G. Taton, D. Lagrange, V. Conedera, L. Renaud, C. Rossi et al., Combust. Flame, vol.162, p.1813, 2015.

, J. Micromech. Microeng, vol.23, p.105009, 2013.

K. S. Martirosyan, J. Mater. Chem, vol.21, p.9400, 2011.

C. S. Staley, C. J. Morris, R. Thiruvengadathan, S. J. Apperson, and K. ,

G. Jian, S. Chowdhury, K. Sullivan, M. R. Zachariah, C. F. Gangopadhyay et al., J. Micromech. Microeng, vol.21, p.115015, 2011.

R. R. Nellums, B. C. Terry, B. C. Tappan, S. F. Son, and L. J. Groven, , p.16

A. Abraham, N. W. Piekiel, C. J. Morris, and E. L. Dreizin, Propellants, Explos., Pyrotech, vol.38, p.179, 2013.

R. H. Bouma, D. Meuken, R. Verbeek, M. M. Pacheco, and L. ,

B. E. Deal and A. S. Grove, J. Appl. Phys, vol.36, p.3770, 1965.

. Katgerman, Propellants, Explos., Pyrotech, vol.32, p.447, 2007.

A. Hemeryck, J. Ducere, C. Lanthony, A. Estève, C. Rossi et al.,

C. D. Yarrington, S. F. Son, T. J. Foley, S. J. Obrey, A. N. Pacheco et al., J. Appl. Phys, vol.113, p.204301, 2013.

, Propellants, Explos., Pyrotech, vol.36, p.551, 2011.

G. M. Fritz, J. A. Grzyb, O. M. Knio, M. D. Grapes, and T. P. Weihs,

S. G. Hosseini, A. Sheikhpour, M. H. Keshavarz, and S. Tavangar, J. Appl. Phys, vol.118, p.135101, 2015.

, Thermochim. Acta, vol.626, p.1, 2016.

A. B. Mann, A. J. Gavens, M. E. Reiss, D. Van-heerden, G. Bao et al.,

J. A. Puszynski, J. Therm. Anal. Calorim, vol.96, p.677, 2009.

. Weihs, J. Appl. Phys, vol.82, issue.3, p.1178, 1997.

M. Bahrami, G. Taton, V. Conedera, L. Salvagnac, C. Tenailleau et al.,

M. Salloum and O. M. Knio, Combust. Flame, vol.157, p.1154, 2010.

A. and C. Rossi, Propellants, Explos., Pyrotech, vol.39, p.365, 2014.

R. Knepper, M. R. Snyder, G. Fritz, K. Fisher, O. M. Knio et al.,

L. Mar?n, C. E. Nanayakkara, J. F. Veyan, B. Warot-fonrose, S. Joulie et al., J. Appl. Phys, vol.105, p.1, 2009.

C. Este?ve, Y. J. Tenailleau, C. Chabal, . Rossi, . Acs-appl et al.,

M. D. Grapes and T. P. Weihs, Combust. Flame, vol.172, p.105, 2016.

, , vol.7, p.11713, 2015.

S. Jayaraman, O. M. Knio, A. B. Mann, and T. P. Weihs, J. Appl. Phys

D. P. Adams, Thin Solid Films, vol.576, p.800, 1999.

A. H. Kinsey, K. Slusarski, K. Woll, D. Gibbins, and T. P. Weihs, , p.25

E. Besnoin, S. Cerutti, O. M. Knio, and T. P. Weihs, J. Appl. Phys, vol.92, p.5474, 2002.

M. Korampally, S. J. Apperson, C. S. Staley, and J. A. Castorena,

C. Yin and J. Yan, Appl. Energy, vol.162, p.742, 2016.

K. Thiruvengadathan, R. R. Gangopadhyay, A. Mohan, and L. Ghosh, , p.27

N. Amini-manesh, S. Basu, and R. Kumar, Energy, vol.36, p.1688, 2011.

S. Parada and . Gangopadhyay, Sens. Actuators, B, p.1292, 2012.

E. A. and E. Y. Kulyamina, High Temp, vol.45, p.785, 2007.

D. P. Adams, Thin Solid Films, vol.576, p.98, 2015.

J. Yi, Y. Zhang, X. Wang, C. Dong, and H. Hu, Mater. Trans, vol.57, p.1494, 2016.

S. Simões, A. Ramos, F. Viana, M. Vieira, and M. Vieira, Metals, vol.6, p.96, 2016.

Y. Jianglong, Z. Yupeng, H. Haichun, W. Xinxin, C. Hexin et al.,

. Mingjiang, Rare Met. Mater. Eng, vol.43, p.2593, 2014.

S. Simões, F. Viana, and M. F. Vieira, J. Mater. Eng. Perform, vol.23, p.1536, 2014.

R. Grieseler, T. Welker, J. Müller, and P. Schaaf, Phys. Status Solidi A, vol.209, p.512, 2012.

A. H. Kinsey, K. Slusarski, K. Woll, D. Gibbins, and T. P. Weihs, J. Mater. Sci, vol.51, p.5738, 2016.

M. D. Grapes and T. P. Weihs, Combust. Flame, vol.172, p.105, 2016.

G. M. Fritz, J. A. Grzyb, O. M. Knio, M. D. Grapes, and T. P. Weihs, J. Appl. Phys, vol.118, p.135101, 2015.

R. Knepper, M. R. Snyder, G. Fritz, K. Fisher, O. M. Knio et al., J. Appl. Phys, vol.105, p.83504, 2009.

S. W. Kuk, J. Yu, and H. J. Ryu, J. Alloys Compd, vol.626, p.16, 2015.

R. D. Murphy, R. V. Reeves, C. D. Yarrington, and D. P. Adams, Appl. Phys. Lett, vol.107, p.234103, 2015.

R. Xu, M. L. Falk, and T. P. Weihs, J. Appl. Phys, vol.114, p.163511, 2013.

F. Rizzi, M. Salloum, Y. M. Marzouk, R. Xu, M. L. Falk et al., Multiscale Model. Simul, vol.9, p.486, 2011.

N. S. Weingarten, W. D. Mattson, A. D. Yau, T. P. Weihs, and B. M. Rice, J. Appl. Phys, vol.107, p.93517, 2010.

S. Jayaraman, O. M. Knio, A. B. Mann, and T. P. Weihs, J. Appl. Phys, vol.86, p.800, 1999.

R. Masser, J. Braeuer, and T. Gessner, J. Appl. Phys, vol.115, p.244311, 2014.

A. Hemeryck, J. Ducere, C. Lanthony, A. Estève, C. Rossi et al., J. Appl. Phys, vol.113, p.204301, 2013.

C. D. Yarrington, M. J. Abere, D. P. Adams, and M. L. Hobbs, J. Appl. Phys, vol.121, p.134301, 2017.

G. Taton, D. Lagrange, V. Conedera, L. Renaud, and C. Rossi, J. Micromech. Microeng, vol.23, p.105009, 2013.

J. Y. Ahn, S. B. Kim, J. H. Kim, N. S. Jang, D. H. Kim et al., J. Micromech. Microeng, vol.26, p.15002, 2016.

P. Zhu, R. Shen, Y. Ye, S. Fu, and D. Li, J. Appl. Phys, vol.113, p.184505, 2013.

X. Zhou, R. Shen, Y. Ye, P. Zhu, Y. Hu et al., J. Appl. Phys, vol.110, p.94505, 2011.

M. Bahrami, G. Taton, V. Conedera, L. Salvagnac, C. Tenailleau et al., Propellants Explos. Pyrotech, vol.39, p.365, 2014.

A. Nicollet, G. Lahiner, A. Belisario, S. Souleille, M. Djafari-rouhani et al., J. Appl. Phys, vol.121, p.34503, 2017.

N. Amini-manesh, S. Basu, and R. Kumar, Energy, vol.36, p.1688, 2011.

S. H. Fischer and M. C. Grubelich, Theoretical Energy Release of Thermites, Intermetallics, and Combustible Metals, 1998.

J. Li, G. Vizkelethy, P. Revesz, J. W. Mayer, and K. N. Tu, J. Appl. Phys, vol.69, p.1020, 1991.

L. Mar?n, C. E. Nanayakkara, J. Veyan, B. Warot-fonrose, S. Joulie et al., ACS Appl. Mater. Interfaces, vol.7, p.22, 2015.

G. C. Egan, E. J. Mily, J. Maria, and M. R. Zachariah, J. Phys. Chem. C, vol.119, p.20401, 2015.

J. B. Delisio, F. Yi, D. A. Lavan, and M. R. Zachariah, J. Phys. Chem. C, vol.121, p.2771, 2017.

N. A. Manesh, S. Basu, and R. Kumar, Combust. Flame, vol.157, p.476, 2010.

B. E. Deal and A. S. Grove, J. Appl. Phys, vol.36, p.3770, 1965.

L. Mar?n, B. Warot-fonrose, A. Estève, Y. J. Chabal, L. A. Rodriguez et al., ACS Appl. Mater. Interfaces, vol.8, p.13104, 2016.

M. L. Narula, V. B. Tare, and W. L. Worrell, Metall. Trans. B, vol.14, p.673, 1983.

A. H. Kinsey, K. Slusarski, S. Sosa, and T. P. Weihs, ACS Appl. Mater. Interfaces, vol.9, p.26, 2017.

J. Kwon, J. M. Ducere, P. Alphonse, M. Bahrami, M. Petrantoni et al.,

C. Veyan, A. Tenailleau, C. Este`ve, Y. J. Rossi, and . Chabal,

, Mater. Interfaces, vol.5, p.605, 2013.

, by different methods, Combust. Sci. Technol, vol.189, pp.555-574, 2017.

L. Glavier, G. Taton, J. Ducéré, V. Baijot, S. Pinon et al., Nanoenergetics as pressure generator for nontoxic impact primers: comparison of Al/Bi2O3, Al/CuO, Al/MoO3 nanothermites and Al/PTFE, Combust. Flame, vol.162, pp.1813-1820, 2015.

S. M. Umbrajkar, M. Schoenitz, and E. L. Dreizin, Control of structural refinement and composition in Al-MoO3 nanocomposites prepared by arrested reactive milling, Propell. Explos. Pyrotech, vol.31, pp.382-389, 2006.

E. L. Dreizin, Metal-based reactive nanomaterials, Prog. Energy Combust. Sci, vol.35, pp.141-167, 2009.

S. F. Son, B. W. Asay, T. J. Foley, R. Yetter, M. H. Wu et al., Combustion of nanoscale Al/MoO3 thermite in Microchannels, J. Propuls. Power, vol.23, pp.715-721, 2007.

B. S. Bockmon, M. L. Pantoya, S. F. Son, B. W. Asay, and J. T. Mang, Combustion velocities and propagation mechanisms of metastable interstitial composites, J. Appl. Phys, vol.98, 2005.

F. Gaudinat, A. Magne, and P. Jacquot, Pyrotechnic circuit breaker, p.351363, 2016.

C. Weir, M. L. Pantoya, G. Ramachandran, T. Dallas, D. Prentice et al., Electrostatic discharge sensitivity and electrical conductivity of composite energetic materials, J. Electrostat, vol.71, pp.77-83, 2013.

V. E. Sanders, B. W. Asay, T. J. Foley, B. C. Tappan, A. N. Pacheco et al., Reaction propagation of four nanoscale energetic composites (Al/MoO3, Al/WO3, Al/CuO, and B12O3), J. Propuls. Power, vol.23, pp.707-714, 2007.

A. Nicollet, G. Lahiner, A. Belisario, S. Souleille, M. Djafari-rouhani et al., Investigation of Al/CuO multilayered thermite ignition, J. Appl. Phys, vol.121, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01480996

V. Baijot, L. Glavier, J. M. Ducéré, M. Djafarirouhani, C. Rossi et al., Modeling the pressure generation in aluminum-based thermites, Propell. Explos. Pyrotech, vol.40, pp.402-412, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01094520

V. Baijot, D. R. Mehdi, C. Rossi, and A. Estève, A multi-phase micro-kinetic model for simulating aluminum based thermite reactions, Combust. Flame, vol.180, pp.10-19, 2017.

S. H. Fischer and M. Grubelich, Theoretical energy release of thermites, intermetallics, and combustible metals, 24th Int, Pyrotech. Semin, vol.220, 1998.

Y. Tao, J. Zhang, Y. Yang, H. Wu, L. Hu et al., Metastable intermolecular composites of Al and CuO nanoparticles assembled with graphene quantum dots, RSC Adv, vol.7, pp.1718-1723, 2017.

X. Ke, X. Zhou, G. Hao, L. Xiao, J. Liu et al., Rapid fabrication of superhydrophobic Al/Fe2O3 nanothermite film with excellent energy-release characteristics and long-term storage stability, Appl. Surf. Sci, vol.407, pp.137-144, 2017.

I. Monk, M. Schoenitz, R. J. Jacob, E. L. Dreizin, and M. R. Zachariah,

M. Petrantoni, C. Rossi, L. Salvagnac, V. Conédéra, C. Estève et al., Multilayered Al/CuO thermite formation by reactive magnetron sputtering: Nano versus micro, J. Appl. Phys, vol.108, issue.8, p.84323, 2010.

M. Comet, C. Martin, M. Klaumünzer, F. Schnell, and D. Spitzer, Energetic nanocomposites for detonation initiation in high explosives without primary explosives, Appl. Phys. Lett, vol.107, issue.24, 2015.

A. Pivkina, P. Ulyanova, Y. Frolov, S. Zavyalov, and J. Schoonman, Nanomaterials for Heterogeneous Combustion, Propellants, Explos. Pyrotech, vol.29, issue.1, pp.39-48, 2004.

L. L. Wang, Z. A. Munir, and Y. M. Maximov, Thermite reactions: their utilization in the synthesis and processing of materials, J. Mater. Sci, vol.28, issue.14, pp.3693-3708, 1993.

W. Churaman, L. Currano, and C. Becker, Initiation and reaction tuning of nanoporous energetic silicon, J. Phys. Chem. Solids, vol.71, issue.2, pp.69-74, 2010.

E. L. Dreizin, Metal-based reactive nanomaterials, Prog. Energy Combust. Sci, vol.35, issue.2, pp.141-167, 2009.

C. E. Aumann, G. L. Skofronick, and J. A. Martin, Oxidation behavior of aluminum nanopowders, J. Vac. Sci. Technol. B, vol.13, issue.3, p.1178, 1995.

J. Wang, A. Hu, J. Persic, J. Z. Wen, and Y. N. Zhou, Thermal stability and reaction properties of passivated Al/CuO nano-thermite, J. Phys. Chem. Solids, vol.72, issue.6, pp.620-625, 2011.

F. Zhang, Y. Wang, D. Fu, L. Li, and G. Yin, In-situ Preparation of a Porous Copper Based Nano-Energetic Composite and Its Electrical Ignition Properties, pp.1-7, 2010.

K. Zhang, C. Rossi, M. Petrantoni, and N. Mauran, A nano initiator realized by integrating Al/CuO-based nanoenergetic materials with a Au/Pt/Cr microheater, J. Microelectromechanical Syst, vol.17, issue.4, pp.832-836, 2008.

G. Taton, D. Lagrange, V. Conedera, L. Renaud, and C. Rossi, Micro-chip initiator realized by integrating Al/CuO multilayer nanothermite on polymeric membrane, J. Micromechanics Microengineering, vol.23, issue.10, p.105009, 2013.

P. Zhu, R. Shen, Y. Ye, X. Zhou, and Y. Hu, Energetic igniters realized by integrating Al/CuO reactive multilayer films with Cr films, J. Appl. Phys, vol.110, issue.7, 2011.

D. Reese, W. Lafayette, D. M. Wright, and S. F. Son, CuO ? Al Thermites for Solid Rocket Motor Ignition, vol.29, pp.1-9, 2013.

S. J. Apperson, A. V. Bezmelnitsyn, R. Thiruvengadathan, K. Gangopadhyay, S. Gangopadhyay et al., Characterization of Nanothermite Material for Solid-Fuel Microthruster Applications, J. Propuls. Power, vol.25, issue.5, pp.1086-1091, 2009.

J. Wang, E. Besnoin, A. Duckham, S. J. Spey, M. E. Reiss et al., Joining of stainless-steel specimens with nanostructured Al/Ni foils, J. Appl. Phys, vol.95, issue.1, pp.248-256, 2004.

L. Glavier, G. Taton, J. M. Ducéré, V. Baijot, S. Pinon et al., Nanoenergetics as pressure generator for nontoxic impact primers: Comparison of Al/Bi2O3, Al/CuO, Al/MoO3 nanothermites and Al/PTFE, Combust. Flame, vol.162, issue.5, pp.1813-1820, 2015.

T. J. Fleck, R. Ramachandran, A. K. Murray, W. A. Novotny, G. T. Chiu et al., Controlled Substrate Destruction Using Nanothermite, Propellants, Explos. Pyrotech, vol.42, issue.6, pp.579-584, 2017.

M. Korampally, S. J. Apperson, C. S. Staley, J. Castorena, R. Thiruvengadathan et al., Transient pressure mediated intranuclear delivery of FITC-Dextran into chicken cardiomyocytes by MEMS-based nanothermite reaction actuator, Sensors Actuators, B Chem, pp.1292-1296, 2012.

K. S. Martirosyan, Nanoenergetic Gas-Generators: principles and applications, J. Mater. Chem, vol.21, issue.26, p.9400, 2011.

A. Chaalane, Microsystème de propulsion a propergol solide sur silicium : application au controle d ' assiette de micro-drone, 2009.

P. Pennarun, C. Rossi, D. Estève, and D. Bourrier, Design, fabrication and characterization of a MEMS safe pyrotechnical igniter integrating arming, disarming and sterilization functions, J. Micromechanics Microengineering, vol.16, issue.1, pp.92-100, 2006.

H. Pezous, C. Rossi, M. Sanchez, F. Mathieu, X. Dollat et al., Integration of a MEMS based safe arm and fire device, Sensors Actuators A Phys, vol.159, issue.2, pp.157-167, 2010.

M. Petrantoni, Nanomatériaux énergétiques sur puce: élaboration modélisation et caractérisation, 2011.

M. Bahrami, Nanothermites multicouches Al/CuO : caractérisation et application, 2014.

G. Taton, Conception et realisation d'un microsystème d'initiation pyrotechnique intelligent et sécurisé pour applications spatiales, 2014.

L. Glavier, Conception et développement d'un micro détonateur électrique intégrant des nanothermites pour l'amorçage par impact d'explosifs secondaires, 2017.

A. Nicollet, L. Salvagnac, V. Baijot, A. Estève, and C. Rossi, Fast circuit breaker based on integration of Al/CuO nanothermites, Sensors Actuators A Phys, vol.273, pp.249-255, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01743964

A. Nicollet, G. Lahiner, A. Belisario, S. Souleille, M. Djafari-rouhani et al., Investigation of Al/CuO multilayered thermite ignition, J. Appl. Phys, vol.121, issue.3, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01480996

G. Lahiner, A. Nicollet, J. Zapata, L. Marín, N. Richard et al., A diffusion-reaction scheme for modeling ignition and self-propagating reactions in Al/CuO multilayered thin films, J. Appl. Phys, vol.122, issue.15, p.155105, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01620567

A. Nicollet, S. Souleille, L. Glavier, L. Mazenq, L. Salvagnac et al., Design, realization and characterization of several types of micro-initiators integrating Al/CuO nanothermite: role of metallic micro-heater and substrate on fire/no fire characteristics, International Pyrotechnic Seminar (IPS), 2016.
URL : https://hal.archives-ouvertes.fr/hal-01688039

A. Nicollet, S. Charlot, V. Baijot, A. Estève, and C. Rossi, Ultra-rapid and fully integrated active pyrotechnic safety switches integrating nanothermites, Material Research Society (MRS), 2017.
URL : https://hal.archives-ouvertes.fr/hal-01688061

A. Nicollet, L. Marín, A. Belisario, and C. Rossi, Investigation of Al/CuO multilayered thermite ignition and combustion, European Material Research Society (EMRS), 2017.
URL : https://hal.archives-ouvertes.fr/hal-01688056

H. Goldschmidt, Verfahren zur Herstellung von Metallen oder Metalloiden oder Legierungen derselben, Kaiserliches (German) Patent, p.1895

S. H. Fischer and M. Grubelich, Theoretical Energy Release of Thermites, Intermetallics, and Combustible Metals, vol.220, p.56, 1998.

D. R. Lide, CRC handbook of chemistry and physics, 2006.

H. Goldschmidt, Method of uniting rails and the like," Patent, Cooperative Classification Y10S164/12, 1914.

M. R. Weismiller, J. Y. Malchi, J. G. Lee, R. A. Yetter, and T. J. Foley, Effects of fuel and oxidizer particle dimensions on the propagation of aluminum containing thermites, Proc. Combust. Inst, vol.33, issue.2, pp.1989-1996, 2011.

K. K. Kuo and K. Hori, Ignition characteristics of nanothermite systems, Advancements in Energetic Combustion and Chemical Propulsion, pp.73-86, 2008.

C. Weir, M. L. Pantoya, and M. A. Daniels, The role of aluminum particle size in electrostatic ignition sensitivity of composite energetic materials, Combust. Flame, vol.160, issue.10, pp.2279-2281, 2013.

K. T. Sullivan, C. Zhu, E. B. Duoss, A. E. Gash, D. B. Kolesky et al., Controlling Material Reactivity Using Architecture, Adv. Mater, vol.28, issue.10, pp.1934-1939, 2016.

A. K. Murray, W. A. Novotny, T. J. Fleck, I. E. Gunduz, S. F. Son et al., Selectively-deposited energetic materials: A feasibility study of the piezoelectric inkjet printing of nanothermites, Addit. Manuf, vol.22, pp.69-74, 2018.

A. K. Murray, T. Isik, V. Ortalan, I. E. Gunduz, S. F. Son et al., Two-component additive manufacturing of nanothermite structures via reactive inkjet printing, J. Appl. Phys, vol.122, issue.18, p.184901, 2017.

H. Sui, S. Atashin, and J. Z. Wen, Thermo-chemical and energetic properties of layered nano-thermite composites, Thermochim. Acta, vol.642, pp.17-24, 2016.

J. Y. Ahn, J. H. Kim, J. M. Kim, D. W. Lee, J. K. Park et al., Combustion characteristics of high-energy Al/CuO composite powders: The role of oxidizer structure and pellet density, Powder Technol, vol.241, pp.67-73, 2013.

J. Y. Ahn, W. D. Kim, K. Cho, D. Lee, and S. H. Kim, Effect of metal oxide nanostructures on the explosive property of metastable intermolecular composite particles, Powder Technol, vol.211, issue.1, pp.65-71, 2011.

X. Zhou, M. Torabi, J. Lu, R. Shen, and K. Zhang, Nanostructured Energetic Composites : Synthesis , Ignition / Combustion Modeling , and Applications, 2014.

.. S. Rogachev, S. G. Vadchenko, F. Baras, O. Politano, S. Rouvimov et al., Combustion in reactive multilayer Ni/Al nanofoils: Experiments and molecular dynamic simulation, Combust. Flame, vol.0, pp.1-12, 2016.

R. Shende, S. Subramanian, S. Hasan, S. Apperson, R. Thiruvengadathan et al., Nanoenergetic composites of CuO nanorods, nanowires, and Al-nanoparticles, Propellants, Explos. Pyrotech, vol.33, issue.2, pp.122-130, 2008.

R. Knepper, A. S. Tappan, R. R. Wixom, and M. A. Rodriguez, Controlling the microstructure of vapor-deposited pentaerythritol tetranitrate films, J. Mater. Res, vol.26, issue.13, pp.1605-1613, 2011.

K. J. Blobaum, M. E. Reiss, J. M. Lawrence, and T. P. Weihs, Deposition and characterization of a self-propagating CuOx/Al thermite reaction in a multilayer foil geometry, J. Appl. Phys, vol.94, issue.5, pp.2915-2922, 2003.

K. J. Blobaum, .. J. Wagner, J. M. Plitzko, D. Van-heerden, D. H. Fairbrother et al., Investigating the reaction path and growth kinetics in CuOx/Al multilayer foils, J. Appl. Phys, vol.94, issue.5, pp.2923-2929, 2003.

N. A. Manesh, S. Basu, and R. Kumar, Experimental flame speed in multi-layered nano-energetic materials, Combust. Flame, vol.157, issue.3, pp.476-480, 2010.

P. Zhu, R. Shen, Y. Ye, S. Fu, and D. Li, Characterization of Al/CuO nanoenergetic multilayer films integrated with semiconductor bridge for initiator applications, J. Appl. Phys, vol.113, issue.18, pp.1-6, 2013.

J. J. Granier and M. L. Pantoya, Laser ignition of nanocomposite thermites, Combust. Flame, vol.138, pp.373-383, 2004.

*. Daniel-prentice, M. L. Pantoya, A. E. Gash, and ?. , Combustion Wave Speeds of Sol?Gel-Synthesized Tungsten Trioxide and Nano-Aluminum: The Effect of Impurities on Flame Propagation, 2006.

L. Glavier, G. Taton, J. Ducéré, V. Baijot, S. Pinon et al., Nanoenergetics as pressure generator for nontoxic impact primers: Comparison of Al/Bi2O3, Al/CuO, Al/MoO3 nanothermites and Al/PTFE, Combust. Flame, vol.162, issue.5, pp.1813-1820, 2015.

V. E. Sanders, B. W. Asay, T. J. Foley, B. C. Tappan, A. N. Pacheco et al., Reaction Propagation of Four Nanoscale Energetic Composites (Al/MoO3, Al/WO3, Al/CuO, and B12O3), J. Propuls. Power, vol.23, issue.4, pp.707-714, 2007.

C. Weir, M. L. Pantoya, G. Ramachandran, T. Dallas, D. Prentice et al., Electrostatic discharge sensitivity and electrical conductivity of composite energetic materials, J. Electrostat, vol.71, issue.1, pp.77-83, 2013.

D. G. Piercey and T. M. Klapötke, Nanoscale Aluminum-Metal Oxide (Thermite) Reactions for Application in Energetic Materials, Nanoscale Aluminum-Metal Oxide React. Cent. Eur. J. Energ. Mater, vol.7, issue.2, pp.115-129, 2010.

J. A. Puszynski, Processing and characterization of aluminum-based nanothermites, J. Therm. Anal. Calorim, vol.96, issue.3, pp.677-685, 2009.

E. Lafontaine, M. Comet, and N. , , 2016.

M. A. Trunov, M. Schoenitz, X. Zhu, and E. L. Dreizin, Effect of polymorphic phase transformations in Al2O3 film on oxidation kinetics of aluminum powders, vol.140, pp.310-318, 2005.

M. Coulet, B. Rufino, P. Esposito, T. Neisius, O. Isnard et al., Oxidation Mechanism of Aluminum Nanopowders, J. Phys. Chem. C, vol.119, issue.44, pp.25063-25070, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01416622

J. Y. Malchi, R. A. Yetter, T. J. Foley, and S. F. Son, The effect of added Al2O3 on the propagation behavior of an Al/CuO nanoscale thermite, Combust. Sci. Technol, vol.180, issue.7, pp.1278-1294, 2008.

M. L. Pantoya and J. J. Granier, Combustion behavior of highly energetic thermites: Nano versus micron composites, Propellants, Explos. Pyrotech, vol.30, issue.1, pp.53-62, 2005.

S. Chowdhury, K. Sullivan, N. Piekiel, L. Zhou, and M. R. Zachariah, Diffusive vs Explosive Reaction at the Nanoscale, J. Phys. Chem. C, vol.114, issue.20, pp.9191-9195, 2010.

J. J. Granier and M. L. Pantoya, Laser ignition of nanocomposite thermites, Combust. Flame, vol.138, issue.4, pp.373-383, 2004.

J. Kwon, J. M. Ducéré, P. Alphonse, M. Bahrami, M. Petrantoni et al., Interfacial chemistry in Al/CuO reactive nanomaterial and its role in exothermic reaction, ACS Appl. Mater. Interfaces, vol.5, pp.605-613, 2013.

M. Bahrami, G. Taton, V. Conédéra, L. Salvagnac, C. Tenailleau et al., Magnetron Sputtered Al-CuO Nanolaminates: Effect of Stoichiometry and Layers Thickness on Energy Release and Burning Rate, Propellants, Explos. Pyrotech, vol.39, issue.3, pp.365-373, 2014.

L. Marín, Y. Gao, M. Vallet, I. Abdallah, B. Warot-fonrose et al., Performance Enhancement via Incorporation of ZnO Nanolayers in Energetic Al/CuO Multilayers, Langmuir, vol.33, issue.41, pp.11086-11093, 2017.

L. Marín, C. E. Nanayakkara, J. F. Veyan, B. Warot-fonrose, S. Joulie et al., Enhancing the Reactivity of Al/CuO Nanolaminates by Cu Incorporation at the Interfaces, ACS Appl. Mater. Interfaces, vol.7, issue.22, pp.11713-11718, 2015.

J. Hemeryck, C. Ducéré, . Lanthony, C. Estève, M. Rossi et al., Bottom-up modeling of Al/Ni multilayer combustion: Effect of intermixing and role of vacancy defects on the ignition process, J. Appl. Phys, vol.113, issue.20, p.204301, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01496631

G. C. Egan, E. J. Mily, J. P. Maria, and M. R. Zachariah, Probing the Reaction Dynamics of Thermite Nanolaminates, J. Phys. Chem. C, vol.119, issue.35, pp.20401-20408, 2015.

D. Stamatis, E. L. Dreizin, and K. Higa, Thermal Initiation of Al-MoO3 Nanocomposite Materials Prepared by Different Methods, J. Propuls. Power, vol.27, issue.5, pp.1079-1087, 2011.

T. Bazyn, N. Glumac, H. Krier, T. S. Ward, M. Schoenitz et al., Reflected shock ignition and combustion of aluminum and nanocomposite thermite powders, Combust. Sci. Technol, vol.179, issue.3, pp.457-476, 2007.

R. J. Jacob, D. J. Kline, and M. R. Zachariah, High speed 2-dimensional temperature measurements of nanothermite composites: Probing thermal vs. Gas generation effects, J. Appl. Phys, vol.1231, issue.10, pp.115902-245901, 2018.

W. L. Shaw, D. D. Dlott, R. A. Williams, and E. L. Dreizin, Ignition of Nanocomposite Thermites by Electric Spark and Shock Wave, Propellants, Explos. Pyrotech, vol.39, issue.3, pp.444-453, 2014.

S. Apperson, R. V. Shende, S. Subramanian, D. Tappmeyer, S. Gangopadhyay et al., Generation of fast propagating combustion and shock waves with copper oxide/aluminum nanothermite composites, Appl. Phys. Lett, vol.91, issue.24, pp.91-94, 2007.

N. J. , Combustion confinée d'explosif condense pour l'accelération de projectile. Application en pyrotechnie spatiale, 2014.

L. Glavier, A. Nicollet, F. Jouot, B. Martin, J. Barberon et al., Nanothermite/RDX-Based Miniature Device for Impact Ignition of High Explosives, Propellants, Explos. Pyrotech, vol.42, issue.3, pp.308-317, 2017.

R. A. Williams, J. V. Patel, and E. L. Dreizin, Ignition of Fully Dense Nanocomposite Thermite Powders by an Electric Spark, J. Propuls. Power, vol.30, issue.3, pp.765-774, 2014.

D. Stamatis and E. L. Dreizin, Thermal initiation of consolidated nanocomposite thermites, Combust. Flame, vol.158, issue.8, pp.1631-1637, 2011.

R. F. Flagg, E. J. Stecker, and L. E. Hollander, The development of a solid state explosive initiator, Sixth Symposium on Electroexplosive devices, 1969.

D. A. Benson, M. E. Larsen, A. M. Renlund, W. M. Trott, and R. W. Bickes, Semiconductor bridge: A plasma generator for the ignition of explosives, J. Appl. Phys, vol.62, issue.5, pp.1622-1632, 1987.

P. Zhu, D. Li, S. Fu, B. Hu, R. Shen et al., Improving reliability of SCB initiators based on Al/Ni multilayer nanofilms, Eur. Phys. J. Appl. Phys, vol.63, issue.1, p.10302, 2013.

Y. Li, X. Jia, L. Wang, B. Zhou, and R. Shen, Research on the Electro-explosive Behaviors and the Ignition Performances of Energetic Igniters, J. Energ. Mater, vol.36, issue.1, pp.1-12, 2018.

J. Wang, Y. Li, B. Zhou, and Z. Gao, Firing process and spectrum diagnosis of semiconductor bridge for high output energy micro-initiator, Sensors Actuators A Phys, vol.270, pp.108-117, 2018.

J. Xu, Y. Tai, C. Ru, J. Dai, Y. Ye et al., Tuning the Ignition Performance of a Microchip Initiator by Integrating Various Al/MoO 3 Reactive Multilayer Films on a Semiconductor Bridge, ACS Appl. Mater. Interfaces, vol.9, issue.6, pp.5580-5589, 2017.

C. S. Staley, C. J. Morris, R. Thiruvengadathan, S. J. Apperson, K. Gangopadhyay et al., Silicon-based bridge wire micro-chip initiators for bismuth oxidealuminum nanothermite, J. Micromechanics Microengineering, vol.21, issue.11, p.115015, 2011.

E. L. Dreizin, C. Badiola, S. Zhang, and Y. Aly, Particle combustion dynamics of metal-based reactive materials, Int. J. Energ. Mater. Chem. Propuls, vol.10, issue.4, pp.297-319, 2011.

H. Lorenz, M. Despont, N. Fahrni, N. Labianca, P. Renaud et al., SU-8: a low-cost negative resist for MEMS, J. Micromechanics Microengineering, vol.7, issue.3, pp.121-124, 1997.

S. D. Senturia, Polyimides in Microelectronics, Polymers for High Technology, pp.428-436, 1987.

J. B. Delisio, F. Yi, D. A. Lavan, and M. R. Zachariah, High Heating Rate Reaction Dynamics of Al/CuO Nanolaminates by Nanocalorimetry-Coupled Time-of-Flight Mass Spectrometry

E. A. and E. Y. Kulyamina, Electrical resistivity of titanium in the temperature range from 290 to 1800 K, High Temp, vol.45, issue.6, pp.785-796, 2007.

N. Baudeau, Caractérisation des propriétés thermiques de nanolaminés réactifs de type Al/CuO, INSA Toulouse, 2018.

I. Abdallah, J. Zapata, G. Lahiner, B. Warot-fonrose, J. Cure et al., Structure and Chemical Characterization at the Atomic Level of Reactions in Al/CuO Multilayers, ACS Appl. Energy Mater, vol.1, issue.4, pp.1762-1770, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01759153

J. Zapata, A. Nicollet, A. Estève, and C. Rossi, Combustion of sputter deposited Al/CuO nanolaminates, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02127351

C. Rossi, Al-based energetic nanomaterials, vol.2, 2015.

, Pyrotechnic device for electronic circuit.pdf

R. Gross, Cutting implement, Patent US 2742697A, 1956.

, Explosive cutter for parachute lines.pdf

F. Gaudinat, A. Magne, and P. Jacquot, Pyrotechnic circuit breaker, Patent-US0351363, 2016.

R. Grebert, Dispositif pyrotechnique de coupure des circuits électriques, Brevet-FR7406047, 1974.

Z. Dou, F. Richardeau, E. Sarraute, V. Bley, J. Blaquiere et al., PCB dual-switch fuse with energetic materials embedded: Application for new fail-safe and fault-tolerant converters, Microelectron. Reliab, vol.52, pp.2457-2464, 2012.

C. Rossi, Conception et realisation d'un systeme de rehydratation pour patch transdermique a partir de micro actionneurs pyrotechniques, 1997.

H. Pezous, Conception et intégration en technologie MEMS d'une micro amorce sécurisée, 2009.

V. Baijot, Modélisation et simulation multi-niveaux de la combustion d'une thermite composée de nanoparticules Al/CuO : des phénomènes microscopiques à la simulation du système en combustion, 2018.

B. S. Bockmon, M. L. Pantoya, S. F. Son, B. W. Asay, and J. T. Mang, Combustion velocities and propagation mechanisms of metastable interstitial composites Combustion velocities and propagation mechanisms of metastable interstitial composites, vol.64903, 2005.