$PATH

2. LAPACK2 and GLPK : the procedure of cross-compilation of LAPACK for SPAR-

C/LEON3 is the following one:

2.1) Shell variables for LAPACK cross compilation:

$ export CPPFLAGS="-I/opt/sparc-linux-4.4.2-toolchains/multilib/sparc-leon-

ãÑ linux-gnu/sys-root/usr/include"

$ export CFLAGS="-g -O2"

$ export LD="/opt/sparc-linux-4.4.2-toolchains/multilib/sparc-leon-linux-gnu/

ãÑ bin/ld"

$ export LDFLAGS="-L/opt/sparc-linux-4.4.2-toolchains/multilib/lib/gcc/sparc-

ãÑ leon-linux-gnu/4.4.2"

$ export CC=sparc´linux´gcc

2.2) CFLAG integrates the“-g" option for debugging reasons, then use only the “-O2"

option. In the glpk-4.60 directory is the configure file that generates the makefile:

$ ./configure ´´host = sparc´sun´sunos4.1.1

$ make

1http://gaisler.com/anonftp/linux/linux-2.6/toolchains/sparc-linux-4.4.2/

sparc-linux-ct-multilib-0.0.7.tar.bz2
2LAPACK official site: http://www.netlib.org/lapack/, Archives: http://www.netlib.org/lapack/

lapack-3.7.0.tgz

http://gaisler.com/anonftp/linux/linux-2.6/toolchains/sparc-linux-4.4.2/sparc-linux-ct-multilib- 0.0.7.tar.bz2
http://gaisler.com/anonftp/linux/linux-2.6/toolchains/sparc-linux-4.4.2/sparc-linux-ct-multilib- 0.0.7.tar.bz2
http://www.netlib.org/lapack/
http://www.netlib.org/lapack/lapack-3.7.0.tgz
http://www.netlib.org/lapack/lapack-3.7.0.tgz
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2.3) Once the previous steps are executed, it is possible to compile a test program with

the LAPACK library:

$ sparc´linux´g++ ´Wall test.c ´o test ´I. ´L./.libs ´lglpk

2.4) At this point the libglpk.a library is created in the directory

glpk-4.60/src/.libs.

3. CSDP3: the usual CSDP compilation chain must be substantially modified for cross-

compilation. Each Makefile file must be modified to integrate the LAPACK library

and the paths to the compilers.

The Linux diff command can be used to highlight new instructions in makefiles. A

complete CSDP archive with all the changes for a cross-compilation is available at

http://homepages.laas.fr/fcamps/CSDP/CSDP.tar. Each Make.diff file makes it

possible to apply a patch to the Makefile of the original archive. CSDP source code is

available with the Linux command:

svn co https://projects.coin´or.org/svn/Csdp/trunk

Once the makefiles have been modified, a simple run of the Make command is needed

to generate the CSDP library.

4. Embedding the libraries: The computation libraries must be installed on the board (in

the case of a non-static compilation) in the standard directory of the libraries.

The variable LD_LIBRARY_PATH must be modified, for example:

$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/lib

3CSDP official site : https://projects.coin-or.org/Csdp/

http://homepages.laas.fr/fcamps/CSDP/CSDP.tar
https://projects.coin-or.org/Csdp/
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Non-smooth optimization methods

Hereafter we present methods to address the following problem:

Problem E.0.1 (Non-smooth optimization problem). Find ξ˚ P R
n such that

ξ˚ “

$
&
%

argmin φpξq
s.t. ξ P C

(P0)

where φ : Rn ÞÑ R is a convex function and C is a compact set in R
n defined by equalities

and/or inequalities:

C “ tξ P R
n | ψipξq ő 0, i “ 1, 2, ....,mu (E.0.1)

where each function ψi : Rn ÞÑ R is convex.

The proposed problem may have more than one solution: in the case where the constraint

set is feasible, there exists one global minimum for the problem (guaranteed by the extreme

value theorem, compactness of C and convexity of the objective function) that can possibly

be attained at more than one point.

E.1 Penalty method

Luenberger and Ye propose in [73] a penalty method to approximate this constrained problem

by an unconstrained problem. This method consists on removing the constraints and adding

a function multiplied by a constant to the objective function to represent the violation of the

constraints, the so-called “penalty function”. One example of penalty function proposed in

[73] is:

Ψpξq “ 1
2

mÿ

i“1

pmax t0, ψipξquq2 (E.1.1)
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and the penalized objective function is defined by:

Υpξq “ tφpξq ` ηΨpξqu , (E.1.2)

where η is a positive multiplicative penalizing constant. The penalized problem is then

formulated as follows:

Problem E.1.1 (Penalized problem). Find ξ˚
η P R

n such that

ξ˚
η “ argmin Υpξq (Pk)

The idea is that by making the multiplicative constant η tend to infinity, the solution of

the penalized problem converges to a solution for the original problem. [73, Chapter 13.1]

present the following theorem:

Theorem E.1.1 (Penalty method convergence). Let C be a feasible constraint set in (P0).

Let pηiqiPN be a sequence tending infinity such that for each i, ηi ě 0, ηi`1 ą ηi. Then, any

limit point of
 
ξ˚

ηi

(
is a solution to the original problem (P0).

Notice that so far we did not present a method to solve (Pk). Although several methods

are available to address convex smooth optimization problems, the optimization problems we

are interested in are characterized by non-differentiable objective functions and constraints.

In the sequel, two methods that can be applied to this class of problems are presented: the

quasi-Newton method proposed by Lewis and Overton in [64], which consists in building

local quadratic approximations of the penalized function (E.1.2) and computing descent steps

using the sub-gradients and the inverse Hessian; and the sub-gradient method proposed by

Shor in [95], a first-order approach that resembles the steepest decent optimization algorithm,

but uses sub-gradients instead of gradients.

E.2 Sub-gradient method

Before presenting the method, let us first give the formal definition of sub-gradients:

Definition E.2.1 (Sub-gradient). Let θ be a convex function with domain I Ă R
n and let

ξ0 be an interior point of I. A sub-gradient or a generalized gradient of θ at ξ0 is any vector

gpξ0q satisfying

θpξq ´ θpξ0q ě xgpξ0q, ξ ´ ξ0y , @ξ P I

where x¨, ¨y is the scalar product in R
n.
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Techniques to compute a sub-gradient for different types of non-smooth functions are

presented in the first chapter of [95]. The sub-gradient method consists in an algorithm that

generates a sequence tξku8
k“0 according to the formula

ξk`1 “ ξk ´ hk`1gθpξkq (E.2.1)

for a given convex function θ defined on En, the euclidean n-space, and an initial point ξ0.

Shor presents in [95, Theorem 2.2] the following theorem providing a method to solve the

intermediate problems (Pk):

Theorem E.2.1. Let θ be a convex function defined on En which has a bounded set of

minimum points I˚ and let a sequence of positive numbers thku, k “ 1, 2, . . . , satisfy the

conditions:

lim
kÑ8

hk “ 0,
8ÿ

k“1

hk “ `8

Then for any ξ0 P En the sequence tξku, k “ 1, 2, . . . , generated according to the formula

ξk`1 “ ξk ´ hk`1

gθpξkq
}gθpξkq}2

(E.2.2)

has the following property: either an index k exists such that ξ
k

P I˚, or

lim
kÑ8

min
ξ1PI˚

}ξk ´ ξ1}2 “ 0 and lim
kÑ8

θpξkq “ min
ξPEn

θpξq “ θ˚

E.3 BFGS method applied to non-smooth functions

The BFGS (Broyden-Fletcher-Goldfarb-Shanno) method is a quasi-Newton optimization

method that, for a given continuous and differentiable function f , iteratively employs the

known information about its gradients ∇f to build an estimate of its inverse Hessian ∇2f´1,

performing local quadratic approximations of the original function.

Under certain assumptions [88], this method produces a sequence of iterations that con-

verges to the minimal value of f . Nevertheless, Lewis and Overton have assessed the behavior

of this method when applied to non-smooth functions, showing that convergence rates better

than those obtained by the sub-gradient method are generally observed [63, 64]. The main

shortcoming of this method is that it may break down, stagnating at a point at which the

function is not differentiable.

In [64, Algorithm 2.1], Lewis and Overton define a quasi-Newton method as follows: “let

xk denote the current point at iteration k “ 0, 1, ... The gradient of f at xk is denoted ∇fpxkq
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and abbreviated to ∇fk. We use Hk to denote a positive definite matrix which is an estimate

of the inverse Hessian ∇2fpxkq´1:"

Algorithm 3: Quasi-Newton algorithm

Require :x0 with f differentiable at x0, set H0 to a positive definite matrix and k Ð 0;
tolerance ǫ

1 repeat
2 set pk Ð ´Hk∇fk

3 set xk`1 Ð xk ` tkpk, where tk ą 0 is chosen by a line search
4 if f is not differentiable at xk`1, or ∇fk`1 “ 0, stop
5 set yk Ð ∇fk`1 ´ ∇fk choose Hk`1 to be a positive definite matrix satisfying the

secant condition Hk`1yk “ tkpk

6 k Ð k ` 1
7 until }∇fk`1}2 ă ǫ;

Output :xk`1

For the BFGS method for non-smooth functions with inexact line search in particular,

the update of H is made by:

Hk`1 “ VkHkV
T

k ` tkppT
k ykq´1pkp

T
k , where Vk “ I ´ ppT

k ykq´1pky
T
k (E.3.1)

and the line search algorithm is given by Algorithm 4 [64, Algorithm 4.6]. The Algorithms

3 and 4 are inspired on the implementation of the non-smooth BFGS method with inexact

line search in a MATLAB R©package called HANSO (Hybrid Algorithm for Non-Smooth

Optimization1, see [63]).

E.4 BFGS + sub-gradient hybrid method

Hereafter we present an algorithm based on the two optimization methods previously presented

that can used to address the problem (Pk). We opt to employ both the algorithms in order

to take advantage of their distinct strengths: the quasi-Newton algorithm benefits of a faster

decrease of the penalized objective function along the iterations, while only the sub-gradient

method has guaranteed convergence, being used to refine the approximated solution obtained

in the previous step. A pseudo-code representing the described strategy is given in Algorithm

5.

1http://www.cs.nyu.edu/overton/software/hanso/

http://www.cs.nyu.edu/overton/software/hanso/
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Algorithm 4: Inexact line search algorithm

Require :Function f and its gradient ∇f , point x, direction p, 0 ă c1 ă c2 ă 1
1 α Ð 0
2 β Ð `8
3 t Ð 1
4 repeat
5 if fpx` t pq ´ fpxq ě c1 t∇fpxqT p then
6 β Ð t

7 else if limtÑ0
fpx`t pq´fpxq

t
does not exist then

8 stop, break down
9 else if ∇fpx` t pqT p ď c2 ∇fpxqT p then

10 α Ð t

11 else
12 stop, admissible step found
13 if β ă `8 then
14 t Ð pα ` βq{2
15 else
16 t Ð 2α
17 end
18 until Maximum number of iterations reached;

Output : t

E.5 Testing the algorithms

Hereafter, we assess the optimization methods previously presented by analyzing their per-

formances when applied to the following non-smooth optimization problem:

rx˚, y˚s “

$
&
%

argmin |x| ` |y|
s.t. px´ 10q2 ´ y ď 0

(Ex)

which has rx˚, y˚s “ r9.50, 0.25s as solution.

We define the penalized problems as:

rx˚, y˚sη “ argmin
 

|x| ` |y| ` η .max
 
0, px´ 10q2 ´ y

((
(Ex’)

The following expression provides one sub-gradient of the penalized objective function at

any arbitrary point px, yq:

gpx, yq “

»
– sgnpxq

sgnpyq

fi
fl ` η .1tpx´10q2´yě0upx, yq

»
– 2px´ 10q

´1

fi
fl (E.5.1)
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Algorithm 5: Algorithm to solve non-smooth convex optimization problems

Input : ξ1 - initial point
Υp¨q - non-smooth convex function to minimize
gp¨q - oracle that returns one of the sub-gradients of Υp¨q at a given point
Iqn, Isg - number of iterations
σ - coefficient for the sub-gradient steps (set to 1 if not explicitly specified)

Output : ξ - solution

1 ξbest Ð ξ1

// Quasi-Newton method

// [64, Algorithm 2.1]:

2 H1 “ In;
3 for k “ 1 to Iqn do
4 ξk`1 Ð ξk ´ λkHkgpξkq, where λk ą 0 computed by inexact line search;
5 if Υpξk`1q ă Υpξbestq then
6 ξbest Ð ξk`1

7 end
8 Update Hk`1 as positive definite matrix satisfying secant condition

Hk`1pgpξk`1q ´ gpξkqq “ ´λkHkgpξk`1q;
9 end

10 ξ1 Ð ξbest;
// Subgradient method

// [95, Theorem 2.2]:

11 for k “ 1 to Isg do
12 ξk`1 Ð ξk ´ σ 1

k
gpξkq

}gpξkq}2
;

13 if Υpξk`1q ă Υpξbestq then
14 ξbest Ð ξk`1

15 end
16 end
17 ξ Ð ξbest;
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where sgnp¨q is the signum function and 1Ap¨q is the indicator function defined as

1Apxq :“

$
&
%

1, if x P A
0, if x R A

E.5.1 Sub-gradient method

We take rx, ys0 “ r0, 0s as initial point, η “ 108 as penalty parameter and the sequence

thku “ σ{k, and we compute the iterations given in (E.2.2). The Fig. E.1 represents

the evolution of the distance between the points obtained at each iteration and the point

r9.50, 0.25s (at which the optimum is attained) for four distinct values of σ “ 1, 2, 3, 10.

Figure E.1 – Performance of the sub-gradient method

We remark that the choice of σ can speed up or retard the convergence and, for the case

σ “ 10, an oscillatory behavior is observed. However, for all the cases, the distance between

the iterations presents a tendency to converge to zero.

E.5.2 BFGS method

Using the BFGS method given by Algorithms 3 and 4, we obtain the evolution presented in

Fig. E.2.

We observe that the decrease of the distance to the optimum is much steeper than that

presented by the curves in Fig. E.1, which confirms the fact that the quasi-Newton method

presents better convergence rates that the sub-gradient method. Nevertheless, even before
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the 20 first iterations, the decrease of the distance to the optimum stagnates and no further

improvements are possible (this is due to the fact that the iterations converge to a point

where the function is not differentiable, see Fig. E.3).

Figure E.2 – Performance of the BFGS method

Figure E.3 – Last iteration before stagnation of BFGS method
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E.5.3 BFGS + sub-gradient hybrid method

Using the hybrid method described by the Algorithm 5 with 5 iterations of the BFGS method

and 20 iterations of sub-gradient method with σ “ 1, we obtain the evolution presented in

Fig. E.4.

Figure E.4 – Performance of the hybrid algorithm (BFGS + sub-gradient)

After employing this performing a total number of 25 iterations of this algorithm, the

distance to the optimum is already smaller that those obtained after 100 iterations in Fig.

E.1 and Fig. E.2. We also observe that the distinct strengths of both methods are present: a

very steep decrease during the BFGS method and convergence to zero during the sub-gradient

steps.
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