F. Lallement, Etude, développement et caractérisation de procédés de dopage par plasma appliqués aux technologies électroniques avancées, 2005.

P. G. Carey and T. W. Sigmon, In-situ doping of silicon using the gas immersion laser doping (gild) process, Applied Surface Science, vol.43, pp.325-332, 1989.

E. Rosseel, S. Dhayalan, A. Hikavyy, R. Loo, H. B. Profijt et al., Selective Epitaxial Growth of high-P Si:P for Source/Drain Formation in Advanced Si nFETs, ECS Transactions, vol.75, pp.347-359, 2016.

D. Suwito, U. Jäger, J. Benick, S. Janz, M. Hermle et al., Industrially feasible rear passivation and contacting scheme for highefficiency n-type solar cells yielding a Voc of 700 mV, IEEE Trans. Electron Devices, vol.57, issue.8, pp.2032-2036, 2010.

P. Gundel, D. Suwito, U. Jäger, F. D. Heinz, W. Warta et al., Comprehensive Microscopic Analysis of Laser-Induced High Doping Regions in Silicon, IEEE Transactions on Electron Devices, vol.58, issue.9, 2011.

C. Lu, Fabrication de CMOS à basse température pour l'intégration 3D séquentielle, 2017.

C. Fenouillet-beranger, B. Mathieu, B. Previtali, M. Samson, N. Rambal et al., New insights on bottom layer thermal stability and laser annealing promises for high performance 3D VLSI, IEEE International Electron Devices Meeting, 2014.

M. Hernandez, Procédé laser de réalisation de jonctions ultra-minces pour la microélectronique silicium : étude expérimentale, modélisation et tests de faisabilité, Université Paris-Sud, vol.11, 2005.

M. Darif, Etude de la recristallisation du silicium par procédé laser nanoseconde pour la formation et le contrôle des jonctions ultraminces, 2011.

Y. Takamura, Thermal stability of laser annealed dopants in silicon, 2003.

V. Privitera, A. Magna, C. Spinella, G. Fortunato, L. Mariucci et al., Integration of Melting Excimer Laser Annealing in Power MOS Technology, IEEE Transactions on Electron Devices, vol.54, issue.4, pp.852-860, 2007.

M. Ametowobla, G. Bilger, J. R. Köhler, and J. H. Werner, Laser induced lifetime degradation in p-type crystalline silicon, Journal of Applied Physics, vol.111, issue.11, p.114515, 2012.

J. P. Ponpon, E. Buttung, and P. Siffert, Caractéristiqies électriques de diodes Au-Si(N) réalisées après irradiation par laser, Revue Phys. Appl, vol.17, pp.687-692, 1982.

K. Hoh, H. Koyama, K. Uda, and Y. Miura, Incorporation of Oxygen into Silicon during Pulsed-Laser Irradiation, Japanese Journal of Applied Physics, vol.19, issue.7, pp.375-378, 1980.

M. Berti, L. F. Doná-dale-rose, and A. V. Drigo, Matrix atomic losses and oxygen incorporation under ruby-laser irradiation of silicon in gaseous atmospheres, Physical Review B, vol.34, issue.4, p.2346, 1986.

A. G. Cullis, H. C. Webber, and N. G. Chew, Correlation of the structure and electrical properties of ion-implanted and laser-annealed silicon, Applied Physics Letters, vol.36, issue.547, 1980.

L. C. Kimerling and J. L. Benton, Defects in laser-processed semiconductors, Laser and Electron Beam Processing of Materials, p.385, 1980.

R. A. Street, N. M. Johnson, and J. F. Gibbons, Defect luminescence in cw laserannealed silicon, Journal of Applied Physics, vol.50, 1979.

M. S. Skolnick, A. G. Cullis, and H. C. Webber, Defect photoluminescence from pulsedlaser-annealed ion-implanted Si, Applied Physics Letters, vol.38, 1981.

K. Murata, Y. Yasutake, K. Nittoh, S. Fukatsu, and K. Miki, High-density G-centers, light-emitting point defects in silicon crystal, AIP Advances, vol.1, issue.3, p.32125, 2011.

Y. Han, E. Franklin, A. Fell, M. Ernst, H. T. Nguyen et al., Lowtemperature micro-photoluminescence spectroscopy on laser-doped silicon with different surface conditions, Applied Physics A, vol.122, issue.4, 2016.

J. Vanhellemont, E. Simoen, A. Kaniava, M. Libezny, and C. Claeys, Impact of oxygen related extended defects on silicon diode characteristics, Journal of Applied Physics, vol.77, issue.11, pp.5669-5676, 1995.

T. Trupke, R. Baros, M. Schubert, and W. Warta, Photoluminescence imaging of silicon wafers, Appl. Phys. Lett, vol.89, pp.44107-44108, 2006.

N. A. Drozdov, A. A. Patrin, and V. T. Tkachev, Modification of the Dislocation Luminescence Spectrum by Oxygen Atmospheres in Silicon, phys. Stat. sol, vol.64, pp.63-65, 1981.

K. Shen, H. Chen, T. Liao, and C. Kuan, Applying low-energy multipulse excimer laser annealing to improve charge retention of Au nanocrystals embedded MOS capacitors, Journal of Physics D: Applied Physics, vol.48, issue.5, p.55101, 2015.

E. and A. Alam, Développement de briques technologiques pour la réalisation de transistors MOS de puissance en Nitrure de Gallium, 2011.

M. A. Vouk and E. C. Lightowlers, Two-phonon assisted free exciton recombination radiation from intrinsic silicon, J. Phys. C: Solid State Phys, vol.10, pp.3689-3699, 1977.

O. Demichel, Propriétés Electroniques de Nanofils de Silicium obtenus par Croissance Catalysée, 2010.

J. R. Haynes, Experimental observation of the excitonic molecule, Physical Review Letters, vol.17, issue.16, pp.860-862

J. Mooney and P. Kambhampati, Get the Basics Right: Jacobian Conversion of Wavelength and Energy Scales for Quantitative Analysis of Emission Spectra, The Journal of Physical Chemistry Letters, vol.4, issue.19, pp.3316-3318, 2013.

C. Daher, Analyse par spectroscopies Raman et infrarouge de matériaux naturels organiques issus d'objets du patrimoine : méthodologies et applications, 2012.

F. Severac, Jonctions ultra-minces p+/n pour MOS « ultimes » : étude de l'impact des défauts cristallins sur la mobilité et l'activation du bore, 2009.

D. V. Lang, Deep-level transient spectroscopy: A new method to characterize traps in semiconductors, Journal of Applied Physics, vol.45, issue.7, pp.3023-3032, 1974.

S. Weiss and R. Kassing, Deep level transient fourier spectroscopy (dltfs) -a technique for the analysis of deep level propertie, Solid-state electron, vol.31, issue.12, pp.1733-1742, 1988.

V. P. Tolstoy, I. V. Chernyshova, and V. A. Skryshevsky, Handbook of Infrared Spectroscopy of Ultrathin Films, 2003.

A. Lazrak, Etude par photoluminescence des centres associés à l'oxygène et au carbone dans le silicium, 1984.

M. Tajima, H. Kiuchi, F. Higuchi, and A. Ogura, Quantification of C in Si by photoluminescence at liquid N temperature after electron irradiation, Applied Physics Express, vol.10, issue.4, p.46602, 2017.

A. Borghesi, B. Pivac, A. Sassella, and A. Stella, Oxygen precipitation in silicon, J. Appl. Phys, vol.77, pp.4169-4244, 1995.

Y. Yatsurugi, N. Akiyama, and Y. Endo, Concentration, Solubility, and Equilibrium Distribution Coefficient of Nitrogen and Oxygen in Semiconductor Silicon, J. Electrochem. Soc, vol.120, issue.7, pp.975-979, 1973.

Y. Han, E. Franklin, A. Fell, M. Ernst, H. T. Nguyen et al., Lowtemperature micro-photoluminescence spectroscopy on laser-doped silicon with different surface conditions, Applied Physics A, vol.122, issue.4, 2016.

L. Reimer, EELspectroscopy: A Reference Handbook of Standard Data for Identification and Interpretation of Electron Energy Loss Spectra and for Generation Spectroscopic Images, Carl Zeiss, Electron Optics Division, 1992.

G. Mannino, V. Privitera, A. Magna, E. Rimini, E. Napolitani et al., Depth distribution of B implanted in Si after excimer laser irradiation, Applied Physics Letters, vol.86, p.51909, 2005.

K. Hoh, H. Koyama, K. Uda, and Y. Miura, Incorporation of Oxygen into Silicon during Pulsed-Laser Irradiation, Japanese Journal of Applied Physics, vol.19, issue.7, pp.375-378, 1980.

M. Berti, L. F. Doná-dale-rose, and A. V. Drigo, Matrix atomic losses and oxygen incorporation under ruby-laser irradiation of silicon in gaseous atmospheres, Physical Review B, vol.34, issue.4, p.2346, 1986.

J. C. Mikkelsen, Selfdiffusivity of network oxygen in vitreous SiO2, Applied Physics Letters, vol.45, pp.1187-1189, 1984.

G. Impellizzeri, E. Napolitani, R. Milazzo, S. Boninelli, M. Cuscunà et al., Role of oxygen on the electrical activation of B in Ge by excimer laser annealing, Phys. Status Solidi A, vol.211, issue.1, pp.122-125, 2014.

Y. Yoshida, Defects and Impurities in Silicon Materials, 2015.

S. Kishino, Y. Matsushita, M. Kanamori, and T. Iizuka, Thermally Induced Microdefects in Czochralski-Grown Silicon: Nucleation and Growth Behavior, Japanese Journal of Applied Physics, vol.21, issue.1, pp.1-12, 1982.

H. Hirata and K. Hoshikawa, Oxygen solubility and its temperature dependence in a silicon melt in equilibrium with solid silica, Journal of Crystal Growth, vol.106, pp.657-664, 1990.

R. G. Mazur and D. H. Dickey, A Spreading Resistance Technique for Resistivity Measurements on Silicon, Journal of the Electrochemical Society, vol.113, issue.3, 1966.

W. Kaiser, H. Frisch, and H. Reiss, Mechanism of the Formation of Donor States in Heat-Treated Silicon, Physical Review, vol.112, issue.5, 1958.

V. Privitera, A. Magna, C. Spinella, G. Fortunato, L. Mariucci et al., Integration of Melting Excimer Laser Annealing in Power MOS Technology, IEEE Transactions on Electron Devices, vol.54, issue.4, pp.852-860, 2007.

J. P. Ponpon, E. Buttung, and P. Siffert, Caractéristiqies électriques de diodes Au-Si(N) réalisées après irradiation par laser, Revue Phys. Appl, vol.17, pp.687-692, 1982.

G. Mannino, V. Privitera, A. Magna, E. Rimini, E. Napolitani et al., Depth distribution of B implanted in Si after excimer laser irradiation, Applied Physics Letters, vol.86, p.51909, 2005.

E. Simoen, C. Claeys, and J. Vanhellemont, Defect Analysis in Semiconductor Materials Based on p-n Junction Diode Characteristics, pp.1-24, 2007.

, TCAD Sentaurus Process User Guide, I-2013.12 version; Synopsis, 2013.

A. L. Bloa, D. Tran-quan, and Z. Guennouni, FTDLTS: une nouvelle méthode DLTS isotherme à transformées de Fourier, Meas. Sci. Technol, vol.4, pp.325-336, 1993.

P. Audren, J. M. Dumas, M. P. Favennec, and S. Mottet, Etude des pièges dans les transistors à haute mobilité électronique sur GaAs à l'aide de la méthode dite de « relaxation isotherme ». Corrélation avec les anomalies de fonctionnement, J. Phys. III, vol.3, issue.2, pp.185-206

S. Weiss and R. Kassing, Deep level transient fourier spectroscopy (dltfs) -a technique for the analysis of deep level propertie, Solid-state electron, vol.31, issue.12, pp.1733-1742, 1988.

L. C. Kimerling, M. T. Asom, J. L. Benton, P. J. Drevinsky, and C. E. Caefer, Insterstitial Defect Reactions in Silicon, pp.141-150, 1989.

C. Nyamhere, A. Scheinemann, A. Schenk, A. Scheit, F. Olivie et al., A comprehensive study of the impact of dislocation loops on leakage currents in Si shallow junction devices, Journal of Applied Physics, vol.118, pp.1-13, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01921377

, Références de l'Annexe 2

M. Tajima, Spectroscopy and Topography of Deep-Level Luminescence in Photovoltaic Silicon, IEEE Journal of Photovoltaics, vol.4, issue.6, pp.1452-1458, 2014.

T. Trupke, R. A. Bardos, M. C. Schubert, and W. Warta, Photoluminescence imaging of silicon wafers, Appl. Phys. Lett, vol.89, pp.44107-44108, 2006.

N. A. Drozdov, A. A. Patrin, and V. D. Tkachev, Recombination radiation on dislocations in silicon, vol.23, pp.597-599, 1976.

V. V. Kveder, E. A. Steinman, and H. G. Grimmeiss, Dislocation Related Electroluminescence at Romm Temperature in Plastically Deformed Silicon" Solid State Phenom, pp.419-424, 1996.

V. Higgs, E. C. Lightowlers, S. Tajbakhsh, and P. J. Wright, Cathodoluminescence imaging and spectroscopy of dislocations in Si and Si1-xGe x alloys, Appl. Phys. Lett, vol.61, pp.1087-1089, 1992.

M. Suezawa, Y. Sasaki, and K. Sumino, Dependence of Photoluminescence on Temperature in Dislocated Silicon Crystals, Phys. Status Solidi A, vol.79, pp.173-181, 1983.

M. C. Schubert, P. Gundel, M. The, W. Warta, M. Romero et al., Spatially resolved luminescence spectroscopy on multicrystalline silicon, Proceedings of 23rd EU-PVSEC, pp.17-23, 2008.

R. Sauer, J. Weber, J. Stolz, E. R. Weber, K. Keusters et al., Dislocationrelated photoluminescence in silicon, Appl. Phys. A, vol.36, pp.1-13, 1985.

M. Suezawa, Y. Sasaki, Y. Nishina, and K. Sumino, Radiative Recombination on Dislocations in Silicon Crystals, Jpn. J. Apl. Phys, vol.36, pp.1-13, 1981.

M. Tajima and Y. Matsushita, Photoluminescence Related to Dislocations in Annealed Czochralski-Grown Si Crystals, Jpn. J. Apl. Phys, vol.22, pp.589-591, 1983.

M. Tajima, T. Masui, and T. Abe, Mapping of microdefects in silicon crystals by photoluminescence at room temperature, Semiconductor Silicon, pp.994-1004, 1990.

M. Tajima, H. Takeno, and T. Abe, Characterization of point Defects in Si Crystals by Highly Spatially Resolved Photoluminescence, Mat. Sci. Forum, pp.1327-1332, 1992.

Y. Kitagawara, R. Hoshi, and T. Takenaka, Evaluation of Oxygen Precipitated Silicon Crystals by Deep-Level Photoluminescence at Room Temperature and Its Mapping, J. Electrochem. Soc, vol.139, pp.2277-2281, 1992.

M. Nakamura, E. Kitamura, Y. Misawa, T. Suzuki, S. Nagai et al., Photoluminescence Measurement of Carbon in Silicon Crystals Irradiated with High Energy Electrons, J.Electrochem. Soc, vol.141, issue.12, 1994.

M. Tajima, M. Tokita, and M. Warashina, Photoluminescence Due To Oxygen Precipitates Distinguished from the D Lines in Annealed Si, Mat. Sci. Forum, vols, pp.1749-1754, 1995.

Y. Koshka, S. Ostapenko, I. Tarasov, S. Mchugo, and J. P. Kalejs, Scanning roomtemperature photoluminescence in polycrystalline silicon, Appl. Phys. Lett, vol.74, pp.1555-1557, 1999.

S. Ostapenko, I. Tarasov, J. P. Kalejs, C. Haessler, and E. Reisner, Defect monitoring using scanning photoluminescence spectroscopy in multicrystalline silicon wafers, Semicond. Sci. Technol, vol.15, pp.840-848, 2000.

S. Pizzini, M. Guzzi, E. Grilli, and G. Borionetti, The photoluminescence emission in the 0.7-0.9 eV range from oxygen precipitates, thermal donors and dislocations in silicon, J. Phys., Condens. Matter, vol.12, pp.10131-10143, 2000.

. Tz, W. Arguirov, M. Seifert, J. Kittler, and . Reif, Temperature behavior of photoluminescence and electron-beam-induced current recombination behavior of extended defects in solar grade silicon, J. Phys. Condens. Matter, vol.14, pp.13169-13177, 2002.

S. Binetti, S. Pizzini, E. Leoni, R. Somaschini, A. Castaldini et al., Optical properties of oxygen precipitates and dislocations in silicon, J. Appl. Phys, vol.92, pp.2437-2445, 2002.

H. T. Nguyen, Y. Han, M. Ernst, A. Fell, E. Franklin et al., Dislocations in laser-doped silicon detected by micro-photoluminescence spectroscopy, Appl. Phys. Lett, vol.107, issue.2, p.22101, 2015.

H. T. Nguyen, F. E. Rougieux, F. Wang, and D. Macdonald, Effects of solar cell processing steps on dislocation luminescence in multicrystalline silicon, Energy Procedia, vol.77, pp.619-625, 2015.

Y. J. Han, E. Franklin, A. Fell, M. Ernst, H. T. Nguyen et al., Low-temperature micro-photoluminescence spectroscopy on laser-doped silicon with different surface conditions, Appl. Phys. A, vol.122, p.420, 2016.

H. T. Nguyen, S. Phang, J. Wong-leung, and D. Macdonald, Photoluminescence Excitation Spectroscopy of Diffused Layers on Crystalline Silicon Wafers, IEEE J. of Photovoltaics, vol.6, issue.3, pp.746-753, 2016.

M. Tajima, Y. Iwata, F. Okayama, H. Toyota, H. Onodera et al., Deeplevel photoluminescence due to dislocations and oxygen precipitates in multicrystalline Si, J. Appl. Phys, vol.111, pp.113523-113524, 2012.

K. Bothe and J. Schmidt, Figure A4.2 : Simulation du profil de la zone de charge d'espace ZCE en comparaison du profil de concentration pour l'échantillon, J. Appl. Phys, vol.99, pp.13701-13702, 2006.

, Les fichiers de simulation sont détaillés ci-dessous

, Region // Création d'une région de 1x10 µm² de silicium nommée « Sil » (sdegeo:create-rectangle (position 0 0 0 ) (position 1 10 0 ) "Silicon

, ##" ) (sdegeo:define-contact-set "Cathode" 4 (color:rgb 1 1 1 ) "##" ) (sdegeo:define-2d-contact, Contact // Définition des contacts Anode et Cathode puis placement géographique (sdegeo:define-contact-set "Anode" 4 (color:rgb 1 0 0 )

. Dopage-//-dopage-de-la and . Doping, Line" (position 0 0 0) (position 1 0 0) ) (sdedr:define-1d-external-profile "Substrat_Definition

, µm² sur toute la région Sil et une seconde de 0,05x0,05 µm² dans une région proche de la surface (sdedr:define-refeval-window "Struct

G. Name=, Voltage= @Va@ })

, TCAD Sentaurus Process User Guide, version I-2013.12; Synopsis, 2013.

V. Mortet, Hall Effect Characterization of 4H-SiC MOSFETs: Influence of Nitrogen Channel Implantation, Materials Science Forum, pp.525-528, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01921860

R. Monflier, T. Tabata, H. Rizk, M. Turpin, J. Roul et al., Identification and localization of defects induced by nanosecond excimer laser annealed in silicon

R. Daubriac, E. Scheid, H. Rizk, R. Monflier, S. Joblot et al., A Differential Hall Effect method with sub-nanometre resolution for active dopant concentraton profiling in ultrathin doped Si1-xGex and Si layers, Beilstein Journal of Nanotechnology, vol.9, pp.1926-1939, 2018.

R. Monflier, M. Thene, L. Salvagnac, B. Franc, E. Bedel-pereira et al., Magnetic Field Effects in X-Ray Damaged NPB and MADN OLEDs, IEEE Transactions on Magnetics, vol.99, pp.1-4, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02051962

R. Monflier, K. Isoird, A. Cazarre, J. Tasselli, A. Servel et al., Diamond Schottky diodes operating at 473 K, EPE Journal, vol.27, pp.118-124, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01618095

R. Monflier, H. Rizk, T. Tabata, J. Roul, S. Boninelli et al., Defects Investigation in Nanosecond laser Annealed Crystalline Silicon: Identification and Localization, 22nd International Conference on Ion Implantation Technology, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01803955

J. Bobo, R. Monflier, L. Salvagnac, E. Bedel-pereira, and I. Séguy, Influence of insitu x-ray exposure on the magnetotransport properties of NPB and MADN based blue OLED structures, International Conference on Magnetism, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02140836

J. Bobo, R. Monflier, L. Salvagnac, E. Bedel-pereira, and I. Séguy, Influence of insitu x-ray exposure on the magnetotransport properties of NPB and MADN based blue OLED structures, 14th International Conference On Organic Electronics, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02140836

R. Monflier, T. Tabata, M. Turpin, A. Benyoucef, F. Cristiano et al., Evaluating depth distribution of excimer laser induced defects in silicon using micro-photoluminescence spectroscopy, MRS Fall Meeting, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01555348

R. Monflier, F. Sekli, L. Salvagnac, I. Seguy, E. Bedel-pereira et al., Effect of growth-induced X-ray exposure on the transport, magnetotransport and luminescence properties of OLEDs, E-MRS Spring Meeting, 2017.

R. Monflier, T. Tabata, C. Filadelfo, I. Toque-tresonne, F. Mazzamuto et al.,

C. Hungria-hernandez, E. Routaboul, and . Bedel-pereira, Defect investigation of excimer laser annealed silicon, 11th IEEE Nanotechnology Materials and Devices Conference, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01343978

R. Monflier, A. Benyoucef, M. Turpin, F. Cristiano, and E. Bedel-pereira, Etude des défauts induits par recuit laser excimer sur silicium, Journées Nationales du Réseau Doctoral en Micro-nanoélectronique, 2017.

I. Séguy, L. Salvagnac, R. Monflier, A. Cherif, F. Sekli et al., Influence d'un champ magnétique sur les propriétés optiques et de transport d'OLEDS bleues, Deuxième Congrès National Science et Technologie des Systèmes pi-Conjugués, 2017.

R. Monflier, K. Isoird, A. Cazarre, J. Tasselli, A. Servel et al., Diodes Schottky diamant fonctionnant à 200 °C, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01245628

R. Monflier, H. Rizk, F. Cristiano, and E. Bedel-pereira, Les défauts induits par recuit laser excimer, 2018.

R. Monflier, F. Cristiano, and E. Bedel-pereira, Défauts induits par recuit laser nanoseconde, 2018.

R. Monflier, E. Bedel-pereira, and F. Cristiano, Investigation of the role of oxygen, 2018.

R. Monflier, H. Rizk, F. Cristiano, and E. Bedel-pereira, Les défauts induits par recuit laser excimer, 2018.

R. Monflier, E. Bedel-pereira, and F. Cristiano, Optical defects generated by laser doping, 2017.

R. Monflier, T. Tabata, M. Turpin, A. Benyoucef, F. Cristiano et al., Evaluating depth distribution of excimer laser induced defects in silicon using micro-photoluminescence spectroscopy, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01555348

R. Monflier, E. Bedel-pereira, and F. Cristiano, Samples homogeneity after LTA, IMM-CNR), 2017.

R. Monflier, E. Bedel-pereira, and F. Cristiano, 001 loops defects PL signatures, 2016.

R. Monflier, E. Bedel-pereira, and F. Cristiano, Inverstigation of the role of oxygen, STMicroelectronics, SCREEN-LASSE, IMM-CNR), 2016.

R. Monflier, A. Benyoucef, M. Turpin, H. Rizk, T. Tabata et al., i) Optimisation et modélisation du procédé de recuit laser. (ii) Applications industrielles (amélioration de couches dopées en termes d'activation de dopant et réduction de défauts), 2018.

R. Monflier, A. Benyoucef, M. Turpin, H. Rizk, K. Huet et al., i) Propriétés de transport de structures 1D formées par recuit laser à excimère : impact des paramètres de recuit. (ii) Etude du profil de fusion sur structures 2D recuites par laser à excimère, Délivrable D5, Février, 2018.

E. Bedel-pereira, R. Monflier, F. Cristiano, K. Huet, F. Mazzamuto et al., Tabata et I. Toque-Tresonne, "(i) Propriétés physiques de structures 1D formées par recuit laser à excimère : impact des paramètres de recuit. (ii) Propriétés de transport de structures 1D formées par recuit laser à excimère : suivi des étapes de fabrication des transistors MOS, 2017.

E. Bedel-pereira, R. Monflier, F. Cristiano, F. Mazzamuto, T. Tabata et al., Propriétés physiques de structures 1D formées par recuit laser à excimère : mise en place d'une méthodologie de mesure et identification des défauts, 2016.

E. Bedel-pereira, R. Monflier, E. Imbernon, B. Rousset, F. Cristiano et al., Propriétés électriques de jonctions formés par recuit laser excimer : structures de test de type MOS, 2016.

E. Bedel-pereira, R. Monflier, F. Cristiano, F. Mazzamuto, T. Tabata et al., Jonctions formés par recuit laser excimer : premiers résultats expérimentaux sur échantillons non « patternés, 2016.