, Quand il s'agit d'interroger par radar FM-CW une cible isolée pour en estimer sa surface équivalente radar, il est possible d'analyser la distribution des niveaux d'écho, et d'en déduire des estimateurs optimaux en termes de linéarité ou de précision. Ces estimations se basent aussi bien sur des valeurs de niveau d'écho que sur des analyses volumiques et permettent ainsi, en fonction de l'application, d'estimer un volume (cible canonique) ou une grandeur physique

, En revanche, dès que la scène de mesure se complexifie (présence de clutters, plusieurs cibles à distinguer et à analyser), il est impératif d'établir des classifications d'échos radar pour retrouver la grandeur physique d'intérêt, en l'occurrence le volume des grappes de raisin. Ces classifications nécessitent l'utilisation d'algorithme afin d'extraire les propriétés de chaque écho radar. Ces propriétés peuvent être à la fois spatiales (position, forme) ou électromagnétiques

, De ces propriétés, le choix d'un estimateur linéaire avec une bonne précision (s'il existe) doit être fait

, Cela nécessite, dans les cas les plus simples montrés dans ce manuscrit

P. Zwaenepoel, J. M. Le-bars, «. De-précision, ». Ingénieries, and -. , , vol.12, pp.67-79, 1997.

J. V. Stafford, Spatially variable field operations, vol.14, pp.99-100, 1996.

J. V. Stafford and B. Ambler, « In-field location using GPS for spatially variable field operations, Comput. Electron. Agric, vol.11, issue.1, pp.23-36, 1994.

D. Goense, J. W. Hofstee, and J. Van-bergeijk, « An information model to describe systems for spatially variable field operations, Comput. Electron. Agric, vol.14, issue.2, pp.197-214, 1996.

J. K. Schueller, « Impediments to spatially-variable field operations, Comput. Electron. Agric, vol.14, issue.2, pp.249-253, 1996.

«. Pedology, The Science of Soil Development, Opportunities in Basic Soil Science Research, vol.acsesspublicati, 1992.

P. Robert, D. Mulla, B. Larson, D. Rust, and H. H. Cheng, , 1995.

U. S. Springler and P. Agriculture, , vol.18, 1999.

J. Schieffer and C. Dillon, « The economic and environmental impacts of precision agriculture and interactions with agro-environmental policy, Precis. Agric, vol.16, issue.1, pp.46-61, 2015.

E. Bünemann, G. Schwenke, and L. Van-zwieten, Impact of agricultural inputs on soil organisms -A review, vol.44, pp.379-406, 2006.

G. W. Randall, Best Management Practices for Efficient Nitrogen Use in Minnesota, Proc. Soil Specif. Crop Manag, pp.257-268, 1993.

D. J. Mulla, « Using geostatistics and GIS to manage spatial patterns in soil fertility, 1991.

M. Sposari and S. Flis, « 4R framework implementation: precision ag adoption by farmers and dealers, Crops Soils, vol.50, issue.5, pp.24-26, 2017.

, Welcome to the ACSESS Digital Library | Digital Library

D. Sur,

, « Agricultural Retail and technology news », CropLife

D. Sur,

B. E. Lowenberg-deboer, Precision Dealership Survey: Making the Turn Toward Decision Agriculture, pp.1-2017, 2017.

D. A. Tyler, « Positioning Technology (GPS), Proc. Soil Specif. Crop Manag, pp.159-165, 1993.

, CNH Industrial brands reveal concept autonomous tractor development

R. P. Van-zuydam, Centimeter-Precision Guidance Of Agricultural Implements In The Open Field By Means Of Real Time Kinematic Dgps, Precis. Agric, pp.1023-1034, 1999.

R. Rouveure, P. Faure, M. Monod, and «. Pelican, Panoramic millimeter-wave radar for perception in mobile robotics applications, Part 1: Principles of FMCW radar and of 2D image construction, Robot. Auton. Syst, vol.81, pp.1-16, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01383402

M. Jaud, R. Rouveure, P. Faure, and M. Monod, « Methods for FMCW radar map georeferencing, J. Photogramm. Remote Sens, vol.84, pp.33-42

J. A. Guerrero, M. Jaud, R. Lenain, R. Rouveure, and P. Faure, « Towards LIDAR-RADAR based terrain mapping, 2015 IEEE International Workshop on Advanced Robotics and its Social Impacts (ARSO), pp.1-6, 2015.

K. Kurashiki, T. Fukao, J. Nagata, K. Ishiyama, T. Kamiya et al., « Laser-based Vehicle Control in Orchard, IFAC Proc, vol.43, pp.127-132

S. A. Hiremath, G. W. Van-der-heijden, F. K. Van-evert, A. Stein, and C. J. Ter-braak, « Laser range finder model for autonomous navigation of a robot in a maize field using a particle filter, Comput. Electron. Agric, vol.100, pp.41-50, 2014.

V. Subramanian, T. F. Burks, and A. A. Arroyo, « Development of machine vision and laser radar based autonomous vehicle guidance systems for citrus grove navigation, Comput. Electron. Agric, vol.53, issue.2, pp.130-143, 2006.

J. Backman, T. Oksanen, and A. Visala, « Navigation system for agricultural machines: Nonlinear Model Predictive path tracking, Comput. Electron. Agric, vol.82, pp.32-43, 2012.

F. Cheein, G. Steiner, G. Perez-paina, and E. R. Carelli, « Optimized EIF-SLAM algorithm for precision agriculture mapping based on stems detection, Comput. Electron. Agric, vol.78, issue.2, pp.195-207, 2011.

S. Hiremath, F. K. Van-evert, C. Braak, A. Stein, and G. Van-der-heijden, « Image-based particle filtering for navigation in a semi-structured agricultural environment, Biosyst. Eng, vol.121, pp.85-95, 2014.

M. A. Juman, Y. W. Wong, R. K. Rajkumar, and L. J. Goh, « A novel tree trunk detection method for oil-palm plantation navigation, Comput. Electron. Agric, vol.128, pp.172-180, 2016.

U. Weiss and P. Biber, « Plant detection and mapping for agricultural robots using a 3D LIDAR sensor, Robot. Auton. Syst, vol.59, issue.5, pp.265-273, 2011.

D. B. Coombs and J. Thie, The Canadian Land Inventory System », Plan. Uses Manag. Land, pp.909-933, 1979.

E. S. Oyarzabal, A. P. Mallarino, and P. N. Hinz, « Using Precision Farming Technologies for Improving Applied On-Farm Research, pp.379-387, 1996.

S. W. Lee and L. Kerschberg, « A methodology and life cycle model for data mining and knowledge discovery in precision agriculture, 1998 IEEE International Conference on Systems, Man, and Cybernetics, vol.3, pp.2882-2887, 1998.

Z. Chuanyuan, H. Dongjian, and Q. Yongliang, « Identification method of multi-feature weed based on multi-spectral images and data mining, Trans. Chin. Soc. Agric. Eng, vol.2013, issue.2

W. Xiaoqin, W. Qinmin, S. Xiaoming, L. Feilong, and Z. Xiaoling, « Rice field mapping and monitoring using ASAR data based on principal component analysis, Trans. Chin. Soc. Agric. Eng, issue.10, 2008.

A. Ramcharan, T. Hengl, D. Beaudette, and E. S. Wills, « A Soil Bulk Density Pedotransfer Function Based on Machine Learning: A Case Study with the NCSS Soil Characterization Database, Soil Sci. Soc. Am. J, vol.0, 2017.

N. K. Twarakavi, J. ?im?nek, and M. G. Schaap, « Development of Pedotransfer Functions for Estimation of Soil Hydraulic Parameters using Support Vector Machines All rights reserved. », Soil Sci. Soc. Am. J, vol.73, issue.5, pp.1443-1452, 2009.

C. Yuehua, H. Xiaoguang, and Z. Changli, « Algorithm for segmentation of insect pest images from wheat leaves based on machine vision, Trans. Chin. Soc. Agric. Eng, vol.12, 2007.

S. Yihuan, R. Xiuqin, and Y. Yibin, Apple stem/calyx and defect discrimination using DT-CWT and LS-SVM », Trans. Chin. Soc. Agric. Eng, vol.2012, issue.9, 2012.

D. J. Mulla, « Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps, Biosyst. Eng, vol.114, issue.4, pp.358-371, 2013.

P. C. Doraiswamy, S. Moulin, P. W. Cook, and A. Stern, Crop yield assessment from remote sensing, pp.665-674, 2003.

D. W. Franzen, L. Reitmeier, J. F. Giles, and A. C. , Cattanach, « Aerial Photography and Satellite Imagery to Detect Deep Soil Nitrogen Levels in Potato and Sugarbeet, Precis. Agric, pp.281-290, 1999.

A. K. Tilling, « Remote sensing of nitrogen and water stress in wheat, Field Crops Res, vol.104, issue.1, pp.77-85, 0203.

K. R. Thorp and L. F. Tian, « A Review on Remote Sensing of Weeds in Agriculture, Precis. Agric, vol.5, issue.5, pp.477-508, 2004.

A. Estrada-peña and J. M. Venzal, High-resolution predictive mapping for Boophilus annulatus and B. microplus (Acari: ixodidae) in Mexico and Southern Texas, vol.142, pp.350-358, 2006.

D. G. Sullivan, J. N. Shaw, and D. Rickman, « IKONOS Imagery to Estimate Surface Soil Property Variability in Two Alabama Physiographies, Soil Sci. Soc. Am. J, vol.69, issue.6, pp.1789-1798, 2005.

J. Kim, S. Grunwald, R. G. Rivero, and R. Robbins, « Multi-scale Modeling of Soil Series Using Remote Sensing in a Wetland Ecosystem, Soil Sci. Soc. Am. J, vol.76, issue.6, pp.2327-2341

J. W. Rouse, « Monitoring vegetation systems in the Great Plains with ERTS, 1974.

M. S. Moran, D. C. Hymer, J. Qi, and Y. Kerr, « Radar Imagery for Precision Crop and Soil Management, Precis. Agric, pp.1423-1434, 1999.

H. Vereecken, L. Weihermüller, F. Jonard, and C. Montzka, « Characterization of Crop Canopies and Water Stress Related Phenomena using Microwave Remote Sensing Methods: A Review », Vadose Zone J, vol.11, issue.2, 2012.

G. I. Metternicht, « Fuzzy classification of JERS-1 SAR data: an evaluation of its performance for soil salinity mapping, Ecol. Model, vol.111, issue.1, pp.61-74, 1998.

J. Álvarez-mozos, J. Casalí, M. González-audícana, and N. E. Verhoest, « Correlation between Ground Measured Soil Moisture and RADARSAT-1 derived Backscattering Coefficient over an Agricultural Catchment of Navarre (North of Spain), Biosyst. Eng, vol.92, issue.1, pp.119-133

H. Lievens and N. E. Verhoest, « Spatial and temporal soil moisture estimation from RADARSAT-2 imagery over Flevoland, The Netherlands, J. Hydrol, pp.44-56

S. R. Herwitz, « Imaging from an unmanned aerial vehicle: agricultural surveillance and decision support, Comput. Electron. Agric, vol.44, issue.1, pp.49-61, 2004.

T. Zhenkun, F. Yingying, L. Suhong, and L. Name, « Rapid crops classification based on UAV lowaltitude remote sensing, Trans. Chin. Soc. Agric. Eng, vol.2013, issue.7, 2013.

J. S. Schepers, D. D. Francis, M. Vigil, and F. E. Below, « Comparison of corn leaf nitrogen concentration and chlorophyll meter readings, Commun. Soil Sci. Plant Anal, vol.23, pp.2173-2187, 2008.

«. Spad-502--konica-minolta-europe,

D. Sur,

L. Carter, J. Rhoades, and J. Chesson, Mechanization of soil salinity assessment for mapping », présenté à ASAE Winter Meeting, 1993.

J. A. Huisman, S. S. Hubbard, J. D. Redman, and A. P. Annan, « Measuring Soil Water Content with Ground Penetrating Radar, Vadose Zone J, vol.2, issue.4, pp.476-491, 2003.

R. W. Johnson, R. Glasscum, and R. Wojtasinski, « Application of Ground Penetrating Radar to Soil Survey, Soil Horiz, vol.23, issue.3, pp.17-25, 1982.

M. Hongzhang, L. Qinhuo, W. Heshun, and X. Qing, « Soil dielectric characteristic determination based on microwave interferometry theory, Trans. Chin. Soc. Agric. Eng, vol.2011, issue.9

I. Oz, R. Arav, S. Filin, S. Assouline, and A. Furman, « High-Resolution Measurement of Topographic Changes in Agricultural Soils, Vadose Zone J, vol.16, 2017.

R. M. Hoff, R. E. Mickle, and F. A. Froude, « A Rapid Acquisition Lidar System for Aerial Spray Diagnostics, Trans. ASAE, vol.32, issue.5, p.1523, 1989.

Y. Noyman and I. Shmulevich, « Ground surface sensing through plant foliage using an FM-CW radar, Comput. Electron. Agric, vol.15, issue.3, pp.181-193, 1996.

B. A. Bouman and H. W. Van-kasteren, « Ground-based X-band (3-cm wave) radar backscattering of agricultural crops. I. Sugar beet and potato; backscattering and crop growth, Remote Sens. Environ, vol.34, issue.2, pp.93-105, 1990.

B. A. Bouman and H. W. Van-kasteren, « Ground-based X-band (3-cm wave) radar backscattering of agricultural crops. II. Wheat, barley, and oats; the impact of canopy structure, Remote Sens. Environ, vol.34, issue.2, pp.107-119, 1990.

K. Banerjee, P. Krishnan, and N. Mridha, « Application of thermal imaging of wheat crop canopy to estimate leaf area index under different moisture stress conditions, Biosyst. Eng, vol.166, pp.13-27, 2018.

D. M. Bulanon, T. F. Burks, and V. Alchanatis, « Image fusion of visible and thermal images for fruit detection, Biosyst. Eng, vol.103, issue.1, pp.12-22, 2009.

B. L. Blad and N. J. Rosenberg, « Measurement of Crop Temperature by Leaf Thermocouple, Infrared Thermometry and Remotely Sensed Thermal Imagery1 », Agron. J, vol.68, issue.4, pp.635-641, 1976.

W. Strothmann, A. Ruckelshausen, J. Hertzberg, C. Scholz, and F. Langsenkamp, « Plant classification with In-Field-Labeling for crop/weed discrimination using spectral features and 3D surface features from a multi-wavelength laser line profile system, Comput. Electron. Agric, vol.134, pp.79-93, 2017.

«. Ecorobotix--passez-au-désherbage-intelligent, ». , and E. ,

D. Sur,

|. Seedcommand®, Products | Ag Leader Technology

D. Sur,

, « Système Field-IQ de Gestion des Intrants -Overview | Débit par Section ? Commande | New Holland (FR)

, « Precision Farming -EASY | CLAAS

D. Sur,

R. G. Bramley and A. P. ,

. Proffitt, Managing variability in viticultural production, vol.427, pp.11-16, 1999.

R. L. Wample, L. Mills, and J. R. Davenport, Use of Precision Farming Practices in Grape Production, Precis. Agric, pp.897-905, 1999.

A. Brasa-ramos, F. Montero-riquelme, F. J. Garcia, L. Orozco, and J. J. Roncero, Precision viticulture using a Wireless Sensor Network, vol.931, 2012.

F. J. Garcia, A. Brasa-ramos, and F. Montero-riquelme, Wireless Sensor Networks to Monitor Microclimate Variability for Precision Viticulture in Castilla-La Mancha, 2018.

T. De-filippis, L. Rocchi, E. Fiorillo, A. Matese, S. D. Gennaro et al., SmartVineyard: an Open Source Web-GIS Application for Precision Viticulture, vol.978, 2012.

A. Matese, Intercomparison of UAV, Aircraft and Satellite Remote Sensing Platforms for Precision Viticulture, vol.7, 2015.

C. and M. Lopes, « Using an Unmanned Ground Vehicle to Scout Vineyards for NonIntrusive Estimation of Canopy Features and Grape Yield », présenté à 20th GiESCO International Meeting, 2017.

R. Chamelat, E. Rosso, A. Choksuriwong, C. Rosenberger, H. Laurent et al., IECON 2006 -32nd Annual Conference on IEEE Industrial Electronics, pp.3697-3702, 2006.

R. Berenstein, O. B. Shahar, A. Shapiro, and Y. Edan, « Grape clusters and foliage detection algorithms for autonomous selective vineyard sprayer, Intell. Serv. Robot, vol.3, pp.233-243, 2010.

M. Reis, Automatic Detection of White Grapes in, Natural Environment Using Image Processing, vol.87, 2011.

M. Reis, A Low-Cost System to Detect Bunches of Grapes in Natural Environment from Color Images, p.205, 2011.

S. Nuske, S. Achar, T. Bates, S. Narasimhan, and E. S. Singh, « Yield estimation in vineyards by visual grape detection, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.2352-2358, 2011.

M. Diago, C. Correa, B. Millán, P. Barreiro, C. Valero et al., « Grapevine yield and leaf area estimation using supervised classification methodology on RGB images taken under field conditions, Sensors, vol.12, pp.16988-17006

R. Roscher, K. Herzog, A. Kunkel, A. Kicherer, R. Töpfer et al., Automated image analysis framework for high-throughput determination of grapevine berry sizes using conditional random fields, Comput. Electron. Agric, vol.100, pp.148-158, 2014.

S. Liu, M. Whitty, and E. S. Cossell, « Automatic grape bunch detection in vineyards for precise yield estimation, 2015 14th IAPR International Conference on Machine Vision Applications (MVA), pp.238-241, 2015.

S. Liu and M. Whitty, Automatic grape bunch detection in vineyards with an SVM classifier, J. Appl. Log, vol.13, pp.643-653

P. ?krabánek, T. Runarsson, D. Of, . In, . Environment et al., , 2015.

P. ?krabánek and F. Majerík, Simplified Version of White Wine Grape Berries Detector Based on SVM and HOG Features, 2016.

P. Dolezel, P. Skrabanek, and L. Gago, « Detection of grapes in natural environment using feedforward neural network as a classifier, 2016 SAI Computing Conference (SAI), pp.1330-1334, 2016.

A. Aquino, B. Millan, S. Gutiérrez, and J. Tardáguila, « Grapevine flower estimation by applying artificial vision techniques on images with uncontrolled scene and multi-model analysis, Comput. Electron. Agric, vol.119, pp.92-104, 2015.

M. Herrero-huerta, D. González-aguilera, and P. Rodriguez-gonzalvez, Hernández-López, « Vineyard yield estimation by automatic 3D bunch modelling in field conditions, Comput. Electron. Agric, vol.110, pp.17-26, 2015.

N. Behroozi-khazaei and M. R. Maleki, « A robust algorithm based on color features for grape cluster segmentation, Comput. Electron. Agric, vol.142, pp.41-49, 2017.

D. S. Pérez, F. Bromberg, and C. A. Diaz, « Image classification for detection of winter grapevine buds in natural conditions using scale-invariant features transform, bag of features and support vector machines, Comput. Electron. Agric, vol.135, pp.81-95, 2017.

A. Aquino, B. Millan, M. Diago, and J. Tardaguila, « Automated early yield prediction in vineyards from on-the-go image acquisition, Comput. Electron. Agric, vol.144, pp.26-36, 2018.

M. Cunha, A. R. Marçal, and L. Silva, « Very early prediction of wine yield based on satellite data from VEGETATION », Int. J. Remote Sens, vol.31, pp.3125-3142, 2010.

L. Sun, « Daily mapping of Landsat-like LAI and correlation to grape yield, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp.7157-7160, 2016.

M. Gatti, MECS-VINE®: A New Proximal Sensor for Segmented Mapping of Vigor and Yield Parameters on Vineyard Rows », Sensors, vol.16, 2009.

S. Paloscia, P. Pampaloni, and E. S. Sigismondi, Geoscience and Remote Sensing Symposium, 1995. IGARSS '95. « Quantitative Remote Sensing for Science and Applications, vol.1, pp.222-223, 1995.

A. Burini, A. Minchella, D. Solimini, and «. Sar, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05, vol.3, pp.1542-1545, 2005.

G. Schiavon, D. Solimini, and A. Burini, « Sensitivity of multi-temporal high resolution polarimetric C and L-band SAR to grapes in vineyards, 2007 IEEE International Geoscience and Remote Sensing Symposium, pp.3651-3654, 2007.

A. Burini, G. Schiavon, and D. Solimini, « Fusion of High Resolution Polarimetric SAR and Multi-Spectral Optical Data for Precision Viticulure, IGARSS 2008 -2008 IEEE International Geoscience and Remote Sensing Symposium, vol.3, 2008.

F. André, « High-resolution imaging of a vineyard in south of France using groundpenetrating radar, electromagnetic induction and electrical resistivity tomography, J. Appl. Geophys, vol.78, pp.113-122, 2012.

J. D. Ballester-berman, J. M. Lopez-sanchez, I. Garmendia-lopez, and V. J. Mangas-martin, 2012 IEEE International Geoscience and Remote Sensing Symposium, pp.5689-5692, 2012.

F. D. Frate, D. Latini, M. Picchiani, G. Schiavon, and C. Vittucci, « A neural network architecture combining VHR SAR and multispectral data for precision farming in viticulture, 2014 IEEE Geoscience and Remote Sensing Symposium, pp.1508-1511, 2014.

R. E. Smart, J. K. Dick, I. M. Gravett, and B. M. Fisher, « Canopy Management to Improve Grape Yield and Wine Quality -Principles and Practices, South Afr. J. Enol. Vitic, vol.11, issue.1, pp.3-17, 1990.

R. G. Bramley, Understanding variability in winegrape production systems 2. Within vineyard variation in quality over several vintages, Aust. J. Grape Wine Res, vol.11, issue.1, pp.33-42, 2005.

B. Tisseyre and J. Taylor, « An overview of methodologies and technologies for implementing precision agriculture in viticulture, 2005.

L. F. Johnson, D. E. Roczen, S. K. Youkhana, R. R. Nemani, and D. F. Bosch, « Mapping vineyard leaf area with multispectral satellite imagery, Comput. Electron. Agric, vol.38, issue.1, pp.33-44, 2003.

, GreenSeeker Crop Sensing System | Trimble Ag

C. Gée, « On-the-go » multispectral imaging system to characterize the development of vineyard foliage, 2015.

R. Sanz, J. R. Rosell, J. Llorens, E. Gil, and E. S. Planas, « Relationship between tree row LIDARvolume and leaf area density for fruit orchards and vineyards obtained with a LIDAR 3D Dynamic Measurement System, Agric. For. Meteorol, pp.153-162, 2013.

S. Priori, E. Martini, E. Costantini, and R. Gilkes, Three proximal sensors for mapping skeletal soils in vineyards, 2010.

«. Geocarta--technologie and A. ». ,

D. Sur,

R. Rossi, Using an Automatic Resistivity Profiler Soil Sensor On-The-Go in Precision Viticulture, vol.13, 2013.

M. C. Andrenelli, S. Magini, S. Pellegrini, R. Perria, N. Vignozzi et al., « The use of the ARP© system to reduce the costs of soil survey for precision viticulture, J. Appl. Geophys, vol.99, pp.24-34, 2013.

«. Geonics and E. Meter,

M. Trought, The impact of differences in soil texture within a vineyard on vine vigour, vine earliness and juice composition, vol.42, 2008.

J. R. Rodríguez-pérez, R. E. Plant, J. Lambert, and D. R. Smart, Using apparent soil electrical conductivity (ECa) to characterize vineyard soils of high clay content, Precis. Agric, vol.12, issue.6, pp.775-794, 2011.

M. Weiss and B. Frederic, Using 3D Point Clouds Derived from UAV RGB Imagery to Describe Vineyard 3D Macro-Structure, vol.9, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01454675

F. Mazzetto, A. Calcante, A. Mena, and E. A. Vercesi, Integration of optical sensors for monitoring canopy health and vigour in precision viticulture, vol.11, 2010.

M. Ferreiro-armán, J. Costa, S. Homayouni, and J. Martín-herrero, Hyperspectral Image Analysis for Precision Viticulture, 2006.

C. Karakizi, M. Oikonomou, and K. Karantzalos, Spectral Discrimination and Reflectance Properties of Various Vine Varieties from Satellite, UAV and Proximate Sensors, 2015.

L. Serrano, C. González-flor, and E. G. Gorchs, « Assessing vineyard water status using the reflectance based Water Index, Agric. Ecosyst. Environ, vol.139, issue.4, p.207

H. G. Jones, « Application of Thermal Imaging and Infrared Sensing in Plant Physiology and Ecophysiology, Advances in Botanical Research, vol.41, pp.107-163, 2004.

I. F. García-tejero, « Thermal data to monitor crop-water status in irrigated Mediterranean viticulture, Agric. Water Manag, vol.176, pp.80-90, 2016.

A. Soliman, R. Heck, A. Brenning, R. Brown, and E. S. Miller, Remote Sensing of Soil Moisture in Vineyards Using Airborne and Ground-Based Thermal Inertia Data, vol.5, 2013.

J. A. Martínez-casasnovas and M. C. Ramos, Analysis of the relationship between the volumetric soil moisture content and the NDVI from high resolution multi-spectral images for definition of vineyard management zones to improve irrigation, vol.11, 2009.

L. Pichon, A. Ducanchez, H. Fonta, and B. Tisseyre, Quality of Digital Elevation Models obtained from Unmanned Aerial Vehicles for Precision Viticulture, vol.50, 2016.

F. Norzahari, Spatially Smart Wine -Testing Geospatial Technologies for Sustainable Wine Production, 2011.

A. Castro, J. M. Peña-barragán, J. Torres-sánchez, F. Jiménez-brenes, and F. López-granados, Mapping Cynodon dactylon in vineyards using UAV images for site-specific weed control, vol.8, 2017.

P. J. Zarco-tejada, « Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy, Remote Sens. Environ, vol.99, issue.3, pp.271-287, 2005.

R. Retzlaff, UAS-based multi-angular remote sensing of the effects of soil managment strategies on grapevine, vol.49, 2015.

«. Multiplex®-research--forcea and ». ,

P. Pinelli, A. Romani, E. Fierini, and G. Agati, « Prediction models for assessing anthocyanins in grape berries by fluorescence sensors: Dependence on cultivar, site and growing season, Food Chem, vol.244, pp.213-223, 2018.

L. Tuccio, G. Agati, and G. Grassini, « Non-destructive fluorescence sensing for applications in precision viticulture, 2015 International Conference on BioPhotonics (BioPhotonics), pp.1-4, 2015.

M. Milien, A. Renault-spilmont, S. J. Cookson, A. Sarrazin, and J. Verdeil, « Visualization of the 3D structure of the graft union of grapevine using X-ray tomography, Sci. Hortic, vol.144, pp.130-140, 2012.

B. A. Atayants, V. M. Davydochkin, V. V. Ezerskiy, V. S. Parshin, and S. M. Smolskiy, Precision FMCW short-range radar for industrial applications, 2014.

S. O. Piper, « Receiver frequency resolution for range resolution in homodyne FMCW radar, Conference Proceedings National Telesystems Conference, pp.169-173, 1993.

I. M. Milosavljevi?, ?. P. Glavonji?, D. P. Kr?um, L. V. Saranovac, and V. M. Milovanovi?, A highly linear and fully-integrated FMCW synthesizer for 60 GHz radar applications with 7 GHz bandwidth, vol.90, pp.591-604, 2017.

N. Pohl, T. Jaeschke, and M. Vogt, « Ultra high resolution SAR imaging using an 80 GHz FMCW-radar with 25 GHz bandwidth, EUSAR 2012; 9th European Conference on Synthetic Aperture Radar, pp.189-192, 2012.

S. Thomas, C. Bredendiek, T. Jaeschke, F. Vogelsang, and N. Pohl, A compact
URL : https://hal.archives-ouvertes.fr/hal-01952173

, GHz FMCW radar sensor with high modulation bandwidth, 2016 German Microwave Conference (GeMiC), pp.397-400, 2016.

A. Meta, P. Hoogeboom, and L. Ligthart, « Range Non-linearities Correction in FMCW SAR, 2006 IEEE International Symposium on Geoscience and Remote Sensing, pp.403-406, 2006.
DOI : 10.1109/igarss.2006.108

M. I. Skolnik, Radar Handbook, Third Edition. McGraw-Hill Education, 2008.

». Spline and W. , , pp.1-2018

, scipy: Scipy library main repository. SciPy, 2018.

W. E. Lorensen and H. E. Cline, « Marching Cubes: A High Resolution 3D Surface Construction Algorithm, Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, pp.163-169, 1987.
DOI : 10.1145/37401.37422

URL : http://www-ee.uta.edu/Online/Devarajan/ee6358/marching cubes algorithm.pdf

P. Ramachandran, G. Varoquaux, and . Mayavi, 3D Visualization of Scientific Data, vol.13, pp.40-51, 2011.
DOI : 10.1109/mcse.2011.35

URL : https://hal.archives-ouvertes.fr/inria-00528985

T. T. Thai, « A novel passive ultrasensitive RF temperature transducer for remote sensing and identification utilizing radar cross sections variability, 2010 IEEE Antennas and Propagation Society International Symposium, pp.1-4, 2010.
DOI : 10.1109/aps.2010.5562216

, « Moindres carrés non linéaires, pp.1-2017

F. J. Jr and T. Kolmogorov-smirnov, Test for Goodness of Fit, J. Am. Stat. Assoc, vol.46, pp.68-78, 1951.

M. A. Stephens and «. Edf, Statistics for Goodness of Fit and Some Comparisons, J. Am. Stat. Assoc, vol.69, pp.730-737, 1974.

S. Nadarajah, « The skew logistic distribution, AStA Adv. Stat. Anal, vol.93, issue.2, pp.187-203, 2009.
DOI : 10.1007/s10182-009-0105-6

». «-fonction-d'erreur and W. , , pp.1-2017

K. Pearson, On the Criterion that a Given System of Deviations from the Probable in the Case of a Correlated System of Variables is Such that it Can be Reasonably Supposed to have Arisen from Random Sampling, Breakthroughs in Statistics, pp.11-28, 1992.

W. Hergert and T. Wriedt, The Mie Theory: Basics and Applications, 2012.

S. , miepython: Mie scattering of a plane wave by a sphere

A. J. Wixted, P. Kinnaird, H. Larijani, A. Tait, A. Ahmadinia et al., « Evaluation of LoRa and LoRaWAN for wireless sensor networks, IEEE SENSORS, pp.1-3, 2016.

A. Dongare, A Low-Power Wide-Area Networking architecture, 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops, pp.569-574, 2017.
DOI : 10.1109/percomw.2017.7917625

D. C. Malocha, J. Humphries, J. A. Figueroa, M. Lamothe, and E. A. Weeks, « 915 MHz SAW wireless passive sensor system performance, 2016 IEEE International Ultrasonics Symposium (IUS), pp.1-4, 2016.
DOI : 10.1109/ultsym.2016.7728686

D. Hotte, R. Siragusa, Y. Duroc, and E. S. Tedjini, « A Concept of Pressure Sensor Based on Slotted Waveguide Antenna Array for Passive MMID Sensor Networks, IEEE Sens. J, vol.16, pp.5583-5587, 2016.

D. Henry, P. Pons, and H. Aubert, « 3D scanning radar for the remote reading of passive electromagnetic sensors, 2015 IEEE MTT-S International Microwave Symposium, pp.1-4, 2015.

D. Henry, P. Pons, and H. Aubert, « 3D microwave imaging system for the remote detection and reading of passive sensors, 2015 European Microwave Conference (EuMC), pp.259-262, 2015.

D. Henry, H. Aubert, and P. Pons, « Wireless passive sensors interrogation technique based on a three-dimensional analysis, 2016 46th European Microwave Conference (EuMC), pp.49-52, 2016.

D. Henry, H. Aubert, and P. Pons, « 3D scanning and sensing technique for the detection and remote reading of a passive temperature sensor, 2016 IEEE MTT-S International Microwave Symposium (IMS), pp.1-4, 2016.

D. Henry, H. Aubert, P. Pons, J. Lorenzo, A. Lázaro et al., « Technique for wireless reading of passive microfluidic sensors, Electron. Lett, vol.54, issue.3, pp.150-151, 2018.

J. G. Hester, M. M. Tentzeris, and . Inkjet, Printed Flexible mm-Wave Van-Atta Reflectarrays: A Solution for Ultralong-Range Dense Multitag and Multisensing Chipless RFID Implementations for IoT Smart Skins, IEEE Trans. Microw. Theory Tech, vol.64, pp.4763-4773, 2016.

D. Henry, J. G. Hester, H. Aubert, P. Pons, M. M. Tentzeris et al., Range Wireless Interrogation of Passive Humidity Sensors Using Van-Atta Cross-Polarization Effect and Different Beam Scanning Techniques, IEEE Trans. Microw. Theory Tech, vol.65, pp.5345-5354, 2017.

R. F. Harrington, « Theory of loaded scatterers, Proc. Inst. Electr. Eng, vol.111, issue.4, pp.617-623

S. Bouaziz, F. Chebila, A. Traille, P. Pons, H. Aubert et al., Novel Microfluidic Structures for Wireless Passive Temperature Telemetry Medical Systems Using Radar Interrogation Techniques in Ka-Band, IEEE Antennas Wirel. Propag. Lett, vol.11, pp.1706-1709, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00878064

J. G. Hester and M. M. Tentzeris, « Inkjet-printed Van-Atta reflectarray sensors: A new paradigm for long-range chipless low cost ubiquitous Smart Skin sensors of the Internet of Things, 2016 IEEE MTT-S International Microwave Symposium (IMS), pp.1-4, 2016.

A. Meta, P. Hoogeboom, and L. P. Ligthart, « Signal Processing for FMCW SAR, IEEE Trans. Geosci. Remote Sens, vol.45, issue.11, pp.3519-3532, 2007.

F. Belfiori, W. Van-rossum, and E. P. Hoogeboom, « Application of 2D MUSIC algorithm to rangeazimuth FMCW radar data, 2012 9th European Radar Conference, pp.242-245, 2012.

«. Appellations-viticoles-françaises, ;. Aoc, and A. Igp--vin-vigne,

V. Vino, Vino Veritas, 2008.

D. Sur,

T. Dufourcq, L. Gontier, E. Serrano, and N. Ollat, « Rapport surface foliaire et poids de recolte: incidences sur l'alimentation hydrique de la vigne, la qualite du mout, 2005.

P. ?krabánek and P. Dole?el, Robust Grape Detector Based on SVMs and HOG Features, 2017.

M. Gatti, A. Garavani, A. Vercesi, and E. S. Poni, Ground-truthing of remotely sensed within-field variability in a cv. Barbera plot for improving vineyard management: Vigour mapping and vineyard management, 2017.

J. B. Hasted, The Physics and Physical Chemistry of Water, pp.255-309, 1972.

F. Chebila, Lecteur radar pour capteurs passifs à transduction radio fréquence, 2011.

T. Veronese, D. Henry, and H. Aubert, « Systeme et procédé d'estimation du rendement d'une parcelle cultivée, 2016.

D. Henry, H. Aubert, T. Veronese, and E. E. Serrano, « Remote estimation of intra-parcel grape quantity from three-dimensional imagery technique using ground-based microwave FMCW radar, IEEE Instrum. Meas. Mag, vol.20, issue.3, pp.20-24, 2017.

«. Products and -. Radar,

D. Sur,

«. Inras-products--radarbook,

D. Sur,

E. Ozturk, « Measuring Target Range and Velocity: Developments in Chip, Antenna, and Packaging Technologies for 60-GHz and 122-GHz Industrial Radars, IEEE Microw. Mag, vol.18, issue.7, pp.26-39, 2017.

, Image Processing SciKit (Toolbox for SciPy). Image Processing Toolbox for SciPy, 2018.

E. Serrano, S. Roussel, L. Gontier, and T. Dufourcq, « Early Estimation of Vineyard Yield : Correlation Between the Volume of a Vitis vinifera Bunch During its Growth and its Weight at Harvest », présenté à FRUITIC 05, 2005.

, Shapely: Manipulation and analysis of geometric objects, 2018.

J. Canny, Computational Approach to Edge Detection, IEEE Trans. Pattern Anal. Mach. Intell, issue.6, pp.679-698, 1986.

R. O. Duda and P. E. Hart, Use of the Hough Transformation to Detect Lines and Curves in Pictures, Commun ACM, vol.15, issue.1, pp.11-15

A. Dore, M. Devy, and A. Herbulot, « Détection d'objets en milieu naturel : application à l'arboriculture, Proceedings of Journées Francophones des Jeunes Chercheurs en Vision par Ordinateur

D. Henry, H. Aubert, T. Véronèse, and É. Serrano, Remote Estimation of Intra-Parcel Grapes Quantity From Three-Dimensional Imagery Technique Using Ground-based Microwave FMCW Radar, IEEE Instrumentation and Measurement Magazine, vol.20, pp.20-24, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01875539

D. Henry, J. G. Hester, H. Aubert, P. Pons-and-m.-m, and . Tentzeris, Long Range Wireless Interrogation of Passive Humidity Sensors using Van-Atta Cross-Polarization Effect and Different Beam Scanning Technique, IEEE Transactions on Microwave Theory and Techniques, vol.65, pp.5345-5354, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01710107

D. Henry, H. Aubert, P. Pons, J. Lorenzo, A. Lázaro et al., Novel technique for the wireless reading of passive microfluidic sensors, vol.8
URL : https://hal.archives-ouvertes.fr/hal-01710134

T. Veronese, D. Henry, and H. Aubert, System and method for estimating the yield of a cultivated plot, Reference : WO 2016/174248. Date de priorité : 30 avril, 2015.

, ? Communications dans des conférences internationales à comité de lecture et actes publiés

D. Henry, P. Pons, and H. Aubert, 3D Scanning Radar for the Remote Reading of Passive Electromagnetic Sensors, IEEE International Microwave Symposium, pp.17-22, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01838508

D. Henry, P. Pons, and H. Aubert, 3D Microwave Imaging System for the Remote Detection and Reading of Passive Sensors, European Microwave Conference, pp.7-10, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01237578

D. Henry, H. Aubert, and P. Pons, 3D Scanning and Sensing Technique for the Detection and Remote Reading of a Passive Temperature Sensor, IEEE International Microwave Symposium, pp.22-27, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01396836

D. Henry, H. Aubert, and P. Pons, Wireless Passive Sensors Interrogation Technique Based on a Three-Dimensional Analysis, European Microwave Conference, pp.3-7, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01396848

D. Henry, J. Hester, H. Aubert, M. Tentzeris, and P. Pons, Long Range Wireless Interrogation of Passive Humidity Sensors using Van-Atta Cross-Polarization Effect and 3D Beam Scanning Analysis, IEEE International Microwave Symposium, pp.4-9, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01570718

J. Philippe, C. Arenas, D. Henry, A. Coustou, A. Rumeau et al., Passive and chipless packaged sensor for the wireless pressure monitoring in harsh environment, pp.3-6, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01570698

C. Arenas, J. Philippe, D. Henry, A. Rumeau, H. Aubert et al., Wireless and Passive Nuclear Radiation Sensors, European Microwave Conference, pp.9-13
URL : https://hal.archives-ouvertes.fr/hal-01570623

D. Henry, H. Aubert, and P. Pons, Imagerie Radar 3D en onde millimétrique pour la détection et la lecture des capteurs passifs et sans puce, Journées Nationales Microondes, 2015.

D. Henry, H. Aubert, and P. Pons, Méthode d'estimation pour l'interrogation et la lecture sans fil de capteurs passifs, Journées Nationales Microondes, 2017.

, ? Communications invitées

D. Henry, A. Rifai, P. Pons, and H. Aubert, Millimetre-wave Scanning Radar for the Detection and Remote Reading of Passive Electromagnetic Sensors, 9th European Conference on Antennas & Propagation, Convened Session on Chipless, pp.12-17, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01838463

H. Aubert, P. A. Pons, and . Henry, Wireless Detection, Identification and Reading of Passive Electromagnetic Sensors based on Beam-Steering FMCW RADAR, 1st URSI Atlantic Radio Science Conference (URSI AT-RASC), pp.18-22, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01838554

H. Aubert and D. Henry, 3D Active Imagery Technique Using Ground-based Microwave FMCW Radar for the Remote Estimation of Intra-Parcel Fruit and Vegetable Quantity, invited talk to International Conference on Computing, Wireless and Communication Systems, pp.14-16

H. Aubert, D. Henry, and P. Pons, Devices Conference (NMDC), session "Materials and devices for RF microsensors, IEEE Nanotechnology Materials, 2017.

D. Henry, H. Aubert, and P. Pons, Interrogation sans fil et localisation de capteurs passifs sans puce par balayage radar 3D en environnement contraint, Poster lors de l'Assemblée Générale du GDR ONDES « Interférences d'Ondes, 2015.

D. Henry, H. Aubert, T. Veronese, and E. Serrano, Estimation de la quantité intra-parcellaire de grappes de raisin par imagerie microonde 3D" Imagerie radar en ondes millimétriques appliquée à la viticulture, pp.23-25, 2017.

. Mots-clés, Les traitements tels que les fertilisants, les intrants et autres pesticides doivent être utilisés de manière différente en les appliquant au bon endroit, à la bonne période et au bon taux. Cette nouvelle façon de penser l'agriculture fait partie de l'agriculture de précision (PA) et se concentre en quatre domaines technologiques : (i) la télédétection, (ii) la navigation et guidage, (iii) la gestion des données et (iv) les technologies à taux variable. Initiée à la fin des années 1990, la viticulture de précision (PV), Capteurs passifs, Imagerie radar, Radar micro-ondes, Télédétection

, Pouvoir estimer le rendement des vignes plusieurs semaines avant la récolte offre de nombreux avantages avec des impacts économiques et qualitatifs, avec par exemple : (i) l'amélioration du rapport rendement/qualité en supprimant au plut tôt une partie de la récolte, (ii) l'optimisation des ressources humaines et la logistique à la récolte, (iii) un remboursement le plus équitable par les assurances en cas d'intempéries qui endommageraient les pieds de vignes. La méthode proposée ici repose sur l'imagerie microondes (à 24GHz ou des fréquences plus élevées) générée par un radar FM-CW. Elle implique la mise en place d'un système d'interrogation intra-parcellaire « pied par pied » à distance basé au sol, et en particulier : (i) l'évaluation de la précision des mesures et les limites du système, (ii) le développement d'algorithmes spécifiques pour l'analyse de données tridimensionnelles, (iii) la construction d'estimateurs pour retrouver le volume des grappes, et finalement (iv) l'analyse des données recueillies pendant les campagnes de mesures. Dû au caractère saisonnier des récoltes, les mesures sont en premier lieu effectuées sur des cibles canoniques, des charges variables et des capteurs passifs en laboratoire. Pour mettre en avant la flexibilité de cette interrogation radar, le même système est utilisé en parallèlement dans le cadre du projet régional PRESTIGE, Les travaux effectués durant cette thèse entrent dans le cadre de la télédétection (ou détection proche) appliquée à la PV. Ils se focalisent sur une nouvelle méthode d'estimation de la quantité de grappes (masse ou volume) directement sur les plants de vignes