G. M. Cooper, The Development and Causes of Cancer, 2000.

, AJCC -What is Cancer Staging? Available at, p.10, 2018.

, Cancer today, p.10, 2018.

F. R. Balkwill, M. Capasso, and T. Hagemann, The tumor microenvironment at a glance, J Cell Sci, vol.125, pp.5591-5596, 2012.

A. Klein-goldberg, S. Maman, and I. P. Witz, The role played by the microenvironment in sitespecific metastasis, Cancer Lett, vol.352, pp.54-58, 2014.

J. Cairns, Mutation selection and the natural history of cancer, Nature, vol.255, pp.197-200, 1975.

P. B. Gupta, S. Mani, J. Yang, K. Hartwell, and R. A. Weinberg, The Evolving Portrait of Cancer Metastasis, Cold Spring Harb. Symp. Quant. Biol, vol.70, pp.291-297, 2005.

S. Hellman and . Karnofsky-memorial-lecture, Natural history of small breast cancers, J. Clin. Oncol, vol.12, pp.2229-2234, 1994.

C. A. Klein, Parallel progression of primary tumours and metastases, Nat. Rev. Cancer, vol.9, pp.302-312, 2009.

A. D. Rhim, EMT and Dissemination Precede Pancreatic Tumor Formation, Cell, vol.148, pp.349-361, 2012.

S. Paget, . Distribution, . Secondary, . In, . Of et al., The Lancet, vol.133, pp.571-573, 1889.

I. J. Fidler, The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited, Nat. Rev. Cancer, vol.3, pp.453-458, 2003.

J. Folkman and ;. H. , How Is Blood Vessel Growth Regulated in Normal and Neoplastic Tissue?, Clowes Memorial Award Lecture. Cancer Res, vol.46, pp.467-473, 1986.

P. Friedl and S. Alexander, Cancer Invasion and the Microenvironment: Plasticity and Reciprocity, Cell, vol.147, pp.992-1009, 2011.

A. G. Clark and D. M. Vignjevic, Modes of cancer cell invasion and the role of the microenvironment, Curr. Opin. Cell Biol, vol.36, pp.13-22, 2015.

J. P. Thiery, Epithelial-mesenchymal transitions in tumour progression, Nat. Rev. Cancer, vol.2, pp.442-454, 2002.

J. J. Christiansen and A. K. Rajasekaran, Reassessing Epithelial to Mesenchymal Transition as a Prerequisite for Carcinoma Invasion and Metastasis, Cancer Res, vol.66, pp.8319-8326, 2006.

M. K. Jolly, Implications of the Hybrid Epithelial/Mesenchymal Phenotype in Metastasis, Front. Oncol, vol.5, 2015.

T. Tsuji, S. Ibaragi, and G. Hu, Epithelial-Mesenchymal Transition and Cell Cooperativity in Metastasis, Cancer Res, vol.69, pp.7135-7139, 2009.

T. Celià-terrassa, Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells, J. Clin. Invest, vol.122, pp.1849-1868, 2012.

L. S. Aroeira, Epithelial to Mesenchymal Transition and Peritoneal Membrane Failure in Peritoneal Dialysis Patients: Pathologic Significance and Potential Therapeutic Interventions, J. Am. Soc. Nephrol, vol.18, 2004.

S. Y. Wong and R. O. Hynes, Lymphatic or Hematogenous Dissemination: How Does a Metastatic Tumor Cell Decide?, Cell Cycle Georget. Tex, vol.5, pp.812-817, 2006.

T. P. Butler and P. M. Gullino, Quantitation of Cell Shedding into Efferent Blood of Mammary Adenocarcinoma, Cancer Res, vol.35, pp.512-516, 1975.

P. Paoli, E. Giannoni, and P. Chiarugi, Anoikis molecular pathways and its role in cancer progression, Biochim. Biophys. Acta BBA -Mol. Cell Res, vol.1833, pp.3481-3498, 2013.

M. Mohme, S. Riethdorf, and K. Pantel, Circulating and disseminated tumour cells -mechanisms of immune surveillance and escape, Nat. Rev. Clin. Oncol, vol.14, pp.155-167, 2017.

S. Meng, Circulating Tumor Cells in Patients with Breast Cancer Dormancy, Clin. Cancer Res, vol.10, pp.8152-8162, 2004.

J. Ewing, Neoplastic diseases; a treatise on tumors, 1922.

P. Gassmann, A. Hemping-bovenkerk, S. T. Mees, and J. Haier, Metastatic tumor cell arrest in the liver-lumen occlusion and specific adhesion are not exclusive, Int. J. Colorectal Dis, vol.24, pp.851-858, 2009.

L. Weiss, Comments on hematogenous metastatic patterns in humans as revealed by autopsy, Clin. Exp. Metastasis, vol.10, pp.191-199, 1992.

G. Disibio and S. W. French, Metastatic patterns of cancers: results from a large autopsy study, Arch. Pathol. Lab. Med, vol.132, pp.931-939, 2008.

A. F. Chambers, A. C. Groom, and I. C. Macdonald, Metastasis: Dissemination and growth of cancer cells in metastatic sites, Nat. Rev. Cancer, vol.2, pp.563-572, 2002.

G. Follain, Hemodynamic Forces Tune the Arrest, Adhesion, and Extravasation of Circulating Tumor Cells, Dev. Cell, vol.45, pp.33-52, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01694694

J. Li and M. R. King, Adhesion receptors as therapeutic targets for circulating tumor cells, Front. Oncol, vol.2, 2012.

C. L. Chaffer and R. A. Weinberg, A Perspective on Cancer Cell Metastasis, Science, vol.331, pp.1559-1564, 2011.

M. Kim, Tumor Self-Seeding by Circulating Cancer Cells, Cell, vol.139, pp.1315-1326, 2009.

I. J. Fidler and . Metastasis, Quantitative Analysis of Distribution and Fate of Tumor Emboli Labeled With 125I-5-Iodo-2? -deoxyuridine, JNCI J. Natl. Cancer Inst, vol.45, pp.773-782, 1970.

K. J. Luzzi, Multistep Nature of Metastatic Inefficiency: Dormancy of Solitary Cells after Successful Extravasation and Limited Survival of Early Micrometastases, Am. J. Pathol, vol.153, pp.865-873, 1998.

J. Kim, Rapid apoptosis in the pulmonary vasculature distinguishes non-metastatic from metastatic melanoma cells, Cancer Lett, vol.213, pp.203-212, 2004.

C. L. Hodgkinson, Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung cancer, Nat. Med, vol.20, pp.897-903, 2014.

I. Baccelli, Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay, Nat. Biotechnol, vol.31, pp.539-544, 2013.

P. E. Goss and A. F. Chambers, Does tumour dormancy offer a therapeutic target?, Nat. Rev. Cancer, vol.10, pp.871-877, 2010.

Y. Kang and K. Pantel, Tumor Cell Dissemination: Emerging Biological Insights from Animal Models and Cancer Patients, Cancer Cell, vol.23, pp.573-581, 2013.

C. A. Klein, Parallel progression of primary tumours and metastases, Nat. Rev. Cancer, vol.9, pp.302-312, 2009.

R. N. Kaplan, VEGFR1-positive haematopoietic bone marrow progenitors initiate the premetastatic niche, Nature, vol.438, pp.820-827, 2005.

Y. Liu and X. Cao, Characteristics and Significance of the Pre-metastatic Niche, Cancer Cell, vol.30, pp.668-681, 2016.

M. Gerlinger, Intratumor heterogeneity and branched evolution revealed by multiregion sequencing, N. Engl. J. Med, vol.366, pp.883-892, 2012.

E. Welcome-to and . Portal, , p.19, 2018.

, When It Can Be Cured, p.19, 2018.

K. Nakamura, Clinical relevance of circulating cell-free microRNAs in ovarian cancer, Mol. Cancer, vol.15, p.48, 2016.

A. Di-meo, J. Bartlett, Y. Cheng, M. D. Pasic, and G. M. Yousef, Liquid biopsy: a step forward towards precision medicine in urologic malignancies, Mol. Cancer, vol.16, p.80, 2017.

A. Esposito, C. Criscitiello, M. Locatelli, M. Milano, and G. Curigliano, Liquid biopsies for solid tumors: Understanding tumor heterogeneity and real time monitoring of early resistance to targeted therapies, Pharmacol. Ther, vol.157, pp.120-124, 2016.

S. A. Joosse and K. Pantel, Tumor-Educated Platelets as Liquid Biopsy in Cancer Patients, Cancer Cell, vol.28, pp.552-554, 2015.

S. Braun, Cytokeratin-Positive Cells in the Bone Marrow and Survival of Patients with Stage I, II, or III Breast Cancer, p.22, 2009.

T. Fehm, Cytogenetic Evidence That Circulating Epithelial Cells in Patients with Carcinoma Are Malignant, Clin. Cancer Res, vol.8, pp.2073-2084, 2002.

J. Weitz, Dissemination of tumor cells in patients undergoing surgery for colorectal cancer, Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res, vol.4, pp.343-348, 1998.

E. Racila, Detection and characterization of carcinoma cells in the blood, Proc. Natl. Acad. Sci. U. S. A, vol.95, pp.4589-4594, 1998.

R. Gertler, Detection of Circulating Tumor Cells in Blood Using an Optimized Density Gradient Centrifugation, Molecular Staging of Cancer, pp.149-155, 2003.

R. Sabbatini, Detection of circulating tumor cells by reverse transcriptase polymerase chain reaction of maspin in patients with breast cancer undergoing conventional-dose chemotherapy, J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol, vol.18, 1914.

M. Stroun, Neoplastic Characteristics of the DNA Found in the Plasma of Cancer Patients, Oncology, vol.46, pp.318-322, 1989.

G. D. Sorenson, Soluble normal and mutated DNA sequences from single-copy genes in human blood, Cancer Epidemiol. Biomark. Prev. Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol, vol.3, pp.67-71, 1994.

J. C. Wan, Liquid biopsies come of age: towards implementation of circulating tumour DNA, Nat. Rev. Cancer, vol.17, pp.223-238, 2017.

N. Kosaka, Y. Yoshioka, Y. Fujita, and T. Ochiya, Versatile roles of extracellular vesicles in cancer, J. Clin. Invest, vol.126, pp.1163-1172

A. Becker, Extracellular Vesicles in Cancer: Cell-to-Cell Mediators of Metastasis, Cancer Cell, vol.30, pp.836-848, 2016.

L. A. Diaz and A. Bardelli, Liquid Biopsies: Genotyping Circulating Tumor DNA, J. Clin. Oncol, vol.32, pp.579-586, 2014.

F. Mouliere and N. Rosenfeld, Circulating tumor-derived DNA is shorter than somatic DNA in plasma, Proc. Natl. Acad. Sci. U. S. A, vol.112, pp.3178-3179, 2015.

F. Leung, Circulating Tumor DNA as a Cancer Biomarker: Fact or Fiction?, Clin. Chem, vol.62, pp.1054-1060, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01867326

Y. H. Soung, S. Ford, V. Zhang, and J. Chung, Exosomes in Cancer Diagnostics, Cancers, vol.9, 2017.

J. Ko, E. Carpenter, and D. Issadore, Detection and isolation of circulating exosomes and microvesicles for cancer monitoring and diagnostics using micro-/nano-based devices, The Analyst, vol.141, pp.450-460, 2016.

T. Brodbeck, N. Nehmann, A. Bethge, G. Wedemann, and U. Schumacher, Perforin-dependent direct cytotoxicity in natural killer cells induces considerable knockdown of spontaneous lung metastases and computer modelling-proven tumor cell dormancy in a HT29 human colon cancer xenograft mouse model, Mol. Cancer, vol.13, p.244, 2014.

J. D. Spicer, Neutrophils Promote Liver Metastasis via Mac-1-Mediated Interactions with Circulating Tumor Cells, Cancer Res, vol.72, pp.3919-3927, 2012.

A. W. Lambert, D. R. Pattabiraman, and R. A. Weinberg, Emerging Biological Principles of Metastasis, Cell, vol.168, pp.670-691, 2017.

D. L. Adams, Circulating giant macrophages as a potential biomarker of solid tumors, Proc. Natl. Acad. Sci. U. S. A, vol.111, pp.3514-3519, 2014.

U. F. Themes, Blood. Basicmedical Key, 2016.

M. Yan and P. Jurasz, The role of platelets in the tumor microenvironment: From solid tumors to leukemia, Biochim. Biophys. Acta BBA -Mol. Cell Res, vol.1863, pp.392-400, 2016.

G. J. Caine, P. S. Stonelake, G. Y. Lip, and S. T. Kehoe, The Hypercoagulable State of Malignancy: Pathogenesis and Current Debate, Neoplasia N. Y. N, vol.4, pp.465-473, 2002.

J. S. Palumbo, Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells, Blood, vol.105, pp.178-185, 2005.

C. Philippe, Protection from tumor necrosis factor-mediated cytolysis by platelets, Am. J. Pathol, vol.143, pp.1713-1723, 1993.

F. R. Rickles and A. Falanga, Molecular Basis for the Relationship Between Thrombosis and Cancer, Thromb. Res, vol.102, pp.215-224, 2001.

M. Labelle, S. Begum, and R. O. Hynes, Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis, Cancer Cell, vol.20, pp.576-590, 2011.

D. Wirtz, K. Konstantopoulos, and P. C. Searson, The physics of cancer: the role of physical interactions and mechanical forces in metastasis, Nat. Rev. Cancer, vol.11, pp.512-522, 2011.

J. M. Barnes, J. T. Nauseef, and M. D. Henry, Resistance to Fluid Shear Stress Is a Conserved Biophysical Property of Malignant Cells, PLoS ONE, vol.7, 2012.

A. Fu, High expression of MnSOD promotes survival of circulating breast cancer cells and increases their resistance to doxorubicin, Oncotarget, vol.7, pp.50239-50257, 2016.

S. Regmi, A. Fu, and K. Q. Luo, High Shear Stresses under Exercise Condition Destroy Circulating Tumor Cells in a Microfluidic System, Sci. Rep, vol.7, p.39975, 2017.

A. Fabisiewicz and E. Grzybowska, CTC clusters in cancer progression and metastasis, Med. Oncol, vol.34, p.12, 2017.

C. M. Earhart, R. J. Wilson, R. L. White, N. Pourmand, and S. X. Wang, Microfabricated magnetic sifter for high-throughput and high-gradient magnetic separation, J. Magn. Magn. Mater, vol.321, pp.1436-1439, 2009.

S. Nagrath, Isolation of rare circulating tumour cells in cancer patients by microchip technology, Nature, vol.450, pp.1235-1239, 2007.

W. Sheng, Capture, release and culture of circulating tumor cells from pancreatic cancer patients using an enhanced mixing chip, Lab. Chip, vol.14, pp.89-98, 2014.

P. Gleghorn and J. , Capture of circulating tumor cells from whole blood of prostate cancer patients using geometrically enhanced differential immunocapture (GEDI) and a prostate-specific antibody, Lab. Chip, vol.10, pp.27-29, 2010.

F. S. Mandlebaum, The diagnosis of malignant tumors by paraffin sections of centrifuged exudates, J. Lab. Clin. Med, vol.2, p.580, 1917.

L. S. Lim, Microsieve lab-chip device for rapid enumeration and fluorescence in situ hybridization of circulating tumor cells, Lab. Chip, vol.12, pp.4388-4396, 2012.

S. Wit and . De, The detection of EpCAM + and EpCAM -circulating tumor cells, Sci. Rep, vol.5, p.12270, 2015.

J. F. Swennenhuis, Self-seeding microwell chip for the isolation and characterization of single cells, Lab. Chip, vol.15, pp.3039-3046, 2015.

M. Hosokawa, Size-Selective Microcavity Array for Rapid and Efficient Detection of Circulating Tumor Cells, Anal. Chem, vol.82, pp.6629-6635, 2010.

D. L. Adams, The systematic study of circulating tumor cell isolation using lithographic microfilters, RSC Adv, vol.9, pp.4334-4342, 2014.

S. Zheng, Membrane microfilter device for selective capture, electrolysis and genomic analysis of human circulating tumor cells, J. Chromatogr. A, vol.1162, pp.154-161, 2007.

R. A. Harouaka, Flexible Micro Spring Array Device for High-Throughput Enrichment of Viable Circulating Tumor Cells, Clin. Chem, vol.60, pp.323-333, 2014.

S. Zheng, 3D microfilter device for viable circulating tumor cell (CTC) enrichment from blood, Biomed. Microdevices, vol.13, pp.203-213, 2011.

M. Zhou, Separable Bilayer Microfiltration Device for Viable Label-free Enrichment of Circulating Tumour Cells, Sci. Rep, vol.4, p.7392, 2014.

H. Mohamed, M. Murray, J. N. Turner, and M. Caggana, Isolation of tumor cells using size and deformation, J. Chromatogr. A, vol.1216, pp.8289-8295, 2009.

S. J. Tan, L. Yobas, G. Y. Lee, C. N. Ong, and C. T. Lim, Microdevice for the isolation and enumeration of cancer cells from blood, Biomed. Microdevices, vol.11, pp.883-892, 2009.

J. S. Kuo, Deformability considerations in filtration of biological cells, Lab. Chip, vol.10, pp.837-842, 2010.

W. Beattie, X. Qin, L. Wang, and H. Ma, Clog-free cell filtration using resettable cell traps, Lab. Chip, vol.14, pp.2657-2665, 2014.

D. D. Carlo, Inertial microfluidics. Lab. Chip, vol.9, pp.3038-3046, 2009.

E. Sollier, Size-selective collection of circulating tumor cells using Vortex technology, Lab. Chip, vol.14, pp.63-77, 2013.

H. W. Hou, Isolation and retrieval of circulating tumor cells using centrifugal forces, Sci. Rep, vol.3, p.1259, 2013.

K. Loutherback, Deterministic separation of cancer cells from blood at 10 mL/min, AIP Adv, vol.2, 2012.

D. Mandair, A comparison of CellCollector with CellSearch in patients with neuroendocrine tumours, Endocr. Relat. Cancer, vol.23, pp.29-32, 2016.

T. M. Gorges, Enumeration and Molecular Characterization of Tumor Cells in Lung Cancer Patients Using a Novel In Vivo Device for Capturing Circulating Tumor Cells, Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res, vol.22, pp.2197-2206, 2016.

A. Markou, Multiplex Gene Expression Profiling of In Vivo Isolated Circulating Tumor Cells in High-Risk Prostate Cancer Patients, Clin. Chem. clinchem, p.275503, 2017.

A. Kuske, Improved detection of circulating tumor cells in non-metastatic high-risk prostate cancer patients, Sci. Rep, vol.6, p.39736, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01814421

J. C. Fischer, Diagnostic leukapheresis enables reliable detection of circulating tumor cells of nonmetastatic cancer patients, Proc. Natl. Acad. Sci, vol.110, pp.16580-16585, 2013.

E. I. Galanzha, In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells, Nat. Nanotechnol, vol.4, pp.855-860, 2009.

Y. Chang, Fiber-optic multiphoton flow cytometry in whole blood and in vivo, J. Biomed. Opt, vol.15, p.47004, 2010.

W. He, H. Wang, L. C. Hartmann, J. Cheng, and P. S. Low, In vivo quantitation of rare circulating tumor cells by multiphoton intravital flow cytometry, Proc. Natl. Acad. Sci. U. S. A, vol.104, pp.11760-11765, 2007.

S. M. Azarin, In vivo capture and label-free detection of early metastatic cells, Nat. Commun, vol.6, p.8094, 2015.

A. El-heliebi, AR-FL, PSA, and KRAS Point Mutations in Circulating Tumor Cells, Situ Detection and Quantification of AR-V7, p.281295, 2016.

S. M. Leong, Sampling circulating tumor cells for clinical benefits: how frequent?, J. Hematol. Oncol.J Hematol Oncol, vol.8, p.75, 2015.

G. Méhes, A. Witt, E. Kubista, and P. F. Ambros, Circulating Breast Cancer Cells Are Frequently Apoptotic, Am. J. Pathol, vol.159, pp.17-20, 2001.

, Apoptosis of circulating tumor cells in prostate cancer patients -Larson -2004 -Cytometry Part A -Wiley Online Library

A. Ring, EpCAM based capture detects and recovers circulating tumor cells from all subtypes of breast cancer except claudin-low, Oncotarget, vol.6, pp.44623-44634, 2015.

S. Becker, G. Becker-pergola, T. Fehm, D. Wallwiener, and E. Solomayer, Time is an important factor when processing samples for the detection of disseminated tumor cells in blood/bone marrow by reverse transcription-PCR, Clin. Chem, vol.50, pp.785-786, 2004.

I. H. Benoy, Detection of circulating tumour cells in blood by quantitative real-time RT-PCR: effect of pre-analytical time, Clin. Chem. Lab. Med, vol.44, pp.1082-1087, 2006.

T. J. Molloy, A. J. Bosma, and L. J. Veer, Towards an optimized platform for the detection, enrichment, and semi-quantitation circulating tumor cells, Breast Cancer Res. Treat, vol.112, pp.297-307, 2008.

K. H. Wong, Whole blood stabilization for the microfluidic isolation and molecular characterization of circulating tumor cells, Nat. Commun, vol.8, p.1733, 2017.

K. H. Wong, The Role of Physical Stabilization in Whole Blood Preservation, Sci. Rep, vol.6, p.21023, 2016.

. Chapter, Liquid Biopsy: an emerging concept towards precision medicine _____________________________________________________________________________________________________ 42

J. Qin, J. R. Alt, B. A. Hunsley, T. L. Williams, and M. R. Fernando, Stabilization of circulating tumor cells in blood using a collection device with a preservative reagent, Cancer Cell Int, vol.14, p.23, 2014.

M. M. Reinholz, Cytokeratin-19 and mammaglobin gene expression in circulating tumor cells from metastatic breast cancer patients enrolled in North Central Cancer Treatment Group trials, N0234/336/436/437, Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res, vol.17, pp.7183-7193, 2011.

F. Medeiros, C. T. Rigl, G. G. Anderson, S. H. Becker, and K. C. Halling, Tissue handling for genome-wide expression analysis: a review of the issues, evidence, and opportunities, Arch. Pathol. Lab. Med, vol.131, pp.1805-1816, 2007.

C. Alix-panabières and . Assay, Detection of Viable DTCs/CTCs in Solid Tumor Patients. in Minimal Residual Disease and Circulating Tumor Cells in Breast Cancer, pp.69-76, 2012.

C. Alix-panabières, K. Bartkowiak, and K. Pantel, Functional studies on circulating and disseminated tumor cells in carcinoma patients, Mol. Oncol, vol.10, pp.443-449, 2016.

J. Bu, Lab on a fabric: Mass producible and low-cost fabric filters for the high-throughput viable isolation of circulating tumor cells, Biosens. Bioelectron, vol.91, pp.747-755, 2017.

. Vycap, CTC enumeration of whole blood (Circulating Tumor Cells, liquid biopsy), VyCAP Available, p.5, 2018.

A. Yeung and E. Evans, Cortical shell-liquid core model for passive flow of liquid-like spherical cells into micropipets, Biophys. J, vol.56, pp.139-149, 1989.

C. T. Lim, E. H. Zhou, and S. T. Quek, Mechanical models for living cells--a review, J. Biomech, vol.39, pp.195-216, 2006.

F. A. Coumans, G. Dalum, . Van, M. Beck, and L. W. Terstappen, Filtration Parameters Influencing Circulating Tumor Cell Enrichment from Whole Blood, PLOS ONE, vol.8, p.61774, 2013.

E. Evans and B. Kukan, Passive material behavior of granulocytes based on large deformation and recovery after deformation tests, Blood, vol.64, pp.1028-1035, 1984.

L. Weiss and G. W. Schmid-schönbein, Biomechanical interactions of cancer cells with the microvasculature during metastasis, Cell Biophys, vol.14, pp.187-215, 1989.

Z. Zhang, J. Xu, B. Hong, and X. Chen, The effects of 3D channel geometry on CTC passing pressuretowards deformability-based cancer cell separation, Lab. Chip, vol.14, pp.2576-2584, 2014.

M. A. Tsai, R. S. Frank, and R. E. Waugh, Passive mechanical behavior of human neutrophils: power-law fluid, Biophys. J, vol.65, pp.2078-2088, 1993.

D. L. Adams, The systematic study of circulating tumor cell isolation using lithographic microfilters, RSC Adv, vol.9, pp.4334-4342, 2014.

G. Vona, Isolation by Size of Epithelial Tumor Cells, Am. J. Pathol, vol.156, pp.57-63, 2000.

I. Desitter, A new device for rapid isolation by size and characterization of rare circulating tumor cells, Anticancer Res, vol.31, pp.427-441, 2011.

S. Zheng, Membrane microfilter device for selective capture, electrolysis and genomic analysis of human circulating tumor cells, J. Chromatogr. A, vol.1162, pp.154-161, 2007.

S. Zheng, 3D microfilter device for viable circulating tumor cell (CTC) enrichment from blood, Biomed. Microdevices, vol.13, 2011.

M. Hosokawa, Size-Selective Microcavity Array for Rapid and Efficient Detection of Circulating Tumor Cells, Anal. Chem, vol.82, pp.6629-6635, 2010.

M. Hosokawa, Size-Based Isolation of Circulating Tumor Cells in Lung Cancer Patients Using a Microcavity Array System, PLOS ONE, vol.8, p.67466, 2013.

S. Yagi, Development of an automated size-based filtration system for isolation of circulating tumor cells in lung cancer patients, PLoS ONE, vol.12, 2017.

L. Shi-lim, Microsieve lab-chip device for rapid enumeration and fluorescence in situ hybridization of circulating tumor cells, Lab. Chip, vol.12, pp.4388-4396, 2012.

S. Wit and . De, The detection of EpCAM + and EpCAM -circulating tumor cells, Sci. Rep, vol.5, p.12270, 2015.

J. F. Swennenhuis, Self-seeding microwell chip for the isolation and characterization of single cells, Lab. Chip, vol.15, pp.3039-3046, 2015.

I. I. Chapter, Engineered polymer-based microdevices for the isolation of CTCs ________________________________________________________________________________________________________ 90

E. A. Evans and R. Skalak, Mechanics and thermodynamics of biomembranes: part 1, CRC Crit. Rev. Bioeng, vol.3, pp.181-330, 1979.

M. F. Dowgert, J. Wolfe, and P. L. Steponkus, The Mechanics of Injury to Isolated Protoplasts following Osmotic Contraction and Expansion, Plant Physiol, vol.83, pp.1001-1007, 1987.

R. A. Harouaka, Flexible Micro Spring Array Device for High-Throughput Enrichment of Viable Circulating Tumor Cells, Clin. Chem, vol.60, pp.323-333, 2014.

A. Of, . Basilic, and . Vein, THE ARM AND ITS IMPORTANCE FOR SURGERY. Periodikos Available, p.26, 2018.

E. S. Purvis, G. L. Hyde, and D. Peck, Anatomy of arm veins: Significance for vein valve transplantation, Clin. Anat, vol.5, pp.45-49, 2005.

A. Ooue, Changes in blood flow in a conduit artery and superficial vein of the upper arm during passive heating in humans, Eur. J. Appl. Physiol, vol.101, pp.97-103, 2007.

W. Ahn, J. Bahk, and Y. Lim, The 'Gauge' System for the Medical Use, Anesth. Analg, vol.95, p.1125, 2002.

K. H. Jensen, Modeling the Hydrodynamics of Phloem Sieve Plates, Front. Plant Sci, vol.3, 2012.

A. Selimis, V. Mironov, and M. Farsari, Direct laser writing: Principles and materials for scaffold 3D printing, Microelectron. Eng, vol.132, pp.83-89, 2015.

J. R. Munis, S. Bhatia, and L. J. Lozada, Peripheral venous pressure as a hemodynamic variable in neurosurgical patients, Anesth. Analg, vol.92, pp.172-179, 2001.

U. A. Baumann, Estimation of central venous pressure by ultrasound, Resuscitation, vol.64, pp.193-199, 2005.

, Chapter 5 Flow Around a Bluff Body: Obstacle Marks. in Developments in Sedimentology

J. R. Allen, , vol.30, pp.173-205, 1982.

A. Accardo, Multiphoton Direct Laser Writing and 3D Imaging of Polymeric Freestanding Architectures for Cell Colonization, Small, vol.13, p.1700621
URL : https://hal.archives-ouvertes.fr/hal-01534024

Y. Yoon, Clogging-free microfluidics for continuous size-based separation of microparticles, Sci. Rep, vol.6, p.26531, 2016.

R. J. Wakeman and C. J. Williams, Additional techniques to improve microfiltration, Sep. Purif. Technol, vol.26, pp.3-18, 2002.

W. Chen, Nanoroughened Surfaces for Efficient Capture of Circulating Tumor Cells without Using Capture Antibodies, ACS Nano, vol.7, pp.566-575, 2013.

J. Qiu, A titanium dioxide nanorod array as a high-affinity nano-bio interface of a microfluidic device for efficient capture of circulating tumor cells, Nano Res, vol.10, pp.776-784, 2017.

L. Shi, K. Wang, and Y. Yang, Adhesion-based tumor cell capture using nanotopography, Colloids Surf. B Biointerfaces, vol.147, pp.291-299, 2016.

H. Cayron, Sélection et capture de biomarqueurs moléculaires et cellulaires à partir d'un fluide complexe, 2016.

E. Matthiasson and B. Sivik, Concentration polarization and fouling, Desalination, vol.35, pp.59-103, 1980.

A. Zocca, P. Colombo, C. M. Gomes, and J. Günster, Additive Manufacturing of Ceramics: Issues, Potentialities, and Opportunities, J. Am. Ceram. Soc, vol.98, 1983.

W. E. Frazier, Metal Additive Manufacturing: A Review, J. Mater. Eng. Perform, vol.23, pp.1917-1928, 2014.

A. Vyatskikh, Additive manufacturing of 3D nano-architected metals, Nat. Commun, vol.9, p.593, 2018.

F. Kotz, Three-dimensional printing of transparent fused silica glass, Nature, vol.544, pp.337-339, 2017.

, FEMTOprint | 3D printing for glass microdevices. FEMTOprint | 3D printing for glass microdevices Available, p.28, 2018.

M. Hosokawa, Size-Selective Microcavity Array for Rapid and Efficient Detection of Circulating Tumor Cells, Anal. Chem, vol.82, pp.6629-6635, 2010.

T. Sun, R. Smallwood, and S. Macneil, Development of a mini 3D cell culture system using well defined nickel grids for the investigation of cell scaffold interactions, J. Mater. Sci. Mater. Med, vol.20, pp.1483-1493, 2009.

B. M. Seitz, T. Krieger-burke, G. D. Fink, and S. W. Watts, Serial Measurements of Splanchnic Vein Diameters in Rats Using High-Frequency Ultrasound, Front. Pharmacol, vol.7, p.116, 2016.

T. Küme, The effects of different syringe volume, needle size and sample volume on blood gas analysis in syringes washed with heparin, Biochem. Medica, vol.22, pp.189-201, 2012.

J. Gao, J. E. Dennis, R. F. Muzic, M. Lundberg, and A. I. Caplan, The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion, Cells Tissues Organs, vol.169, pp.12-20, 2001.

R. E. Madden and R. A. Malmgren, Quantitative studies on circulating cancer cells in the mouse, Cancer Res, vol.22, pp.62-66, 1962.

H. L. Weissberg, End Correction for Slow Viscous Flow through Long Tubes, Phys. Fluids, vol.5, pp.1033-1036, 1962.

Z. Dagan, S. Weinbaum, and R. Pfeffer, An infinite-series solution for the creeping motion through an orifice of finite length, J. Fluid Mech, vol.115, pp.505-523, 1982.

K. H. Jensen, Modeling the Hydrodynamics of Phloem Sieve Plates, Front. Plant Sci, vol.3, 2012.

K. H. Jensen, A. X. Valente, and H. A. Stone, Flow rate through microfilters: Influence of the pore size distribution, hydrodynamic interactions, wall slip, and inertia, Phys. Fluids, vol.26, p.52004, 2014.