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Abstract

Ce travail de these a été réalisé dans le cadre d’une these en co-tutelle entre 'INSA,
Toulouse, et I’Université des Andes, Colombie, avec un financement de Colciencias. Ce
travail est motivé par la nécessité pour l'industrie de détecter des situations anormales
pendant les phases de démarrage et d’arrét des installations. La sécurité des installations
industrielles implique une gestion intégrée de tous les facteurs et événements pouvant
causer des accidents. La gestion des alarmes peut étre formulée comme un probleme de
reconnaissance de motifs événementiels dans lequel des modeéles temporels sont utilisés
pour caractériser différentes situations typiques, en particulier pendant les phases de
démarrage et d’arrét. Dans cette these une nouvelle approche de gestion des alarmes
basée sur un processus de diagnostic est proposée. En supposant que les alarmes et les
actions du mode opératoire standard sont des événements discrets, I’étape de diagnostic
repose sur la reconnaissance de situation pour fournir aux opérateurs des informations
pertinentes sur les défaillances induisant le flux d’alarmes.

La reconnaissance de situation est basée sur des chroniques qui caractérisent les
situations d’interdit et qui sont apprises de maniere automatique. Les chroniques sont
apprises a partir de séquences d’événements représentatives obtenues par simulation et
constituant I'entrée d’une version étendue de I’Algorithme de Découverte de Chroniques
Heuristique Modifié (HCDAM ). HCDAM a été étendu dans cette thése pour prendre
en compte des connaissances expertes sous la forme de restrictions temporelles spéci-
fiques. Un modeles hybride causal du procédé est utilisé pour vérifier les séquences
d’entrée et pour expliquer et donner du sens aux chroniques apprises.

La méthodologie de gestion des alarmes basée sur des chroniques CBAM (comme
Chronicle Based Alarm Management ) proposée dans cette these fusionne différentes
techniques pour tenir compte de 'aspect hybride et des procédures opérationnelles
standard des processus concernés. Comparée aux autres approches de gestion d’alarmes,
cette approche se caractérise par 'utilisation de I'information sur les actions procé-
durales liées au comportement des variables continues dans un processus formel de
diagnostic. Des informations spécifiques sont obtenues a chaque étape de la méthodolo-

gie CBAM qui se résume en trois étapes :



1. Etape 1 : Identification du type d’événement
a partir des procédures d’exploitation standard et de 1’évolution des variables
continues, cette étape détermine I’ensemble des types d’événements pendant les

phases de démarrage et d’arrét.

2. Etape 2 : Génération de séquence d’événements
a partir de 'expertise et d’une procédure d’abstraction événementielle, cette étape
détermine la date d’apparition de chaque type d’événement pour la construc-
tion des séquences d’événements représentatives. Une séquence d’événements
représentatifs est I'ensemble des types d’événements avec leurs dates d’occurrence
qui peuvent étre associées a un scénario spécifique du processus. Cette étape se
conclut avec la vérification des séquences d’événements représentatives a l’aide

du modele causal hybride.

3. Etape 3 : Construction de la base de chroniques
a partir des séquences d’événements représentatives et des restrictions temporelles
dans chaque scénario, cette étape détermine la base de chroniques a I’'aide de
I’algorithme HCDAM.

La methode proposée pour la gestion des alarmes est illustrée par deux cas d’etude

representatifs du domaine pétrochimique.



Abstract

This thesis work was carried out in the framework of a co-tutelle between INSA,
Toulouse, and the University of the Andes, Colombia, with financial support of Col-
ciencias. This work is motivated by the need of the industry to detect abnormal
situations in the plant startup and shutdown stages. Industrial plants involve inte-
grated management of all the events that may cause accidents and translate into alarms.
Process alarm management can be formulated as an event-based pattern recognition
problem in which temporal patterns are used to characterize different typical situations,
particularly at startup and shutdown stages. In this thesis, a new approach for alarm
management based on a diagnosis process is proposed. Considering the alarms and the
actions of the standard operating procedure as discrete events, the diagnosis step relies
on situation recognition to provide the operators with relevant information about the
failures inducing the alarm flow. The situation recognition is based on chronicles that
characterize the situations of interest and are learned automatically. The chronicles
are learned from representative event sequences obtained by simulation and given as
input to an extended version of the Heuristic Chronicle Discovery Algorithm Modified
(HCDAM). HCDAM has been extended in this thesis to account for expert knowledge
in the form of specific temporal restrictions. A hybrid causal model of the process is
used to verify the input event sequences and to explain and provide semantics to the
learned chronicles.

The Chronicle Based Alarm Management (CBAM) methodology proposed in this
thesis involves different techniques to take the hybrid aspect and the standard op-
erational procedures of the concerned processes into account. Compared to other
approaches of alarm management, this approach uses information about the procedural
actions related to the continuous variables behavior in a formal diagnosis process.
Specific information is obtained in each step of the CBAM methodology, and it is

summarized in three steps:

1. Step 1: Event type identification

From the standard operating procedures and from the evolution of the continuous
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variables, this step determines the set of event types in startup and shutdown

stages.

. Step 2: Event sequence generation

From the expertise and an event abstraction procedure this step determines the
date of occurrence of each event type for constructing the representative event
sequences. A representative event sequence is the set of event types with their
dates of occurrence that can be associated to a specific scenario of the process.
This step concludes verifying the representative event sequences using the hybrid

causal graph.

. Step 3: Chronicle database construction

From the representative event sequences and temporal restrictions of each sce-
nario, this step determines the chronicle database using the extended HC' D AM

algorithm.

The proposed framework for alarm management is illustrated with two case studies

representative of the petrochemical field.
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Chapter 1

Introduction

1.1 Global overview and motivation

The increasing automation of industrial production processes has resulted also in an
increase of the complexity of the control systems. Such systems are based on digital
technologies that required increase their monitoring capacity in terms of the number
of variables that can be treated with its processing speed and communication capacity
[10], [11]. This complexity makes extremely difficult the diagnosis of failures that may
occur. Currently, on highly automated systems fault diagnosis performed automatically
with automatic reconfiguration on embedded control system is an usual requirement
[55], [70],[78]. The ultimate goal is to optimize the availability, reliability and safety of
production processes [69].

The operation of many industrial processes, especially in the petrochemical sector,
involves inherent risks due to the presence of dangerous materials like gases and
chemicals; which in some conditions can cause emergencies. In these types of industrial
processes, safety is supplied by layers of protection, which begin with a safe design
(Process design level) and an effective process control (Process Control level), followed
by the manual (Operator interventions level) and automatic (Safety Instrumented
System level) prevention layers, and concluded with layers to mitigate the consequences
of a critical event (Active protection level, Passive protection level, Plant emergency
response level and Community emergency response level) as shown Figure. 1.1. The
petrochemical industrie’s losses have been estimated at 20 billion dollars in the U.S.
alone each year, and the AEM (Abnormal Events Management) has been classified as
a critical problem [95], [122], [111]. An integrated management of the critical factors in
the process, ensures an optimum reliability level in the industrial plants [50]. Factors

such as the control of the process variables, procedures and steps followed in transitional
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stages try to keep the plants within the operating established "limits" [46]. While, on
starting or shutdown procedures, the quantity of signals increases, the plant safety
needs to involve an integrated management of those factors analyzing the causes of the
accidents.

In other words, these factors must be managed together, and not separately, because
if any of them is left outside, unattended or decreased, the security would be threatened

[1]. The critical factors of the process work that must be managed together are:

Facilities safely,

Control of process variables,

Safe behaviors,

« Valid procedures.

This raises the need not only of a diagnosis system that helps to maintain safe the
process increasing the availability of the installation, but also of new alarm management
methodologies [108]. Industrial plant safety involves an integrated management of all
the factors that may cause accidents. Hence alarm management is one aspect of great
interest in the safety planning for different plants.

In process state transitions such as startup and shutdown stages, the alarm flood
increases and it generates critical conditions in which the operator does not respond
efficiently; moreover, it is commonly reported that 70% of plant incidents occur at
startup or shutdown stages [6]. Due to this alarm flood, dynamic alarm management
is required. Currently, many fault detection and diagnosis techniques for multimode
processes have been proposed; however, these techniques cannot indicate fundamental
faults in the basic alarm system [125]. On the other hand, the technical report ”Advance
Alarm System Requirements” EPRI (The Electric Power Research Institute) suggests
both cause - consequence and event-based processing. Today, it is very easy to set
alarms on modern electronic control systems, and operators are inundated with "alarms"
that actually hinder the performance of their tasks [93]. In industrial environments, it
is common for plant operators to perform their duties silencing process alarms. This
situation arises because these alarms become noise rather than an indicator of abnormal
situations. Nonetheless, the plant alarms should be administered according to: 1) a
philosophy that includes the purpose of the alarm system; 2) procedures associated
with the alarm system and other plant procedures; 3) methods for prioritization; 4)

alarm classes; 5) roles and operator responsibilities with respect to alarms; 6) principles
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Figure 1.1: Safety layers of protection

of the alarms; 7) documentation required for each alarm; 8) training; 9) rates of key

system performance; 10) change management, and 11) preservation of history of alarms
(ISA 18.2).

In this thesis we propose to address the problem of alarm management by developing
reliable tools that support the analysis of event streams to recognize activities that
can generate normal or abnormal situations in complex flows. The challenge is then to
fit the formal recognition of behaviors in the context of Complex Event Processing.
The dynamics of a process can be represented by an approach that depicts the process
behavior using the events that occur during the process evolutions. In this context, the
chronicle approach [31] has been applied in many applications of situation recognition
and often with a diagnosis objective. Chronicles are temporal pattern supported by
a set of observable events and a set of temporal constraints between pairs of events.
One of the main difficulties of situation recognition based on chronicles is to obtain
automatically a base of chronicles that represents each situation of interest. Our
proposal is then to use a chronicle recognition approach to analyse the behavior of the
process and to use learning techniques for the chronicles design. Diagnosis by situation
recognition (chronicle based diagnosis) in startup and shutdown stages of chemical
/petrochemical processes as a support to human operators is the principal goal of this

thesis and resumed in Fig. 1.2.
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| DIAGNOSIS BY SITUATION RECOGNITION DURING STARTUP/SHUTDOWN STAGE |
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Figure 1.2: Motivation: Diagnosis by situation recognition

A formal methodology called Chronicle Based Alarm Management (CBAM)
to generate offline the chronicle database using the alarm flood, procedural actions
and expert knowledge is proposed. As the efficiency of alarm management approaches
depends on the operator expertise and process knowledge, our final objective is to
develop a diagnosis approach as a decision tool for operators. For this, we propose to
enhance the chronicle learning stage by incorporating expert knowledge. In this thesis
the chronicle learning algorithm proposed in [96] has been extended to incorporate
expert knowledge in the form of temporal restrictions, as well as additional information
that allows us to limit the conservatism of chronicles.

The global approach C BAM provides a dynamic alarm management system for
the transition stages of chemical processes. To consider both continuous and discrete
features of chemical plants, CBAM is fed by the hybrid system framework. The
Chronicle Based Alarm Management approach is then at the boarder between the
alarm management area, the fault diagnosis research field and hybrid models field (see

Fig. 1.3). In this approach the simultaneous occurrence of events is not considered.

1.2 Alarm management

Alarm management is an important aspect in the safety of the industrial processes. In
years past (60’s, 70’s) the integration of a new alarm on the systems had a high cost

and required a careful study and analysis before deploying. Each alarm had to be wired
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Alarm management
techniques
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Figure 1.3: Chronicle Based Alarm Management CBAM

given the limited space on the panels of the control room. Today, advances in hardware
and software have made possible the implementation of alarms at a minimum cost,
without limits of space and with less review. Therefore, in many cases unnecessary
alarms arise. Due this, an important advance has been the appearance of alarm systems,
in which alarms are installed and configured considering the amount of existing signals
(analog and discrete) and the rate of alarms that an operator can respond efficiently.
Alarm systems can induce many alarms that cannot be evaluated by the operator
which is a serious threat to the safety of the process. Therefore, now, the question
is: Which alarms can be ignored without compromising the integrity of the process?
This at the extreme can lead to sub-alarm systems, which is as bad as having a system

over-alarmed [76]. Alarm management systems must deal with two main difficulties:
e A very high rate of alarms,
o A lack of criteria for assigning the priority of an alarm.

Alarm rate indicates the load that produces the alarm system to the operator. If the
operator is supposed to respond to all alarms, the system must not produce more
alarms that the operator can respond effectively. The most important factors that

affect the rate of alarms are:

e The number of alarms settled,
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o The deadband analog alarms (pressure, temperature, flow, level, etc.),
e The analog alarm limits,
o Alarms packages equipment (compressors, furnaces, etc.).

The alarm priority determines the order in which the operator must respond to the
alarm, i.e. it determines the relative importance of alarms. Frequently it can be found
that all alarms have the same priority, or there are a large percentage for one priority
and a few for other priorities. It is important that alarms are prioritized correctly
because in a scenario in which the operator receives a sequence of alarms in a short
period, the priority is the only factor that the operator owns to determine to which
alarm he has to respond in priority [95].

Alarm management is a process by which the alarms are designed, monitored and
managed to ensure more reliable and secure operations. The first mistake is to assume
that the alarm management has to do with reducing alarms. The aim of an alarm
management system is to improve the quality process acting on the rate of alarms
during normal operation, on the rate of alarms during abnormal situations, on the
priority of alarms and on problems related to maintenance and Operation / Control.
The motivation of alarm management is based on improving the work environment of
the operator (ergonomics) preventing overload of the same, to avoid unexpected stops,
make operation safer thereby achieving improved plant reliability.

On the other hand, many failings by operators have been recorded as incidents that
have been the major contributing cause of major accidents. For controlling and mitigate
these events, it is necessary to provide clear, concise and accurate operating procedures.
Operating procedures must declare the instructions for the correct operation of the
process plant regarding aspects such as the Control of Substances Hazardous to Health
(COSHH), manual handling, Personal Protective Equipment (PPE) regulations, quality,
the Hazard and Operability study (Hazop), and the Safety Health and Environment
(SHE) requirements. A Standard Operating Procedure (SOP), is a set of instructions
step-by-step structured to help the operators carry out routine operations, and each
company or organization defines theirs SOP as they believe that is more convenient. The
principal objective of the SOPs is to achieve efficiency, quality output and uniformity of
performance, reducing delays and failures. Therefore, the standard operating procedures
should depict a definition of the best practice that can do to at any momment.

Summarizing, the fundamental purpose of an alarm is to alert the operator of
deviations in the process variables from normal operating conditions, i.e. abnormal

operating situations. ISA-18.2 defines an alarm as "An audible and/or visible means
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of indicating to the operator an equipment malfunction, process deviation, or abnormal
condition requiring a response”. This means that an alarm is more than a message or
an event; an alarm indicates a condition requiring the operator’s attention towards
plant conditions requiring timely assessment or action. In addition, alarm management
corresponds to determining, documenting, designing, operating, monitoring, and main-
taining alarm systems and it has recently focused the attention of many researchers in

themes such as:

o Alarm history visualization and analysis,
e Process data-based alarm system analysis and rationalization,

« Plant connectivity and process variable causality analysis (causal methods).

The proposal in this thesis seeks to exploit the causal relationships between process
variables and procedure actions issued of Standard Operating Procedures. Additionally
our objective is to take the temporal dimension of the alarm management into account.
More precisely we want to exploit the temporal information of the alarm sequences (i.e
the time between alarms occurrence). In this context the choice we have made of a
chronicle based approach for situation recognition is well suited as time is an intrinsic

feature of chronicles.

1.3 Fault diagnosis techniques

The knowledge that we can acquire about the behavior of a physical system is based
primarily on the acquisition and valuation of two types of information: Quantitative,
which is acquired through various measuring instruments variables that characterize the
system operation. Qualitative, which is acquired by humans through the sensory organs
and processed by the brain, usually provided in the form of linguistic information
[91],[111]. In fault detection process we cannot neglect any kind of information because
both are essential for the generation of fault indicators. We present next a summary of
fault detection techniques based on two types of approach: Data - driven techniques

and Model - based techniques.

1.3.1 Data - driven techniques

In diagnosis theory, there exist promising methods of fault diagnosis in technical systems
described by linear and nonlinear models; methods noted as “model-free” or “data-

driven” methods [8], [29]. This type of techniques consider continuous measurements,
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and a set of measurements of the process using sensors is represented as a pattern

[92],[124]. A list of some data-driven techniques is presented below.

(a) Quantitative techniques

i.

ii.

Statistical: These methods use analysis as the Principal Component
Analysis (PCA) which is a statistical procedure that convert a set of
observations of possibly correlated variables into a set of values of lin-
early uncorrelated variables called principal components (or sometimes

principal modes of variation) [75],[115].

Neuronal networks (Multivariable models built from a set of in-
put/output data), Neural networks are a computational model based on
a large set of simple neuronal units (artificial neurons), approximately
similar to the behavior observed in axons of neurons in biological brains
[112].

(b) Qualitative techniques

i.

ii.

Expert systems (Rule-based feature extraction): These systems rep-
resent the knowledge of the experts through determining rules and
patterns which can be implemented with Neuronal networks -Pattern
classification approaches [84], Fuzzy logic [46],[26], Genetic algorithm
[103] etc.

Qualitative trend analysis (QTA) (Abstraction of trend information):
These type of techniques are an useful tool for process data analysis,
process monitoring, fault diagnosis, and data mining. Techniques which
can analyze the data applying triangulation [20], finite difference method
[54], syntactic pattern recognition approach [83], Gaussian filter [123],

etc.

1.3.2 Model - based techniques

Different approaches for fault detection use mathematical and graph models. The

mission corresponds to the detection of faults in the process, faults in the actuators

and sensors by using the dependencies between different measurable signals. These

dependencies are expressed by mathematical process models. The basic structure of

a model-based fault detection is based on measured input signals and output signals.

The detection methods generate residuals, parameter estimates or state estimates,

which are called features. By comparison with the normal features, changes of features
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are detected, leading to analytical symptoms. A list of the most popular model-based

techniques is presented below.

(a) Quantitative techniques

1.

ii.

Residual generation methods: These methods include the generation
of residual signals analyzing measurements of input/output elements.
These methods use analytical redundancy [4],[21],[45], residuals and
parameterization of residual generators [44], Fault detection filter (Ob-
server) [18], etc.

Another method based on quantitative techniques is the Kalman filter

[119] which uses data from the process predicting the next values in the

variables to detect failures.

(b) Qualitative techniques

i

ii.

iii.

Causal models: These models represent a description of the process.
In a graphical form, the following techniques can indicate the relation-
ships between components, variables and procedural actions: Diagraph
(Graph with directed arcs between the nodes) [67], Bond graphs [87],
SDG - Signed direct graph [121], ESDG - Extended SDG [63]. Other
techniques can involve information from a risk analysis, time and the
date of occurrences of the events: PCEG - Possible cause and effect
graph models [117],[118], HDG - HAZOP-digraph models [107], Causal
Graphs [17], Chronicles [31],[96],[110], Fault trees [102].

Qualitative physics: These techniques can predict and explain the
behavior of mechanisms in qualitative terms. For example, we can
obtain the qualitative behavior from the ordinary differential equations
(ODEs) [86] [57] or simulate a process in a qualitative form (Qualitative
simulation -QSIM) [57].

Abstraction hierarchies: The complex processes can be divided hier-
archically for its analysis. This division may be structural [82], from
multilevel flow Models (MFM) [62], from functional areas [40], etc.

In this thesis as said previously, we consider a chronicle based diagnosis approach.

This diagnosis approach is a data driven approach as the chronicles are designed

through data (in our case event sequences) by a learning technique. It can also be

considered as a qualitative model based approach as chronicles can be viewed as

observable abstractions of the process behaviors.



10 Introduction

1.4 Hybrid models and causal graph

The Chronicle Based Alarm Management (CBAM) methodology proposed in
this thesis uses a formal framework based on hybrid systems to formally model the
chemical /petrochemical processes that have both continuous dynamics and discrete
dynamics. In addition, to capture the causal relationship between the continuous
variables the hybrid modeling of the process integrates causal graphs. This hybrid

framework will be described in details in the chapter 3.

1.5 Objectives of the thesis

The general objective of the thesis is to design and to develop a new methodology for
alarm management in startup and shutdown stages.

More precisely we aim to:

e design an alarm management method based on a diagnosis process during startup

and shutdown stages
 structure the diagnosis based