
HAL Id: tel-01938154
https://laas.hal.science/tel-01938154

Submitted on 28 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simulation of dynamically structured systems in a
model-based system engineering approach applied to

reconfigurable hardware
Min Zhu

To cite this version:
Min Zhu. Simulation of dynamically structured systems in a model-based system engineering approach
applied to reconfigurable hardware. Computer science. Université Toulouse 3 Paul Sabatier (UT3 Paul
Sabatier), 2018. English. �NNT : �. �tel-01938154�

https://laas.hal.science/tel-01938154
https://hal.archives-ouvertes.fr

THÈSETHÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ FÉDÉRALE
TOULOUSE MIDI-PYRÉNÉES

Délivré par :
l’Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier)

Présentée et soutenue le 1/10/2018 par :
Min ZHU

Simulation de systèmes à structure dynamique dans une
approche d’ingénierie système basée modèles appliquée au

matériel reconfigurable

JURY
M. Vincent ALBERT Université Toulouse III Examinateur
M. Clément FOUCHER Université Toulouse III Directeur de thèse
Mme. Claudia FRYDMAN Université Aix-Marseille III Rapporteuse
M. Fabrice MULLER Univesité Nice Sophia Antipolis Examinateur
M. Alexandre NKETSA Université Toulouse III Directeur de thèse
M. Sébastien PILLEMENT Université de Nantes Rapporteur

École doctorale et spécialité :
EDSYS : Informatique 4200018

Double mention :
EDSYS : Systèmes embarqués 4200046

Unité de Recherche :
Laboratoire d’analyse et d’architecture des systèmes

Directeurs de Thèse :
Monsieur Clément FOUCHER et Monsieur Alexandre NKETSA

Rapporteurs :
Madame Claudia FRYDMAN et Monsieur Sébastien PILLEMENT

Scientists are not dependent on the ideas of a single man, but
on the combined wisdom of thousands of men, all thinking of the
same problem, and each doing his little bit to add to the great
structure of knowledge which is gradually being erected.

Ernest Rutherford

iii

Acknowledgements
This thesis represents the final report of my time spent at System Engineering
and Integration team of Crucial Computing department at Laboratory for
Analysis and Architecture of Systems, Toulouse. I would like to take the
opportunity to thank many of the people who have supported this thesis and
influenced the creation of this work.

I am deeply grateful to Prof. Alexandre NKETSA, for his open-mindedness
and critical advice during the discussions. I am very thankful to Clément
FOUCHER, for giving constructive guidance thoughout and being an exem-
plar of a professional researcher. I also would like to specially thank Vincent
ALBERT, for passing on his wisdom during the model construction. Their
help and supervision made this piece of work possible.

I give full appreciation to Prof. Claudia FRYDMAN and Prof. Sébastien
PILLEMENT, for their interest in my work and for refereeing this thesis.

I would like to thank to Philippe ESTEBAN, who took me into this ad-
venture of scientific research after my Master studies of real-time system en-
gineering and stood by me during my three years teaching assistance work.
Thank to Hamid DEMMOU for his team leads which make my international
presentation possible. Thanks also to Claude BARON for her excellent team
building.

I would like to thank all my colleagues at faculté sciences et ingenierie at
université Paul Sabatier. Thanks to Emmanuel Montseny for all the prepa-
ration made for the practice of Matlab/Simulink. I have shared lots of good
moment with the others, especially thanks to the every year Circus.

I would like to give a special thanks to Hélène THIRION, Christèle
MOUCLIER, Layla MOURCHID and Catherine GUERIN for their ongoing
administrative support and for always giving a helping hand.

This thesis would not be possible without the support of families and
friends, without the happiness they brought, sharing cafe culture, music, and
good times spent outside of research in Finland, in Mexico, in Portugal, in
China. Thank you for your great efforts people around me! Sylvain, David,
Diego, Xue Rui, Karla, Guillaume, Yi Xin, Lily, Sangeeth, Yassine, Adina,
Daniel et Julie, Violaine et Rémi, He Yun, Wang Rui, for all your emotional
support and just being there when I need you.

In the end, I would like to give some very special thanks to the interna-
tional exchange program ERASMUS, with whom I finished my undergraduate
studies in France, and without whom I could not have achieved what I have
today.

Min, 21 June 2018, at Toulouse

Abstract:
As partially reconfigurable technologies develop for embedded systems,

the need for a proper model to describe its behavior emerges. Most academic
and industrial tools available on the market does not address dynamic struc-
ture modeling. The arising of discrete-event modeling, in particular, Discrete
Event System Specification (DEVS), propose formal tools for representing and
simulating models. DEVS has already extension which handles the dynamic
structure modeling. However, the capacities of these existing formalism have
limitations. Notably, they do not address the components context aspect.

Also, the existing formalisms have not integrated the system engineering
approach. System engineering brings beneficial procedures, notably model-
driven architecture which proposes to separate the system description from
its execution target. A platform-specific model is formed from a platform-
description model coupled with a platform independent model.

To address these needs, we propose a model description formalism which
takes into consideration these two aspects: dynamic structure modeling and
system engineering. This formalism is based on DEVS and called Partially
Reconfigurable Discrete Event System Specification (PRDEVS). PRDEVS al-
lows to represent dynamic-structure models independently from the simulation
platform.

The presented approach can be applied to different types of targets, such
as software and reconfigurable hardware. This thesis addresses these two
kinds of platforms, demonstrating the suitability of the abstract formalism to
actual platforms.

Keywords: Reconfigurable hardware systems, Modeling, Discrete
event simulation, Model-based system engineering, Model-driven architecture

Résumé :
Avec l’évolution des techniques de reconfiguration partielle pour les systèmes
embarqués, le besoin d’un modèle de description capable de représenter ces
comportements émerge. La plupart des outils disponibles sur le marché, tant
académiques qu’industriels, ne prennent pas en compte la modélisation des
systèmes à structure dynamique. L’émergence de la modélisation à évène-
ments discrets, notamment Discrete Event System Specification (DEVS), pro-
pose des outils formels pour représenter et simuler des modèles. DEVS propose
déjà des extensions capable de prendre en compte la modélisation à structure
dynamique. Néanmoins, les possibilités offertes par ces extensions rencon-
trent certaines limites. En particulier, elles ne proposent pas de moyen de
gérer l’aspect contexte des composants.

De plus, les formalismes existants n’ont pas intégré l’approche ingénierie
système. L’ingénierie système met en place des procédures intéressantes, no-
tamment l’architecture dirigée par les modèles, qui propose de séparer la de-
scription du système de sa plateforme d’exécution. Un modèle spécifique à une
plateforme est ainsi la résultante d’un modèle de description de la plateforme
combiné avec un modèle d’application indépendant de toute plateforme.

Pour répondre à ces besoins, nous proposons un formalisme de descrip-
tion de modèles prenant en compte ces deux aspects : la modélisation à
structure dynamique, et l’ingénierie système. Ce formalisme est basé sur
DEVS, et nommé Partially Reconfigurable Discrete Event System Specifi-
cation (PRDEVS). PRDEVS permet de représenter les modèles à structure
dynamique indépendamment de la plateforme de simulation.

L’approche présentée peut être appliquée à différents types de cibles, tels
le logiciel et le matériel reconfigurable. Cette thèse présente des mises en
œuvre du formalisme abstrait sur ces deux types de plateformes, démontrant
ainsi sa capacité à être déployé sur des plateformes réelles.

Mots clés : Systèmes matériels reconfigurables, Modélisation, Simu-
lation à évènements discrets, Ingénierie système basée modèles, Architecture
dirigée par les modèles

Contents

Introduction 1

1 Scientific context & state of the art 7
1.1 System engineering and simulation 9

1.1.1 Systems and system engineering 9
1.1.2 Modeling and simulation 11
1.1.3 Model-Driven Architecture 12
1.1.4 Syntax and semantics 13

1.2 DEVS and its extensions . 14
1.2.1 Discrete Event System Specification 14
1.2.2 Dynamic Structure DEVS and its parallel version . . . 18
1.2.3 Dynamic DEVS and its dynamic port extension 23
1.2.4 Synthesizable DEVS 26
1.2.5 Reconfigurable DEVS 27

1.3 Dynamically reconfigurable computing systems 29
1.3.1 Programmable logic device 30
1.3.2 Partial reconfiguration 31

1.4 Conclusion . 33

2 Partially Reconfigurable Discrete Event System Specification 35
2.1 PRDEVS meta-model syntax 36

2.1.1 PRDEVS abstract syntax 36
2.1.2 Root PRDEVS component 37
2.1.3 Coupled components 38
2.1.4 Atomic components . 38
2.1.5 Ports . 39
2.1.6 Convenience sets and notations 39

2.2 PRDEVS semantics . 40
2.2.1 General functions . 41
2.2.2 Structure change semantics 42
2.2.3 Components context under dynamic behavior 44

2.3 Graphic representation . 45
2.3.1 Components . 46
2.3.2 States, transitions and actions 47

2.4 Example . 47
2.5 Conclusion . 50

viii Contents

3 A software PDM for the PRDEVS PIM 53
3.1 Platform study . 54

3.1.1 Software platform and object-oriented programming . . 55
3.1.2 A quick look into a software simulator core 55

3.2 Hierarchy of the software PDM 60
3.2.1 Atomic/coupled component 60
3.2.2 Port/connector . 61

3.3 Mapping and realization of the PDM 62
3.3.1 Meta model transformation for time 64
3.3.2 Input/output message bags 64
3.3.3 Dynamic functions calls 65
3.3.4 Time advance (Ta) . 65
3.3.5 Imminent time (Tn_min) 65
3.3.6 Last event time (Tl) 66
3.3.7 Elapsed time (e) . 66

3.4 Case study: a PSM test . 67
3.4.1 Initialization of the model 69
3.4.2 Simulation . 70

3.5 Conclusion . 70

4 An hardware FPGA PDM for the PRDEVS PIM 73
4.1 PDM architecture: a high-level view 74
4.2 Scheduling and temporal aspects 78
4.3 Components interface . 79

4.3.1 Control interface . 79
4.3.2 Communication interface 81
4.3.3 Dynamic functions calls 82
4.3.4 Multi-bus . 84

4.4 Atomic component behavior specification 84
4.4.1 FSM general structure 85
4.4.2 FSM representation of internal transitions 86
4.4.3 FSM representation of external transitions 87
4.4.4 FSM representation of output emission 88
4.4.5 Conflict . 89

4.5 SC functions implementation 90
4.5.1 Static coordinator . 91
4.5.2 Dynamic coordinator 92

4.6 Example . 93
4.7 Conclusion . 96

Conclusion 99

Contents ix

Bibliography 105

List of Figures

1.1 MDA structure of a meta-model 12
1.2 A DSDEVS exemple: block diagram of a node 20
1.3 A DSDE exemple: one server network change to two sever net-

work . 21
1.4 A RecDEVS exemple: add a new component 28
1.5 Von Neumann architecture . 29
1.6 FPGA architecture . 31
1.7 Virtual socket containing a decoupler 32

2.1 Graphic representation of components 46
2.2 Graphic presentation of transitions 47
2.3 Graphic presentation of the top level component 49
2.4 Graphic presentation of the generator 50
2.5 Graphic presentation of the counter 50

3.1 MVC Process . 56
3.2 Class diagram of Model package 57
3.3 Sequence diagram of controller initialization 59
3.4 PRDEVS UML representation 60
3.5 Components UML representation 61
3.6 Port and PortConnection types UML representation 62
3.7 One-to-one correspondence . 63
3.8 Time variable in the different objects 64
3.9 Moving Rules for players . 68
3.10 External view of chicken . 68
3.11 Internal view state machine of chicken 69
3.12 Example of a game turn . 69
3.13 Tree view of model . 70

4.1 Global view of PSM . 75
4.2 Example of addComponent into the circuit 76
4.3 Architecture of a new component added 76
4.4 Example of a connection change 77
4.5 Architecture of a connection change 78
4.6 General simulation cycle . 79
4.7 Example of communication between two components 80
4.8 Messages exchanges between component and coordinator . . . 81
4.9 Wave of a cycle of Step under control bus 81

xii List of Figures

4.10 Input X . 82
4.11 Ouput Y . 82
4.12 Connections between components 82
4.13 Dynamic calls extra ports . 83
4.14 Wave of a cycle of Step . 84
4.15 Multi-bus structure . 84
4.16 General state machine . 85
4.17 DEVS model of an internal transition 86
4.18 Internal transition . 87
4.19 DEVS model of an external transition 87
4.20 External transition . 88
4.21 DEVS model of an output emission 88
4.22 Output emission . 89
4.23 Non-conflict transition . 89
4.24 Conflict transition . 90
4.25 DEVS model of a structure change emission 90
4.26 Dynamic transition: addComponent 91
4.27 Coordinator . 91
4.28 Graphic presentation of the example 96
4.29 Graphic presentation of the generator 96
4.30 Graphic presentation of the counter 97

Introduction

Mankind has created tools of all kinds to accomplish those tasks which are
difficult to achieve directly by our own hands. The ambitions of human beings,
together with these technologies, make it possible to fly and travel into space.
However, the creation of a new system is generally not as straightforward as
it might seem.

Human-made systems, from vehicles to satellites, interact with their en-
vironments. The interactions between a system and its surrounding lead to
different additional performance factors. The environment impacts the system
properties. At the same time, the system can change its environment. For
example, aircrafts lift comes from the air and the acceleration of the aircraft
is limited by the air resistance at the same time. Building a system requires
a full-scale consideration of all such possible interactions.

Nowadays, the creation of an artificial system is sometimes so complex that
it involves interdisciplinary expert cooperation. Such a complexity makes it
difficult to estimate the delays, the costs, and even feasibility. Moreover, the
development of a new product can take several years. A bigger team and
a longer process add complexity to a project. New methods are required to
adapt to this situation, notably to identify and improve common practices
that exist across the development of a wide variety of systems. A double
verification or a cross-validation alone is not enough to guarantee the success
of a complex project.

Verification and validation are done throughout the creation of a new prod-
uct. However, there can be multiple iterations over the process, and creat-
ing a product prototype each time for the verification adds to the cost and
timescale. For example, a printed circuit board can take more than a week to
be delivered. A verification of the virtual product using computer simulation
has advantages in terms of cost and time. Lower costs and/or faster results
make simulation an interesting tool for engineers. Thus, simulation is a major
verification and validation method applied to the product lifecycle.

A simulation is generally done on a digital processing unit, e.g. a processor,
and thus requires a digital model. A model is a representation of an actual
object with a certain level of precision. Following the product engineering
process, the simulation model is then an abstraction of the functions which
are concerned. Moreover, a model level of representation depends on the
underlying formalism. Using a very formal meta-model allows for precise and
verifiable models.

2 Introduction

Motivations
Formal meta-models consist in providing a mathematically-based syntax, a
comprehensive semantic. Doing so enforces replicable simulations given the
same models and an identical initial state.

Discrete event simulation is a paradigm in which the temporal evolution of
the simulation is led by the events. In such a simulation, events are identified
by the time in future at which they are meant to happen. This contrasts with
discrete time simulations, in which the time advance is fixed and steady.

Discrete event simulation has advantages in certain cases over discrete
time simulation. For example, for a system in which the time constant varies
from long times to very short times. In such a case, the time step chosen can
be very small to be able to account for fast variations, but this will trigger
unnecessary computations for steady periods. On the other hand, if the time
step chosen is longer to accelerate the simulation, one can miss fast variations
which can occur between two computation slots. A discrete event simulation
is able to use the derivative of the variable to determine the time of next event,
so intervals are set according to the rate of change.

Formalisms like Discrete Event System Specification (DEVS) allow us to
modeling discrete event systems. DEVS has a formal syntax, mathematically
verifiable, and strict algorithms for simulating these models. Moreover, DEVS
allows for model assemblies, which are required to build complex systems and
is closed under coupling, i.e. a component made of sub-components exter-
nally exhibits a behaviour which can be represented by an atomic component.
DEVS is thus a strong formalism for building simulations of complex systems
using a discrete event paradigm.

But when it comes to representing dynamic structure systems, DEVS ex-
tensions related to such systems have limitations. DEVS formalisms for dy-
namic structure systems mostly rely on predetermined architectural states.
Each of these states represents a model architecture, containing components
and links between components. When a transition function is triggered, the
model switches from one architectural state to another. The simulation en-
vironment is then responsible for inferring the actual simulation architecture
from the state evolution.

While in many cases this will be enough to represent a dynamic structural
system, there are other cases in which this will be a limitation. An example
of this might be multi-agent systems, such as population simulation, in which
agents can be born or die at some point in the simulation. In such cases,
there is no way of knowing all possible architectural states of the system
before simulation. We rather require a way of representing agent creation and
deletion from the system, as well as relationship evolution between agents,

Definition of objectives 3

directly in the formalism. Another field of application is complex adaptive
systems, in which the network of interactions between components of the
system evolve and is able to reach net structures impossible to predict.

Moreover, having a strict approach always leads to better results. The
system engineering approach provides several tools for better handling system
creation, including the simulation steps. One interesting concept of system
engineering is the model-driven architecture approach. Initially created for
software design, model-driven architecture consists of separating the applica-
tion design from the execution platform. It means that the application must
be written using a platform-independent representation, and must incorporate
a transformation tool able to generate an executable application for various
platforms. This requires a high-level, platform-agnostic, model of the system
and models of the platforms that will constitute the execution target. Then,
by establishing a correspondence of the models, we establish a model that is
able to run on a specific platform.

Among execution platforms, we usually find the classic software processors,
nowadays constituted of multiple execution cores. Recently, enthusiasm for
even more parallel platforms such as graphics processing units has arisen. This
kind of device, initially designed for graphics applications where the same
treatment must be operated on multiple pixels, has gained a general purpose
use over recent years. When application speed and/or current consumption
is critical, building an Application-Specific Integrated Circuit (ASIC) is also
worth considering. ASICs consist in creating a logic circuit which realizes the
exact function required, allowing for very important optimizations compared
to software, which requires generalisation. However, the significant of fixed
costs of such devices only makes them suitable for mass production.

In the middle of all theses lie Field-Programmable Gate Arrays (FPGAs).
Not as fast as ASICs, not as flexible as processors, but faster than processors
and more flexible than ASICs. The FPGA represents a very interesting execu-
tion target for applications that can benefit on-demand parallelism. FPGAs
being reprogrammable logic circuits, they also benefit from unique features
such as partial dynamic reconfiguration. This features consists in modifying a
portion of the circuit while the remaining part continues to operate, incarnat-
ing the concept of dynamic structure change. However, partial reconfiguration
of FPGAs is still lacking formal methods for handling it.

Definition of objectives
At the time of writing, dynamic structure systems are new to modeling and
simulation, and often treated without a clear methodology. They could benefit

4 Introduction

from of a system engineering approach. In this work, we are aiming to define
a formal modeling approach to represent and simulate dynamic structure sys-
tems. To do so, we are going to formalize the representation of such systems
into a meta-model. We will particularly focus on discrete-event models, and
adopt a model-driven architecture approach.

As a first step, the meta-model, in other words, the model of the models
must be defined. We need the meta-model to use the strong fondation of
mathematical formalism. Moreover, we want the models we define to be free
from constraints related to the execution platform. However, the definition
must include the capability for dynamic structure change, which will restrict
the available target platforms.

We also need to distinguish the dynamic structure behaviour from a model
state evolving or being changed over time. The structure change takes place
at a different level than the state change. Different components can exist in a
system at one time, and exhibit the exact same internal behaviour while being
in a different state. The state of the components thus represents an indepen-
dent information set, which must be treated separately from the structure
change.

The structure itself contains two levels of possible changes. A model struc-
ture is composed of components, which have relationships with each other.
The change can be operated either on components or on connections. We will
see that this differentiation has an impact on the way it is handled by the
execution platform.

Concerning the components state management, it will be useful to develop
the capacity to save the state of a component during simulation, or to force it
into a specific state. For example, we should be able to save the current state
of a component about to be deleted so that it can be restored later. Or, a
component can be instantiated with different initial states depending on the
general simulation state at the simulation time.

Thus, we should study different target platforms in order to understand
their execution behaviour. This will enable us to make the connection between
models expressed in the developed meta-model and the platforms. We will
begin with a software platform as a first target. On a software platform, many
constraints are flexible, such as the memory size which, to some extent, can
be ignored. During this integration period, the system engineering approach
will be validated for our meta-model.

As a final objective, the meta-model should be integrated into a dynamic
hardware platform. With this specific platform, the constraints (space and
time) of the platform should be defined. On such a level, the communication
protocol and scheduling behaviour of the simulation should have been consid-
ered. The parallel nature of the platform must have been developed within

Structure of the document 5

our meta-model.

Structure of the document
In this thesis, we propose an interdisciplinary work between system engineer-
ing and modeling & simulation. The scientific context and state of the art
are presented in the first chapter. It details the approach of system engineer-
ing and modeling, especially for discrete event simulation and dynamically
reconfigurable computing systems.

In chapter two, we propose a dynamic structure meta-model: Partial Re-
configurable Discrete Event System Specification. We detail the meta-model
syntax and semantics. We present the syntax using a mathematic description
at a theoretical level. Then a graphic representation of the syntax is discussed
to facilitate model representation.

In the third chapter, a software platform, with object-oriented program-
ming, is presented to support the execution of models. We introduce a simu-
lator which is able to run models described using the meta-model defined in
chapter two.

In the fourth chapter, a hardware platform specification based on FPGA is
presented. The platform architecture is defined in order to match the FPGA
constraints.

Finally, we draw conclusions from the results and bring future perspectives
into consideration.

Chapter 1

Scientific context & state of the
art

Contents
1.1 System engineering and simulation 9

1.1.1 Systems and system engineering 9
1.1.2 Modeling and simulation 11
1.1.3 Model-Driven Architecture 12
1.1.4 Syntax and semantics 13

1.2 DEVS and its extensions 14
1.2.1 Discrete Event System Specification 14
1.2.2 Dynamic Structure DEVS and its parallel version . . . 18
1.2.3 Dynamic DEVS and its dynamic port extension 23
1.2.4 Synthesizable DEVS 26
1.2.5 Reconfigurable DEVS 27

1.3 Dynamically reconfigurable computing systems . . . 29
1.3.1 Programmable logic device 30
1.3.2 Partial reconfiguration 31

1.4 Conclusion . 33

8 Chapter 1. Scientific context & state of the art

System engineering consists in a process with several steps. The final
goal of system engineering is to avoid failures while building a system. A
complex system is usually decomposed into sub-systems, which are developed
separately. The well-known V-model system engineering cycle, for example,
begins with the feasibility study and concept exploration. It progressively
goes down by breaking the system into sub-systems, which are fully specified
individually. Finally, it ascends by testing system components and assembling
them to form a complete system.

During the design of a system, modeling and simulation takes an important
place. When a system is made of various sub-systems, all of them must be
modeled as stand-alone pieces and tested individually. When bringing them
together to form the whole system, how to co-simulate the independent models
together is a really complex task. Co-simulation can happen between different
types of models: hardware/software, continuous/discrete, electronic/digital,
etc. It can also be done between different abstraction levels.

For classic systems, where the physical materials can be modeled, a soft-
ware component can represent formally the physical materials. Before the
simulation, an offline verification (static program analysis) is possible for the
software components. The offline verification can be done using formal lan-
guages syntactically representing the system. Before the simulation, formal
methods are used as critical tools for system verification, which guarantee
mathematically the system is correct. If an error is detected during the static
analysis with formal methods and debug, an accident can be avoided.

The simulation is not limited to dig into the inner behavior of the system.
It also looks at the interaction with a surrounding environment. In order to
correctly test the system, we need to put it into its environment. It can be
done by modeling the environment and simulating it together with the system.
Or more directly, we can put the simulated system directly in contact with the
real environment. When the system is in the real environment, the simulation
must respect real-time.

For a real-time system, the actuators, physical system, and its sensors can
be involved as simulated elements or as real elements in the model. As an ex-
ample an aircraft stress test for its wings can contain both virtual subsystems
and real subsystems. The virtual subsystem may include the control system,
and the real subsystem is the airplane wing. A common practice is to model
the real actuators together with the simulated physic system and sensors.

What we are interested in is dynamic structure systems, where the compo-
sition can change over time. FPGA is an integrated circuit which can change
its configuration to form various logic circuits. A custom design is thus pos-
sible depending on the project. Moreover, some classes of FPGA are capable
of run-time re-configuration during the execution.

1.1. System engineering and simulation 9

In this chapter, we are going to discuss three main topics: system engi-
neering together with model-based system engineering in section 1.1, Discrete
Event System Specifications and its extensions in section 1.2, and reconfig-
urable computing systems, especially Field-Programmable Gate Arrays (FP-
GAs) in section 1.3.

1.1 System engineering and simulation
In this section, we will define topics of expertise which are required for the
further developments. First, we will give a definition of what is a system
and clarify the system engineering process. Then modeling and simulation
as a part of the system engineering process will be presented. Model-driven
architecture is detailed later as a system engineering approach for the software
development. At last, the syntax and semantics modeling notions are defined.

1.1.1 Systems and system engineering
There are lots of definitions of what is a system. An earlier definition was done
in the 50s by Ludwig von Bertalanffy [Von Bertalanffy 1956], who contributed
to general systems theory. Von Bertalanffy outlines systems inquiry into three
major domains: Philosophy, science, and technology:

“The systems view is a world-view that is based on the discipline of SYS-
TEM INQUIRY. Central to systems inquiry is the concept of SYSTEM. In
the most general sense, a system means a configuration of parts connected
and joined together by a web of relationships. The Primer Group defines the
system as a family of relationships among the members acting as a whole.”
Here, a system is defined as elements in standing relationship.

The International Council on Systems Engineering (INCOSE) is an orga-
nization aiming at improving the systems engineering practices and education
developed in 1995. Their definition is straightforward:

“A system is a construct or collection of different elements that together
produce results not obtainable by the elements alone.”

A system is never with only one element inside, which mean there is a
possibility to decompose the system into subsystems or include a system into
a larger system.

For systems engineering, the INCOSE concept is practical and includes
the concept of business:

“Systems Engineering integrates all the disciplines and specialty groups
into a team effort forming a structured development process that proceeds
from concept to production to operation. Systems Engineering considers both

10 Chapter 1. Scientific context & state of the art

the business and the technical needs of all customers with the goal of providing
a quality product that meets the user needs.”

The French association of systems engineering (AFIS) gives a definition
oriented toward industrial manufacture:

“The control of complex systems by manufacturers is essential to maintain
and improve the positions of French and European industry in the global mar-
ket for large systems, whatever the field: transport, space, defense, finance,
security, health, energy... These systems involve many disciplines: mechani-
cal engineering, electrical engineering, automatic engineering, civil engineer-
ing, software engineering, electronic engineering, chemical engineering, indus-
trial engineering, subcontracting, production, maintenance, security... but
also trade, marketing, customer relations, human factors sustainable develop-
ment.”

For sure, applying the system engineering concept to a complex system
is interesting to ensure the success of the project. Rather than the quality,
cost, delivery (QCD) approach which evaluate the results, system engineering
focuses on the whole project procedure, internal communication and organi-
zation.

The well-known V-model development got this name by its V form and the
final steps of its procedure: verification and validation. Even though recently
a lot of projects are applying other methods such as waterfall model [Bal-
aji 2012], spiral model [Boehm 1988], agile methods [Ambler 2004], etc.

Within the V-model development, reliability of the system is often done
by modeling and verified by simulation. It can be a general model without
coding, in some case done by experience and success stories. During the
requirements and architecture step, a system with several subsystems is built.
Detailed designs with each subsystem’s specification are defined. Before the
project moves to implementation, high-level modeling is already done.

After the implementation, during test and integration, simulation is done
with different methods to ensure the subsystem is functional. Under system
level verification and validation, the entire system is executed, analyzed and
simulation is done on the entire system level.

The Model-Based System Engineering (MBSE) [Estefan 2007] concept was
introduced by AW Wymore in 1993. It was popularized by INCOSE when
it kicked off its MBSE Initiative in January 2007 [Friedenthal 2007]. The
main idea is to replace the document exchange during systems engineering by
creating and exploiting domain models [Friedenthal 2007].

1.1. System engineering and simulation 11

1.1.2 Modeling and simulation
Modeling is building an abstraction of the real world, where changes of certain
parameters are used to learn the way the system behaves. Simulation is based
on a model which is built based on a real system, already existing or in the
design phase. It shows the results by observing the model changes over time
or in response to its environment.

As for the methodology for modeling and simulation, originally presented
in 1976 [Zeigler 2000], it consists of two principal aspects:

Level of system specification - These are the levels at which we can
describe how systems behave and the mechanisms that make them work the
way they do.

M&S sets four levels of system knowledge :
Level Name What we know at this level
0 Source What variables to measure and how to observe them
1 Data Data collected from a source system
2 Generative Means to generate data in a data system
3 Structure Components coupled together to form a generative system

Systems specification formalisms - These are the types of modeling
styles, such as continuous or discrete, that modelers can use to build system
models.

A discrete system is one in which the state variables change only at a
discrete set of points in time. A continuous system is one in which the state
variables change continuously over time.

Under system theory [Zeigler 2000], structure – the inner constitution of a
system – and behavior – its outer manifestations – are considered separately.
For a time-based system, behavior and structure are connected by time-related
parameters: the internal structure of a system includes its state, how one state
transits to another state and the mapping between state and output. A well-
defined structure helps to analyze and simulate its behavior.

Basic system concept considers the system as a black box, where we observe
the output changing in reaction to the input event. After analysis, the output
can be used to correct system input.

In this case, we can see the simulation as a closed loop system in the control
theory, where results of one simulation cycle can impact the next simulation
cycle.

Then, four classifications of looped simulation were proposed by Jens Eick-
hoff [Eickhoff 2009]: Model in the loop (MIL), Software in the loop (SIL),
Processor in the loop (PIL) and Hardware in the loop (HIL). The model in
the loop consists in building a model describing the behavior of the system
to validate it by simulation. The model of the system is coupled to an envi-

12 Chapter 1. Scientific context & state of the art

ronmental model to see if the system model meets the main requirements of
the system. The software in the loop principle is to create a program that
implements the model in a target language. This implementation can lead
to bias due to implementation constraints of the model and language limi-
tations. A new phase of validation and/or verification is needed to ensure
semantic equivalence. A processor in the loop consists in validating the be-
havioral equivalence of the program after integration into the target processor.
The environment remains simulated. Hardware in the loop is to use the final
physical controller. The environment remains simulated but now responds in
real time. The difference between PIL and HIL is [Mina 2016]: PIL is a test
technique that allows designers to evaluate a controller, running in a dedi-
cated processor or a plant which runs in an offline simulation platform. On
the other side, HIL is an approach to test a plant or controller running on a
digital platform which interacts with the real controller or plant.

1.1.3 Model-Driven Architecture

Model

Abstract structure
functions

Mapping

Low-level API

Execution platform

PIM

PDM

PSM

Figure 1.1: MDA structure of a
meta-model

The Model-Driven Architecture
(MDA) approach by Object Man-
agement Group [Object Management
Group 2016], derived from Model-
Driven Engineering (MDE), consists
in separating the application model
description from the execution
platform.

A good software engineering flow
offers lots of advantages. The most
important advantage is to define dif-
ferent abstraction levels, for manag-
ing the complex applications. This
brings various benefits, such as allow-
ing the teams working on an applica-
tion to be independent of the ones
working on the platform, or enabling
deploying an application built from a
single model on various platforms.

A complete MDA specification
consists in a Platform-Independent
Model (PIM), one or several
Platform-Dependent Models (PDM), and sets of interfaces correspondence to
allow building a Platform-Specific Model (PSM) by matching a PIM with a

1.1. System engineering and simulation 13

PDM, as depicted in figure 1.1.
MDA is based on the massive use of models in all phases of the applica-

tion life cycle. Standard MOF (Meta Object Facility) [Iyengar 2005] is the
support for modeling formalisms under metamodel. MOF is used as the meta-
metamodel not only for Unified Modeling Language (UML) but also for other
languages, such as Common Warehouse Metamodel (CWM) [Poole 2003].
UML is defined as a model that is based on MOF. Every model element
of UML is an instance of exactly one model element in MOF. A model is an
instance of a metamodel. UML is a language specification (metamodel) from
which users can define their own models.

With this architecture, the model can be built using different languages
and translate into a unified model by mapping. In principle, an MDA is
a framework for visualizing, storing and exchanging software designs and
model [Kleppe 2003]. Since the framework separates the development in the
first place, the PIM developers do not need to consider the platform details.

Within MDA, portability is realized by PIMs. One PIM can be deployed
on multiple PSMs using different platforms PDMs. The MDA does not require
a specific processes or languages for software development.

1.1.4 Syntax and semantics
The information and its meaning behind represent the different between syn-
tax and semantics [Miller 1985,Dalrymple 1999,Harel 2000]. The information
is represented as data while the data is the medium used to transport and
store the information. There is general agreement in the literature that data
is used to communicate and needs an interpretation to extract the informa-
tion behind it [Harel 2000]. An interpretation is always a mapping assigning
a meaning to each piece of data.

To correctly define a model, we need three levels of specification:
? An abstract syntax, or meta-model, which is the formal definition used

by the modeler to define its models.
The abstract syntax is used by the modeler to build and specify the model.

Model description can be done theoretically, using mathematics tools such
as sets and algorithms. But the actual model description provided to the
simulator is often done using a Graphical User Interface (GUI), such as the
ProDEVS environment [Vu 2015], to ease the process.

? A concrete syntax, which is the actual model description matching the
abstract syntax.

The concrete syntax is the way the model structure and its contents are
stored and manipulated during the simulation. It must observe the abstract
syntax, but its way of representing the model must be adapted to a digital

14 Chapter 1. Scientific context & state of the art

representation and manipulation by the simulator. Note that this is the syntax
representation which should comply with these constraints, not the model
itself.

? A semantics which specifies the model execution behavior by the mean
of an abstract simulator.

The abstract simulator, indicating the semantics of how the model de-
scription is to be manipulated, and how the simulator should behave when a
simulation event occurs.

1.2 DEVS and its extensions

Discrete Event System Specification (DEVS) is a formalism to describe
discrete-event models and simulate them by proposing a syntax and a seman-
tic. A DEVS model is a hierarchical set of components of two kinds: atomic
components define a behavior while coupled components gather and link other
components, either atomic or coupled. The original DEVS formalism was not
designed to handle structure changes, either in model composition or com-
munication. Dynamic structure behavior can only be emulated, e.g. using a
selector to enable or disable models over time. Several extensions have been
proposed addressing dynamic adaptation of the models structure during the
simulation.

In this section, some generic definitions and background information about
Discrete Event System Specification (DEVS) and its extensions from the in-
dustry and academia are discussed.

1.2.1 Discrete Event System Specification

DEVS formalism introduced by Zeigler [Zeigler 2000] is a strong mathemat-
ical foundation for specifying hierarchical and modular models. The DEVS
formalism allows to build discrete event systems and provides algorithms for
simulation. DEVS models are made of atomic components, which define a
behavior, and coupled components which can hold several other components
and describe the way they are connected.

DEVS was later extended with Parallel DEVS (PDEVS), and we now ref-
erence the initial DEVS formalism as Classic DEVS (CDEVS). In this thesis,
the acronym DEVS thus refers to the general DEVS ecosystem rather than
to the original CDEVS formalism.

1.2. DEVS and its extensions 15

1.2.1.1 Classic DEVS

Zeigler [Zeigler 2000] initially introduced the DEVS formalism in the late 70’s
as a way to build models with a discrete-event approach using a mathemati-
cally defined formalism.

CDEVS atomic components syntax CDEVS defines an atomic compo-
nent as an indivisible unit implementing a behavior. It can evolve in reaction
to an external event (external transition), or when a timeout occurs (internal
transition). The formal definition is as follows:

M =< X, Y, S, δext, δint, λ, τ > where

X = {(p, v) | p ∈ InPorts, v ∈ Xp} is the set of input ports and values,
where

– InPorts is the set of input ports
– Xp is the set of allowed input values for port p

Y = {(p, v) | p ∈ OutPorts, v ∈ Yp} is the set of output ports and values,
where

– OutPorts is the set of output ports
– Yp is the set of possible output values for p

S is the set of sequential states

δext : Q×X → S is the external state transition function, where

– Q = {(s, e) | s ∈ S, 0 ≤ e ≤ τ(s)} is the set of total states, with e
the time elapsed since latest transition

δint : S → S is the internal state transition function

λ : S → Y is the output function

τ : S → R+
0,∞ is the time advance function (sometimes refered to as ta)

As simulated time advances, the e variable growths. An atomic component
is said to be imminent when its remaining time in the current state tr =
τ(s) − e is minimal among all the components in the simulation. Zeigler
defines tl to be the time of the latest event that occured in the component,
and tn = tl + τ(s) the scheduled time for the next event.

It is also of use to know the component initial state, which is usually
refered to as s0.

16 Chapter 1. Scientific context & state of the art

CDEVS coupled components syntax A coupled component is a way of
linking other components. Externally, it behaves like an atomic component
and thus can be used in another coupled to form a hierarchical model.

N =< X, Y,D, {Md}, EIC,EOC, IC, Select > where

X, Y as defined for atomics

D is the set of components names

{Md} is the set of components in this coupled, with d ∈ D

EIC is the external input coupling function

EOC is the external output coupling function

IC is the internal coupling function.

Select: 2D − {} → D, the tie-breaking function

The coupling functions define links between different components ports.
They are defined as:

EIC links pN ∈ InPortsN to pd ∈ InPortsd, d ∈ D

EOC links pd ∈ OutPortsd, d ∈ D to pN ∈ OutPortsN

IC links pa ∈ OutPortsa, a ∈ D to pb ∈ InPortsb, b ∈ D, a 6= b

We notice here that no direct feedback loops are allowed, i.e. no output port
of a component may be connected to an input port of the same component.

The Select function is used when various components are simultaneously
imminent. In this case, the Select function defines a priority for the order in
which the components will be processed.

CDEVS semantics Zeigler defines a complete semantics for CDEVS mod-
els. An atomic component is managed by a simulator, while a coupled com-
ponent is managed by a coordinator.

First, the imminence of all components is checked by the root coordinator,
and a list of imminent components is established. The Select function is used
to determine the next component to be processed if the list contains more
than one component.

An ∗−message is sent to the most imminent component simulator, which
activates it. A simulator receiving an ∗−message will first perform its compo-
nent λ emission then applies its δint internal transition. λ emission results in

1.2. DEVS and its extensions 17

the creation of an y−message which is transmitted to its parent coordinator.
Finally, the simulator updates its tl and tn internal variables.

When a coordinator receives an y − message, it searches in its coupling
lists the component to which it should be transmitted. If the component is
contained in the coupled, it is converted to an x−message and given to the
component simulator. If the message is to be transmitted to an output port
of the coupled, it is then sent to its parent.

When a simulator receives an x − message, it applies the δext external
transition of the component.

When there is no more action to perform, we move to the next iteration
of the loop.

1.2.1.2 Parallel DEVS

Parallel DEVS (PDEVS) [Zeigler 2000] is the root formalism for DEVS ex-
tensions dealing with parallelism. It is strongly based on CDEVS, but it
removes the Select function and replaces it with other mechanisms for han-
dling simultaneous events. PDEVS thus allows different components to evolve
simultaneously and provide resolution mechanisms to deal with conflicting si-
multaneous events.

PDEVS atomic components syntax PDEVS atomic component defini-
tion is as follows:

M =< Xb, Y b, S, δext, δint, δcon, λ, τ > where

The only addition to CDEVS is the δcon function, defined as:
δcon : Q×X → S is the confluent transition function

When simultaneous external and internal events occur, the confluent func-
tion δcon is called instead of δint or δext to solve the conflict. δcon can be as
simple as calling δint or δext, which is a way of prioritizing between these two
functions or be a totally different function.

Moreover, the X and Y elements contain now not only simple values but
bags of values, since several input or outputs can be received or sent simulta-
neously. This is why there are here noted as Xb and Y b.

PDEVS coupled components syntax PDEVS coupled component is
changed to:

N =< X, Y,D, {Md}, EIC,EOC, IC > where

The only difference with CDEVS is that the Select function has been
removed, being no longer necessary as the parallelism is accepted.

18 Chapter 1. Scientific context & state of the art

1.2.2 Dynamic Structure DEVS and its parallel version
Dynamic Structure DEVS (DSDEVS), defined in [Barros 1997a], is based on a
4-tuple network structure where atomic components can connect directly with
other atomic components by a set of influencers I. The network executive
χ is a specific component whose state represents the network structure. χ

thus takes responsibility for all changes of model structure, meaning that
components in the model cannot take the decision on structural adaptation.
Parallel Dynamic Structure DEVS (DSDE) [Barros 1998] is a parallel version
of DSDEVS.

1.2.2.1 Dynamic Structure DEVS

Dynamic Structure DEVS allows changes in model structure during execu-
tion. It has the same basic model as CDEVS, but the structure of coupled
models can change over time. The atomic component of DSDEVS inherit all
definitions of CDEVS, while the coupled components have a different syntax
adapting to dynamic structure.

DSDEVS atomic components syntax In DSDEVS, the atomic compo-
nents are definied as CDEVS atomic components.

DSDEVS coupled components syntax In DSDEVS, the coupled models
can be seen as sets of standard coupled models, each coupled representing a
possible configuration of the network. A DSDEVS coupled model is called a
dynamic structure network, and is defined by Barros as:

DSDEV N∆ =< X∆, Y∆, χ,Mχ > where

∆ is the network name

X∆, Y∆ ≡ X, Y in DEVS

χ is the DSDEVS network executive name

Mχ is the model of the executive χ

The DSDEVS networks is defined with a special component, the network
executive χ. Mχ the model of the executive, is a DEVS basic model and is
defined by the structure:

Mχ =< Xχ, Sχ, Yχ, δintχ , δextχλχ, taχ >

1.2. DEVS and its extensions 19

Differing from a traditional CDEVS atomic component, a state sχ ∈ Sχ
contains the information about the structure of the DSDEVS network. To
represent the structure, the state notably contains information about the com-
ponents, the connections and other variables.

sχ =< Dχ, {Mχ
i }, {I

χ
i }, {Z

χ
i,j}, SELECT χ, V χ >

where

Dχ is the set of components

Mχ
i is the model of component i, ∀ i ∈ Dχ

Iχi is the influence of i, ∀ i ∈ Dχ ∪ {χ,∆}

Zχ
i,j is the i-to-j output to input function, ∀ j ∈ Iχi

SELECT χ is the Select function

V χ contains other variables required by the executive for decision making

Presenting the system that way leads to two possible approaches. Either
the entire set of possible model structures are known initially, or they exist
unpredictable architectures. In the first case, all structures can be encoded
into the Sχ set of states, which is suitable when the number of architectures is
reduced. However, with this formalism, treating cases in which the reachable
architectural states are not predetermined is difficult. Indeed, Barros himself
details in [Barros 1997b] the helper functions exposed by the simulator to add
and remove components and links.

In order to understand the DSDEVS syntax, we present an example pro-
posed by Zeigler [Zeigler 2000].

the figure 1.2 presents a system which has the ability to change its struc-
ture, by changing its coupled component into a 1-server or 2-server structure.
If the server1 in this node is idle, it can be removed and transferred to another
node. However, if a 3-server structure is not anticipated and integrated into
sχ, the node cannot have a 3-server structure. In a complex use case where
the combinatorial structure cannot be planned, DSDEVS is not suitable.

According to the definition, the set of components is defined, but their state
is not. Barros thus defines the new components states after a χ transition to
be equal to the same components state before transition (plus time advance)
if the component existed or to be the initial state if the component didn’t
exist.

20 Chapter 1. Scientific context & state of the art

Figure 1.2: A DSDEVS exemple: block diagram of a node

1.2.2.2 Parallel Dynamic Structure DEVS

Parallel Dynamic Structure DEVS (DSDE) [Barros 1998] defines a specific
component, χ, as for DSDEVS, whose state encodes the structure of the net-
work. The current network structure can be obtained at any time from χ

state using the structure function γ.

DSDE atomic components syntax defined as PDEVS atomic compo-
nents

DSDE coupled components syntax The DSDE component is defined as
for DSDEVS:

DSDEN =< XN , YN , χ,Mχ >

However, the model of the executive χ is an extended definition of an
atomic model defined as:

Mχ =< Xχ, Sχ, s0,χ, Yχ, γ,Σ∗, δχ, λχ, τχ > where

γ : Sχ → Σ∗ is the structure function

Σ∗ is the set of network structures

1.2. DEVS and its extensions 21

In this definition, χ is the only component allowed to change the network
structure. Moreover, the connections between the components of the network
are also defined by χ state, i.e. a simple change of connector without affecting
the atomic components themselves must be treated as a χ transition.

Figure 1.3: A DSDE exemple: one server network change to two sever
network

An exemple of a buffered server [Barros 1998] is presented in figure 1.3. It
is composed of the buffer Q and the single server A. When the waiting queue
is long, it can hire a new server B.

The buffered server is defined by :

S =< XS, YS, χ,Mχ > where

YS = J∗

J = {c0, c1,...,cj,...} is a set of clients

J∗ is a sequence of jobs

XS = J∗× {change, null} - {(<>,null)}

22 Chapter 1. Scientific context & state of the art

Mχ = = (Xχ, s0,χ, Sχ, δχ, τχ)

with

Xχ = {change}

Sχ = {s0,χ, s1,χ}

τs0,χ= τs1,χ = ∞

δχ(s0,χ, e, change) = s1,χ

δχ(s1,χ, e, change) = s0,χ

γ(s0,χ)=(D0,{Mi,0},{Ii,0},{Zi,0})

γ(s1,χ)=(D1,{Mi,1},{Ii,1},{Zi,1})

where

D0= {Q,A}

D1= {Q,A,B}

MQ,0= MQ,1=(XQ, s0,Q, SQ, YQ, δQ, λQ, τQ)

MA,0= MA,1=(XA, s0,A, SA, YA, δA, λA, τA)

MB,1= (XB, s0,B, SB, YB, δB, λB, τB)

IA,0= IA,1=IA={Q}

Iχ,0= Iχ,1=Iχ={S}

IQ,0= {S, A}

IS,0= {A}

ZQ,0: XS ×XA → XQ

ZA,0= ZA,1=ZA and ZA: XQ → XA

Zχ,0= Zχ,1=Zχ and Zχ: XS → Xχ

ZS,0: YA → YS

IB,1= {Q} , IS,1= {A,B}, IQ,1= {S,A,B}

ZQ,1: XS ×XA ×XB → XQ

1.2. DEVS and its extensions 23

ZB: XQ → XB

ZS,1: YA × YB → YS

The network initial structure is presented at the top of figure 1.3 and when
the executive receives an order to hire a new server it changes to the state
represented in the botton of figure 1.3. The network can return to its initial
structure after firing server B.

1.2.2.3 Conclusion on DSDEVS and DSDE

DSDEVS and its parallel version DSDE propose the first approach to dynamic
structure systems representation. They describe a model based on different
architectural states between which the components can switch.

However, the formalism given to represent these architectural states is
either too general or too specific. It can list all the available architectural
states by representing them as sets of sets, or provide a specific, limited list of
available states. In the second case, the formalism can be adapted to represent
a system in which a well-known set of states is reachable. But in the first case,
the formalism lacks an expressiveness and relies on the simulation architecture
for providing helper functions such as for adding or removing a component.

Moreover, DSDEVS way of taking into account component internal state
change is limited. DSDEVS states that, when a new component appears in the
simulation, it is automatically in its initial state, while all other components
remain in their previous state. However, no traceability is provided to identify
which components are new or not.

1.2.3 Dynamic DEVS and its dynamic port extension

The principle of Dynamic DEVS (dynDEVS) as described in [Uhrmacher 2001]
is that each atomic component has its own model transitions function ρα which
controls its own structural transformation. At coupled component level, the
equivalent function is the network model transition function ρN . The model
transition functions can pass from one structure to another. However, it does
not consider the context management. Uhrmacher later developed ρ−DEVS,
a dynDEVS variation supporting dynamic ports.

Under dynamic DEVS, the original definition of DEVS is changed to cap-
ture reflectivity by a recursive definition of models. Its transitions may pos-
sibly give rise to “new” models. A model changes its structure, i.e., its state
space and its behavior pattern.

24 Chapter 1. Scientific context & state of the art

1.2.3.1 Dynamic DEVS (dynDEVS)

dynDEVS atomic components syntax A dynamic DEVS is a structure:

dynDEV S =df < X, Y,minit,M(minit) > where

X, Y structured sets of inputs and outputs

minit ∈M(minit) the initial model

M(minit) is the least set having the structure

{< S, sinit, δext, δint, ρα, λ, ta > |

S the set of states sinit ∈ S the initial state δext:Q × X → S the external
transition functions with Q={(s, e) : s ∈ S, 0 ≤ e ≤ ta(s)} δint:S → S the
internal transition function ρα : S →M(minit the model transition function
λ : S → Y the output function ta : S → R+

0 ∪{∞} the time advance function
}

and satisfying the property
∀n ∈M(minit).∃m ∈M(minit).n = ρα(sm)withsm ∈ Sm) ∨ n = minit

dynDEVS coupled components syntax Networks (alias coupled mod-
els) do not add functionality to atomic models, since each network can be
expressed as an atomic model (due to the DEVS closure under coupling prop-
erty).

A dynamic network, dynNDEVS, is the structure:

dynNDEV S =df < X, Y, ninit,N (ninit) > where

X, Y structured sets of inputs and outputs

ninit ∈ N (ninit) the start configuration

N (ninit) the least set having the structure<
D, ρN , {dynDEV Si}, {Ii}, {Zi,j}, Select >

D the set of component names

ρN :S → N (ninit) the network transition function with S =
×d∈D⊕

m∈dynDEV Sd
Sm

1.2.3.2 ρ-DEVS

This extension [Uhrmacher 2006] introduces dynamic ports and allows for
multiple connections. It authorizes the models to enable or disable certain
interactions at the same time.

1.2. DEVS and its extensions 25

ρ-DEVS atomic components syntax An atomic ρ-DEVS model is the
structure:

ρ−DEV S =< minit,M, XSC , YSC ,minit >

with minit ∈ M the initial model, XSC , YSC ports to communicate structural
changes,M the least set with the following structure:

< X, Y, S, s0, δint, δext, δcon, ρα, λρ, λ, ta >

λρ : S ×XSC →M: model transition

ρ-DEVS coupled components syntax A reflective, higher order network,
or coupled components is defined as:

ρ−DEV SN =< ninit,N , XSC , YSC ,minit >

N the least set with the following structure < X, Y, C,MC, ρN , ρα > where

C set of components wich are of type ρ-DEVS

MC set of multi-couplings

ρλ : Sn → YSC : structural output function

A multi-coupling mc ∈MC is defined as a tuple

mc =< {(Csrc.port)|Csrc ∈ C}, {(Ctar.port|Ctar ∈ C}, select >

1.2.3.3 Conclusion on DynDEVS and ρ-DEVS

DynDEVS and its extension deal with the atomic components reconfiguration
which was not addressed in DSDE. It adds the atomics the capability to change
their inner behavior with no changes on the coupled level. However, despite
this interesting additional capability, DynDEVS still lacks details on how the
state of the component is handled when facing a reconfiguration.

The ρ-DEVS extension deals with the external interface of atomics when
an internal structure change occurs. This aspect is very interesting with regard
to the dynamic behavior of components.

26 Chapter 1. Scientific context & state of the art

1.2.4 Synthesizable DEVS
Synthesizable DEVS (SynDEVS) is proposed by Molter [Molter 2012]. It is
a hardware/software co-design flow based on DEVS model of computation.
It proposes a co-simulation process with a DEVS-based formalism and dis-
tinguish hardware and software partitions during the simulation. It creates a
VHDL-based hardware DEVS and a C++-based software DEVS. It considers
the development process for a model of computation relying on simulation.
However, it focuses neither on hardware nor on software. The definition of
the hardware platform relies on a direct DEVS state-machine to Finite State
Machine implementation. It considers the actual hardware clock to match the
simulation clock.

Moreover, the model structure of SynDEVS is not dynamic. We have been
inspired by its design flow approach, but not its formalism.

SynDEVS atomic components syntax SynDEVS atomic component is
denoted by a 15-tuple

SynDEV Satomic =< Pin, Pout, X, Y, V,W, vinit, v, S, s0, δint, δext, δcon, λ, τ >

X Y, S, s0, δint, δext, δcon, λ, τ defined as Zeigler’s

V variables

W values for each variable

vinit initial values for each values

v variable assignment functions

SynDEVS coupled components syntax A coupled components, called
as parallel components by Gregor Molter:

SynDEV Sparallel =< Pin, Pout, X, Y,M,Cin, Cout, Cinner >

Pin input ports

Pout output ports

X event values for each input port

Y event values for each output port

M inner atomic or parallel components

Cin connections between input ports and inner components

Cout connections between inner components and output ports

Cinner connections in-between inner components

1.2. DEVS and its extensions 27

1.2.4.1 Conclusion on SynDEVS

SynDEVS deals with hardware/software codesign. It proposes an interesting
view of the codesign problem using the DEVS formalism. However, it tries to
make the hardware architecture stick very closely to the DEVS state-machine
and time representation. In SynDEVS, the hardware clock is the simulation
clock. If this aspect brings interesting real-time applications, it restains the
applicability and brings lots of constraints which can be avoided when working
in, discrete, simulated time.

1.2.5 Reconfigurable DEVS
Reconfigurable DEVS (RecDEVS) [Madlener 2013] considers dynamic hard-
ware MoC together with DEVS. RecDEVS proposes a model based on DEVS
for final use on reconfigurable hardware like FPGA. In RecDEVS the system
executive Cχ is in charge of the structure changes. However RecDEVS takes
into account some hardware specificities from the beginning, like component
communication relying on a bus structure with an address notion. This limits
the model to an use on the target platform defined by RecDEVS. Thus, there
is no separation between PIM and PDM. There are other limits on the meta-
model itself, like the fact that a component deletion can only be triggered by
the component itself. Eventually, there is no final implementation on FPGA,
the workflow only goes to SystemC simulation.

RecDEV S accounts for the various special properties of reconfigurable
hardware architecture, like the bus architecture. Its concept is based on rep-
reseting the reconfigurable hardware blocks as DEVS components.

RecDEVS defines an unique identifier ID for each component.

RecDEVS atomic components syntax The difference between a
RecDEVS atomic component and a PDEVS component is that the ports and
messages are redefined.

CRecDEV S =< X#, Y #, S, s0, δint, δext, δcon, λ, τ >

S , s0, δint, δext, δcon, λ, τ as PDEVS

X# : I × I ×Data

Y # : I × I ×Data

I = {CID
d | d ∈ D, ID ∈ N}, a communication between two components is

performed by sending a message onto a blobal communication system. Each
message consists of a tuple (sender, receiver, data), where sender, receiver ∈
I. The receiver can identify relevant messages by their address.

28 Chapter 1. Scientific context & state of the art

RecDEVS coupled components syntax

NRec =< Xext, Yext, D,Cχ > where

D : Set of all available DEVS components

Cχ : is the network executive which is a DEVS atomic component

RecDEVS dynamic semantics The creation of new RecDEVS compo-
nents consists of a fixed sequence of messages as follows:

∗ if the component CID
orig wants to create a new component of type d ∈ D,

it sends a message (CID
orig,Cχ,(new d)) to the network executive.

∗ Cχ receives the message and performs an external transition δext. This
will create a new RecDEVS component Cid

d and add it to the list of
instantiated components

∗ A confirmation message (Cχ, CID
orig, (confirm Cid

d)) with the address of
the new component is then sent to the originator.

∗ Starting from the reception of the confirmation message, the originator
can address the newly created component.

Figure 1.4: A RecDEVS exemple: add a new component

1.2.5.1 Conclusion on RecDEVS

RecDEVS proposes the first simulator aiming at supporting dynamic structure
models on partially reconfigurable architectures. Moreover, many interesting
notions, such as the identifier adjoined to the component in order to uniquely
identify it.

Nevertheless, RecDEVS models have to include low-level, platform-related,
description elements. This ties the models deeply with the execution platform,

1.3. Dynamically reconfigurable computing systems 29

preventing them from being adapted to other simulators. This goes against
the MDA approach in which the models are platform-independent.

Furthermore, the component context aspect is not treated. When dealing
with dynamic component, the context is of prominent importance. For exam-
ple, we may want to suspend a component at one time and resume it later
from the same point. If the component has to be removed meanwhile, this
can only be done by supporting context saving and reloading.

1.3 Dynamically reconfigurable computing
systems

Under earlier Von Neumann architecture by 1950 [Iannucci 1988], as shown in
figure 1.5, an electronic digital computer consists in a processing unit, a control
unit, a memory, external mass storage and input and output mechanisms. The
processing unit is made of an arithmetic and logic unit and processor registers.
The control unit contains instruction registers and program counter. The
memory stores both data and instructions.

Figure 1.5: Von Neumann Architecture
(Image “Von Neumann Architecture”

by Kapooht, available on Wikimedia Commons, CC-BY-SA-3.0)

After 60 years of development, the ability of computing using a processing
unit arrives at a high level: a system on chip [Xu 2005] has a maximum CPU
clock rate up to 3 GHz [Deleganes 2002], compared to the first Intel 4004
at 740 kHz [Aspray 1997]. However, CPU’s are sequential processing devices,
even if multi-cores CPUs are developed nowadays, allowing for multiple simul-
taneous processings. Compared to a CPU, the parallel nature [Adamski 2005]

30 Chapter 1. Scientific context & state of the art

of Graphics Processing Units (GPU) are quite an interesting for multi-process
application.

For high-performance, dedicated applications, it is possible to design
Application-Specific Integrated Circuits (ASIC), containing optimized designs
for a single application. However, in traditional integrated circuits fabrication,
the design is long and expensive, and no modification is possible unless pro-
ducing a new chip.

Between CPU and ASIC, there are flexible hardware materials, which can
implement specific functionalities which can be modified.

In this section, we are presenting the dynamically reconfigurable comput-
ing systems: the programmable logic devices, especially the architecture of
the FPGA, and the technologies of partial reconfiguration.

1.3.1 Programmable logic device
A programmable logic circuit (PLD), is an integrated circuit that can be
configured after manufacture. In order to distinguish from software, we try to
avoid using the word “programming”. Instead, we call it “configuring” since
the hardware level changing is not due to executing any line of code. We
modify connections or the behavior of the physical component: we connect
logic gates between them. The word “programming” is still used under several
circumstances in the hardware, but in the case where the configuration is done
and the modifiable logical networks considered fixed.

The most common reconfigurable hardware is the FPGA, which makes
it possible to build any logic circuit within the limits of available resources.
Some offer partial dynamic reconfiguration [Lysaght 2006], which allows a
modification of a part of the component without interfering with the operation
of elements that are not modified.

This component will obviously be at the center of the execution platform.
Although there are other aspects of PLD as Application-Specific Integrated
Circuits (ASICs) or Application-Specific Standard Parts (ASSPs), in compar-
ision to an FPGA, these devices contain a relatively limited number of logic
gates, and the functions they can be used to implement are much smaller and
simpler [Maxfield 2004].

FPGA is a separate stream of development of original programmable logic
array which is based on gate array technology. FPGAs based on user-defined
place (gate) and route (multiplexers) and register-rich (D flip-flops) architec-
tures.

Hardware reconfiguration is based on a circuit with generic hardware re-
sources which can be connected by a programmable network as shown in
figure 1.6.

1.3. Dynamically reconfigurable computing systems 31

Figure 1.6: FPGA architecture

Configurable Logic Block (CLB) is usually made up of several cells. Within
each cell, there are LookUp Tables (LUTs) associated with multiplexers and
flip-flops. A LUT is a memory associating an output with an input, in which
it is possible to record the result of a logic function, associating the desired
value with each input combination. LUTs are associated with flip-flops and
multiplexers to provide different configurations of the cell. The LUT is a truth
table which can mimic gates (like AND, NOR, OR, etc) linked to form a final
output.

The five main advantages of FPGA technology according to [Hauck 2010]
are: performances, time to market, cost, reliability, long-term maintenance.
That makes FPGAs used almost everywhere today [Maxfield 2004] including
communication devices and software-defined radios; radar, image, and other
digital signal processing (DSP) application; system-on-chip (SoC) component
that contain both hardware and software elements.

1.3.2 Partial reconfiguration

Partial Reconfiguration [Platzner 2010] is the ability to dynamically modify
blocks of logic while the remaining logic continues to operate without inter-
ruption.

Partial Reconfiguration (PR) takes FPGA flexibility one step further, al-
lowing the modification of an operating FPGA design by loading a partial
configuration file, sometimes referred to as a bitstream file. After a full bit-
stream file configures the FPGA, partial bitstream files can be downloaded

32 Chapter 1. Scientific context & state of the art

to modify reconfigurable regions in the FPGA without compromising the in-
tegrity of the applications running on those parts of the device that are not
being reconfigured.

In order to isolate the partial reconfiguration area from the static areas
during the reconfiguration process, several tools are needed to ensure the
calculation.

The use of Partial Reconfiguration can allow designers to move to fewer or
smaller devices, reduce power, and improve system upgradability. Make more
efficient use of the silicon by only loading in functionality that is needed at
any point in time.

We will use here Xilinx tools as a base platform. There are tools inte-
greated in Xilinx VIVADO platform which help to manage a partial recon-
figuration design [Xilinx 2018], notably a Partial Reconfiguration Controller
and a Partial Reconfiguration Decoupler, shown in figure 1.7. The partial re-
configuration controller is a low level hardware-based configuration controller.
The bitstreams are delivered and arranged by the partial reconfiguration con-
troller. The partial reconfiguration decoupler isolates the dynamic region from
the static one while it is being reconfigured.

Figure 1.7: Virtual socket containing a decoupler

The Partial Reconfiguration Controller uses a notion of Virtual Sockets

1.4. Conclusion 33

to identify a reconfigurable area along with its decoupling and reset logic. A
virtual socket thus describes all the information required to do the reconfigu-
ration and initialize the component in a safe state.

The controller contains virtual socket managers, each is in charge of con-
troling one virtual socket. One socket manager contains a list of up to 128
partial bitstreams that can be used to configure the reconfigurable area of the
socket. Each manager has an interface to the socket to control its isolation
and reset logic. The manager also has information to know what are the
operations to apply on the socket when a reconfiguration is triggered. E.g.,
when a reconfiguration is launched, the socket manager will first shut down
the existing component within the socket, isolate it, apply the reconfiguration,
reset the component then finally connect it.

1.4 Conclusion
This chapter has explained the basic knowledge in order to understand the
problems in this thesis. Through the history of system engineering develop-
ment, we could see the evolution of the system process of modeling. Involving
modeling and simulating through all steps, system engineering makes it pos-
sible to build systems more and more complex.

We have seen that there already exist several meta-models based on dis-
crete event system for simulation, and even extensions for dynamic systems.
However, most of them do not apply to the approach of system engineering.
These meta-models are not adapted to the partially reconfigurable systems.

Moreover, our point of view on existing formalisms which allow describ-
ing dynamic structure systems is that they are either too high level, making
it difficult to apply to real systems, or too deeply linked to the execution
platform. The formalisms mentioned in this section stay at theoretical level:
they propose an abstract simulator and can be adapted to an actual execution
environment.

The main DEVS-based formalisms structure-change aware are DSDEVS,
DynDEVS and their respective extensions. They all provide a mathematic
syntax based on architectural states which evolve during the simulation time.
We identified a few lacks in these meta-models.

The first one is related to the syntax description of the structural states.
Indeed, for systems whose all architectural states cannot be predicted, the
formalism is too generic and requires helper functions to be provided by the
simulator. Doing so reduces the replicability of the simulations by bringing
the execution context in the semantics.

The context of the component is not considered neither. At some point

34 Chapter 1. Scientific context & state of the art

in a dynamic structure simulation, it can be of use to force a change of a
component state externally. For example, one may want to reload a specific
context previously saved.

We also investigated at hardware-related DEVS extensions. SynDEVS
integrated the idea of model transformation flow. It aims at form a software
/ hardware co-simulation but remains static. Finally, RecDEVS integrates
the dynamic model notion on hardware, but the model is tightly bound to
the low-level implementation platform and the context management is not
considered.

Nowadays the development of dynamically reconfigurable computing sys-
tems requires a system engineering approach for modeling, which is the one
that will be considered in this thesis.

Chapter 2

Partially Reconfigurable
Discrete Event System

Specification

Contents
2.1 PRDEVS meta-model syntax 36

2.1.1 PRDEVS abstract syntax 36
2.1.2 Root PRDEVS component 37
2.1.3 Coupled components 38
2.1.4 Atomic components 38
2.1.5 Ports . 39
2.1.6 Convenience sets and notations 39

2.2 PRDEVS semantics . 40
2.2.1 General functions . 41
2.2.2 Structure change semantics 42
2.2.3 Components context under dynamic behavior 44

2.3 Graphic representation 45
2.3.1 Components . 46
2.3.2 States, transitions and actions 47

2.4 Example . 47
2.5 Conclusion . 50

36
Chapter 2. Partially Reconfigurable Discrete Event System

Specification

In the previously studied formalisms, we identified some lacks in the ca-
pabilities offered.

The first one is that most formalisms rely on a pre-established list of
structures that a model can adopt during its life. As an example, DSDE
encodes the structure in the χ component state, and the γ function translates
it to an actual model structure. This way of doing is not adapted to the
current methodology adopted in auto-adaptive design, in which the live state
may be not predictable at the design phase.

A second remark applies to RecDEVS, which is the only dynamic DEVS
formalism to target dynamic hardware. In this case, the system engineering
approach is not applied, in which the high-level model should be disconnected
from the target, low-level, executing platform. RecDEVS integrates platform
constraints directly in the high-level model. In order to consider those spec-
ifications, we propose a new meta-model which adopts the MDA approach
by separating the abstract model from the executing platform. This meta-
model is based on the foundation of PDEVS which is extended to structural
changes. We name it Partially Reconfigurable Discrete Event System Specifi-
cation (PRDEVS).

2.1 PRDEVS meta-model syntax
The meta-modeling approach is frequently done using UML as a definition
tool. In our approach however, the PRDEVS meta-model will be based on
mathematical definition as for the original DEVS formalism.

We propose a PIM syntax based on PDEVS and inspired by RecDEVS.
The platform-independent model is, as stated from the name, a model which is
built to represent an application, without necessarily knowing the simulation
environment or the target platform that will run the application or the appli-
cation simulation. Thus, our PIM syntax must be able to represent dynamic
structure models, but shouldn’t assume anything about how the structure
changes will actually be applied. This is the main difference with RecDEVS,
as the RecDEVS meta-model only considers PSM. The target architecture
is assumed from the model definition, notably by using the address notion
within the high-level models.

2.1.1 PRDEVS abstract syntax
A PRDEVS is a model which contains all required information about compo-
nents, structure, and allows for structural changes. Though we use PDEVS
and RecDEVS as a base reference, we slightly rewrite some definitions to clar-

2.1. PRDEVS meta-model syntax 37

ify specific points. A major difference with RecDEVS is that we do not use a
specific component like Cχ which stores the network structure in its state: we
directly manipulate the sets, adding and removing elements. The first moti-
vation for this approach is to be closer to the current engineering approach to
describe dynamic systems. This is slightly equivalent to the software notion of
new/delete instructions for object manipulation. Moreover, this way of doing
offers the ability to reach structure states which may not have been predicted
when first conceiving the system, allowing for auto-adapting systems to be
more flexible.

Concerning the D set, on one hand, PDEVS defines D to be the set of
components names, i.e. a list of all the names of the components inside the
coupled. On the other hand, RecDEVS definition of setD is “a list of available
component names”, and this set is compared to a list of components types.
They both define the set {Md | d ∈ D}, which contains the components them-
selves. In our component sets-based description, we rather directly manipulate
the components sets and think this description is redundant, as one can be
obtained from the other. So we chose to merge these two sets so that the D
set directly contains the components themselves. Instead of storing the names
of the components, we rather use the notions of identifiers and types.

The identifier follows the notion introduced by RecDEVS where an iden-
tifier ID ∈ N is attributed to each component. For the type notion, we can
make the connection with object-oriented programming, where there can be
various instances of a class, we call objects. Here, the notion of type is equiva-
lent to class, i.e. it defines a component structure and initial state, but there
can be various components sharing the same type with a different state. The
identifier is then used to differentiate the components. We use here a defini-
tion close to RecDEVS, but formalize the notation: we use T as the list of
defined types, i.e. a list of components types which can be instantiated.

A PRDEVS component then has an identifier, which is unique and dy-
namically defined, and a type, which can be shared.

2.1.2 Root PRDEVS component
The dynamic structure ability relies on a library of available components, each
being of a specific type, which can be added to the system. The library is de-
fined as L = {Ct | t ∈ T}. Components in the library expose a null identifier,
as it is defined on instantiation.

Components in use still have a type t ∈ T , but also an identifier id, and
are noted as Cid

t . The notation can be simplified to Cid. Unlike RecDEVS, we
do not restrict id ∈ N: although a PSM implementation will probably have
to impose such a restriction, the PIM doesn’t require so. We thus define an

38
Chapter 2. Partially Reconfigurable Discrete Event System

Specification

arbitrary set ID which contains the allowed identifiers.
With this considerations, we then define a PRDEVS to be:

PRDEV S = < L,CTop > with:

L = {Ct | t ∈ T}, the library of available components

CTop is a coupled component containing the application structure

CTop has an initial configuration, which will evolve over simulation time.
To have a clear and simple definition, we did not include the sets T and

ID in the PRDEV S definition. Indeed, T can be retrieved from L using the
reverse definition T = {t | Ct ∈ L}, while ID can be any arbitrary set.

2.1.3 Coupled components
A coupled component will be very alike PDEVS definition:

Nnid =< X, Y,D,EIC,EOC, IC >

All elements of this definition are the same as PDEVS definitions, except
for D:

D = {Cid
t | t ∈ T, id ∈ ID} the set of components contained in the coupled

A coupled component Cnid does not have a specific type, as the component
structure can change during execution when a component is added to or re-
moved from Dnid. From D, we can get the set of all identifiers of components
in the coupled: IDnid = {id | Cid ∈ Dnid}.

2.1.4 Atomic components
As our formalism deals with structure changes, the atomic components defi-
nition adds a structure change function to the PDEVS atomic formalism:

Mmid
t =< X, Y, S, s0, δext, δint, δcon, λSC , λ, τ >

λSC : S → SC the structure function with

SC = {addComponent(), removeComponent(), addPort(), removePort(),
addConnection(), removeConnection()} the list of structure
change functions as detailed in section 2.2.

2.1. PRDEVS meta-model syntax 39

2.1.5 Ports
The ports of a component are implicitly defined by the couples (p, v) of X and
Y sets. However, a specific definition can be derived to formally identify the
ports as mathematical objects. This representation of ports as independent
objects, i.e. not only as names belonging to a set, and whose allowed values
are defined by the X and Y sets, is easier to manipulate.

The ports of the components must be uniquely identified, but only among
a component. Thus, the name of the port on the component is sufficient to
identify it uniquely, as long as the component itself has a unique identifier. The
port name is then equivalent to the identifier notion. As for the component,
the identifier can be part of any set, and thus can be a character string.
Moreover, a port has a direction (input/output), and a set of available values.
We then introduce a definition of what is a port:

P id =< Direction,DataType > with

id the identifier of the port

Direction ∈ Pdir = {in, out}

DataType ∈ Ptype

The set of allowed types Ptype can be defined as a set of allowed definition
sets, and will most likely contain N, R, B = {True, False}, etc.

Concerning the connection between two ports, it must define a source and
a sink. The data type does not have to be recorded as part of the connection
object, but type match between source and sink should be checked when the
connection is created.

On a structure change point of view, the ports can be added and removed
from a coupled component. An atomic component can not see its ports sets
changed, because it would affect its behavior. This was addressed by ρ-DEVS,
but we chose not to integrate it. Thus, an atomic component with different
sets of ports is a different type of component.

2.1.6 Convenience sets and notations
All of the sets defined previously can be linked to a specific component by
displaying its identifier, e.g. Xnid refers to the set of inputs X of coupled
component Cnid. The same way, Smid is the set of states S of component
Cmid.

For convenience, we also define a few additional sets to gather elements
regardless of the hierarchy.

Sets of components:

40
Chapter 2. Partially Reconfigurable Discrete Event System

Specification

DN the set of all coupled in the PRDEVS

DM the set of all atomics in the PRDEVS

DPRDEV S = DM ∪DN

Sets of identifiers:

IDN = {id | Cid ∈ DN}, the set of all coupled identifiers

IDM = {id | Cid ∈ DM}, the set of all atomics identifiers

IDPRDEV S = IDN ∪ IDM

IDP = {id | P id ∈ DPRDEV S}, the set of ports identifiers

2.2 PRDEVS semantics
We rely on PDEVS semantics for most of the meta-model. The only addition
is the structure change semantics. Structure change functions have a different
priority level than other messages in the simulator: the simulator has a list of
pending SC tasks and the list is executed at the end of an imminence cycle.

Unlike RecDEVS, we do not restrict which component can call a structural
change function. Indeed, RecDEVS states that a component can only delete
itself, not another component. The main justification provided is that it avoids
accidentally deleting a component which is still in use. By only allowing self-
deletion, the component can announce its own deletion to linked components
before committing deletion. But this approach doesn’t seem to be a good
answer to this issue. Indeed, deleting a component which is still in use in
an application may be a conception error. Restricting the remove call to the
component itself does not solve the case where the component itself is badly
defined, and forget announcing its deletion to some of the related components.
Imposing such a constraint do not avoid errors, so the restriction is irrelevant.
We believe the application correctness is up to the modeler, and to avoid
such errors, applications should be checked for correctness, e.g. using formal
methods.

By allowing any component to call structure change functions, we let the
modeler decide how to handle its structure changes: all components can be
autonomous and directly trigger the functions, or there can be one or more
components in the model which are in charge of the structure, only them being
able to call these functions.

In our definition, we will assume as a first approach that model correctness
is done statically before the simulation is run. We thus do not include error-
checking in the semantics.

2.2. PRDEVS semantics 41

We define 6 structure change functions, and a set of general functions that
are used by the structure change functions.

2.2.1 General functions

The following functions are defined as reference functions in the semantic to
mutualize common operations.

2.2.1.1 getAvailableId

getAvailableId : ∅ → ID

This function determines an available identifier from ID. For example,
if ID = N, a variable will determine the next unused identifier, which
will be returned, and the variable will be incremented. The function actual
implementation is up to the PDM, which must defines its own ID set.

2.2.1.2 getNewComponent

getNewComponent : T → L

Returns a new component from the library matching the given type. It is
the function that allows to retreive the component object from the component
type. For t ∈ T , it will return {Ct | Ct ∈ L}.

2.2.1.3 getExistingComponent

getExistingComponent : IDPRDEV S → DPRDEV S

This function returns an existing component from its identifier.

2.2.1.4 getParentComponent

getParentComponent : DPRDEV S → DN

Returns the parent component of a component. It can be applied to an
atomic or a coupled, but always return a coupled. It cannot be applied on
CTop.

2.2.1.5 getPort

getPort : DN × IDP → Port

Gets an existing port from a coupled component.

42
Chapter 2. Partially Reconfigurable Discrete Event System

Specification

2.2.2 Structure change semantics
2.2.2.1 addComponent

addComponent : T × IDN → ID

Adds a new component into an existing coupled component. The new
component type and the hosting coupled ID are provided as parameters. The
identifier of the new component is returned. The algorithm 1 depicts the
function behavior.

input : t ∈ T ; idhost ∈ IDN

output: newId ∈ ID
Data: newC ∈ L;hostC ∈ DN

newId ← getAvailableId()
newC ← getNewComponent(t)
newC.id ← newId
hostC ← getExistingComponent(idhost)
hostC.D ← hostC.D ∪ {newC}
return newId

Algorithm 1: addComponent procedure

2.2.2.2 removeComponent

removeComponent : IDPRDEV S → ∅ Removes an existing component, whose
identifier is passed as a parameter, from the PRDEVS. Its behavior is pre-
sented on algorithm 2.

input: idremoved ∈ IDPRDEV S

Data: remC ∈ DPRDEV S, hostC ∈ DN

remC ← getExistingComponent(idremoved)
hostC ← getParentComponent(remC)
hostC.D ← hostC.D \ {remC}

Algorithm 2: removeComponent procedure

2.2.2.3 addPort

addPort : IDN × Ptype × Pdir → ID

Adds a port to a coupled component whose identifier is provided, with
the associated type and direction. The new port identifier is returned, as
displayed on algorithm 3.

2.2. PRDEVS semantics 43

input : id ∈ IDN ; pt ∈ Ptype; pd ∈ Pdir
output: pid ∈ ID
Data: newId ∈ ID; newport ∈ Port;hostC ∈ DN

newId ← getAvailableId()
newport ← (pt, pd)
newport.id ← newId
hostC ← getExistingComponent(id)
hostC.port ← hostC.port ∪ {newport}
return newId

Algorithm 3: addPort procedure

2.2.2.4 removePort

removePort : IDN × IDP → ∅
Removes a port from the component whose ID is provided, as displayed

on algorithm 4.

input : id ∈ IDN ;pn ∈ IDP

Data: hostC ∈ DN ; removedport ∈ Port
hostC ← getExistingComponent(id)
removedport ← getPort(hostC,pn)
hostC.port ← hostC.port \ {removedport}

Algorithm 4: removePort procedure

2.2.2.5 addConnection

addConnection : IDPRDEV ES × IDP × IDPRDEV S × IDP → ∅
Adds a connection between two ports. The ports are referred to using

the combination of the component identifier and the port identifier. The Zi,d
definition from Zeigler must be respected, i.e. the two components must be
in the same coupled, or one of the two component must be a coupled and the
other one a component inside the coupled, and one must be an input and the
other an output. Moreover, the definition interval type must match between
the two ports. The definition is displayed on algorithm 5.

2.2.2.6 removeConnection

removeConnection : IDPRDEV ES × IDP × IDPRDEV S × IDP → ∅
Removes a connection between two ports using the same notation as the

previous function, as displayed on algorithm 6.

44
Chapter 2. Partially Reconfigurable Discrete Event System

Specification

input : id1 ∈ IDPRDEV S; pn1 ∈ IDP ; id2 ∈ IDPRDEV S; pn2 ∈ IDP

Data: hostC1 ∈ DN ; hostC2 ∈ DN ; connection ∈ PortConnection
hostC1 ← getParentComponent(id1)
hostC2 ← getParentComponent(id2)
connection← {(id1, pn1), (id2, pn2)}
if hostC1.id=hostC2.id then

hostC1.IC = hostC1.IC ∪ {connection}
else if hostC1.id=id2 then

hostC1.EOC = hostC1.EOC ∪ {connection}
else if hostC2.id=id1 then

hostC2.EIC = hostC2.EIC ∪ {connection}
Algorithm 5: addConnection procedure

input : id1 ∈ IDPRDEV S; pn1 ∈ IDP ; id2 ∈ IDPRDEV S; pn2 ∈ IDP

Data: hostC1 ∈ DN ; hostC1 ∈ DN ; connection ∈ PortConnection
hostC1 ← getParentComponent(id1)
hostC2 ← getParentComponent(id2)
connection← {(id1, pn1), (id2, pn2)}
if hostC1.id=hostC2.id then

hostC1.IC = hostC1.IC \ {connection}
else if hostC1.id=id2 then

hostC1.EOC = hostC1.EOC \ {connection}
else if hostC2.id=id1 then

hostC2.EIC = hostC2.EIC \ {connection}
Algorithm 6: removeConnection procedure

2.2.3 Components context under dynamic behavior
A model dynamicity resides not only in adding or removing component. As
seen previously, the components interconnections are also part of the struc-
ture. Moreover, an additional level of change can be seen in the components
internal behavior evolution, denoted by its current state. In DSDE, when
a new component is added, its state is set to the initial state, as detailed
in [Barros 1998].

We name a component total state (Q) its context. The context is made
of the component current state Si and the elapsed time e. In some cases, it
could be interesting to be able to set a component into a different context.

The first use of this capability can be to save the context of a component
before removing it. This allows to later restore it and resume the computations
from the point where there were stopped. This if for example of use in a time-
slicing, preemptive context, where the computation resources are limited and
distributed over time to different tasks. Another application for restoring a

2.3. Graphic representation 45

previously saved context are a suspension of a task to be resumed later, or
the ability to restore a backed-up context if needed.

The second use for context restoration can be to allow choosing the starting
state of a component. For example, a component can be initialized in different
states depending on its situation. In such a case, DSDE limitation demands
several independent models which have exactly the same structure, except for
the initial state.

In either case, this ability requires to be able to store the components con-
texts. For context saving and restoring, the context library is initially empty,
and progressively filled over simulation time. In the different initialization sce-
nario, the context library has to contain various initial contexts at simulation
start. In both cases, it requires a context library, and functions to interact
with the components contexts.

A context is an element which contains all the required data to fully de-
termine a component state. When placed in a library, it must be uniquely
labeled by an identifier.

For such purpose, we must extend the PRDEVS definition to include
the context library, which we name LΦ. We then define the context-aware
PRDEVS as follows:

PRDEV SΦ = < L,LΦ, C
Top > with:

LΦ = {Qid
t | id ∈ IDΦ, t ∈ T}, IDΦ being the allowed context identifier set.

We also need two functions to allow saving a context from a component
and changing a component context.

2.2.3.1 getContext

getContext : IDPRDEV S → IDΦ
Obtains a context from a component and saves it to the context library,

as displayed on algorithm 7.

2.2.3.2 setContext

setContext : IDPRDEV S × IDΦ → ∅
Applies a context from the context library to an existing component, as

detailed on algorithm 8.

2.3 Graphic representation
Although we have already the syntax and semantics for PRDEVS, the mathe-
matical notations are sometimes not optimal for model readability. The main

46
Chapter 2. Partially Reconfigurable Discrete Event System

Specification

input : id ∈ IDPRDEV S

output: newId ∈ IDΦ
Data: C ∈ DPRDEV S;Q ∈ Φ
newId ← getAvailableId()
C ← getExistingComponent(id)
Q ← C.Q
Q.id ← newId
Q.t ← C.t
LΦ ← LΦ ∪ {Q}
return newId

Algorithm 7: getContext procedure

input : id ∈ IDPRDEV S; idΦ ∈ IDΦ
Data: C ∈ DPRDEV S;Q ∈ Φ
C ← getExistingComponent(id)
Φ ← {Qi | i = idΦ}
C.Q ← Φ

Algorithm 8: setContext procedure

goal of this section is to ease the definiton of PRDEVS models while keep-
ing the preciseness of the mathematical notation. Other popular Models are
usually exploited with visual programming paradigm, after the mathematical
definitions, as Ptolemy [Ptolemaeus 2014], UML StateCharts [Latella 1999].

2.3.1 Components
To represent components graphically, we chose the square for atomic compo-
nents and a rounded square for the coupled, as shown in 2.1. The input and
output ports are presented as a triangle, inputs on the left side and output
on the right side. The example of figure 2.1 shows an atomic component with
two input ports and a coupled component with one output port.

Figure 2.1: Graphic representation of components

2.4. Example 47

2.3.2 States, transitions and actions
Inside the atomic components, there are states (S), transitions (δ) and actions
(λ). As the total state can be uncontable, it can be cut into various internal
variables. The main finite one will be called phase and represented graphically.

Figure 2.2: Graphic presentation of transitions

The figure 2.2 represents the atomic internal elements. We chose a circle
to represent the phase, lines for the different transitions and arrows for the
actions. A solid line represents an external transition, the input is noted
with a question mark “?”. A dotted line represents an internal transition, the
condition of the transition being marked with brackets “[]”. A double arrow
represents an output emission, the output value is assigned to the output
port. A triple arrow represents a structural change call, the dynamic function
is marked around the triple line.

2.4 Example
In order to detail the structure of the PRDEVS meta-model, we give an ex-
ample of a simple dynamic structure model.

Root model ModelExample =< L,LΦ, C
Top > where

L = {Ccounter, Cgenerator, Cempty_coupled}

LΦ = {Q1
generator, Q

2
generator}

CTop = {X, Y,D,EIC,EOC, IC}

with

XTop = Y Top = EICTop = EOCTop = ICTop = {}

DTop = {Ccpt
counter}

48
Chapter 2. Partially Reconfigurable Discrete Event System

Specification

Atomic component - counter The counter contains the dynamic calls.
It can be described as:

Ccounter =< X, Y, S, s0, δext, δint, δcon, λSC , λ, τ > with

X = {PEV ENT}, with PEV ENT = (in,B)

Y ={}

S ={s0, s1, s2, s3, s4, s5, s6, s7}×ID × ID × ID × N
repectively: s, coupledID, generatorID, portID, count

s0 =(s0,∅,∅,∅, 0)

δint(s, count) =



s1 if s = s0
s2 if s = s1
s3 if s = s2
s4 if s = s3
s5 if s = s6 ∧ [count 6= 10]) or (s = s4) or (s = s7)
s7 if s = s6 ∧ [count = 10]

δext((s, count), in) = (s6, count+ 1) if s = s5 ∧ in→ TRUE

δcon(s) = {}

λSC(s) =



coupledID = addComponent(empty_coupled, top) if s = s0
generatorID = addComponent(generator, coupledID) if s = s1

portID = addPort(coupledID, boolean, out) if s = s2
addConnection(generatorID, out, coupledID, portID) if s = s3

addConnection(coupledID, portID, cpt, EV ENT) if s = s4
setContext(generatorID, 2) if s = s7

τ(s) =
{
∞ if s = s5
0 else

Atomic component - generator The generator is static which can be
described as:

Cgenerator =< X, Y, S, s0, δext, δint, δcon, λSC , λ, τ > with

X ={}

Y = {PEV ENT}, with PEV ENT = (out,B)

S = {s0} × R+

repectively s and speed

s0 =(s0, 10)

2.4. Example 49

δint(s0) ={s0}

λ(s0) = (PEV ENT ← TRUE)

τ(s0) = speed

δext(s) =δcon(s) = λSC(s)={}

Context Library LΦ = {Q1
generator, Q

2
generator}

Q1
generator = (s0, 1)

Q2
generator = (s0, 2)

Graphic representation - Top level Here is a graphic representation of
this example. At CTOP there is only counter at the beginning, as shown in
2.3a. At the end of the initial phase, a generator is added and connected to
the counter, as detailed in 2.3b.

Initialy, the generator emits an event every 10 time units. After the counter
reaches 10 for its variable count, the context Q2 is loaded which changes the
generator speed to 2 time units.

(a) Graphic presentation
of the beginning (b) Graphic presentation of the end

Figure 2.3: Graphic presentation of the top level component

Graphic representation - generator atomic In generator there is only
one phase state, as shown in 2.4.

Graphic representation - counter atomic In counter there are eight
phase states, as shown in 2.5

50
Chapter 2. Partially Reconfigurable Discrete Event System

Specification

Figure 2.4: Graphic presentation of the generator

Figure 2.5: Graphic presentation of the counter

2.5 Conclusion
In this chapter, we presented a formal syntax and semantics for a partially
reconfigurable DEVS. We also introduced a graphic presentation which helps
for a clear interpretation of the formal definition of the model, at least for
simple models.

Most functions defined in this chapter could possibly fail in some circum-
stances, but we do not want to handle exceptions or errors in this definition.
In this meta-model, the error checking is up to the modeler. We could extend
PRDEVS to handle error cases, such as illegal actions (e.g. connecting ports
with different types). We can also think of implementation-related error cases,
such as creating a new component while there is no room available for the new
component.

Structure Change (SC) functions have a different priority level than other
messages in the simulator: the simulator has a list of pending SC tasks and

2.5. Conclusion 51

the list is executed only at the end of an imminence cycle. As a first approach,
we chose to execute all SC functions in zero time relative to the simulator,
i.e. the simulator is paused while the structural changes are carried on. In
future work, however, it could be possible to allow structural changes to be
applied while the simulation is running in order to allow taking full advantage
of hardware partial reconfiguration technology. This will require structural
checks on the model such as making sure that a newly added component will
not be required for simulation until it is fully operational. This can be carried
on by separating the SC function call from their return, obtaining the new
identifier on a separate external transition of the component which called the
add function.

More possible extensions include dependency handling for calls. As an
example, deleting a component still connected to other components could
automatically delete its connections prior to the component removal.

Chapter 3

A software PDM for the
PRDEVS PIM

Contents
3.1 Platform study . 54

3.1.1 Software platform and object-oriented programming . 55
3.1.2 A quick look into a software simulator core 55

3.2 Hierarchy of the software PDM 60
3.2.1 Atomic/coupled component 60
3.2.2 Port/connector . 61

3.3 Mapping and realization of the PDM 62
3.3.1 Meta model transformation for time 64
3.3.2 Input/output message bags 64
3.3.3 Dynamic functions calls 65
3.3.4 Time advance (Ta) . 65
3.3.5 Imminent time (Tn_min) 65
3.3.6 Last event time (Tl) 66
3.3.7 Elapsed time (e) . 66

3.4 Case study: a PSM test 67
3.4.1 Initialization of the model 69
3.4.2 Simulation . 70

3.5 Conclusion . 70

54 Chapter 3. A software PDM for the PRDEVS PIM

As a first execution platform, we will study a generic software architecture.
From this, we will build a Platform Definition Model and match it with the
previously defined PRDEVS meta-model.

Our final goal for the PRDEVS meta-model is to target partially reconfig-
urable hardware platforms. However, preliminary tests are required to verify
our PIM syntax correctness and applicability. The dynamic functions can be
also be tested more easily on an object-oriented software implementation, as
hardware platforms are not as flexible as software.

A strong advantage of testing on software first is that the software concept
is very close to our PIM. For example, the dynamic functions like addCompo-
nent() and removeComponent() directly match the new() and delete() oper-
ations on objects. Another strength of software is its flexibility, notably the
memory use, virtually illimited, and the communication ease between objects,
which can rely on function calls. Finally, software is inherently sequential, i.e.
an operation is carried on only when the previous one is over, which avoids
concurrency issues. We will not deal with threads and other multiple process
capabilities.

In this chapter, the first step will be a general study of software platforms,
which is detailed in section 3.1. It also will be of help to review an exist-
ing discrete-event simulation platform. Then, we will present the hierarchical
architecture of the PDM in section 3.2. A mapping to PSM is presented in
section 3.3, especially as we present the timing mechanism during the simu-
lation. At the end of this chapter, we give a testing example of this software
PSM in section 3.4.

3.1 Platform study
Most of the DEVS models are simulated under a software simulator. For
example, PythonPDEVS [Van Tendeloo 2016] is a Python-based simulation
kernel for both CDEVS and PDEVS. It is designed by The Modelling, Sim-
ulation and Design Lab (MSDL) at McGill University in Montreal and the
University of Antwerp. DEVS-Suite [Kim 2009] is a Parallel DEVS simulator.
It is a tool created at Arizona center for integrative modeling and simulation.
ProDEVS [Vu 2015] is a DEVS simulation tool for hybrid systems using state
diagrams. The advantage to study ProDEVS is that it is an in-house made
tool at LAAS, where the source of the project is accessible. Other simula-
tion software frameworks using Discrete Event System Specification can be
found under survey [Franceschini 2014b], as CD++ [Wainer 2002], DEVS-
Java [Hu 2008], James II [Himmelspach 2009], PowerDEVS [Bergero 2011] or
DEVS-Ruby [Franceschini 2014a].

3.1. Platform study 55

3.1.1 Software platform and object-oriented program-
ming

Software applications are sets of instructions executed sequentially by a pro-
cessor. Multi-core and multi-processor platforms allow treating several tasks
at the same time. However, we decide, as a first approach, to only consider
single-threaded execution.

A widespread approach to software development is the object-oriented
method. Objects are sets of variables, along with methods, defined in classes.
The variables are stored in memory, and the methods are sets of instructions
that can be applied to the object to alter the variables content. The methods
range from single accessors (getters and setters) to large pools of code carrying
out complex operations. The object approach suits our goals, as a component
can be represented as a class.

Moreover, objects are blocks which we can create and delete easily, which
match our needs for structural change. The methods in objects can be called
and the affected behaviors are applied. The variables of each object are kept
as properties. Methods can create and change others properties. Methods
of different objects can share the same name but distinct behaviors. Several
objects can also share public properties.

3.1.2 A quick look into a software simulator core
To have a good understanding of how a simulation engine must behave, we
chose to take a look at the source code of an existing DEVS simulator.

ProDEVS is an event-driven modeling and simulation tool for hybrid sys-
tems (continuous and discrete time systems). It is a team internally developed
tool and we have access to the source code. ProDEVS applies a model-view-
controller (MVC) design pattern, as shown in figure 3.1.

F View: User builds the model using the graphical interface. For each
visual component, the tool creates a corresponding internal object. The user
defines the components hierarchy, connections, and behaviors. A model check
is done prior to the simulation. During the simulation phase, the controller
is in charge of the computation. After the simulation ends, the results of the
simulation are shown in a graphic interface, displaying the variables selected
by the user.

F Model: DEVSModel is the class which records the whole DEVS model,
as shown in figure 3.2, together with the next identifiers of atomic component,
coupled component, input port, output port, transition, state and connector.
The Component class can either specify an atomic component, or a coupled
component. The common attributes such as the id, component name and

56 Chapter 3. A software PDM for the PRDEVS PIM

MODEL CONTROLLER

S2
S1

S4
S3

VIEW

updates

fills writes

notifies

Figure 3.1: MVC Process
(Image “MVC Diagram (Model-View-Controller)”

by Grégoire Surrel, available on Wikimedia Commons, CC-BY-SA-3.0)

input/output ports lists are specified in the Component class. The Component
class also manages the attributes e, σ, tn and tl which are used during the
simulation phase. The time structure and the scheduling will be detailed in
the section 3.3. AtomicComponent class contains the states which are linked
by transitions, while the CoupledComponent class records the hierarchy and
connections lists.

F Controller: The controller has many tasks. A first is to establish the
link between the view and the model in the design stage. After the model
is completed, during the simulation phase, the Controller manipulates the
model. The figure 3.3 shows the initialization process of the Controller. The
controller runs the simulation time from 0 and advances simulation time until
the end time defined by the user. It activates each Component one by one if
the simulation time matches its own internal time specification (tn). There
are two different controllers inside the tool: a Classic DEVS and a Parallel
DEVS.

The study of this DEVS simulation tool structure helped us understand
the functioning of DEVS and PDEVS simulation. The MVC structure is
convenient for a medium size development. It cuts the major parts of the
software into several sub-systems for partitioned development. We chose not
to use MVC structure for our PSM development due to several reasons.

First, the MVC structure of ProDEVS requires to modify the GUI (Graph-
ical User Interface), which is time-consuming work that is not part of our re-
search focus. Moreover, the structure of the existing tools needs lots of mod-

3.1. Platform study 57

Figure 3.2: Class diagram of Model package

58 Chapter 3. A software PDM for the PRDEVS PIM

ification. E.g. the top level of the model should contain a library of available
components, according to our PRDEVS meta-model definition. This change
would lead to a different DEVS model verification, code generation, etc. Fi-
nally, a PRDEVS model needs a different controller able to treat the dynamic
messages and to modify the model structure on-the-fly, which is difficult to
achieve considering the static structure of ProDEVS.

In order to implement a PIM into a software PSM and test it rapidly, we
are going to write the model source code manually. Building it from scratch
seems here faster than modifying an existing tool.

3.1. Platform study 59

Figure 3.3: Sequence diagram of controller initialization

60 Chapter 3. A software PDM for the PRDEVS PIM

3.2 Hierarchy of the software PDM
In our PDM, to match the predefined PIM meta-model there will be a unique
top-level coupled model (CTOP). A library (L) contains the available compo-
nents.

The UML representation of the PRDEVS is shown on figure 3.4.

Figure 3.4: PRDEVS UML representation

3.2.1 Atomic/coupled component
Atomic and coupled components inherit from the Component class. The
Atomic and Coupled classes share some common characteristics: there are
both with their ID, inputs set and output set. Moreover, atomic components
have two types of transitions and two types of output emissions. Atomic
components have one parent. The coupled component CTop has a list of its
children.

The UML representation of the Component classes is shown in figure 3.5.
After one-to-one correspondence, the simulator which represents atomic

component inherits different variables:

• current_state, current DEVS state in simulation

• next_state, next DEVS state if an internal transition is active

• time_elapsed_on_current_state (e), simulation time has already
passed on current DEVS state

• time_of_next_event (tn), the time condition for the internal transition
to be actived on current state. If no internal transition, tn can be infinity

• time_of_last_event (tl), time for which we have been in the current
state

3.2. Hierarchy of the software PDM 61

Figure 3.5: Components UML representation

The coordinator which represent coupled component anlso inherits vari-
ables:

• time_minimal_for_next_event(tn_min), the minimal tn among its
children

• IMM, the list of its imminent children.

3.2.2 Port/connector
Each component has a list of input ports and a list of output ports. The
ports are in charge of receiving and sending the messages bags. Each port can
either be an input or an output port. It records the type of messages bags
that it accepts (integer, real or boolean). Under our OOP development, Port
is a class which can be instantiated several times.

The UML representation of the Port and PortConnection types are shown
on figure 3.6.

The output ports record which input port it is linked to. The input ports
have a list of input values that have not been treated yet. The exchange of the

62 Chapter 3. A software PDM for the PRDEVS PIM

Figure 3.6: Port and PortConnection types UML representation

information happens at the end of one simulation cycle. According to Ziegler’s
definition, the connection is one way. One output port can connect to several
input ports. However an input port can receive from only one output port.

3.3 Mapping and realization of the PDM
The simulator described by Ziegler uses a hierarchical tree of models, which
has a coordinator object for each coupled model and a simulator object for
each atomic model.

To each of the simulator objects, a model object describing the structure of
the represented atomic is associated. There is a single root coordinator which
lead the hierarchical tree. The root coordinator contains a list of imminent
models and their next event time. This list is updated at the beginning of
each event step.

Under root coordinator are coordinators which can be the parents of coor-
dinators or simulators which are the leaves of this hierarchical tree. A corre-
spondence from model to simulation can be seen in figure 3.7. Each branch of

3.3. Mapping and realization of the PDM 63

the hierarchical tree is independent during the simulation. Simulators manage
the next time event. Coordinators control the next simulation time of all its
children. We name this tree building a one-to-one correspondence process.
This is part of the initialization phase.

(a) Model
(b) Controller

Figure 3.7: One-to-one correspondence

In a first approach, a flat representation is chosen for our implementation
of PRDEVS. That is to say, the levels of hierarchy are ignored as if all the
atomics were directly instantiated in CTOP . In this organization, only atomic
components will be in CTOP , so there is only one coordinator in the model
(CTOP). A list of available components L is held in the root coordinator. A
simulator which corresponds to a component type in L can be created using
the SC-functions.

To apply the object-oriented programming (OOP), several python based
static files which describe the components in L are created. The controller
starts the simulation with an initialization phase: put the initial python classes
into CTOP . During the simulation, dynamic functions correspond to the meth-
ods of a class. An addComponent() function call can be applied to create a
new object from a class in L.

Example:
when addComponent(T ,ID) function is called, a new objet is created.
Latest id is updated: idlast++
The new objet is linked with the lastest id in the model: objet.id=idlast
The object is referenced into its parent: parent.addchildren=object
And the object parent is set: objet.addparent= parent
Then we return the new id: returnid = idlast

The core simulation contains a cycle which starts from time 0 utill the end
of simulation time set by the user. There is a global simulation time t in the
controller. Each coupled component has its next event time (tnmin). Each

64 Chapter 3. A software PDM for the PRDEVS PIM

atomic component has its own separate local time (tl,tn,e). Each state in the
atomic component has its own time advance (ta), as shown in figure 3.8

Figure 3.8: Time variable in the different objects

In order to get the information of the lower level, there are getters and
setters for each variable.

3.3.1 Meta model transformation for time
The PSM gets not only the structure from PIM, but also the time specifica-
tions from the PIM.

In our software PDM, the memory allocated to the simulation is virtually
unlimited. It means we can add as much components as we want to into the
model. In the model, each atomic component registers its time in the state
class, we name it time advance, or τ in the formalism, Ta in programming.
Transition connecting the states are triggered if the time and guard are met
for internal transition, or input and guard are met for external transition.

The simulation time t is coordinated with Imminent Time (Tnmin). Tnmin
is calculated on the basis of Tn. Tn is based on Last event Time (Tl) and all
the Time advance (Ta) of current state in components.

3.3.2 Input/output message bags
Our PIM is based on PDEVS, the parallel DEVS meta-model, where several
components can send the messages at the same simulation cycle. So a message

3.3. Mapping and realization of the PDM 65

bag is used for the output event. The message bag contains an unsorted set
of events from one or more different sources.

Each component is linked to one or several ports classes. Ports can hold a
list of messages which is not treated yet. The messages delivered within the
ports are one way. Under the software implementation, a port has a type. e.g.
if a port is defined to handle numeric messages, it can not treat text messages.
We define 4 types of messages: X-message, Y-message, *-message and SC-
message which correspond respectively to input messages, output messages,
state change messages and dynamic messages.

The first three messages are defined as Zeigler’s: imminent models are
chosen based on their minimal next event step and the imminent models
trigger *-message. If the conditions to trigger λ on the current state are met,
a Y-message is then integrated into the Y-message bag. The message bag is
sent to the target model and is received as a X-message at the end of each cycle
event. The model which received the X-message will move to upcoming state
and wait for next cycle. SC-message, in some aspect similar to Y-message,
will build a SC-message bag and the dynamic SC functions are executed at
the end of each event cycle. The SC-message is then treated in zero-time
compared to the simulation time.

3.3.3 Dynamic functions calls
Dynamic functions are collected and treated in priority than other messages.
If a dynamic message is applied during the cycle, the other messages are
suspended.

If the Dynamic functions exectued only on itself, such as addPort() or
removePort() for itself, it does not influent other component’s state. The
addConnector() and removeConnector() can influence two components. How-
ever no messages are sending within the new connector in the same cycle since
the other actions are suspended.

3.3.4 Time advance (Ta)
Ta matches Ta by Ziegler. Time advance is different from component to
component, from state to state. Ta accepts positive integer numbers. Tn_min
is calculated on the basis of all ta in its children.

3.3.5 Imminent time (Tn_min)
Imminent time is calculated based on the next event time of the imminent
simulator. The minimal next event time of the imminent simulator becomes

66 Chapter 3. A software PDM for the PRDEVS PIM

the imminent time of coordinator at the beginning of the next simulation
cycle.

3.3.6 Last event time (Tl)
Each simulator keeps its last event time. Based on the last event time and
current time advance, the next event time is calculated.

3.3.7 Elapsed time (e)
Elapsed time saves the time passed in the current state. If it equals to the
time advance, the current state is finished and the simulator can move to next
state.

3.4. Case study: a PSM test 67

3.4 Case study: a PSM test
We apply PRDEVS syntax by creating a PSM implementing on a basic Multi-
Agent System (MAS). A multi-agent system consists of independent agents
and their environment.

MAS is an upraising research domain of artificial intelligence (AI). AI is
the study of agents that receive percepts from the environment and perform
actions [Russell 2016]. What it treats is a system with multiple agents, act
independently but possible has an interface between them. Agents are au-
tonomous and have skills to achieve their goals and tendencies [Ferber 1999].
An agent can be a physical or virtual entity: network servers under the same
root server or simulated players in video games. Since each agent has its own
configuration, it is possible modeling it and simulate its actions.

MAS offers a conceptual approach to include multi-actor decision mak-
ing into modeling and simulation [Ligtenberg 2004]. Where several stud-
ies [Uhrmacher 2009] have mentioned simulation for MAS and MAS for sim-
ulation, such as combining simulation and formal tools for developing self-
organizing MAS [Gardelli 2009] or agent for traffic simulation [Kesting 2008].

There are also semi-formal modeling approaches: Agent Modeling Lan-
guage (AML) [Trencansky 2005] for specifying, modeling and documenting
systems that incorporate features drawn from multi-agent systems theory.

Very often [Narendra 1990,Qu 2009], when we talk about dynamic mod-
els, we mention dynamic behaviors. Then it leads to systems modeled by
differential equations or equilibrium points, stability, limit cycles and other
key concepts of dynamical systems.

However, our study of dynamic systems, based on reconfigurable comput-
ing, pointed to the fact that a system can keep running with a part of it
being changed. For example, one program in the school syllabus can change
to another (due to shorthanded or other reasons) without interrupting the
fulfillment of the system goals.

Within a size×size grid co-exists three types of players: chicken, fox, and
egg. Each cell can hold only one player and players move under certain rules,
as shown in figure 3.9: chickens can move randomly around in four directions
– south, north, east and west; foxes can move randomly around in all eight
directions including south-east, north-east, south-west, and north-west; eggs
cannot move.

The general position of each player is registered in component rules. When
a player needs to know if its neighbor position is free, it contacts rules.

Chickens and foxes components all have one input port: validation and
one output port: askAvailability for checking the position.
Pvalidation =< validation, in, {isChicken, isFree, other} >

68 Chapter 3. A software PDM for the PRDEVS PIM

. ↑ .
← c →
. ↓ .
(a) Chicken

↖ ↑ ↗
← f →
↙ ↓ ↘
(b) Fox

. . .

. e .

. . .
(c) Egg

Figure 3.9: Moving Rules for players (c, f, e represents Chicken, Fox and
Egg)

PaskAvailability =< askAvailability, out, (positionX ∈ size, positionY ∈
size) >
Players calculate their destination themselves and communicate with a Rules
component to know if the cell is free for moving. An example is shown for
Chicken in figure 3.10.

Figure 3.10: External view of chicken

The DEVS state machine for the Chicken model is as shown in dia-
gram 3.11. The initial state of a chicken is S1. When the chicken compo-
nent is imminent, it receives a *-message to execute the internal transition
and randomly defines the desired destination. It moves to state S2. Then an
output is sent to verify the availability of this position. It moves to state S3
and waits for an input. The Y-message arrives to the rules model which re-
sponds according to the availability. Depending on this response, the chicken
model moves to state S4, S5 or S6 and then the SC-function and the internal
transition is called.

The game starts with an initial numbers of players, an example is presented
on figure 3.12a. Each round, all players are imminent and move simultane-
ously. If a chicken reaches another chicken, an egg will be laid randomly
around and the chicken stays at the same position. If a fox reaches a chicken,

3.4. Case study: a PSM test 69

Figure 3.11: Internal view state machine of chicken

the chicken is eaten and the fox replaces the position of chicken. The game
ends when there are no chicken any more, as in figure 3.12d or if all foxes are
blocked by eggs.

c c . .
. . f .
. . . .
. e . .

(a) Game Starts

. c . .
c e . .
. f . .
. e . .
(b) Round 1

c . . .
. e . .
f . . .
. e . .
(c) Round 2

. . . .
f e . .
. . . .
. e . .

(d) game end

Figure 3.12: Example of a game turn

3.4.1 Initialization of the model
Before the simulation starts, an initial model is created, as shown in the exam-
ple figure 3.12 for the example game turn. Under the PRDEVS model, there
are a CTop and L. The component types C, F, E which represent Chicken,
Fox and Egg in L. Rules is the component which is in charge of updating the
global geographic position.

70 Chapter 3. A software PDM for the PRDEVS PIM

Figure 3.13: Tree view of model

There are two simulators corresponding to atomic components with type
chicken, a simulator associated with an atomic component with type egg and
a simulator which corresponds to an atomic component with type fox. They
are all in the coordinator corresponding to CTop.

3.4.2 Simulation
At the beginning of round 1, there are four players. Since one chicken meets
another chicken, a SC-message is sent and an egg is created at the end of this
round. At the beginning of round 2, there are five players. During round 2 fox
finds a chicken and a SC-message addressing removeComponent() is sent. The
SC-message is not treated immediately but added to a SC-message bag which
will be executed at the end of this round. For this reason, even if the chicken
has already been eaten, it still effects its internal transition within this round
(it is still possible to meet another chicken for laying egg). The simulator
which corresponds to the chicken is removed at the end of this round. At the
end of the game, all chicken are eaten and a new egg is created. In the root
coordinator, only three simulators are left in CTop.

3.5 Conclusion
The PRDEVS meta-model with a system engineering approach smoothes the
application to the different platform. Before describing a detailed hardware
platform, a software simulation platform has been described first. This has
allowed us to test the limitations of the PIM and the description needed to de-
fine a complete platform. A clear definition helps us ease the implementation

3.5. Conclusion 71

on hardware. The management of the messages bags, the priorities of the mes-
sages and the scheduling have been tested under the software platform. The
implementation on a software platform is different from the hardware plat-
form. For example, the messages are sending virtually, the structure change
is done without delays.

A software PSM has been presented with a case study of multi-agent sys-
tem. A software implementation PDM has been defined, the realization spec-
ification made. PRDEVS model structure and dynamic functions have been
verified.

Chapter 4

An hardware FPGA PDM for
the PRDEVS PIM

Contents
4.1 PDM architecture: a high-level view 74
4.2 Scheduling and temporal aspects 78
4.3 Components interface 79

4.3.1 Control interface . 79
4.3.2 Communication interface 81
4.3.3 Dynamic functions calls 82
4.3.4 Multi-bus . 84

4.4 Atomic component behavior specification 84
4.4.1 FSM general structure 85
4.4.2 FSM representation of internal transitions 86
4.4.3 FSM representation of external transitions 87
4.4.4 FSM representation of output emission 88
4.4.5 Conflict . 89

4.5 SC functions implementation 90
4.5.1 Static coordinator . 91
4.5.2 Dynamic coordinator 92

4.6 Example . 93
4.7 Conclusion . 96

74 Chapter 4. An hardware FPGA PDM for the PRDEVS PIM

The goal of our study is to define a hardware PDM compatible with
PRDEVS PIMs which covers dynamic reconfiguration capabilities. Advan-
tages of the partial reconfiguration have already presented in section 1.3. The
difference between a software PDM and a hardware PDM is that we have more
constraints, as we must totally define the architecture while the software al-
ready relies on an operating system and language libraries. However, the
fundamental difference is that the hardware can treat parallel tasks natively.

In this chapter, we are going to build a PDM based on a hardware design,
more specifically, a Field-Programmable Gate Array (FPGA) based PRDEVS
PDM, with partial reconfiguration capabilities.

First, we must consider the constraints of current FPGA technology, no-
tably the partial reconfiguration constraints. A detailed definition of the PDM
architecture is in section 4.1 with a structural, spatial definition and its link
to our PIM meta-model. A temporal scheduling of communications between
different actors is defined in section 4.2. Then the communication interface
between different parts of the model are presented in section 4.3. A trans-
formation of PRDEVS atomic models to finite state machines is presented in
section 4.4. The structure change functions are explicit in section 4.5. Fi-
nally, a PSM with the details of implementation on FPGA is presented in
section 4.6.

4.1 PDM architecture: a high-level view
According to the definition of our PIM meta-model, there are two types of
components: atomic component which is the smallest unit and coupled compo-
nent which can hold other components. A PIM has a hierarchical architecture
where two components can be connected by ports.

Current partial reconfiguration technics are based on independent, isolated
reconfigurable areas. On partially reconfigurable materials, a hierarchical ar-
chitecture is complicated to carry out [DeHon 1999]. Thus, as a matter of
simplification, we will not consider model hierarchy in the hardware PDM.

The lack of hierarchy on the hardware level can be seen in two different
ways. The first one is to consider that the PIM hierarchy exists in the sim-
ulator high level as a data structure. The components then have the virtual
notion of coupled that is matched with the actual, flat-structure, hardware by
the simulator. Another way to see it is to totally remove the notion of coupled
components in the PDM. Considering the second approach is a restriction of
the meta-model, and a PIM must then be adapted to the PDM.

As a first approach, we chose to use the simplified version where no coupled
exist in the PRDEVS (except CTOP which match the whole FPGA). This is

4.1. PDM architecture: a high-level view 75

not an issue as the hierarchy can be introduced later using the data structure
approach without modifying the hardware structure.

In PRDEVS there are three levels of reconfiguration: components, connec-
tions and context. Components reconfiguration match the concept of recon-
figurable area. However, connections reconfiguration is difficult to build with
this concept. We could consider connections between components as several
reconfigurable areas and update these areas on demand. But since we do not
know the numbers of total connections in advance, the numbers of this areas
would be unknown. For this reason, we propose a bus structure which can
transfer all types of data and is connected to all components whether a direct
connection is established or not. The context dynamic capacity is at the data
level and requires no structure reconfiguration.

Figure 4.1: Global view of PSM

Reconfigurable areas We present the proposed FPGA structure in fig-
ure 4.1, with several reconfigurable areas. Each reconfigurable area can hold
zero or one atomic component at a time. The component does not have to
make use of all the resources of the reconfigurable area. It is not possible to
add a component which needs more resources than the definition of a recon-
figurable area.

For example, as presented in figure 4.2 a new component C is added.

76 Chapter 4. An hardware FPGA PDM for the PRDEVS PIM

In reality, the new component C is loaded in an empty reconfigurable area,

Figure 4.2: Example of addComponent into the circuit

and a connection to the multi-bus is etablished automaticaly, as presented in
figure 4.3.

Figure 4.3: Architecture of a new component added

All component areas include a decoupler, in red on the figure, that isolates
the static part from the dynamic part, preventing the reconfiguration from
emiting random signals to the bus.

Communication For the purpose of linking the components, we define a
communication bus which is in charge of the message exchanges. On the fig-

4.1. PDM architecture: a high-level view 77

ure, it is part of the multi-bus. On the communication bus, the messages
between components are broadcasted, and inside a component, the green area
represents a communication block which filters the input messages. The com-
munication block contains the identifier of the remote port which it is linked
to. As the connections change the remote port identifier must be updated,
which means it is contained in a writable memory.

A connection change, for example, an A-C connection to an A-B connec-
tion, as shown in figure 4.4 can be decomposed in two steps: remove the A-C
connection then add an A-B connection.

Figure 4.4: Example of a connection change

In reality, the connections change are done in the communication block
and only this part is changed without change of the communication bus, as
presented in figure 4.3.

Control Apart from the components, there is only one coordinator con-
nected to the multi-bus, leading the simulation and synchronizing each cycle
of simulation. The coordinator is considered a static component. Details of
the control interface are defined in section 4.3.1. The coordinator acts on the
components using a control bus, which is also part of the multi-bus.

Structure change capabilities The components are also able to call dy-
namic functions, which will be handled by the coordinator. To do so, we
introduce a third bus in the multi-bus: the SC bus. The SC bus will con-
tain the structure required to call the functions, transmit the parameters and

78 Chapter 4. An hardware FPGA PDM for the PRDEVS PIM

Figure 4.5: Architecture of a connection change

obtain the return values. It will then be deeply linked to the SC-functions
signatures.

The SC bus will also contain the interface required to update the identifiers
within the communication block for connection updates. Finally, the context
will also be handled by the structure change bus.

4.2 Scheduling and temporal aspects
Time advance of a DEVS simulation is based on an absolute next event time
(tn) calculated from relative time (ta) of the current state of each component.

For our PDM, a cycle of simulation starts when the coordinator broadcasts
the minimal next event time (tn_min) along with the step order. tn_min is
transmitted using a signal tn_min on the control bus. All components receive
the order and check if the tn_min value corresponds to its local tn. If so, the
component is imminent and performs an internal transition and/or an output
emission.

After a component finishes its local cycle, it returns its new tn to the
coordinator using the tn signal on the control bus, along with the stepped
event. A cycle ends when all components have returned their own next event
time. This sequence as shown in figure 4.6

A communication between two components is initiated by a component
during its step cycle. However, the target component can have already sent
its stepped event when it receives the communication.

As shown in figure 4.7, even when component A announces the end of its
cycle, component B can still send messages to component A. To allow this,

4.3. Components interface 79

Figure 4.6: General simulation cycle

we separate the message handling mechanism from the simulation cycle. The
message received is retained by the communication block and will be treated
in the next simulation cycle.

4.3 Components interface
There are several buses in the set of multi-bus in order to handle control or-
ders, dynamic structure changes orders and transmit messages between com-
ponents. In this section, we will detail the low-level interfaces of these buses.

4.3.1 Control interface
Conforming to the figure 4.7, the coordinator needs to send a step event
along with tn_min. step is a one bit signal and tn_min is an integer. The
diagram also tells that we need a stepped event from component, together
with a tn value. stepped is a one bit signal and tn is an integer. We define a
particular type tn_type to represent all time-related integers. The tn_type
will be constrained by a maximum value, because the implementation has to
know the number of bits required to represent a value.

For tn_min, we are sure that it is not an infinite number, the other way
it would be a modeling error as no component is imminent. However, for tn,
it is possible that the component has an infinite value on certain states. As

80 Chapter 4. An hardware FPGA PDM for the PRDEVS PIM

Figure 4.7: Example of communication between two components

we can not represent infinite as a binary number, we add an additional bit
tn_valid to indicate that tn is not infinite. If tn_valid is equal to 1, then
tn is not infinite. When tn_valid is 0, the tn value is ignored.

Several components can send the stepped event at the same time, but
only one will be granted access to the bus at a time. We then add a one bit
signal ack_stepped returned to the component, indicated that tn has been
correctly captured by coordinator.

In summary, messages exchange between coordinator and components in-
cludes 6 signals: step, tn_min, stepped, tn, tn_valid, ack_stepped, as
shown in figure 4.8.

Figure 4.9 is an example of the control bus communication with two com-
ponents. The step broadcast announces the beginning of a cycle. tn_min
is held until all component send the ack_stepped event indicating their end
of cycle. The second cycle presents a bus conflict between the components.

4.3. Components interface 81

Figure 4.8: Messages exchanges between component and coordinator in
control bus

Only one is granted the access, while the second one waits for its turn.

Figure 4.9: Wave of a cycle of Step under control bus

4.3.2 Communication interface
We will here use as an example a component with a X input and a Y output.

For input, we need a one bit signal input_available announcing the
presence of a data transmission, and a vector input_value for receiving the
input value. Moreover, as messages are broadcasted on the bus, an input
value input_sender must also be present to indicate the identifier of the port
emitting the data.

For output, the interface is a mirror of the input interface. We also need
a one bit input to indicate that the port has been granted access to the bus.

According to the DEVS definition, one output port can be connected to
one or several input ports, while one input port can only be connected to a
single output port.

Considering that each input port can treats only one message at a time,
a communication block is placed in the input side of each atomic component,

82 Chapter 4. An hardware FPGA PDM for the PRDEVS PIM

Figure 4.10: Input X Figure 4.11: Ouput Y

(a) Authorized Connections (b) Non-Authorized Connections

Figure 4.12: Connections between components

acting as a buffer. It is in charge of checking the remote port id when a
message is incoming. If it matches the port connection, the communication
block will accept the message and indicate to the component that a message
is available on the input port. Moreover, the communication block is also in
charge of requesting access to the bus when the component wants to emit a
message.

4.3.3 Dynamic functions calls
To handle λSC calls, we use a Structure-Change (SC) bus. Dynamic functions
calls are initiated by the atomic component itself. They start by the assertion
of a sc signal, linked to the SC bus.

There are several dynamic functions, which have different parameters and
return values. In figure 4.13, we grouped the parameters as Sc_information
and the return values as Sc_return.

Sc_informaton depends on the Sc_type which could be the Ids of the
target component, Type of the component, P_type of the target ports, P_dir
of the target ports. Sc_done is an input message from the coordinator together

4.3. Components interface 83

with Sc_return which is the return of the structure change functions.
Sc_return is a vector and it arrives with one bit signal Sc_done which

indicates the SC function has finished its treatment.

Figure 4.13: Dynamic calls extra ports

As specified before, we slightly restrict our meta-model for easing the im-
plementation. As there are no coupled, the functions addPort and removePort
have not been integrated. Moreover, the addComponent function does not re-
quire the idhost parameter, all added components being placed into CTOP .
The return value is always an identifier.

The SC bus is also in charge of updating the communication block of the
component when there is a connection change. To do so, we define three sig-
nals: an update_connection bit which indicates that a connection change is
occurring, and two signals carrying the new connection. The new connection
is identified by the output port and input port full identifiers. A full iden-
tifier contain both the component and port identifier. All three signals are
broadcasted.

When a communication block detects a connection update, it checks if the
input port identifier is its own. If so, it updates its remote port identifier
storage. When a connection is removed, the output port identifier is set to 0.

Out of lack of time, we did not have time to implement the context mech-
anism. However, it could be done by adding an additional interface to the
SC bus. As for the connection update interface, the context interface should
contain a signal indicating that there is a context change order, along with
the target component identifier. The difficulty is that the context size can
differ from component type to component type. A component is aware of its
own context size, so there is no need to transmit it on the bus. To be able to
handle any context size, we could define a packet length (e.g. 32 bits). The
packet are sent one per clock cycle on a signal whose size matches the packet.
The context switch mechanism is then internal to the component. Reading a

84 Chapter 4. An hardware FPGA PDM for the PRDEVS PIM

context from a component behaves the same, the component sending packets
one after the other.

Figure 4.14: Wave of a cycle of Step

4.3.4 Multi-bus
As all we have seen before, there are three different buses. The control bus
synchronizes the simulation cycle, the structure change bus handles the SC
functions calls and acts on the components to change their and a commu-
nication bus which passe the message between components. The complete
interface is defined in figure 4.15.

Figure 4.15: Multi-bus structure

4.4 Atomic component behavior specification
An atomic component begins its computations when it receives the step event,
and provides a stepped event when over. During one cycle of simulation, the
behavior of the component depends on its current DEVS state and elements
associated to the current state. On top of states, the other elements of a

4.4. Atomic component behavior specification 85

DEVS machine represent actions: internal transitions, external transitions,
output emission and SC calls.

In our PDM, we chose to implement the behavior of a component doing
a simulation step using Finite State Machines (FSM). We then have two lev-
els of state machines: the DEVS state machines which represent an atomic
component model phase, and the low-level Finite State Machines which apply
this model to the simulation level.

4.4.1 FSM general structure
The FSM must store internally at least two variables: the current DEVS phase
Ds and the next event time tn_i.

Regarding the FSM structure, an initial state wait_step represents the
beginning of the FSM, as well as the idle state when waiting for a simulation
cycle start. It passes to Begin_step when a step event is received. The
state machine then must act according to the current Ds, elements associated
with Ds, the current tn_i and the inputs received. To do so, we define
one FSM branch for each possible Ds, which we build depending on the Ds
elements. When the FSM finishes its treatment, all branches are gathered on
an End_step FSM state, which emits the stepped event and waits for the
ack_stepped reply from the coordinator to return to wait_step.

The figure 4.16 details this general FSM structure.

Figure 4.16: General state machine

86 Chapter 4. An hardware FPGA PDM for the PRDEVS PIM

4.4.2 FSM representation of internal transitions
An internal transition does not depend on input messages, it only depends on
the component being imminent, i.e. simulation time equals to current state
next event time.

Figure 4.17: DEVS model of an internal transition

To represent a DEVS state containing an outgoing internal transition such
as S0 on figure 4.17, a comparison of local next event time tn_i and next event
time sent by coordinator tn must be made. We represent this option by two
FSM transitions with guards depending on the equality between these two
times.

If tn_i = tn the internal transition must be crossed, which changes the
current DEVS state. Moreover, as a result of DEVS state changing, the time
of next event must also be updated to match the one of the new DEVS state.
The State_change() function on the figures stands for the update of both Ds
and tn_i accordingly. After what, the simulation step ends by moving the
FSM to End_step. If tn_i 6= tn, nothing has to be made and we directly
move to End_step.

The figure 4.18 represents the FSM branch representing the above figure
DEVS machine.

4.4. Atomic component behavior specification 87

Figure 4.18: Internal transition

4.4.3 FSM representation of external transitions
An external transition depends on input messages, actions take place when
an input is detected. As an example, in figure 4.19, the state will change from
S1 to S2 when X is received.

Figure 4.19: DEVS model of an external transition

To represent a DEVS phase containing an outgoing external transition, a
verification of input must be made. We represent this option by two FSM
transitions with guards checking if an input is available in the communication
block. The input_available signal from the communication block indicates
that a message is available.

If an input is available, the external transition must be crossed, which
changes the current DEVS state. The input_read event is emitted, which is
used by the input manager to clear its input_available flag. After what, the
simulation step ends by moving the FSM to End_step. If no input is detected,
nothing has to be done and we directly move to End_step.

The figure 4.20 represents the FSM branch representing the above figure
DEVS machine.

88 Chapter 4. An hardware FPGA PDM for the PRDEVS PIM

Figure 4.20: External transition

If multiple inputs exist in the component, there are as many input manager
signals as inputs.

4.4.4 FSM representation of output emission
An output emission (λ) generates an output message if the DEVS component
is imminent. The output emission does not change the DEVS phase, so an
internal transition is needed if it needs to be updated.

Figure 4.21: DEVS model of an output emission

To represent a DEVS phase containing an output, such as in figure 4.21,
a verification of imminence must be made, as for internal transitions. The
guards on the FSM transitions are then equivalent to the ones of internal
DEVS transitions.

An output event is sent, together with output_available signal. If multiple
outputs exist, the multiplexing of the outputs and output request to the bus
are handled by the communication block.

4.4. Atomic component behavior specification 89

When output_written is received, the simulation step ends by moving the
FSM to End_step. If the component is not imminent, nothing has to be made
and we directly move to End_step.

The figure 4.22 represents the FSM branch representing the above figure
DEVS machine.

Figure 4.22: Output emission

4.4.5 Conflict
In a single DEVS phase, it is possible to have several simultaneous actions
with no conflict. e.g. an internal transition together with an output emission

Figure 4.23: Non-conflict transition

where one is in charge of changing the state and the other to manipulate the
output, as shown in figure 4.23. In this case, we simply combine the two
branches so that the output is emitted first, and then the state is changed, as
required by Zeigler’s algorithms.

90 Chapter 4. An hardware FPGA PDM for the PRDEVS PIM

However, in certain cases, it is called conflict where we must choose one
action and ignore the others. e.g. when an internal transition is together

Figure 4.24: Conflict transition

with external transition and both are active, we must ignore one of them, as
presented in figure 4.24. In such a case, DEVS provides the δcon resolution
function.

In our case, we set either δcon = δext or δcon = δint, as chosen by the
modeler. In future work, the δcon mechanism can be enhanced to propose
various other choices.

4.5 SC functions implementation
All SC functions will have the same FSM structure. Here is a state machine
of addComponent structure change function, as shown in 4.25.

Figure 4.25: DEVS model of a structure change emission

Dynamic transitions start from component. a component with dynamic
transitions adds several input/output ports concerned to transition: Sc ∈
{0, 1} indicates if there is a SC call to the coordinator. Sc_type is the signal
specifying which dynamic function is called. The parameters depend on which
SC function is called. For example, for the addComponent function, in this
simplified PRDEVS implementation, only the component type is required as
a parameter.

Figure 4.26 presents the call of an addComponent SC function.

4.5. SC functions implementation 91

Figure 4.26: Dynamic transition: addComponent

Inside the coordinator, there is a static part and a dynamic part, as de-
picted on figure 4.27.

Figure 4.27: Coordinator

4.5.1 Static coordinator
The static part is in charge of the scheduling of the simulation. It first emits
a step event to the control bus. Then, it waits for a component to send its

92 Chapter 4. An hardware FPGA PDM for the PRDEVS PIM

stepped event. When the coordinator receives this event, it stores the tn and
the tn_valid values in a table. After all the components have sent their cycle
ending event, the coordinator iterates on the table to find the tn_min. Then,
a new cycle begins.

4.5.2 Dynamic coordinator
The dynamic coordinator has to handle the SC function calls, and emits
the signals in charge of changing the configuration of the components. In
our implementation, we simplified the available SC calls to restrict them to
these four functions: addComponent, removeComponent, addConnection and
removeConnection. We can separate the connection management from the
component management.

Connection management In our PDM, we do not handle modeling errors.
Thus, the connection manager does not require any table in the coordinator to
memorize existing connections. When a SC message concerning a connection
change is received, it is broadcasted “as is” to the other components. The
values indicated on the parameters of the SC function change are simply
copied to the SC connection interface.

Component management To handle component management, the dy-
namic coordinator must be able to add and remove components. In hard-
ware, adding a component corresponds to the action of reconfiguring a recon-
figurable area using a partial bitstream file. Removing a component is also
a reconfiguration, but using a “blank” bitstream. Each type of component
requires a specific bitstream file. But, as each reconfigurable area has a differ-
ent position on the FPGA, the same component placed in two different places
requires two different bitstreams. Thus, we need as many bitstreams as there
are components times reconfigurable areas, plus a blank bitstream for each
reconfigurable area, as presented in table 4.1

From the bitstream identifier, the dynamic coordinator is able to trigger
a reconfiguration in the Partial Reconfiguration Controller, as depicted in
Section 1.3.2.

Bitstream relocation technics exist, consisting in modifying a bitstream
in order to change the resources coordinates. It can be applied when two
different reconfigurable areas are exactly the same except for the position.
We will not use these techniques as they constitute an optimization that is
out of the scope of this study.

Another table is required to memorize the current status of the reconfig-
urable areas. The table links each area with the type of component currently

4.6. Example 93

Reconfigurable area Component type Bitstream ID
1 generator1 12
2 generator1 13
1 generator2 21
2 generator2 22
1 counter 34
2 counter 31
1 blank 01
2 blank 02

Table 4.1: Example of bitstream memory table

inside, and the identifier of the component. An example of such a table is
given in table 4.2.

From this table, the dynamic coordinator is able to retrieve the number
of components currently existing in the model. This value is provided to the
static coordinator which requires it to determine that all components have
ended their cycle.

Reconfigurable area Component type Component ID
1 generator1 gen1
2 counter count1

Table 4.2: Example of occupation memory table

The removeComponent call uses the second table to determine the area
in which resides the component to be deleted. Applying a removeComponent
consists in applying a reconfiguration with a blank bitstream in the given area,
and updating the table.

4.6 Example
In order to detail the structure of the PRDEVS meta-model, we give an ex-
ample of a dynamic structure model, tested under Xinlix Vivado and FPGA.

It is a generator-counter model, similar to the example in Chapter 1. A
generator sends a coin to the counter following its own state machine. the
counter counts all income coins and change the generator every ten units of
time. In this example, the structure change functions as addComponent, ad-
dConnection and removeComponent, removeConnenctions are tested. How-
ever, the dynamic context is not present in the model due to the lack of time.

With two different generators and one counter in the library L, the CTop

model the numbers and the connections of generator to counter are changable.

94 Chapter 4. An hardware FPGA PDM for the PRDEVS PIM

The difference between two senders is: generator1 sends a coin to counter
every 2 units time and generator2 sends a task to receiver every 3 unit time.
counter1 receives coins and counting the total numbers of coins received.

Root model Under the root model there are four types of components
under L and currently only two components under CTop.

ModelExample =< L,CTop > where

L = {Cgenerator1 , Cgenerator2 , Ccounter1}

CTop = {XTop, Y Top, DTop, EICTop, EOCTop, ICTop}

with

XTop = {}

Y Top = {}

DTop = {Cgenerator1 , Ccounter1}

EICTop = {}

EOCTop = {}

ICTop = {((Cgenerator1 , event), (Ccounter1 , event))}

Atomic component - generator The generator is static which can be
discribed as:

M1
generator =< X, Y, S, s0, δext, δint, δcon, λSC , λ, τ > with

X ={}

Y = {PEV ENT}, with PEV ENT = (out,B)

S ={s0}

δint ={s0}

λ(s0) = (PEV ENT ← TRUE)

τ = 2

δext =δcon = λSC={}

4.6. Example 95

Atomic component - counter The counter is dynamic which can be dis-
cribed as:

M2
counter =< X, Y, S, s0, δext, δint, δcon, λSC , λ, τ > with

X = {PEV ENT}, with PEV ENT = (in,B)

Y ={}

S ={s0, s1, s2, s3, s4, s5, s6, s7, s8, s9 } ×ID × ID × ID × ID × N
repectively: s, senderID, portID, recevierID, portID, count

s0 =(s0,∅,∅,∅,∅, 0)

δext((s, count), in) = (s1, count+ 1) if s = s0 ∧ in→ TRUE

δint(s, count) =



s0 if s = s1 ∧ [count 6= 10&count 6= 20]) or (s = s5) or (s = s9)
s2 if s = s1 ∧ [count = 10]
s3 if s = s2
s4 if s = s3
s5 if s = s4
s6 if s = s1 ∧ [count = 20]
s7 if s = s6
s8 if s = s7
s9 if s = s8

δcon(s) = {},∀s

λSC(s) =



removeConnection(gen1, PEV ENT , cpt, PEV ENT) if s = s2
removeComponent(gen1) if s = s3

addComponent(gen2) if s = s4
addConnection(gen2, PEV ENT , cpt, PEV ENT) if s = s5

removeConnection(gen2, PEV ENT , cpt, PEV ENT) if s = s6
removeComponent(gen2) if s = s7

addComponent(gen1) if s = s8
addConnection(gen1, PEV ENT , cpt, PEV ENT) if s = s9

{} else

τ(s) =
{
∞ for s == s0
0 for else

Graphic representation - Top level Here is a graphic representation of
this example. At CTOP there are two components in the beginning, as shown
in 4.28.

96 Chapter 4. An hardware FPGA PDM for the PRDEVS PIM

Figure 4.28: Graphic presentation of the example

Graphic representation - generator atomic In generator there is only
one state. It is static, as shown in 4.29.

Figure 4.29: Graphic presentation of the generator

Graphic representation - counter atomic In counter there are ten
states, as shown in 4.30

4.7 Conclusion
In this chapter, we have built a hardware based PDM, cooperate with PIM,
forming a PSM. The PDM hardware is different from the PDM software defini-
tion. The multi-bus are detailed for the communication, control and structure
change. The component behaviors are specified by the state machines. The
SC functions are implemented by two coordinators.

We applied restrictions over the PRDEVS formalism, in order to ease
the deployment. The main one is about the model hierarchy, which is not
supported by the implementation. This leads to slightly change the syntax
of the SC functions, which do not require the coupled component identifier

4.7. Conclusion 97

Figure 4.30: Graphic presentation of the counter

in which the new component have to be added. This was done to reflect
the flat nature of FPGA partially reconfigurable areas, which doesn’t support
reconfiguration hierarchy, at least within the standard tools.

It could be however possible to work around this restriction in future
works by respecting the hierarchy within the coordinator representation of
the model. The mapping to the flat design could then be transparent for the
model itself, the translation being handled seamlessly by the coordinator.

Conclusion
In this thesis, we were willing to deal with the model description for dy-
namic structure systems. In order to formally describe a dynamic structure
model and be able to deploy it to several simulation platforms, the system
engineering approach has been chosen. We thus defined a meta-model suit-
able for dynamic model representation and an execution semantics for its
simulation. We chose to base our meta-model on DEVS, which is a strong
mathematical foundation. We called this new formalism Partially Reconfig-
urable Discrete Event System Specification (PRDEVS). PRDEVS is thus a
discrete-event based formalism designed to model dynamic structure systems
following the model-driven architecture approach.

Before PRDEVS was defined, several preliminary steps have been per-
formed.

First, the system engineering approach was investigated. The system en-
gineering approach adds traceability, especially with the Model-Based System
Engineering (MBSE) process. MBSE reduces the text-based documents and
improves the understanding between engineers. It also provides a life cycle
description from operational models to component models. In this approach,
models with different abstraction levels can coexist within the same virtual
system. The different levels of the model make it possible to edit separately
each layer.

In this thesis, we looked into the Model-Driven Architecture (MDA) pro-
cess, which is a system engineering approach focused on model transformation
targetting different execution platforms. The Model-Driven Architecture pro-
poses an integration architecture based on three levels of models. A platform-
independent model focuses on the model functionality, while the platform
description model focuses on the application platform. These two models
are then integrated into a platform-specific model. Compared to other ap-
proaches, MDA is suitable for our objective where the dynamic model must
be compatible with different execution platforms.

MBSE is then a design methodology and can be combined with discrete-
event systems. Discrete Event System Specification (DEVS) is a suitable spec-
ification for use with our aim of hierarchical, modular, discrete-event modeling.
However, DEVS has restrictions when it comes to supporting dynamic struc-
ture modeling. There are several extensions trying to expand the capability
of the models to support dynamic structure. DSDEVS is one of these exten-
sions. But the formalism relies on a mathematical description which assumes
a predefined set of structures. A proposed simulator then provides dynamic
functions to ease the model manipulations. This way of doing requires the

100 Conclusion

implementation of the meta-model to fill the lacks of the formalism by propos-
ing helper functions. Moreover, the context management is not handled by
the formalism. Notably, DSDEVS does not allow the original state of a newly
added component to be different from the initial component state.

Another DEVS extension targetting dynamic structure systems is Dyn-
DEVS. It proposes a network transition function extended to atomic compo-
nents. Where DSDEVS can only replace the coupled structure, DynDEVS
allows for atomics to change their inner behavior. However, the remarks
we made for DSDEVS are still valid for DynDEVS in terms of atomic state
management, even if the atomic component reconfiguration allows for more
adaptability.

Finally, RecDEVS considers dynamic hardware early in the model archi-
tecture without the approach of system engineering. In RecDEVS, a model
must consider low-level notions such as address even at the highest abstraction
level. This formalism specifically targets hardware, and it may be difficult to
adapt a RecDEVS model to a software execution environment.

On top of all these formalism considerations, we also want to address the
simulation platform itself. Especially, we want to allow targetting reconfig-
urable hardware platforms. Indeed, these platforms, notably FPGAs, allow
for dedicated circuitry for specific applications, which develops more efficient
computations that software processors. They still remain more flexible than
ASICs, which are designed for a single purpose and do not provide dynamic
capabilities. The programmable logic device makes it possible to change the
configuration on the hardware to a different logic, which can lead to different
functions and can even repurpose specific areas of the chip on-the-fly.

With these considerations, we think that a formalism for supporting dy-
namic structure models and integrating FPGAs as a target platform does not
exist yet. Thus, we chose to build our own architecture having in mind the
MDA approach, the DEVS background, the support for dynamic hardware
and discrete-event simulation.

Contributions
The first contribution that we made was the PRDEVS meta-model. PRDEVS
is a DEVS-based formalism which can manage dynamic structure changes.
Unlike DSDEVS and DynDEVS, PRDEVS does not presuppose reachable
structural states and the dynamic functions are defined as the same level of
other actions, directly within the formalism.

PRDEVS keeps PDEVS atomic and coupled components structure as a
base. However, it adds a new type of outputs, λSC , dedicated to structural

Contributions 101

change. A component can issue dynamic structure functions calls which are
handled by a coordinator. The λSC functions include the component manage-
ment, connection management and context management.

A PRDEVS model has an initial structure CTop which contains, as for
PDEVS, coupled components and atomic components in an initial state. But
along with this structure comes two libraries: a component library (L) and a
context library (LΦ). At any time in the simulation, components can request
insertion or removal of a component. Adding a component requires referring
to a component Ct ∈ L, which will be added into a coupled belonging to CTop.
All components in a PRDEVS have a type, which identifies a unique behavior.
A type can be shared by multiple components, but all components of a type
do not require to be in the same state. Each component in CTop is uniquely
identified by an identifier, which is used as a label to apply dynamic functions
on it.

The second level of dynamic capability targets the connections between
components ports. PRDEVS allows for removing or adding connections be-
tween the components, targetting the DEVS connections IC, IOC and EOC
sets. Moreover, in order to account for hierarchy evolution, coupled compo-
nents can see their set of ports changed. Unlike ρ-DEVS, which is an extension
of DynDEVS, atomic components have a static set of ports, as we do not ad-
dress atomic component behavior reconfiguration. We chose to not support
this behavior and to focus on structure and context changes.

Finally, PRDEVS takes into consideration the context of atomic compo-
nents. A context consists of all the state variables within a component. It can
be saved from a running component, and be added to LΦ in order to be reused
later. A context can also be read from LΦ and applied to a component with
a matching type. This capability allows for scheduling management, such as
removing a component at a point and creating it anew later in the exact same
state. Moreover, the context library can contain elements at the beginning
of a simulation. This allows for using previously defined initial contexts for
different components.

In all our definitions, to account for the MDA approach, we do not con-
sider the execution platform. This allows for building platform-independent
models, and then match them with a simulation platform. A single model
can then be applied to different computing architecture, such as software and
reconfigurable hardware.

The second contribution that we proposed in this document in a software-
based execution platform targetting the PRDEVS meta-model. We applied
an object-oriented view on the software programming, defining classes to rep-
resent the different elements of the formalism. We defined atomic components

102 Conclusion

and coupled components using an UML representation. As they have several
common characteristics, such as ports and identifications, we use the notion
of inheritance to model it. The atomic component class contains states and
functions, such as internal transitions, external transitions, output emissions
and dynamic functions call. The coupled component class keeps the infor-
mation on the connections, such as the IC, IOC and EOC sets. They are
respectively managed by a simulator and a coordinator.

We do not change the semantics of time in a simulator from Zeigler’s defi-
nition. The difference that we made from other simulators is that the dynamic
functions calls take priority over other messages. A case study of this soft-
ware platform specific model has been presented, proving the feasibility to the
PRDEVS meta-model integration into a software platform. However, we did
not extend our tests to a hierarchy beyond a single level. Nevertheless, as we
were based on Zeigler’s semantics, and the nesting of software objects is a very
common process, using this implementation with hierarchical models would
be possible. The only requirement for doing so is a function which is able to
locate a precise coordinator in the hierarchic tree, the getExistingComponent()
function defined in the PRDEVS semantic.

The third contribution that we made is a hardware platform description
model compatible with the PRDEVS formalism. Based on the PRDEVS
meta-model, an integration from a platform-independant model to an FPGA
specific development was presented.

The hardware platform is divided in reconfigurable areas, following the
state of the art methodology for partially reconfigurable systems. These re-
configurable areas are identified by a unique reference. They do not have the
same configurable resource layout, and thus a different potential for deploying
a component. A look-up table establishing the correspondence between the
component type and reconfigurable area on one hand, and the matching bit-
stream on the other hand is then required. Three interfaces have been built to
connect the components. The control interface synchronizes the time in the
simulator. The communication interface makes possible the inter-component
communications. The structure change interface is in charge of the dynamic
functions calls and acts on the components configuration.

State machines which represent the generic atomic behavior have been pro-
posed to implement the DEVS component evolution in a hardware-friendly
way. Along with the DEVS component integration, we proposed a coordi-
nator, divided into a static part and a dynamic part, which manages the
simulation from within the FPGA. Even if we did not provide a hardware-
description language match, we proposed a systematic transformation to a
state-machine representation, from which many existing tools are able to in-

Future work and perspectives 103

fer an implementation. In comparison, SynDEVS, which is oriented at hard-
ware/software co-design, does not provide a precise way of generating a hard-
ware representation. In our work, the platform specification for the PRDEVS
meta-model is defined in detail, down to the multi-bus structure providing
the inter-component communications and synchronization. As for RecDEVS,
which proposes a precise architecture for the reconfigurable platform, they do
not define the inner atomic components behavior.

This development based on PRDEVS proves the possibility to apply the
model driven architecture approach to a DEVS-based formalism. However,
as a lack of time, we still miss the context management in this implementa-
tion. This part does not represent a complicated work to carry out, but the
multi-bus structure and component interfaces must be adapted to support the
operation.

Future work and perspectives
For a full integration of the complete PRDEVS meta-model, there are several
important points which could be dug into. There are functions of PRDEVS,
such as context management, which have not been applied to the FPGA
implementation yet. With the theory that we proposed in this thesis, it could
be done with several extra tables. However, where to store these tables and
by which ways the context is loaded should be defined. It is possible to add
an interface to the components to collect the context information and send
it to the coordinator. As for the internal behavior of an atomic component
intended at managing the context operations, we can imagine that the context
of all components is stored as an array. The variables can then be references
on specific areas of this array for internal use, while the array can be read or
written at once for context operations.

Also, handling the model hierarchy could be applied using a virtual coupled
component. The actual, flat, implementation then would require a translation
for structure operations applied to this virtual component. This could be done
by the dynamic coordinator, which would contain this virtual hierarchy and
apply the mapping each time a dynamic function call is triggered.

Since the PRDEVS meta-model can adapt to platforms with different de-
scription models, development to apply PRDEVS to another reconfigurable
platform could also be considered. GPU, HPC or a co-simulation between
hardware and software are good candidates for such an application.

The PRDEVS meta-model supports the parallelism as it is based on
PDEVS. However, some parallel optimizations were not considered in this
work. When we specify the model into the hardware platform, the bus struc-

104 Conclusion

ture limits the parallelism. Moreover, the dynamic structure calls suspend the
other operations. In the future researches, the parallelism could be considered
into the platform-specific model, or at the meta-model level.

Also, the model verification and transformation could be considered in
the simulator. For the moment, the model verification must be done by the
model constructor. An automatical model to simulation verification could
be considered, either as part of the simulation platform or directly in the
structure change functions semantic.

Bibliography
[Adamski 2005] Marian Andrzej Adamski, Andrei Karatkevich et Marek We-

grzyn. Design of embedded control systems, volume 267. Springer,
2005. (Cité en page 29.)

[Ambler 2004] Scott W Ambler. The object primer: Agile model-driven de-
velopment with uml 2.0. Cambridge University Press, 2004. (Cité en
page 10.)

[Aspray 1997] William Aspray. The Intel 4004 microprocessor: What consti-
tuted invention? IEEE Annals of the History of Computing, vol. 19,
no. 3, pages 4–15, 1997. (Cité en page 29.)

[Balaji 2012] S Balaji et M Sundararajan Murugaiyan. Waterfall vs. V-Model
vs. Agile: A comparative study on SDLC. International Journal of
Information Technology and Business Management, vol. 2, no. 1, pages
26–30, 2012. (Cité en page 10.)

[Barros 1997a] Fernando J Barros. Modeling Formalisms for Dynamic Struc-
ture Systems. ACM Transactions on Modeling and Computer Simula-
tion (TOMACS), vol. 7, no. 4, pages 501–515, Octobre 1997. (Cité en
page 18.)

[Barros 1997b] F.J. Barros et B.P. Zeigler. Adaptive Queueing: A Study Using
Dynamic Structure DEVS. International Transactions in Operational
Research, vol. 4, no. 2, pages 87–98, 1997. (Cité en page 19.)

[Barros 1998] Fernando J Barros. Abstract simulators for the DSDE for-
malism. In 1998 Winter Simulation Conference. Proceedings (Cat.
No.98CH36274), volume 1, pages 407–412. IEEE, Dec 1998. (Cité en
pages 18, 20, 21 et 44.)

[Bergero 2011] Federico Bergero et Ernesto Kofman. PowerDEVS: a tool for
hybrid system modeling and real-time simulation. Simulation, vol. 87,
no. 1-2, pages 113–132, 2011. (Cité en page 54.)

[Boehm 1988] Barry W. Boehm. A spiral model of software development and
enhancement. Computer, vol. 21, no. 5, pages 61–72, 1988. (Cité en
page 10.)

[Dalrymple 1999] Mary Dalrymple. Semantics and syntax in lexical functional
grammar: The resource logic approach. MIT Press, 1999. (Cité en
page 13.)

106 Bibliography

[DeHon 1999] André DeHon. Balancing interconnect and computation in a
reconfigurable computing array (or, why you don’t really want 100%
LUT utilization). In Proceedings of the 1999 ACM/SIGDA seventh
international symposium on Field programmable gate arrays, pages
69–78. ACM, 1999. (Cité en page 74.)

[Deleganes 2002] Daniel Deleganes, Jonathan Douglas, Badari Kommandur et
Marek Patyra. Designing a 3 GHz, 130 nm, Intel R©Pentium R©4 pro-
cessor. In VLSI Circuits Digest of Technical Papers, 2002. Symposium
on, pages 130–133. IEEE, 2002. (Cité en page 29.)

[Eickhoff 2009] Jens Eickhoff. Simulating spacecraft systems. Springer Science
& Business Media, 2009. (Cité en page 11.)

[Estefan 2007] Jeff A Estefanet al. Survey of model-based systems engineering
(MBSE) methodologies. Incose MBSE Focus Group, vol. 25, no. 8,
pages 1–12, 2007. (Cité en page 10.)

[Ferber 1999] Jacques Ferber. Multi-agent systems: an introduction to dis-
tributed artificial intelligence, volume 1. Addison-Wesley Reading,
1999. (Cité en page 67.)

[Franceschini 2014a] Romain Franceschini, Paul-Antoine Bisgambiglia, Paul
Bisgambiglia et David Hill. DEVS-ruby: a domain specific language
for DEVS modeling and simulation (WIP). In Proceedings of the
Symposium on Theory of Modeling & Simulation-DEVS Integrative,
page 15. Society for Computer Simulation International, 2014. (Cité
en page 54.)

[Franceschini 2014b] Romain Franceschini, Paul-Antoine Bisgambiglia, Luc
Touraille, Paul Bisgambiglia et David Hill. A survey of modelling and
simulation software frameworks using Discrete Event System Specifica-
tion. In OASIcs-OpenAccess Series in Informatics, volume 43. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2014. (Cité en page 54.)

[Friedenthal 2007] Sanford Friedenthal, Regina Griego et Mark Sampson. IN-
COSE model based systems engineering (MBSE) initiative. In INCOSE
2007 Symposium, 2007. (Cité en page 10.)

[Gardelli 2009] Luca Gardelli, Mirko Viroli et Andrea Omicini. Combining
simulation and formal tools for developing self-organizing MAS. Multi-
Agent Systems: Simulation and Applications, Computational Analy-
sis, Synthesis, and Design of Dynamic Systems, pages 133–165, 2009.
(Cité en page 67.)

Bibliography 107

[Harel 2000] David Harel et Bernhard Rumpe. Modeling languages: Syntax,
semantics and all that stu. Rapport technique, Technical report, 2000.
(Cité en page 13.)

[Hauck 2010] Scott Hauck et Andre DeHon. Reconfigurable computing: the
theory and practice of fpga-based computation, volume 1. Morgan
Kaufmann, 2010. (Cité en page 31.)

[Himmelspach 2009] Jan Himmelspach et Adelinde M Uhrmacher. The
JAMES II framework for modeling and simulation. In High Perfor-
mance Computational Systems Biology, 2009. HIBI’09. International
Workshop on, pages 101–102. IEEE, 2009. (Cité en page 54.)

[Hu 2008] X Xiaolin Hu et Bernard P Zeigler. The Architecture of GenDevs:
Distributed Simulation in DEVSJAVA, 2008. (Cité en page 54.)

[Iannucci 1988] Robert A Iannucci. Toward a dataflow/von neumann hybrid
architecture, volume 16. IEEE Computer Society Press, 1988. (Cité
en page 29.)

[Iyengar 2005] Sridhar Srinivasa Iyengar. Metadata driven system for effect-
ing extensible data interchange based on universal modeling language
(UML), meta object facility (MOF) and extensible markup language
(XML) standards, Mars 29 2005. US Patent 6,874,146. (Cité en
page 13.)

[Kesting 2008] Arne Kesting, Martin Treiber et Dirk Helbing. Agents for
traffic simulation. arXiv preprint arXiv:0805.0300, 2008. (Cité en
page 67.)

[Kim 2009] Sungung Kim, Hessam S Sarjoughian et Vignesh Elamvazhuthi.
DEVS-suite: a simulator supporting visual experimentation design and
behavior monitoring. In Proceedings of the 2009 Spring Simulation
Multiconference, page 161. Society for Computer Simulation Interna-
tional, 2009. (Cité en page 54.)

[Kleppe 2003] Anneke G Kleppe, Jos B Warmer et Wim Bast. Mda explained:
the model driven architecture: practice and promise. Addison-Wesley
Professional, 2003. (Cité en page 13.)

[Latella 1999] Diego Latella, Istvan Majzik et Mieke Massink. Towards a
formal operational semantics of UML statechart diagrams. In Formal
Methods for Open Object-Based Distributed Systems, pages 331–347.
Springer, 1999. (Cité en page 46.)

108 Bibliography

[Ligtenberg 2004] Arend Ligtenberg, Monica Wachowicz, Arnold K Bregt,
Adrie Beulens et Dirk L Kettenis. A design and application of a multi-
agent system for simulation of multi-actor spatial planning. Journal of
environmental management, vol. 72, no. 1-2, pages 43–55, 2004. (Cité
en page 67.)

[Lysaght 2006] Patrick Lysaght, Brandon Blodget, Jeff Mason, Jay Young
et Brendan Bridgford. Enhanced architectures, design methodologies
and CAD tools for dynamic reconfiguration of Xilinx FPGAs. In Field
Programmable Logic and Applications, 2006. FPL’06. International
Conference on, pages 1–6. IEEE, 2006. (Cité en page 30.)

[Madlener 2013] Felix Madlener. A Model of Computation for Reconfigurable
Systems. PhD thesis, Technische Universität, Darmstadt, 2013. (Cité
en page 27.)

[Maxfield 2004] Clive Maxfield. The design warrior’s guide to fpgas: devices,
tools and flows. Elsevier, 2004. (Cité en pages 30 et 31.)

[Miller 1985] James Edward Miller. Semantics and syntax: Parallels and con-
nections. 1985. (Cité en page 13.)

[Mina 2016] J Mina, Z Flores, E López, A Pérez et J-H Calleja. Processor-in-
the-loop and hardware-in-the-loop simulation of electric systems based
in FPGA. In Power Electronics (CIEP), 2016 13th International Con-
ference on, pages 172–177. IEEE, 2016. (Cité en page 12.)

[Molter 2012] H Gregor Molter. Syndevs co-design flow: A hardware/software
co-design flow based on the discrete event system specification model
of computation. Springer Science & Business Media, 2012. (Cité en
page 26.)

[Narendra 1990] Kumpati S Narendra et Kannan Parthasarathy. Identifica-
tion and control of dynamical systems using neural networks. IEEE
Transactions on neural networks, vol. 1, no. 1, pages 4–27, 1990. (Cité
en page 67.)

[Object Management Group 2016] Object Management Group. MDA - The
Architecture of Choice for a Changing World, 2016. [Online; accessed
19-January-2017]. (Cité en page 12.)

[Platzner 2010] Marco Platzner et Norbert Wehn. Dynamically reconfigurable
systems: Architectures, design methods and applications. Springer
Science & Business Media, 2010. (Cité en page 31.)

Bibliography 109

[Poole 2003] John Poole, Dan Chang, Douglas Tolbert et David Mellor. Com-
mon warehouse metamodel developer’s guide, volume 24. John Wiley
& Sons, 2003. (Cité en page 13.)

[Ptolemaeus 2014] Claudius Ptolemaeus. System design, modeling, and simu-
lation: using ptolemy ii, volume 1. Ptolemy. org Berkeley, 2014. (Cité
en page 46.)

[Qu 2009] Zhihua Qu. Cooperative control of dynamical systems: applications
to autonomous vehicles. Springer Science & Business Media, 2009.
(Cité en page 67.)

[Russell 2016] Stuart J Russell et Peter Norvig. Artificial intelligence: a mod-
ern approach. Malaysia; Pearson Education Limited„ 2016. (Cité en
page 67.)

[Trencansky 2005] Ivan Trencansky et Radovan Cervenka. Agent Modeling
Language (AML): A comprehensive approach to modeling MAS. Infor-
matica, vol. 29, no. 4, 2005. (Cité en page 67.)

[Uhrmacher 2001] Adelinde M Uhrmacher. Dynamic Structures in Model-
ing and Simulation: A Reflective Approach. ACM Transactions on
Modeling and Computer Simulation (TOMACS), vol. 11, no. 2, pages
206–232, Avril 2001. (Cité en page 23.)

[Uhrmacher 2006] Adelinde M Uhrmacher, Jan Himmelspach, Mathias Rohl
et Roland Ewald. Introducing variable ports and multi-couplings for
cell biological modeling in DEVS. In Proceedings of the 2006 Winter
Simulation Conference, pages 832–840. IEEE, 2006. (Cité en page 24.)

[Uhrmacher 2009] Adelinde M Uhrmacher et Danny Weyns. Multi-agent sys-
tems: Simulation and applications. CRC press, 2009. (Cité en page 67.)

[Van Tendeloo 2016] Yentl Van Tendeloo et Hans Vangheluwe. An overview
of PythonPDEVS. In Collectif Workshop RED, editor, JDF, pages
59–66, 2016. (Cité en page 54.)

[Von Bertalanffy 1956] Ludwig Von Bertalanffy. General System Theory.
General Systems, vol. 1, pages 1–10, 1956. (Cité en page 9.)

[Vu 2015] Le Hung Vu, Damien Foures et Vincent Albert. ProDEVS: an
event-driven modeling and simulation tool for hybrid systems using
state diagrams. In SimuTools, pages 29–37, 2015. (Cité en pages 13
et 54.)

110 Bibliography

[Wainer 2002] Gabriel Wainer. CD++: a toolkit to develop DEVS models.
Software: Practice and Experience, vol. 32, no. 13, pages 1261–1306,
2002. (Cité en page 54.)

[Xilinx 2018] Xilinx. Partial Reconfiguration in the Vivado Design Suite,
2018. (Cité en page 32.)

[Xu 2005] Qiang Xu et Nicola Nicolici. Resource-constrained system-on-a-chip
test: a survey. IEE Proceedings-Computers and Digital Techniques,
vol. 152, no. 1, pages 67–81, 2005. (Cité en page 29.)

[Zeigler 2000] Bernard P Zeigler, Herbert Praehofer et Tag Gon Kim. Theory
of modeling and simulation: integrating discrete event and continuous
complex dynamic systems. Academic press, Orlando, FL, USA, 2nd
édition, 2000. (Cité en pages 11, 14, 15, 17 et 19.)

	Introduction
	Scientific context & state of the art
	System engineering and simulation
	Systems and system engineering
	Modeling and simulation
	Model-Driven Architecture
	Syntax and semantics

	DEVS and its extensions
	Discrete Event System Specification
	Dynamic Structure DEVS and its parallel version
	Dynamic DEVS and its dynamic port extension
	Synthesizable DEVS
	Reconfigurable DEVS

	Dynamically reconfigurable computing systems
	Programmable logic device
	Partial reconfiguration

	Conclusion

	Partially Reconfigurable Discrete Event System Specification
	PRDEVS meta-model syntax
	PRDEVS abstract syntax
	Root PRDEVS component
	Coupled components
	Atomic components
	Ports
	Convenience sets and notations

	PRDEVS semantics
	General functions
	Structure change semantics
	Components context under dynamic behavior

	Graphic representation
	Components
	States, transitions and actions

	Example
	Conclusion

	A software PDM for the PRDEVS PIM
	Platform study
	Software platform and object-oriented programming
	A quick look into a software simulator core

	Hierarchy of the software PDM
	Atomic/coupled component
	Port/connector

	Mapping and realization of the PDM
	Meta model transformation for time
	Input/output message bags
	Dynamic functions calls
	Time advance (Ta)
	Imminent time (Tn_min)
	Last event time (Tl)
	Elapsed time (e)

	Case study: a PSM test
	Initialization of the model
	Simulation

	Conclusion

	An hardware FPGA PDM for the PRDEVS PIM
	PDM architecture: a high-level view
	Scheduling and temporal aspects
	Components interface
	Control interface
	Communication interface
	Dynamic functions calls
	Multi-bus

	Atomic component behavior specification
	FSM general structure
	FSM representation of internal transitions
	FSM representation of external transitions
	FSM representation of output emission
	Conflict

	SC functions implementation
	Static coordinator
	Dynamic coordinator

	Example
	Conclusion

	Conclusion
	Bibliography

