P. Joseph and P. Tabeling, Direct measurement of the apparent slip length, Phys. Rev. E, vol.71, p.35303, 2005.

H. A. Stone, A. D. Stroock, and A. Ajdari, Engineering flows in small devices: Microfluidics toward a labon-a-chip, Annu. Rev. Fluid Mech, vol.36, pp.381-411, 2004.

G. Degré, Rheology of complex fluids by particle image velocimetry in microchannels, Appl. Phys. Lett, vol.89, p.24104, 2006.

P. Joseph, Slippage of water past superhydrophobic carbon nanotube forests in microchannels, Phys. Rev. Lett, vol.97, p.156104, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01628755

C. Ybert, C. Barentin, C. Cottin-bizonne, P. Joseph, and L. Bocquet, Achieving large slip with superhydrophobic surfaces: Scaling laws for generic geometries, Phys. Fluids, vol.19, p.123601, 2007.
DOI : 10.1063/1.2815730

URL : https://hal.archives-ouvertes.fr/hal-01628761

P. Abgrall, A. Bancaud, P. Joseph, . Systèmes, and . Nanofluidiques, Technologies et applications. Tech. Ing. NM, vol.250, pp.1-15, 2013.

P. Abgrall, A. Bancaud, and P. Joseph, Nanofluidic Devices and Their Potential Applications, Microfluidic Devices in Nanotechnology, pp.155-214, 2010.
DOI : 10.1002/9780470622636.ch5

A. E. Allouch, Nanofluidic systems: development of fabrication technologies and characterization of capillary filling rates, Proc of the First European Conference on Microfluidics, 2008.

A. Allouch, Microbubbles for optofluidics: controlled defects in bubble crystals, Microfluid. Nanofluidics, vol.17, pp.549-560, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01810280

F. Chauvet, S. Geoffroy, A. Hamoumi, M. Prat, and P. Joseph, Roles of gas in capillary filling of nanoslits, Soft Matter, vol.8, pp.10738-10749, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00920951

S. Méance, L. Pages, A. Gué, and P. Joseph, Production of 3-10 µm microbubbles suited for ultrasonic imaging by 2.5D nanofluidic devices, 18th International Conference on Miniaturized Systems for Chemistry and Life Sciences, 2014.

A. Naillon, Grayscale lithography to fabricate varying-depth nanochannels in a single step, Proc. of MicroTAS 2016 Conference, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01391501

R. Courson, SAMs VAPOR DEPOSITION: A READY TO USE FUNCTIONALIZATION TECHNOLOGY FOR MONITORING WETTABILITY PROPERTIES IN MICROFLUIDIC DEVICES, The 18th International Conference on Miniaturized Systems for Chemistry and Life Sciences, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01082680

V. N. Phan, Capillary Filling in Closed End Nanochannels, Langmuir, vol.26, pp.13251-13255, 2010.
DOI : 10.1021/la1010902

A. Naillon, Quasi-static drainage in a network of nanoslits of non-uniform depth designed by grayscale laser lithography, Microfluid. Nanofluidics, vol.21, p.131, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01566417

C. Lee, Osmotic Flow through Fully Permeable Nanochannels, Phys. Rev. Lett, vol.112, p.244501, 2014.
DOI : 10.1103/physrevlett.112.244501

URL : https://hal.archives-ouvertes.fr/hal-01628783

A. Naillon, P. Joseph, and M. Prat, Sodium chloride precipitation reaction coefficient from crystallization experiment in a microfluidic device, J. Cryst. Growth, vol.463, pp.201-210, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01578668

A. Naillon, P. Joseph, and M. Prat, Ion Transport and Precipitation Kinetics as Key Aspects of Stress Generation on Pore Walls Induced by Salt Crystallization, Phys. Rev. Lett, vol.120, p.34502, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01700814

C. Chen, P. Duru, P. Joseph, S. Geoffroy, and M. Prat, Control of evaporation by geometry in capillary structures. From confined pillar arrays in a gap radial gradient to phyllotaxy-inspired geometry, Sci. Rep, vol.7, p.15110, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01810366

O. Liot, Pore cross-talk in colloidal filtration, Sci. Rep, vol.8, p.12460, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01865363

O. Liot, Transport of nano-objects in narrow channels: influence of Brownian diffusion, confinement and particle nature, J. Phys. Condens. Matter, vol.30, p.234001, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01810125

M. Fouet, Filter-less submicron hydrodynamic size sorting, Lab. Chip, vol.16, pp.720-733, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01222327

H. Ranchon, DNA separation and enrichment using electro-hydrodynamic bidirectional flows in viscoelastic liquids, Lab. Chip, vol.16, pp.1243-1253, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01306024

D. Berti, C. Montis, P. Bergese, G. Milano, and P. Joseph, Nanostructured Materials interacting with Synthetic and Natural Lipid Membranes, ECIS, 30th Conf of the Eur Colloid and Interface Society, 2016.

C. Montis, Microfluidics to study interactions of model membranes with nanosystems, 4th International Soft Matter Conference, 2016.

C. Magnani, Hybrid vesicles from lipids and block copolymers: Phase behavior from the micro-to the nano-scale, Colloids Surf. B Biointerfaces, vol.168, pp.18-28, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01810239

A. Chalard, Simple Synthetic Molecular Hydrogels from Self-Assembling Alkylgalactonamides as Scaffold for 3D Neuronal Cell Growth, ACS Appl. Mater. Interfaces, vol.10, pp.17004-17017, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01810656

C. Duan, W. Wang, and Q. Xie, Review article: Fabrication of nanofluidic devices, Biomicrofluidics, vol.7, p.26501, 2013.

J. C. Eijkel, . Van-den, and A. Berg, Nanofluidics: what is it and what can we expect from it?, Microfluid. Nanofluidics, vol.1, pp.249-267, 2005.

G. B. Salieb-beugelaar, K. D. Dorfman, A. Berg, and J. C. Eijkel, Electrophoretic separation of DNA in gels and nanostructures, Lab. Chip, vol.9, pp.2508-2523, 2009.

S. Howorka and Z. Siwy, Nanopore analytics: sensing of single molecules, Chem. Soc. Rev, vol.38, pp.2360-2384, 2009.

J. Feng, Identification of single nucleotides in MoS2 nanopores, Nat. Nanotechnol, vol.10, pp.1070-1076, 2015.

S. Pennathur, J. C. Eijkel, . Van-den, and A. Berg, Energy conversion in microsystems: is there a role for micro/nanofluidics?, Lab. Chip, vol.7, pp.1234-1237, 2007.

R. Lenormand, E. Touboul, and C. Zarcone, Numerical models and experiments on immiscible displacements in porous media, J. Fluid Mech, vol.189, pp.165-187, 1988.

W. L. Olbricht, Pore-scale prototypes of multiphase flow in porous media, Annu. Rev. Fluid Mech, vol.28, pp.187-213, 1996.

N. S. Gunda, B. Bera, K. Karadimitriou, N. , K. Mitra et al., Reservoir-ona-Chip (ROC): A new paradigm in reservoir engineering, Lab. Chip, vol.11, pp.3785-3792, 2011.

C. Zhang, M. Oostrom, T. W. Wietsma, J. W. Grate, and M. G. Warner, Influence of Viscous and Capillary Forces on Immiscible Fluid Displacement: Pore-Scale Experimental Study in a Water-Wet Micromodel Demonstrating Viscous and Capillary Fingering, Energy Fuels, vol.25, pp.3493-3505, 2011.

M. Jung, Wettability controls slow immiscible displacement through local interfacial instabilities, Phys. Rev. Fluids, vol.1, p.74202, 2016.
DOI : 10.1103/physrevfluids.1.074202

X. Zhao, M. J. Blunt, and J. Yao, Pore-scale modeling: Effects of wettability on waterflood oil recovery, J. Pet. Sci. Eng, vol.71, pp.169-178, 2010.
DOI : 10.1016/j.petrol.2010.01.011

H. Lee, S. G. Lee, and P. S. Doyle, Photopatterned oil-reservoir micromodels with tailored wetting properties, Lab. Chip, vol.15, pp.3047-3055, 2015.
DOI : 10.1039/c5lc00277j

URL : https://pubs.rsc.org/en/content/articlepdf/2015/lc/c5lc00277j

B. Zhao, C. W. Macminn, and R. Juanes, Wettability control on multiphase flow in patterned microfluidics, Proc. Natl. Acad. Sci, vol.113, pp.10251-10256, 2016.
DOI : 10.1073/pnas.1603387113

URL : http://www.pnas.org/content/113/37/10251.full.pdf

E. W. Washburn, The Dynamics of Capillary Flow, Phys. Rev, vol.17, pp.273-283, 1921.

O. Vincent, A. Szenicer, and A. D. Stroock, Capillarity-driven flows at the continuum limit, Soft Matter, vol.12, pp.6656-6661, 2016.
DOI : 10.1039/c6sm00733c

URL : http://arxiv.org/pdf/1510.00411

C. Duan, R. Karnik, M. Lu, and A. Majumdar, Evaporation-induced cavitation in nanofluidic channels, Proc. Natl. Acad. Sci, vol.109, pp.3688-3693, 2012.
DOI : 10.1073/pnas.1014075109

URL : https://www.pnas.org/content/pnas/109/10/3688.full.pdf

J. W. Honschoten, . Van, M. Escalante, N. R. Tas, H. V. Jansen et al., Elastocapillary filling of deformable nanochannels, J. Appl. Phys, vol.101, p.94310, 2007.

J. W. Van-honschoten, M. Escalante, N. R. Tas, and M. Elwenspoek, Formation of liquid menisci in flexible nanochannels, J. Colloid Interface Sci, vol.329, pp.133-139, 2009.

O. Vincent, D. A. Sessoms, E. J. Huber, J. Guioth, and A. D. Stroock, Drying by cavitation and poroelastic relaxations in extreme ink-bottle porous media, Phys. Rev. Lett, vol.113, pp.1-5, 2014.
DOI : 10.1103/physrevlett.113.134501

URL : http://arxiv.org/pdf/1402.6776

L. Bocquet and E. Charlaix, Nanofluidics, from bulk to interfaces, Chem. Soc. Rev, vol.39, pp.1073-1095, 2010.
DOI : 10.1039/b909366b

C. Cottin-bizonne, B. Cross, A. Steinberger, and E. Charlaix, Boundary Slip on Smooth Hydrophobic Surfaces: Intrinsic Effects and Possible Artifacts, Phys. Rev. Lett, vol.94, p.56102, 2005.
DOI : 10.1103/physrevlett.94.056102

M. Luo and T. H. Epps, Directed Block Copolymer Thin Film Self-Assembly: Emerging Trends in Nanopattern Fabrication, Macromolecules, vol.46, pp.7567-7579, 2013.
DOI : 10.1021/ma401112y

W. Shih, Collapse of microchannels during anodic bonding: Theory and experiments, J. Appl. Phys, vol.95, pp.2800-2800, 2004.
DOI : 10.1063/1.1644898

K. M. Van-delft, Micromachined Fabry-Perot interferometer with embedded nanochannels for nanoscale fluid dynamics, Nano Lett, vol.7, pp.345-350, 2007.

M. J. Madou, ThreeVolume Set, Fundamentals of Microfabrication and Nanotechnology, Third Edition, p.14, 2011.

S. M. Stavis, J. Geist, M. Gaitan, L. E. Locascio, and E. A. Strychalski, DNA molecules descending a nanofluidic staircase by entropophoresis, Lab. Chip, vol.12, pp.1174-1182, 2012.
DOI : 10.1039/c2lc21152a

S. M. Stavis, J. Geist, and M. Gaitan, Separation and metrology of nanoparticles by nanofluidic size exclusion, Lab. Chip, vol.10, pp.2618-2621, 2010.
DOI : 10.1039/c0lc00029a

K. Sugioka and Y. Cheng, Femtosecond laser three-dimensional micro-and nanofabrication, Appl. Phys. Rev, vol.1, p.41303, 2014.
DOI : 10.1063/1.4904320

K. Ke, E. F. Hasselbrink, and A. J. Hunt, Rapidly Prototyped Three-Dimensional Nanofluidic Channel Networks in Glass Substrates, Anal. Chem, vol.77, pp.5083-5088, 2005.
DOI : 10.1021/ac0505167

Y. Liao, Direct laser writing of sub-50 nm nanofluidic channels buried in glass for threedimensional micro-nanofluidic integration, Lab. Chip, vol.13, pp.1626-1631, 2013.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, Achieving l/20 Resolution by One Color Initiation and Deactivation of Polymerization, Science, vol.324, pp.910-913, 2009.

A. Selimis, V. Mironov, and M. Farsari, Microelectronic Engineering Direct laser writing : Principles and materials for scaffold 3D printing, Microelectron. Eng, vol.132, pp.83-89, 2015.

S. Azimi, Buried centimeter-long micro-and nanochannel arrays in porous silicon and glass, Lab. Chip, vol.14, pp.2081-2089, 2014.

J. Kim, D. C. Joy, and S. Lee, Controlling resist thickness and etch depth for fabrication of 3D structures in electron-beam grayscale lithography, Microelectron. Eng, vol.84, pp.2859-2864, 2007.

M. Erdmanis and I. Tittonen, Focused ion beam high resolution grayscale lithography for siliconbased nanostructures, Appl. Phys. Lett, vol.104, p.73118, 2014.

K. Totsu, K. Fujishiro, S. Tanaka, and M. Esashi, Fabrication of three-dimensional microstructure using maskless gray-scale lithography, Sens. Actuators Phys, pp.387-392, 2006.

A. Rammohan, One-step maskless grayscale lithography for the fabrication of 3-dimensional structures in SU-8, Sens. Actuators B Chem, vol.153, pp.125-134, 2011.

K. Zhong, Y. Gao, F. Li, Z. Zhang, and N. Luo, Fabrication of PDMS microlens array by digital maskless grayscale lithography and replica molding technique, Opt. -Int. J. Light Electron Opt, vol.125, pp.2413-2416, 2014.

S. M. Stavis, E. A. Strychalski, and M. Gaitan, Nanofluidic structures with complex three-dimensional surfaces, Nanotechnology, vol.20, p.165302, 2009.

M. H. Wu, C. Park, and G. M. Whitesides, Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography, Langmuir, vol.18, pp.9312-9318, 2002.

M. T. Gale, M. Rossi, J. Pedersen, and H. Schuetz, Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists, Opt. Eng, vol.33, pp.3556-3566, 1994.

P. Abgrall and N. T. Nguyen, Nanofluidic devices and their applications, Anal. Chem, vol.80, pp.2326-2341, 2008.
DOI : 10.1021/ac702296u

J. Haneveld, N. R. Tas, N. Brunets, H. V. Jansen, and M. Elwenspoek, Capillary filling of sub-10 nm nanochannels, J. Appl. Phys, vol.104, p.14309, 2008.

J. Bico, B. Roman, L. Moulin, and A. Boudaoud, Elastocapillary coalescence in wet hair, Nature, vol.432, pp.690-690, 2004.

B. Roman and J. Bico, Elasto-capillarity: deforming an elastic structure with a liquid droplet, J. Phys. Condens. Matter, vol.22, p.493101, 2010.

L. Shui, A. Berg, and J. C. Eijkel, Scalable attoliter monodisperse droplet formation using multiphase nano-microfluidics, Microfluid. Nanofluidics, vol.11, pp.87-92, 2011.
DOI : 10.1007/s10404-011-0776-7

URL : https://link.springer.com/content/pdf/10.1007%2Fs10404-011-0776-7.pdf

F. Malloggi, Monodisperse Colloids Synthesized with Nanofluidic Technology, Langmuir, vol.26, pp.2369-2373, 2009.

R. Dangla, E. Fradet, Y. Lopez, and C. N. Baroud, The physical mechanisms of step emulsification, J. Phys. Appl. Phys, vol.46, p.114003, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00996486

M. Hein, S. Afkhami, R. Seemann, and L. Kondic, Capillary focusing close to a topographic step: shape and instability of confined liquid filaments, Microfluid. Nanofluidics, vol.1, issue.7, 2014.

Z. Li, A. M. Leshansky, L. M. Pismen, and P. Tabeling, Step-emulsification in a microfluidic device, Lab. Chip, 2014.

M. Stoffel, Bubble Production Mechanism in a Microfluidic Foam Generator, Phys. Rev. Lett, vol.108, p.198302, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00785723

J. R. Lindner, Microbubbles in medical imaging: current applications and future directions, Nat. Rev. Drug Discov, vol.3, pp.527-533, 2004.

E. Talu, Maintaining Monodispersity in a Microbubble Population Formed by Flow-Focusing, Langmuir, vol.24, pp.1745-1749, 2008.

B. Abecassis, C. Cottin-bizonne, C. Ybert, A. Ajdari, and L. Bocquet, Boosting migration of large particles by solute contrasts, Nat. Mater, vol.7, pp.785-789, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01596129

A. Naillon, Écoulements liquide-gaz, évaporation, cristallisation dans les milieux micro et nanoporeux. Études à partir de systèmes modèles micro et nanofluidiques, 2016.

R. J. Flatt, F. Caruso, A. M. Sanchez, and G. W. Scherer, Chemo-mechanics of salt damage in stone, Nat. Commun, vol.5, pp.4823-4823, 2014.

A. Naillon, P. Duru, M. Marcoux, and M. Prat, Evaporation with sodium chloride crystallization in a capillary tube, J. Cryst. Growth, vol.422, pp.52-61, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01330778

T. Defraeye, P. Verboven, D. Derome, J. Carmeliet, and B. Nicolai, Stomatal transpiration and droplet evaporation on leaf surfaces by a microscale modelling approach, Int. J. Heat Mass Transf, vol.65, pp.180-191, 2013.

R. Courson, Low-cost multilevel microchannel lab on chip: DF-1000 series dry film photoresist as a promising enabler, vol.4, pp.54847-54853, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01082670

C. Chen, P. Joseph, S. Geoffroy, M. Prat, and P. Duru, Evaporation with the formation of chains of liquid bridges, J. Fluid Mech, vol.837, pp.703-728, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01701199

E. Dressaire and A. Sauret, Clogging of microfluidic systems, Soft Matter, vol.13, pp.37-48, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01516219

H. M. Wyss, D. L. Blair, J. F. Morris, H. A. Stone, and D. A. Weitz, Mechanism for clogging of microchannels, Phys. Rev. E, vol.74, p.61402, 2006.

B. Dersoir, . Robert-de-saint, M. Vincent, M. Abkarian, and H. Tabuteau, Clogging of a single pore by colloidal particles, Microfluid. Nanofluidics, vol.19, pp.953-961, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01225631

R. De-saint, M. Vincent, M. Abkarian, and H. Tabuteau, Dynamics of colloid accumulation under flow over porous obstacles, Soft Matter, vol.12, pp.1041-1050, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01259521

A. Kumar and M. D. Graham, Margination and segregation in confined flows of blood and other multicomponent suspensions, Soft Matter, vol.8, pp.10536-10548, 2012.

M. Dionzou, Comparison of methods for the fabrication and the characterization of polymer self-assemblies: what are the important parameters, Soft Matter, vol.12, pp.2166-2176, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01314955

J. Fang, H. Nakamura, and H. Maeda, The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect, Adv. Drug Deliv. Rev, vol.63, pp.136-151, 2011.

S. B. Chen and X. Ye, Faxen's Laws of a Composite Sphere under Creeping Flow Conditions, J. Colloid Interface Sci, vol.221, pp.50-57, 2000.

L. Pasol, Application to fieldflow fractionation and hydrodynamic chromatography, Chem. Eng. Sci, vol.66, pp.4078-4089, 2011.

J. L. Meins, O. Sandre, and S. Lecommandoux, Recent trends in the tuning of polymersomes' membrane properties, Eur. Phys. J. E, vol.34, p.14, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00677762

K. Jaskiewicz, M. Makowski, M. Kappl, K. Landfester, and A. Kroeger, Mechanical Properties of Poly(dimethylsiloxane)-block-poly(2-methyloxazoline) Polymersomes Probed by Atomic Force Microscopy, Langmuir, vol.28, pp.12629-12636, 2012.

L. Zhu, C. Rorai, D. Mitra, and L. Brandt, A microfluidic device to sort capsules by deformability: a numerical study, Soft Matter, vol.10, pp.7705-7711, 2014.

D. A. Fedosov, J. Fornleitner, and G. Gompper, Margination of White Blood Cells in Microcapillary Flow, Phys. Rev. Lett, vol.108, p.28104, 2012.

S. Fitzgibbon, A. P. Spann, Q. M. Qi, and E. S. Shaqfeh, In Vitro Measurement of Particle Margination in the Microchannel Flow: Effect of Varying Hematocrit, Biophys. J, vol.108, pp.2601-2608, 2015.

Y. Chen, Margination of Stiffened Red Blood Cells Regulated By Vessel Geometry, Sci. Rep, vol.7, p.15253, 2017.

R. D'apolito, Red blood cells affect the margination of microparticles in synthetic microcapillaries and intravital microcirculation as a function of their size and shape, J. Controlled Release, vol.217, pp.263-272, 2015.

P. Sajeesh and A. K. Sen, Particle separation and sorting in microfluidic devices: a review, Microfluid. Nanofluidics, vol.17, pp.1-52, 2014.

A. Lenshof and T. Laurell, Continuous separation of cells and particles in microfluidic systems, Chem. Soc. Rev, vol.39, pp.1203-1217, 2010.

M. Yamada and M. Seki, Microfluidic Particle Sorter Employing Flow Splitting and Recombining, Anal. Chem, vol.78, pp.1357-1362, 2006.

M. Yamada and M. Seki, Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics, Lab. Chip, vol.5, pp.1233-1239, 2005.

J. De-toro, L. Herschlik, C. Waldner, and C. Mongini, Emerging roles of exosomes in normal and pathological conditions: new insights for diagnosis and therapeutic applications, Inflammation, vol.203, 2015.

A. Liga, A. D. Vliegenthart, W. Oosthuyzen, J. W. Dear, and M. Kersaudy-kerhoas, Exosome isolation: a microfluidic road-map, Lab. Chip, vol.15, pp.2388-2394, 2015.

F. Yang, X. Liao, Y. Tian, and G. Li, Exosome separation using microfluidic systems: size-based, immunoaffinity-based and dynamic methodologies, Biotechnol. J, vol.12, 2017.

M. He and Y. Zeng, Microfluidic Exosome Analysis toward Liquid Biopsy for Cancer, J. Lab. Autom, vol.21, pp.599-608, 2016.

S. Gholizadeh, Microfluidic approaches for isolation, detection, and characterization of extracellular vesicles: Current status and future directions, Biosens. Bioelectron, vol.91, pp.588-605, 2017.

L. Liang, An integrated double-filtration microfluidic device for isolation, enrichment and quantification of urinary extracellular vesicles for detection of bladder cancer, Sci. Rep, vol.7, p.46224, 2017.

S. Fang, Clinical application of a microfluidic chip for immunocapture and quantification of circulating exosomes to assist breast cancer diagnosis and molecular classification, PLOS ONE, vol.12, p.175050, 2017.

C. Liu, Field-Free Isolation of Exosomes from Extracellular Vesicles by Microfluidic Viscoelastic Flows, ACS Nano, vol.11, pp.6968-6976, 2017.

C. Montis, Size distribution of extracellular vesicles by optical correlation techniques, Colloids Surf. B Biointerfaces, vol.158, pp.331-338, 2017.

S. Federici, Interaction of Extracellular Vesicles with Si Surface Studied by, Nanomechanical Microcantilever Sensors. Appl. Sci, vol.8, p.404, 2018.

W. Zhang, Liquid Biopsy for Cancer: Circulating Tumor Cells, Circulating Free DNA or Exosomes?, Cell. Physiol. Biochem, vol.41, pp.755-768, 2017.

E. Crowley, F. Di-nicolantonio, F. Loupakis, and A. Bardelli, Liquid biopsy: monitoring cancergenetics in the blood, Nat. Rev. Clin. Oncol, vol.10, pp.472-484, 2013.

A. Bancaud and H. Ranchon, Method for Separating Biological Molecules and Cells in Solution, 2014.

K. Bhat, Advances in biomarker research for pancreatic cancer, Curr. Pharm. Des, vol.18, pp.2439-2451, 2012.

E. Rooij and . Van, The Art of MicroRNA Research, Circ. Res, vol.108, pp.219-234, 2011.

M. E. Macdonald, A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes, Cell, vol.72, pp.971-983, 1993.

T. Leïchlé and D. Bourrier, Integration of lateral porous silicon membranes into planar microfluidics, Lab. Chip, vol.15, pp.833-838, 2015.

J. Desarnaud, D. Bonn, and N. Shahidzadeh, The Pressure induced by salt crystallization in confinement, Sci. Rep, vol.6, p.30856, 2016.

F. Chauvet, P. Duru, and M. Prat, Depinning of evaporating liquid films in square capillary tubes: Influence of corners' roundedness, Phys. Fluids, vol.22, pp.112113-112113, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01360012

F. Chauvet, P. Duru, S. Geoffroy, and M. Prat, Three periods of drying of a single square capillary tube, Phys. Rev. Lett, vol.103, pp.124502-124502, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01359837

J. Leng, B. Lonetti, P. Tabeling, M. Joanicot, and A. Ajdari, Microevaporators for kinetic exploration of phase diagrams, Phys. Rev. Lett, vol.96, pp.84503-084503, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00016965

J. Leng and J. Salmon, Microfluidic crystallization, Lab. Chip, vol.9, pp.24-34, 2009.

J. Leng, M. Joanicot, and A. Ajdari, Microfluidic Exploration of the Phase Diagram of a Surfactant/Water Binary System, Langmuir, vol.23, pp.2315-2317, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00110623

S. Veran-tissoires, M. Marcoux, and M. Prat, Discrete Salt Crystallization at the Surface of a Porous Medium, Phys. Rev. Lett, vol.108, p.54502, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00840892

S. Veran-tissoires and M. Prat, Evaporation of a sodium chloride solution from a saturated porous medium with efflorescence formation, J. Fluid Mech, vol.749, pp.701-749, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01002166

C. Montis, P. Baglioni, and D. Berti, Monitoring the interaction of nucleolipoplexes with model membranes, Soft Matter, vol.10, pp.39-43, 2013.

T. A. Kayal, Lysozyme interaction with negatively charged lipid bilayers: protein aggregation and membrane fusion, Soft Matter, vol.8, pp.4524-4534, 2012.

D. Berti, G. Caminati, and P. Baglioni, Functional liposomes and supported lipid bilayers: towards the complexity of biological archetypes, Phys. Chem. Chem. Phys, vol.13, pp.8769-8782, 2011.

C. Montis, D. Maiolo, I. Alessandri, P. Bergese, and D. Berti, Interaction of nanoparticles with lipid membranes: a multiscale perspective, Nanoscale, vol.6, pp.6452-6457, 2014.

C. M. Beddoes, C. P. Case, and W. H. Briscoe, Understanding nanoparticle cellular entry: A physicochemical perspective, Adv. Colloid Interface Sci, vol.218, pp.48-68, 2015.
DOI : 10.1016/j.cis.2015.01.007

T. J. Lagny and P. Bassereau, Bioinspired membrane-based systems for a physical approach of cell organization and dynamics: usefulness and limitations, Interface Focus, vol.5, p.20150038, 2015.

E. Rascol, J. Devoisselle, and J. Chopineau, The relevance of membrane models to understand nanoparticles-cell membrane interactions, Nanoscale, vol.8, pp.4780-4798, 2016.

P. C. Hu, S. Li, and N. Malmstadt, Microfluidic Fabrication of Asymmetric Giant Lipid Vesicles, ACS Appl. Mater. Interfaces, vol.3, pp.1434-1440, 2011.
DOI : 10.1016/j.bpj.2010.12.1147

URL : https://doi.org/10.1016/j.bpj.2010.12.1147

S. Matosevic and B. M. Paegel, Stepwise Synthesis of Giant Unilamellar Vesicles on a Microfluidic Assembly Line, J. Am. Chem. Soc, vol.133, pp.2798-2800, 2011.

T. Robinson, P. Kuhn, K. Eyer, and P. S. Dittrich, Microfluidic trapping of giant unilamellar vesicles to study transport through a membrane pore, Biomicrofluidics, vol.7, p.44105, 2013.

M. Zagnoni, Miniaturised technologies for the development of artificial lipid bilayer systems, Lab. Chip, vol.12, pp.1026-1039, 2012.

B. &. Schlicht and M. Zagnoni, A High-Throughput Microfluidic System For The Simultaneous Formation Of Droplet-Interface-Bilayer Arrays, Proceedings of MicroTAS 946, 2013.

G. Villar, A. D. Graham, and H. Bayley, A Tissue-Like Printed Material, Science, vol.340, pp.48-52, 2013.
DOI : 10.1126/science.1229495

URL : http://europepmc.org/articles/pmc3750497?pdf=render

L. Simonsson and F. Höök, Formation and Diffusivity Characterization of Supported Lipid Bilayers with Complex Lipid Compositions, Langmuir, vol.28, pp.10528-10533, 2012.

A. Ainla, I. Gözen, B. Hakonen, and A. Jesorka, Lab on a Biomembrane: Rapid prototyping and manipulation of 2D fluidic lipid bilayer circuits, Sci. Rep, vol.3, p.2743, 2013.

A. Yamada, S. Lee, P. Bassereau, and C. N. Baroud, Trapping and release of giant unilamellar vesicles in microfluidic wells, Soft Matter, vol.10, pp.5878-5885, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01065790

H. Bayley, Droplet interface bilayers, Mol. Biosyst, vol.4, pp.1191-1208, 2008.
DOI : 10.1039/b808893d

URL : http://europepmc.org/articles/pmc2763081?pdf=render

S. Thutupalli, J. B. Fleury, A. Steinberger, S. Herminghaus, and R. Seemann, Why can artificial membranes be fabricated so rapidly in microfluidics?, Chem. Commun, vol.49, pp.1443-1445, 2013.

G. Maglia, Droplet networks with incorporated protein diodes show collective properties, Nat. Nanotechnol, vol.4, pp.437-440, 2009.
DOI : 10.1038/nnano.2009.121

L. Simonsson, A. Gunnarsson, P. Wallin, P. Jönsson, and F. Höök, Continuous Lipid Bilayers Derived from Cell Membranes for Spatial Molecular Manipulation, J. Am. Chem. Soc, vol.133, pp.14027-14032, 2011.
DOI : 10.1021/ja204589a

P. Jonsson, M. P. Jonsson, and F. Hook, Sealing of Submicrometer Wells by a Shear-Driven Lipid Bilayer, Nano Lett, vol.10, pp.1900-1906, 2010.

V. C. Stimberg, J. G. Bomer, I. Van-uitert, . Van-den, A. Berg et al., Reproducible and Quasi-Automated Bilayer Formation in a Microfluidic Format, Small, vol.9, pp.1076-1085, 2013.
DOI : 10.1002/smll.201201821

H. Stein, S. Spindler, N. Bonakdar, C. Wang, and V. Sandoghdar, Production of Isolated Giant Unilamellar Vesicles under High Salt Concentrations, Front. Physiol, vol.8, p.63, 2017.

A. Yamada, S. Lee, P. Bassereau, and C. N. Baroud, Trapping and release of giant unilamellar vesicles in microfluidic wells, Soft Matter, vol.10, pp.5878-5885, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01065790

R. Ronen, Y. Kaufman, and V. Freger, Formation of pore-spanning lipid membrane and crossmembrane water and ion transport, J. Membr. Sci, vol.523, pp.247-254, 2017.

M. Michelon, D. R. Oliveira, G. De-figueiredo-furtado, L. Gaziola-de-la-torre, and R. L. Cunha, High-throughput continuous production of liposomes using hydrodynamic flow-focusing microfluidic devices, Colloids Surf. B Biointerfaces, vol.156, pp.349-357, 2017.

D. Carugo, E. Bottaro, J. Owen, E. Stride, and C. Nastruzzi, Liposome production by microfluidics: potential and limiting factors, Sci. Rep, vol.6, p.25876, 2016.

Y. Huang, S. Kim, and L. R. Arriaga, Emulsion templated vesicles with symmetric or asymmetric membranes, Adv. Colloid Interface Sci, vol.247, pp.413-425, 2017.

K. Kamiya and S. Takeuchi, Giant liposome formation toward the synthesis of well-defined artificial cells, J. Mater. Chem. B, vol.5, pp.5911-5923, 2017.

T. A. Balbino, J. M. Serafin, A. Radaic, M. B. De-jesus, and L. G. De-la-torre, Integrated microfluidic devices for the synthesis of nanoscale liposomes and lipoplexes, Colloids Surf. B Biointerfaces, vol.152, pp.406-413, 2017.

C. Hsia, L. Chen, R. R. Singh, M. P. Delisa, S. Daniel et al., Complete Planar Bacterial Outer Membrane Platform. Sci. Rep, vol.6, p.32715, 2016.

N. E. Barlow, Engineering plant membranes using droplet interface bilayers, Biomicrofluidics, vol.11, p.24107, 2017.

J. S. Danial, B. Cronin, C. Mallik, and M. I. Walllace, On demand modulation of lipid composition in an individual bilayer, Soft Matter, vol.13, pp.1788-1793, 2017.

M. Sobrinos-sanguino, S. Zorrilla, C. D. Keating, B. Monterroso, and G. Rivas, Encapsulation of a compartmentalized cytoplasm mimic within a lipid membrane by microfluidics, Chem. Commun, vol.53, pp.4775-4778, 2017.

M. Weiss, Sequential bottom-up assembly of mechanically stabilized synthetic cells by microfluidics, Nat. Mater, vol.17, pp.89-96, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01686173

A. Peyret, H. Zhao, and S. Lecommandoux, Preparation and Properties of Asymmetric Synthetic Membranes Based on Lipid and Polymer Self-Assembly, Langmuir, vol.34, pp.3376-3385, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01722205

T. Trantidou, Engineering Compartmentalized Biomimetic Micro-and Nanocontainers, ACS Nano, vol.11, pp.6549-6565, 2017.

N. Nuti, P. E. Verboket, and P. S. Dittrich, Multivesicular droplets: a cell model system to study compartmentalised biochemical reactions, Lab. Chip, vol.17, pp.3112-3119, 2017.

N. Deng and W. T. Huck, Microfluidic Formation of Monodisperse Coacervate Organelles in Liposomes, Angew. Chem. Int. Ed, vol.56, pp.9736-9740, 2017.

N. Deng, M. Yelleswarapu, L. Zheng, and W. T. Huck, Microfluidic Assembly of Monodisperse Vesosomes as Artificial Cell Models, J. Am. Chem. Soc, vol.139, pp.587-590, 2017.

Y. Elani, Constructing vesicle-based artificial cells with embedded living cells as organellelike modules, Sci. Rep, vol.8, p.4564, 2018.

J. Nilsson, M. Evander, B. Hammarström, and T. Laurell, Review of cell and particle trapping in microfluidic systems, Anal. Chim. Acta, vol.649, pp.141-157, 2009.

W. Tan and S. Takeuchi, A trap-and-release integrated microfluidic system for dynamic microarray applications, Proc. Natl. Acad. Sci, vol.104, pp.1146-1151, 2007.

D. D. Carlo, L. Y. Wu, and L. P. Lee, Dynamic single cell culture array, Lab. Chip, vol.6, pp.1445-1449, 2006.

D. Carlo, D. Aghdam, N. Lee, and L. P. , Single-Cell Enzyme Concentrations, Kinetics, and Inhibition Analysis Using High-Density Hydrodynamic Cell Isolation Arrays, Anal. Chem, vol.78, pp.4925-4930, 2006.

H. Nuss, C. Chevallard, P. Guenoun, and F. Malloggi, Microfluidic trap-and-release system for labon-a-chip-based studies on giant vesicles, Lab. Chip, vol.12, pp.5257-5261, 2012.

F. Sturzenegger, T. Robinson, D. Hess, and P. S. Dittrich, Membranes under shear stress: visualization of non-equilibrium domain patterns and domain fusion in a microfluidic device, Soft Matter, vol.12, pp.5072-5076, 2016.

B. Sebastian, T. Favero, and P. S. Dittrich, The Effects of Shear Force Transmission Across Vesicle Membranes, J. Phys. Chem. Lett, vol.8, pp.6128-6134, 2017.

J. Dervaux, V. Noireaux, and A. J. Libchaber, Growth and instability of a phospholipid vesicle in a bath of fatty acids, Eur. Phys. J. Plus, vol.132, p.284, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01415543

W. Helfrich, Elastic properties of lipid bilayers: theory and possible experiments, Z. Naturforschung Teil C Biochem. Biophys. Biol. Virol, vol.28, pp.693-703, 1973.

P. Bassereau, B. Sorre, and A. Lévy, Bending lipid membranes: Experiments after W. Helfrich's model, Adv. Colloid Interface Sci, vol.208, pp.47-57, 2014.
DOI : 10.1016/j.cis.2014.02.002

R. Dimova, Recent developments in the field of bending rigidity measurements on membranes, Adv. Colloid Interface Sci, vol.208, pp.225-234, 2014.

R. Waugh and E. A. Evans, Thermoelasticity of red blood cell membrane, Biophys. J, vol.26, pp.115-131, 1979.

W. Rawicz, K. C. Olbrich, T. Mcintosh, D. Needham, and E. Evans, Effect of Chain Length and Unsaturation on Elasticity of Lipid Bilayers, Biophys. J, vol.79, pp.328-339, 2000.

L. M. Lee and A. P. Liu, A microfluidic pipette array for mechanophenotyping of cancer cells and mechanical gating of mechanosensitive channels, Lab. Chip, vol.15, pp.264-273, 2014.

J. B. Dahl, J. G. Lin, S. J. Muller, and S. Kumar, Microfluidic Strategies for Understanding the Mechanics of Cells and Cell-Mimetic Systems, Annu. Rev. Chem. Biomol. Eng, vol.6, pp.293-317, 2015.

J. Lemière, F. Valentino, C. Campillo, and C. Sykes, How cellular membrane properties are affected by the actin cytoskeleton, Biochimie, vol.130, pp.33-40, 2016.

A. Raj, M. Dixit, M. Doble, and A. K. Sen, A combined experimental and theoretical approach towards mechanophenotyping of biological cells using a constricted microchannel, Lab. Chip, vol.17, pp.3704-3716, 2017.

Q. Guo, S. Park, and H. Ma, Microfluidic micropipette aspiration for measuring the deformability of single cells, Lab Chip, vol.12, pp.2687-2695, 2012.

J. Kim, H. Lee, and S. Shin, Advances in the measurement of red blood cell deformability: A brief review, J. Cell. Biotechnol, vol.1, pp.63-79, 2015.

Q. Guo, Microfluidic analysis of red blood cell deformability, J. Biomech, vol.47, pp.1767-1776, 2014.

Q. Guo, S. J. Reiling, P. Rohrbach, and H. Ma, Microfluidic biomechanical assay for red blood cells parasitized by Plasmodium falciparum, Lab. Chip, vol.12, p.1143, 2012.
DOI : 10.1039/c2lc20857a

L. Lu, J. W. Schertzer, and P. R. Chiarot, Continuous microfluidic fabrication of synthetic asymmetric vesicles, Lab. Chip, vol.15, pp.3591-3599, 2015.

S. Matosevic and B. M. Paegel, Layer-by-layer cell membrane assembly, Nat. Chem, vol.5, p.958, 2013.

M. Abkarian, E. Loiseau, and G. Massiera, Continuous droplet interface crossing encapsulation (cDICE) for high throughput monodisperse vesicle design, Soft Matter, vol.7, pp.4610-4614, 2011.
DOI : 10.1039/c1sm05239j

URL : https://hal.archives-ouvertes.fr/hal-00677371

D. Juncker, H. Schmid, and E. Delamarche, Multipurpose microfluidic probe, Nat. Mater, vol.4, pp.622-628, 2005.
DOI : 10.1038/nmat1435

A. E. Nel, Understanding biophysicochemical interactions at the nano-bio interface, Nat. Mater, vol.8, pp.543-557, 2009.
DOI : 10.1038/nmat2442

N. S. Bhise, Organ-on-a-chip platforms for studying drug delivery systems, J. Controlled Release, vol.190, pp.82-93, 2014.

N. Feliu, X. Sun, R. A. Alvarez-puebla, and W. J. Parak, Quantitative Particle-Cell Interaction: Some Basic Physicochemical Pitfalls, Langmuir, vol.33, pp.6639-6646, 2017.
DOI : 10.1021/acs.langmuir.6b04629

E. Alipour, D. Halverson, S. Mcwhirter, and G. C. Walker, Phospholipid Bilayers: Stability and Encapsulation of Nanoparticles, Annu. Rev. Phys. Chem, vol.68, pp.261-283, 2017.

S. Li and N. Malmstadt, Deformation and poration of lipid bilayer membranes by cationic nanoparticles, Soft Matter, vol.9, pp.4969-4976, 2013.

B. Wang, L. Zhang, S. C. Bae, and S. Granick, Nanoparticle-induced surface reconstruction of phospholipid membranes, Proc. Natl. Acad. Sci. 105, pp.18171-18175, 2008.

M. Mathelié-guinlet, Probing the threshold of membrane damage and cytotoxicity effects induced by silica nanoparticles in Escherichia coli bacteria, Adv. Colloid Interface Sci, vol.245, pp.81-91, 2017.

S. A. Klein, S. J. Wilk, T. J. Thornton, and J. D. Posner, Formation of nanopores in suspended lipid bilayers using quantum dots, J. Phys. Conf. Ser, vol.109, p.12022, 2008.

P. Del-pino, Basic Physicochemical Properties of Polyethylene Glycol Coated Gold Nanoparticles that Determine Their Interaction with Cells, Angew. Chem. Int. Ed, vol.55, pp.5483-5487, 2016.

A. H. Bahrami, Wrapping of nanoparticles by membranes, Adv. Colloid Interface Sci, vol.208, pp.214-224, 2014.
DOI : 10.1016/j.cis.2014.02.012

F. G. Strobl, Intake of silica nanoparticles by giant lipid vesicles: influence of particle size and thermodynamic membrane state, Beilstein J. Nanotechnol, vol.5, pp.2468-2478, 2014.

S. Zhang, A. Nelson, and P. A. Beales, Freezing or Wrapping: The Role of Particle Size in the Mechanism of Nanoparticle-Biomembrane Interaction, Langmuir, vol.28, pp.12831-12837, 2012.

M. Schulz, A. Olubummo, and W. H. Binder, Beyond the lipid-bilayer: interaction of polymers and nanoparticles with membranes, Soft Matter, vol.8, pp.4849-4864, 2012.

M. Werner, J. Sommer, and V. A. Baulin, Homo-polymers with balanced hydrophobicity translocate through lipid bilayers and enhance local solvent permeability, Soft Matter, vol.8, pp.11714-11722, 2012.
DOI : 10.1039/c2sm26008e

URL : http://tud.qucosa.de/api/qucosa%3A27821/attachment/ATT-0/

S. Nawaz, Interactions of PEO-PPO-PEO block copolymers with lipid membranes: a computational and experimental study linking membrane lysis with polymer structure, Soft Matter, vol.8, pp.6744-6754, 2012.

C. Peetla, K. S. Rao, and V. Labhasetwar, Relevance of Biophysical Interactions of Nanoparticles with a Model Membrane in Predicting Cellular Uptake: Study with TAT Peptide-Conjugated Nanoparticles, Mol. Pharm, vol.6, pp.1311-1320, 2009.

C. Peetla, S. Jin, J. Weimer, A. Elegbede, and V. Labhasetwar, Biomechanics and Thermodynamics of Nanoparticle Interactions with Plasma and Endosomal Membrane Lipids in Cellular Uptake and Endosomal Escape, Langmuir, vol.30, pp.7522-7532, 2014.

C. Peetla, Drug Resistance in Breast Cancer Cells: Biophysical Characterization of and Doxorubicin Interactions with Membrane Lipids, Mol. Pharm, vol.7, pp.2334-2348, 2010.

L. Wu and X. Jiang, Recent developments in methodology employed to study the interactions between nanomaterials and model lipid membranes, Anal. Bioanal. Chem, vol.408, pp.2743-2758, 2016.

T. Wu, Q. Guo, H. Ma, and J. J. Feng, The critical pressure for driving a red blood cell through a contracting microfluidic channel, Theor. Appl. Mech. Lett, vol.5, pp.236-243

S. J. Marrink, A. H. De-vries, and A. E. Mark, Coarse Grained Model for Semiquantitative Lipid Simulations, J. Phys. Chem. B, vol.108, pp.750-760, 2004.

M. Brut, A. Estève, G. Landa, and M. Djafari-rouhani, Toward in Silico Biomolecular Manipulation through Static Modes: Atomic Scale Characterization of HIV-1 Protease Flexibility, J. Phys. Chem. B, vol.118, pp.2821-2830, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01481802

F. Sambale, F. Stahl, D. Bahnemann, and T. Scheper, In vitro toxicological nanoparticle studies under flow exposure, J. Nanoparticle Res, vol.17, pp.1-12, 2015.

Z. Li and Z. Cui, Three-dimensional perfused cell culture, Biotechnol. Adv, vol.32, pp.243-254, 2014.

J. Park, Z. Fan, and C. X. Deng, Effects of shear stress cultivation on cell membrane disruption and intracellular calcium concentration in sonoporation of endothelial cells, J. Biomech, vol.44, p.164, 2011.

H. Tang, H. Zhang, H. Ye, and Y. Zheng, Wrapping of a deformable nanoparticle by the cell membrane: Insights into the flexibility-regulated nanoparticle-membrane interaction, J. Appl. Phys, vol.120, p.114701, 2016.

C. Montis, Extended photo-induced endosome-like structures in giant vesicles promoted by block-copolymer nanocarriers, Nanoscale, vol.10, pp.15442-15446, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02171159

M. Chudy, Lab-on-a-chip systems for photodynamic therapy investigations, Biosens. Bioelectron, vol.101, pp.37-51, 2018.

T. Osaki, H. Suzuki, B. Le-pioufle, and S. Takeuchi, Multichannel simultaneous measurements of single-molecule translocation in ?-hemolysin nanopore array, Anal. Chem, vol.81, pp.9866-9870, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00599956

G. Baaken, M. Sondermann, C. Schlemmer, J. Rühe, and J. C. Behrends, Planar microelectrodecavity array for high-resolution and parallel electrical recording of membrane ionic currents, Lab. Chip, vol.8, pp.938-944, 2008.

R. P. Carney, Electrical Method to Quantify Nanoparticle Interaction with Lipid Bilayers, ACS Nano, vol.7, pp.932-942, 2013.

J. Geng, Stochastic transport through carbon nanotubes in lipid bilayers and live cell membranes, Nature, vol.514, pp.612-615, 2014.

L. Liu, C. Yang, K. Zhao, J. Li, and H. Wu, Ultrashort single-walled carbon nanotubes in a lipid bilayer as a new nanopore sensor, Nat. Commun, vol.4, p.2989, 2013.

M. Delarue, Mechanical Control of Cell flow in Multicellular Spheroids, Phys. Rev. Lett, vol.110, p.138103, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01138971

M. Delarue, Compressive stress inhibits proliferation in tumor spheroids through a volume limitation, Biophys. J, vol.107, pp.1821-1828, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01123922

M. Delarue, mTORC1 Controls Phase Separation and the Biophysical Properties of the Cytoplasm by Tuning Crowding, vol.174, pp.338-349, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02273800

A. P. Haring, H. Sontheimer, and B. N. Johnson, Microphysiological Human Brain and Neural Systems-on-a-Chip: Potential Alternatives to Small Animal Models and Emerging Platforms for Drug Discovery and Personalized Medicine, Stem Cell Rev. Rep, vol.13, pp.381-406, 2017.

D. Huh, Reconstituting Organ-Level Lung Functions on a Chip, Science, vol.328, p.1662, 2010.

L. Ewart, Application of Microphysiological Systems to Enhance Safety Assessment in Drug Discovery, Annu. Rev. Pharmacol. Toxicol, vol.58, pp.65-82, 2018.

R. Roychaudhuri, M. Yang, M. M. Hoshi, and D. B. Teplow, Amyloid ?-Protein Assembly and Alzheimer Disease, J. Biol. Chem, vol.284, pp.4749-4753, 2009.

M. Meier, Plug-Based Microfluidics with Defined Surface Chemistry to Miniaturize and Control Aggregation of Amyloidogenic Peptides, Angew. Chem. Int. Ed, vol.48, pp.1487-1489, 2009.

N. L. Jeon, Generation of Solution and Surface Gradients Using Microfluidic Systems, Langmuir, vol.16, pp.8311-8316, 2000.

T. R. Dafforn, J. Rajendra, D. J. Halsall, L. C. Serpell, and A. Rodger, Protein Fiber Linear Dichroism for Structure Determination and Kinetics in a Low-Volume, Low-Wavelength Couette Flow Cell, Biophys. J, vol.86, pp.404-410, 2004.

J. Salmon and A. Ajdari, Transverse transport of solutes between co-flowing pressure-driven streams for microfluidic studies of diffusion/reaction processes, J. Appl. Phys, vol.101, p.74902, 2007.

V. Picot, Microfluidics for Alzheimer's Disease: Screening and Diffusion to Study AmyloidBeta Aggregation, Proceedings of µTAS, 2012.

P. Abgrall, A novel fabrication method of flexible and monolithic 3D microfluidic structures using lamination of SU-8 films, J. Micromechanics Microengineering, vol.16, p.113, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01882165

E. J. Berns, Aligned neurite outgrowth and directed cell migration in self-assembled monodomain gels, Biomaterials, vol.35, pp.185-195, 2014.

J. B. Matson and S. I. Stupp, Self-assembling peptide scaffolds for regenerative medicine, Chem Commun, vol.48, pp.26-33, 2012.

S. Zhang, A self-assembly pathway to aligned monodomain gels, Nat. Mater, vol.9, p.594, 2010.

S. V. Murphy and A. Atala, 3D bioprinting of tissues and organs, Nat. Biotechnol, vol.32, pp.773-785, 2014.

Y. Yang, Automated fabrication of hydrogel microfibers with tunable diameters for controlled cell alignment, Biofabrication, vol.9, p.45009, 2017.

M. C. Nolan, Optimising low molecular weight hydrogels for automated 3D printing, Soft Matter, vol.13, pp.8426-8432, 2017.

P. Zhuang, A. X. Sun, J. An, C. K. Chua, and S. Y. Chew, 3D neural tissue models: From spheroids to bioprinting, Biomaterials, vol.154, pp.113-133, 2018.

D. R. Paul, Diffusion during the coagulation step of wet-spinning, J. Appl. Polym. Sci, vol.12, p.383, 1968.

O. Bonhomme, J. Leng, and A. Colin, Microfluidic wet-spinning of alginate microfibers: a theoretical analysis of fiber formation, Soft Matter, vol.8, pp.10641-10649, 2012.

Y. Jun, E. Kang, S. Chae, and S. Lee, Microfluidic spinning of micro-and nano-scale fibers for tissue engineering, Lab. Chip, vol.14, pp.2145-2160, 2014.

J. Cheng, Y. Jun, J. Qin, and S. Lee, Electrospinning versus microfluidic spinning of functional fibers for biomedical applications, Biomaterials, vol.114, pp.121-143, 2017.

D. Puppi and F. Chiellini, Wet-spinning of biomedical polymers: from single-fibre production to additive manufacturing of three-dimensional scaffolds: Wet-spinning of biomedical polymers, Polym. Int, vol.66, p.1690, 2017.

. Vi and . Vi, , vol.1

J. P. Pierre and . Fr, , vol.33, p.60

C. Chargé-de-recherche and L. , Analyse et d'Architecture des Systèmes L'outil microfluidique est développé à la fois pour construire des systèmes modèles (mimer le transport de nanovecteurs depuis le sang vers les tumeurs, ou des écoulements en milieux poreux) et pour fabriquer des laboratoires sur puce fonctionnels (tri de nanoparticules, diagnostic biomoléculaire) Depuis 2016 Responsable de l'équipe MILE (~15 personnes) -site web Microfluidics for Life Science and Environment 2015 -2016 Séjour Scientifique d'un an à l, Italie Département de Chimie et CSGI (réseau national Colloïdes et Nanosciences) Microfluidique pour la matière molle : membranes modèles biomimétiques 2005 -2007 Post-doctorant CNRS puis Agrégé Préparateur, Laboratoire de Physique de la Matière Condensée et Nanostructures, Lyon Groupe Liquides complexes et Interfaces, Responsables E. Charlaix & L. Bocquet Conception et analyse de surfaces super-lubrifiantes 2001 -2005 Stage de DEA puis Thèse de Doctorat, Laboratoire de Microfluidique, MEMS et Nanostructures, Paris, directeur P. Tabeling Etude expérimentale du glissement liquide-solide sur surfaces lisses et texturées Cursus universitaire : 2002 -2005 Thèse de doctorat de l'Université Paris 6. Spécialité : Physique des Liquides Théorie et Microfluidique, MMN, ESPCI, Paris, sous la direction de P. Tabeling, 2000.

, séminaires et workshops. Sur ISI web of Science : h -index : 10, environ 1200 citations, p.13

, P Joseph Scientific Reports, vol.8, p.12460, 2018.

L. Vaysse, P. Joseph, and L. Malaquin, Simple Synthetic Molecular Hydrogels from Self-Assembling Alkylgalactonamides as Scaffold for 3D Neuronal Cell Growth Anaïs Chalard, vol.10, 2018.

M. Liot, . Socol, . Thiery, . Garcia, . Figarol et al., narrow channels: influence of Brownian diffusion, confinement and particle, vol.30, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01810125

C. Magnani, C. Montis, G. Mangiapia, A. Mingotaud, C. Mingotaud et al., Hybrid vesicles from lipids and block copolymers: Phase behavior from the micro-to the nano-scale, vol.168, pp.18-28, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01810239

H. Ranchon, J. Cacheux, B. Reig, O. Liot, P. Terrapanich et al., Aurélien Bancaud Langmuir, vol.34, issue.4, p.1394, 2018.

P. Naillon, M. Joseph, and . Prat, Ion transport and precipitation kinetics as key aspects of stress generation on pore walls induced by salt crystallization A, Physical Review Letters, vol.120, p.34502, 2018.

P. Chen, S. Joseph, M. Geoffroy, P. Prat, and . Duru, Journal of Fluid Mechanics, vol.837, pp.703-728, 2018.

, Control of evaporation by geometry in capillary structures. From confined pillar arrays in a gap radial gradient to phyllotaxy-inspired geometry

P. Chen, S. Joseph, P. Geoffroy, and M. Duru, Prat Scientific Reports, vol.7, p.15110, 2017.

H. Naillon, R. Massadi, . Courson, L. Bekhit, P. F. Seveno et al., Quasi-static drainage in a network of nanoslits of non-uniform depth designed by grayscale laser lithography A, Joseph Microfluidics and Nanofluidics, vol.21, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01566417

P. Naillon and M. Joseph, Sodium chloride precipitation reaction coefficient from crystallization experiment in a microfluidic device A, Prat Journal of Crystal Growth, vol.463, pp.201-201, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01578668

H. Silsesquioxane-based-nanofluidics-s-punniyakoti, R. Sivakumarasamy, . Vaurette, J. Joseph, N. Dufreche et al., Advanced Materials Interfaces, vol.4, p.1601155, 2017.

C. Chen, P. Duru, M. Prat, P. Joseph, and S. Geoffroy, Towards The Computation Of Viscous Flow Resistance Of A Liquid Bridge, vol.4, pp.42-49, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01578630

R. Malbec, V. Picot, A. Boutonnet, P. Terrapanich, P. Joseph et al., DNA separation and enrichment using electrohydrodynamic bidirectional flows in viscoelastic liquids Hubert Ranchon, vol.16, pp.1243-1253, 2016.

M. Mader, S. Iraïn, Z. Yanha, A. Naillon, S. Cargou et al., Filter-less submicron hydrodynamic size sorting M Fouet, vol.16, pp.720-733, 2016.

, Comparison of methods for the fabrication and the characterization of polymer self-assemblies: what are the important parameters?

M. Dionzou, C. Morère, . Roux, J. Lonetti, C. Marty et al., Soft Matter, vol.12, pp.2166-2176, 2016.

C. Nanochannels, . Lee, A. Cottin-bizonne, . Biance, L. Joseph et al., Osmotic Flow through Fully Permeable, vol.112, p.244501, 2014.

K. Bournine, A. Monmayrant, O. Gauthier-lafaye, S. Geoffroy, A. Gué et al., Microbubbles for optofluidics: controlled defects in bubble crystals A. Allouch, vol.17, pp.549-560, 2014.

F. Chauvet, S. Geoffroy, A. Hamoumi, M. Prat, and P. Joseph, Soft Matter, vol.8, pp.10738-10749, 2012.

V. Phan, N. Nguyen, C. Yang, P. Joseph, and A. , Capillary Filling in Nanochannels -Modeling, Fabrication and Experiments, vol.134, p.51012, 2012.

V. Phan, P. Joseph, L. Djeghlaf, A. Allouch, D. Bourrier et al., Heat Transfer Engineering, vol.32, issue.7-8, pp.1-12, 2011.

V. Phan, N. Nguyen, C. Yang, P. Joseph, L. Djeghlaf et al., Langmuir, vol.26, issue.16, pp.13251-13255, 2010.

A. Piednoir and P. Joseph, Amplification of electro-osmotic flows by wall slippage: direct measurements on OTS-surfaces Marie-Charlotte Audry, Elisabeth Charlaix Faraday Discussions, vol.146, pp.113-124, 2010.

C. Ybert, C. Barentin, C. Cottin-bizonne, P. Joseph, and L. Bocquet, Achieving large slip with superhydrophobic surface: scaling laws for generic, Phys. Fluids, vol.19, p.123601, 2007.

P. Joseph, C. Cottin-bizonne, J. Benoît, C. Ybert, C. Journet et al., Phys. Rev. Lett, vol.97, p.156104, 2006.

G. Degré, P. Joseph, P. Tabeling, S. Lerouge, M. Cloitre et al., P. Tabeling Physical Review E, vol.89, issue.R, p.35303, 2005.

J. Maurer, P. Tabeling, P. Joseph, and H. Willaime, Second-order slip laws in microchannels for helium, Physics of fluids, vol.15, issue.9, pp.2613-2621, 2003.

. Liot, P. Singh, P. Bacchin, P. Duru, and J. Joseph, Morris Proceedings of the 5th European Conference on Microfluidics (µFlu'18), 2018.

T. Zaouter, D. Lasseux, M. Prat, F. Ledrappier, K. Vulliez et al., Gas Flow in a Newtork of Nanochannels of Varying Depth Made by Grayscale Laser Litography, 2018.

P. Liot, . Bacchin, P. Duru, J. Joseph, and . Morris, Proceedings of µTAS 2017 Conference, 2017.

, Grayscale Lithography to Fabricate Varying-Depth Nanochannels In A Singe Step VI.2 -Publications scientifiques

A. Naillon, H. Massadi, R. Courson, P. Calmon, L. Seveno et al., Proceedings of µTAS 2016 Conference, 2016.

P. Enrichment-;-malbec, T. Joseph, E. Leïchlé, L. Trofimenko, and . Aeschbach, Separation and Characterization of CAG Repeats For Huntington's Disease Diagnosis R, Bancaud Proceedings of µTAS 2016 Conference, 2016.

H. Naillon, A. Tarbague, S. Gourbil, M. Geoffroy, P. Prat et al., Evaporation, capillary invasion and gas dissolution in nanochannels A, Proceedings of the 4th European Conference on Microfluidics (µFlu'14), 2014.

R. Courson, M. Fouet, A. Naillon, P. Joseph, F. Mesnilgrente et al., SAMs vapor deposition technology as a generic functionalization technology for monitoring wettability properties in microfluidic devices, AM Gué Proceedings of the 4th European Conference on Microfluidics (µFlu'14), 2014.
URL : https://hal.archives-ouvertes.fr/hal-01104220

, Production of 3-10 µm microbubbles suited for ultrasonic imaging by 2.5D nanofluidic devices S. Méance, L. Pages, A.-M. Gué, P. Joseph Proceedings of µTAS 2014 Conference, 2014.

R. Courson, M. Fouet, P. Joseph, F. Mesnilgrente, and V. Conedera, SAMs vapor deposition: a ready to use functionalization technology for monitoring wettability properties in microfluidic devices, AM Gué Proceedings of µTAS 2014 Conference, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01082680

M. Rossi, B. Alies, X. Dollat, C. Hureau, P. Faller et al., Microfluidics for Alzheimer's Disease: on-chip study of amyloid-? aggregation V. Picot, 2012.

A. Mader, S. Cargou, P. Joseph, and A. , Microfluidic System For Sample Preparation In Sensors: Submicronic Particles Separation M, 2012.

S. Geometries, H. Cargou, M. Kabbara, P. Mader, A. Joseph et al., Handling Fluidic Flow in SU8 Original 3D, Gué Proceedings of the Third European Conference on Microfluidics (µFlu'12), 2012.

M. Rossi, B. Alies, C. Hureau, P. Faller, and P. Joseph, Microfluidics for Alzheimer's Disease: Screening and Diffusion to Study Amyloid-Beta Aggregation V. Picot, pp.1030-1032, 2012.

F. Chauvet, S. Geoffroy, A. Hamoumi, M. Prat, A. Gué et al., Nanobubbles and gas dynamics during capillary filling of nanochannels, pp.323-325, 2012.

A. Mader, V. Picot, and P. Joseph, Microfluidic system for submicronic particles separation in a mercury pollution sensor M, Gué International Symposium on Microchemistry and Microsystems (ISMM 2012), pp.128-129, 2012.

, Microfluidics for Alzheimer's disease: on-chip study of amyloid-B aggregation V. Picot, B. Alies, C. Hureau, P. Faller, P. Joseph International Symposium on Microchemistry and Microsystems (ISMM 2012), pp.186-187, 2012.

K. E. Allouch, P. Bournine, S. Joseph, A. Geoffroy, A. Bouchier et al., Liquid-Gas Microfluidics as a Microstructuring Tool For Optics: Controlled Defects Inside SelfOrganized Bubble Crystals A, pp.1983-1985, 2011.

A. E. Optics, P. Allouch, A. Joseph, O. Monmayrant, P. Gauthier-lafaye et al., Gué Proceedings of the 1 st EOS Conference on Optofluidics, 2011.

A. E. Applications, P. Allouch, D. Joseph, A. Bourrier, O. Monmayrant et al., Lozes et A.-M. Gué Proceeding on CDROM of 2nd European Conference on Microfluidics (µFlu'10), pp.2010-079, 2010.

P. Joseph, S. Charlot, C. Escriba, M. Mazas, S. Pinaud et al., Golden Nanofluidics: an integrated micro-/nanofluidic Platform With Tunable Surface Chemistry P. Abgrall, pp.2010-160, 2010.

C. Joseph, P. Vinh-nguyen-phan, P. Dubreuil, A. Abgrall, N. Gué et al., Proceeding on CDROM of 2nd European Conference on Microfluidics (µFlu'10, pp.2010-76, 2010.

C. Nanochannels, Trung Nguyen Proceedings of µTAS 2010 Conference, pp.1856-1858, 2010.

A. E. Allouch, Y. Viero, M. Goddefroy, J. Millet, P. Dubreuil et al., Nanofluidic systems: development of fabrication technologies and characterization of capillary filling rates, pp.2008-91, 2008.

. Mesuré-par-?-piv-p, C. Joseph, J. Cottin-bizonne, C. Benoit, C. Ybert et al., Proceedings du Congrès Français de Microfluidique, 2006.

G. Piv-technique, P. Degré, H. Joseph, P. Willaime, S. Tabeling et al., Complex fluids rheology in microchannels using a micro, vol.1, pp.611-613, 2005.

G. Liquide-solide-caractérisé-par-micro-piv-p, P. Joseph, F. Tabeling, and . Okkels, Proceedings du Congrès Français de Microfluidique, 2004.

P. Joseph, P. Tabeling, ;. Laurell, J. Nilsson, J. Harrison et al., A velocity profile measurement system for microfluidics: a direct measurement of the slip length, vol.1, pp.186-189, 2004.

, Phénomènes de glissement pour l'Helium et l'azote : dans le régime de glissement et au-delà, Proceedings du Congrès Français de Mécanique, 2003.

, VI.2.3 Chapitres d'ouvrages

N. Devices, P. Their-potentiel-applications, A. Abgrall, P. Bancaud, S. Joseph-;-challa et al., Systèmes Nanofluidiques : technologies et applications P. Abgrall, A. Bancaud, P. Joseph, Techniques de l'Ingénieur, dossiers Nanosciences et Nanotechnologies NM250 1?15, vol.2, 2009.

E. Micro and ?. Nanoélectronique, Enjeux et mutation, pp.243-248, 2009.

, VI.2.4 Sélection de communications à des conférences et séminaires VI.2.4.1 Conférences invitées : 1. Imbibition and evaporation in model nanofluidic systems CECAM conference "Nanofluidics in physics and biology, 2011.

, A direct measurement of the slip length in microchannels P. Joseph et P. Tabeling CECAM meeting on Dynamics of Fluids at Interfaces, 2004.

T. Zaouter, D. Lasseux, M. Prat, F. Ledrappier, K. Vulliez et al., Sugar-based supramolecular gelators as scaffolds for 3D-neuronal cell growth Anaïs Chalard, Laurence Vaysse, Gas Flow in a Newtork of Nanochannels of Varying Depth Made by Grayscale Laser Litography, vol.2, 2017.

C. Chen, P. Joseph, S. Geoffroy, P. Duru, and M. , Prat Flow17 Conference, 2017.

, Salt Crystallization in Pores: Precipitation Kinetics, Ion Transport, Stress Generation A. Naillon, P. Joseph, and M. Prat Flow17 Conference, 2017.

, Microfluidics for Soft Matter: a few examples from MILE team Workshop « Soft Matter in Montpellier and Toulouse, 2017.

, Supramolecular gelators for neuronal cell-growth: biocompatibility, 3D-cell growth, fibre alignment and injectability with microfluidics

A. Chalard, D. Bordignon, L. Vaysse, I. Loubinoux, L. Malaquin et al., 16th ECIS European Student Colloid Conference, 2017.

, Trapping biomimetic membranes with microfluidics: Probing membrane mechanics and interaction with nanosystems

C. Montis, P. Joseph, B. Lonetti, and A. Mingotaud, Debora Berti 7th International colloids conf, 2017.

H. Massadi, R. Courson, P. Calmon, L. Seveno, M. Prat et al., Grayscale Lithography to Fabricate Varying-Depth Nanochannels In A Single Step A. Naillon, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01391501

P. Enrichment-;-malbec, T. Joseph, E. Leïchlé, L. Trofimenko, and . Aeschbach, Separation and Characterization of CAG Repeats For Huntington's Disease Diagnosis R, Bancaud µTAS 2016 Conference, 2016.

, Mechanism of action of nanostructured antibiotics: interaction pathways with model membranes and model bacteria

C. Montis, . Marín-menéndez, C. Joseph, . Magnani, C. Diaz-calvo et al., D Berti 16th ECIS Conference, 2016.

, Microfluidics to study interactions of model membranes with nanosystems Costanza Montis

H. Naillon, A. Tarbague, S. Gourbil, M. Geoffroy, and P. Prat, Evaporation, capillary invasion and gas dissolution in nanochannels A, Joseph 4th European Conference on Microfluidics (µFlu'14), 2014.

, Production of 3-10 µm microbubbles suited for ultrasonic imaging by 2.5D nanofluidic devices S. Méance, L. Pages, A.-M. Gué, P. Joseph µTAS 2014 Conference, 2014.

, Outils microfluidiques pour manipuler des micro et nano-objets

A. Mader, S. Cargou, P. Joseph, and A. , Microfluidic System For Sample Preparation In Sensors: Submicronic Particles Separation M, 2012.

M. Rossi, B. Alies, C. Hureau, P. Faller, and P. ?tas, Microfluidics for Alzheimer's Disease: Screening and Diffusion to Study Amyloid-Beta Aggregation V. Picot, p.2012, 2012.

F. Chauvet, S. Geoffroy, A. Hamoumi, M. Prat, A. Gué et al., Nanobubbles and gas dynamics during capillary filling of nanochannels, p.2012, 2012.

, Imbibition spontanée de nanofentes modèles Journées du GDR Liquides aux Interfaces, 2012.

C. Nanochannels, Model platform for Nanofluidic Flows VI.3 -Enseignement, formation et diffusion de la culture scientifique

P. Joseph, P. Vinh-nguyen-phan, P. Dubreuil, A. Abgrall, N. Gué et al., (oral) 21. Nanofluidics: fabrication and capillary filling rates, Nguyen Federations FERMAT /IMPACT meeting. Twente, Pays-Bas, 2010.

A. E. Allouch, Y. Viero, M. Goddefroy, J. Millet, P. Dubreuil et al., Nanofluidic systems: fabrication technologies and characterization of capillary filling rates, 2008.

P. Joseph, C. Cottin-bizonne, J. Benoît, C. Ybert, C. Journet et al., Bocquet APS, annual meeting Division of Fluid Dynamics. Tampa, Etats-Unis, 2006.

G. Degré, P. Joseph, H. Willaime, P. Tabeling, S. Lerouge et al., Complex fluids rheology in microchannels using a micro-PIV technique, 2005.

, A velocity profile measurement system for microfluidics: a direct measurement of the slip length P. Joseph et P. Tabeling. µTAS 2004 Conference, 2004.

, 21st International Congress of Theoretical and Applied Mechanics, ICTAM. Varsovie, Pologne, 2004.

, Phénomènes de glissement pour l'Helium et l'azote : dans le régime de glissement et au-delà

F. Enseignement, . Et, L. A. De, . Culture, and . Vi,

, thèses de doctorat (dont 5 déjà soutenues), 19 stages M1 ou M2

, Alaa El Dine Allouch, vol.10, 2008.

, Co-direction avec Anne-Marie Gué, Microsystèmes fluidiques à nanobulles pour applications à l'optique

, La thèse a porté sur la réalisation de micro et nanobulles générées au sein de microcanaux pour réaliser de la microstructuration, en vue de futures applications à l'optique et à la science des matériaux. Ce travail a inauguré les activités de l'équipe sur les bulles et gouttes dont nous avons ensuite exploré les applications à l'acoustique (projet Smart-US) ou la santé

. Vincent,

, Manuscrit disponible sur : thesesups.ups-tlse.fr/1840/ Le sujet était le développement d'un laboratoire sur puce pour l'étude des maladies neuro-dégénératives. Nous utilisons les potentialités de criblage et de suivi en temps réel offertes par la microfluidique pour caractériser l'agrégation de la protéine Amyloïde Beta, impliquée dans la maladie d'Alzheimer, Laboratoire sur puce pour l'étude des maladies neuro-dégénératives : cinétique de l'agrégation de protéines impliquées dans la maladie d'Alzheimer

, Devenir : Vincent Picot a ensuite effectué un post-doctorat au LAAS sur la miniaturisation de tests de qualité de l'eau (encadré par Ali Boukabache), puis un CDD en tant qu'ingénieur valorisation d'un brevet CNRS (séparation de biomolécules), avec un financement de la SATT toulousaine (Toulouse Tech Transfert), en partenariat avec la société Picométrics

C. , Evaporation contrôlée par la topologie. Il s'agit, grâce à des systèmes microfluidiques modèles de milieux poreux, de montrer comment les propriétés (topologie, déformabilité) d'un milieu artificiel poreux 2D (un réseau de piliers microfabriqués) influencent l'évaporation d'un liquide, 2016.

, Un obstacle majeur au déroulement de la thèse est que Chen n'a pas eu l'autorisation de travailler au LAAS suite à l'avis défavorable du fonctionnaire de sécurité défense (statut ERR et désormais ZRR du LAAS très préjudiciable). J'ai donc fabriqué moi-même ses dispositifs en salle blanche, et il a réalisé les expériences à l'IMFT. La thèse comprenait également un volet modélisation (forme des ménisques et rôle de la résistance hydrodynamique lors de l'évaporation) encadré principalement par S Geoffroy

, Antoine Naillon -10/2013 -12/2016, Cofinancement Institut INSIS -ANDRA

, Systèmes nanofluidiques modèles de milieux poreux. L'objectif est de mieux comprendre les mécanismes en jeux lors des processus d'écoulements au sein de milieux poreux naturels (roches de type argilite du sous-sol). L'approche est de fabriquer des systèmes nanofluidiques grâce aux technologies salle blanche pour mimer les processus élémentaires de l'imbibition

, issue de sa thèse : le prix Léopold Escande de l'INP Toulouse (les meilleurs 15% des thèses 2017 de cet établissement), le prix Jean Nougaro de l'Académie des Sciences et Belles Lettres de Toulouse, 2017.

, Rémi Malbec -10, 2014.

, Co-direction avec Aurélien Bancaud co-encadrement de Thierry Leichlé (biofonctionnalisation et nanofluidique), collaboration impliquant le CRCT

, Laboratoire sur puce pour concentrer et détecter de l'ADN résiduel, application aux biomarqueurs du cancer et au diagnostic de la maladie de Huntington Devenir : Rémi a été embauché en CDI fin 2017 à Lille dans la PME Gènes Diffusion Devenir : 2017-2018 en post doctorat à l'Université de Chicago

H. Tarbague, Dans le cadre des caractérisations d'écoulements à nano-échelle par des systèmes nanofluidiques modèles, le post-doctorat a principalement consisté à fabriquer et à caractériser l'imbibition et l'évaporation de nanocanaux de géométries en impasse

, Devenir : à ma connaissance, il est actuellement en CDI dans une société de conception mécanique

, Clément Roux, 01/2014 ? 08/2014. Financement ANR PolyTransFlow

, L'idée générale du projet est de mimer la vectorisation de nanomédicaments depuis les vaisseaux sanguins vers les tissus, en particulier vers les tumeurs. Le post-doctorat vise à fabriquer des nano-objets polymères auto-assemblés (des polymersomes, synthétisés principalement au laboratoire IMRCP) et à caractériser leur

, Devenir : il a été recruté MCF de l'Université Paul Sabatier en, 2014.

, ANR PolyTransflow Ce post-doctorat est la suite du précédent, après le recrutement de C Roux, pp.4-2015, 2016.

, Devenir : après un deuxième post-doctorat au LAAS dans notre équipe jusqu'à juin 2017 (projet Région, PI : Aurélien Bancaud), il est actuellement en recherche d'emploi

O. Liot,

, Nous visons à mieux comprendre les processus de la filtration

, Devenir : après un post-doctorat au laboratoire ILM, 2018.

A. Hamoumi and -. , , 2011.

, 64h/an) en donnant des TD, TP et tutorats de physique en 1 er cycle universitaire, puis agrégé préparateur à Lyon en, 2006.

, Depuis 2007, j'assure principalement chaque année une dizaine d'heures de cours d'introduction à mon domaine de recherche aux niveaux Master et doctorat

E. Janvier, 2017 (Carcans) j'ai assuré un cours sur les technologies de fabrication de microcanaux, lors d'écoles scientifiques de microfluidique. Le public était principalement constitué d'étudiants en thèse dans des laboratoires français travaillant dans le domaine de la microfluidique, mais des industriels (Formulaction, Fluigent, Elveflow), étudiants et intervenants étrangers étaient également présents, p.2012, 2010.

, Depuis 2011, j'assure un cours de 3h d'introduction aux microsystèmes et à la microfluidique auprès d'étudiants de dernière année de l'ENSEEIHT

, j'ai donné un cours (6h) d'introduction à la microfluidique au Master 2 IM2P2 de l'Université Paul Sabatier Toulouse III, coordonné avec 8h de TP numériques sur la modélisation pour la microfluidique (TP assurés par Sandrine Geoffroy, 2013.

, Démonstration « Gouttes miniatures : les nouveaux (micro)tubes à essais ? » lors de la journée portes ouvertes du LAAS, avec deux doctorants, Antoine Naillon et Marc Fouet, et un chercheur, Aurélien Bancaud, à l'occasion de la fête de la science, 2014.

, Lors de mon séjour à l'Université de Florence en 2015-2016, j'ai donné un cours d'introduction aux laboratoires sur puces aux doctorants (une vingtaine) du département de chimie (8h)

, été responsable scientifique de l'édition 2017 de l'école thématique CNRS de microfluidique, 2017.

, J'avais participé à l'organisation de cette école aux Houches en Janvier, 2010.

, été membre du comité technique de la conférence Flow17 : expertise des abstracts soumis

, été membre du comité d'organisation de la 2ème conférence européenne de microfluidique qui s'est tenue à Toulouse en décembre, 2010.

J. , organisation d'un atelier sur les capteurs environnementaux, financé par la fondation STAE (Sciences et Techniques pour l'Aéronautique et l'Espace), en 2014. L'atelier (une cinquantaine de participants) portait sur la préparation d'échantillon et la protection de capteurs dédiés à l'environnement. J'ai contribué au choix des intervenants invités, à la diffusion de l'information

, Participation à des revues ou ouvrages de vulgarisation

, Bancaud et P. Abgrall (ancien doctorant du LAAS 2003-2006, désormais chargé de projet en microfluidique dans la société Formulaction) rédigé un chapitre sur la nanofluidique dans un ouvrage concernant les applications des dispositifs microfluidiques (collection nanotechnologies et sciences de la vie, 2010.

, J'expertise régulièrement des articles de revues et de conférences dans les domaines de la microfluidique, microfabrication, écoulements, matière molle, environ 3 revues par an pour les journaux : Lab on a Chip

, expertisé un à deux projets ANR par an sur différents programmes depuis, 2010.

J. , à deux jurys pour le recrutement de maîtres de conférences, 2011.

R. Renaudot, . Cea-leti-en-;-zhenzhen, M. Li, and . En, , 2013.

C. De and . Vi, 1 Projets en cours Modèles du transport en milieux poreux 2016-2019 Responsable pour le LAAS du projet NEMESIS, montant LAAS 75 k? Chaire d'excellence à l, vol.4

, Le rôle du LAAS dans cette collaboration multi-laboratoires à Toulouse est de mieux comprendre certains aspects du colmatage de membranes de filtration : effets du mouvement brownien, réversibilité. 2013-2018 Responsable pour le LAAS du projet NEEDS-MIPOR Nanolab, montant LAAS ~100 k? Coordinateur Marc Prat (IMFT, Toulouse) Nous développons (collaboration long-terme avec l'IMFT) des systèmes modèles de milieux poreux

, L'objectif est de mieux comprendre les mécanismes d'écoulements en milieu naturel (roches du sous-sol) ou industriel. L'approche est de fabriquer des systèmes nanofluidiques grâce aux technologies salle blanche pour mimer les processus élémentaires de l'imbibition, le drainage, l'évaporation des milieux nano-poreux

, Transport de Nano-objets et auto-assemblages, pour la matière molle et la santé 2017-2019 Responsable du projet international PICS-CNRS µFlu-SOFT montant ~15 k? Coll. Université de Florence, Italie (Pr D Berti)

, Le projet combine expertises en microfluidique et en physico-chimie pour la synthèse et la manipulation de membranes phospholipidiques, biomimétiques. L'interaction de nanoparticules avec ces membranes est particulièrement ciblée, du fait de son rôle majeur dans la toxicité des nanomatériaux mais aussi dans la vectorisation de nano-médicaments. 2017-2020 Participation au projet ANR µ-LAS montant LAAS 150 k? Coordinateur Aurélien Bancaud (LAAS) Ce travail s

A. Bancaud and . Leichle, Le principe est basé sur des forces transverses en milieu visco-élastique, sujet qui fait l'objet de brevets et transferts industriels portés par A Bancaud (LAAS). 2016-2019 Responsable pour le LAAS du contrat ANR Neuraxe, montant LAAS 84 k? Coordinatrice Juliette Fitremann (IMRCP, Toulouse) Nous visons à synthétiser et mettre en forme des gels supramoléculaires orientés, supports pour la croissance de neurones (médecine régénérative). Le LAAS est chargé d'étudier le caractère injectable des gels obtenus, et leur mise en forme (fibres, impression 3D), Laboratoire sur puce pour concentrer et détecter des biomarqueurs du cancer. Projet inter-équipe au LAAS, 2013.

, Le projet vise à mieux comprendre les phénomènes en jeu lors du passage de vecteurs (des nano-objets polymères) depuis les vaisseaux sanguins vers les tissus et les tumeurs

, Projets passés Transport de Nano-objets et auto-assemblages, pour la matière molle et la santé 2014-2017 Responsable du projet LAAS-Institut Carnot LabPuce, montant 125 k? Ce projet, lié au projet µ-LAS, concerne la séparation, concentration et détection d'ADN, pour des applications en génomique, 2014.

, L'objectif est de développer des systèmes d'analyse de l'antibiorésistance dans des élevages animaux, par une approche microfluidique en goutte combinée à une détection RF (équipe MH2F du LAAS). 2009-2014 Participation au projet MAISOE de la fondation STAE, montant LAAS 125 k? Coordinateur Philippe Behra

D. Le-rôle, LAAS dans ce projet ciblant globalement les capteurs environnementaux et impliquant une dizaine de partenaires de la région Midi-Pyrénées, était de développer les étapes de préparation d'échantillon, pour des capteurs de mercure dans les rivières

, Notre rôle dans le projet a été la réalisation de micro et nanobulles par microfluidique pour aider les acousticiens partenaires à développer des méthodes de détection de tels objets (applications : diagnostic précoce des accidents de décompression en plongée), 2008.

J. De, Projet LAAS (financé sur fond propres du laboratoire et sélectionné selon des critères de pluridisciplinarité) intitulé PHOLI (pour Photonique en phase liquide), en partenariat avec le groupe Photonique du laboratoire. L'objectif a été de démontrer la faisabilité d'une filière technologique de fonctions optiques basées sur l'utilisation de micro et nanobulles générées sur puce, 2008.

A. Recherche,

, Je suis responsable de l'équipe de recherche MILE depuis sa création en 2016 (15 personnes environ : 5 permanents, 8 doctorants, 2 post-doctorants

, Membre du comité de pilotage du réseau national « GDR Micro et Nanofluidique » depuis 2016, proposé directeur adjoint à la demande de renouvellement du GDR 2019-2023 (directrice : Stéphanie Descroix

, membre du Collège Scientifique EEA de l'Université Paul Sabatier Toulouse III, dont la mission est de constituer les comités de sélection pour les recrutements MCF, 2009.

, je fais partie de la « commission TEAM » qui vise à coordonner les interactions entre chercheurs en micro-nanotechnologie et ingénieurs de la salle blanche, et d'un groupe de travail sur « l'amélioration continue