&. Abdulmajeed and . Mansoor, Wael Abdulmajeed et Revan Mansoor. Implementing Kinect Sensor for Building 3D Maps of Indoor Environments, International Journal of Computer Applications, vol.86, p.29, 2014.

A. Sergey, Edge Weights Revisited : Introducing the Curvature Term, p.67, 2013.

A. , On Spectral Clustering : Analysis and an algorithm, Advances in Neural Information Processing Systems, vol.14, p.44, 2002.

. Andújar, Matching the Best Viewing Angle in Depth Cameras for Biomass Estimation Based on Poplar Seedling Geometry, Dionisio Andújar, César Fernández-Quintanilla et José Dorado, 2015.

, José Luis Araus et Jill E. Cairns. Field high-throughput phenotyping : the new crop breeding frontier, vol.19, p.15, 2014.

. Arvidsson, A growth phenotyping pipeline for Arabidopsis thaliana integrating image analysis and rosette area modeling for robust quantification of genotype effects, The New phytologist, vol.191, issue.3, pp.895-907, 2011.

. Arya, An Optimal Algorithm for Approximate Nearest Neighbor Searching Fixed Dimensions, J. ACM, vol.45, issue.6, p.26, 1998.

R. Neil and . Baker, Chlorophyll fluorescence : a probe of photosynthesis in vivo, Annual review of plant biology, vol.59, p.14, 2008.

. Barak, Machline Meir et Arieli Yoel. Depth mapping using projected patterns, US Patent, p.29, 2010.

[. Barker, Development of a Field-based High-throughput Mobile Phenotyping Platform, Comput. Electron. Agric, vol.122, issue.C, pp.74-85, 2016.

[. Bibliographie and . Baumberg, A Commercial Software Solution to 3D Scanning. raph. Models, vol.67, p.45, 2005.

[. Bay, Tinne Tuytelaars et Luc Van Gool. Speeded-up robust features (SURF), vol.110, p.26, 2008.

J. Bell and H. M. Dee, Watching plants grow -a position paper on computer vision andArabidopsis thaliana, IET Computer Vision, vol.11, issue.2, pp.113-121, 2017.

[. Bernardini, The Ball-Pivoting Algorithm for Surface Reconstruction, IEEE Transactions on Visualization and Computer Graphics, vol.5, issue.4, pp.349-359, 1999.

J. Paul, N. D. Besl, and . Mckay, A Method for Registration of 3-D Shapes, IEEE Trans. Pattern Anal. Mach. Intell, vol.14, issue.2, pp.239-256, 1992.

S. Boissìere, Dynamique de la Phyllotaxie, vol.82, 2000.

. Casadebaig, Thresholds for leaf expansion and transpiration response to soil water deficit in a range of sunflower genotypes, European Journal of Agronomy, vol.28, issue.4, pp.646-654, 2008.

. Casadebaig, Angé-lique Christophe, Luc Champolivier et Philippe Debaeke. SUNFLO, a model to simulate genotype-specific performance of the sunflower crop in contrasting environments, Agricultural and Forest Meteorology, vol.151, issue.2, pp.163-178, 2011.

[. Chéné, On the use of depth camera for 3D phenotyping of entire plants, Etienne Belin et François ChapeauBlondeau, vol.82, pp.122-127, 2012.

[. Cignoni, MeshLab : an Open-Source 3D Mesh Processing System, ERCIM News, issue.73, p.27, 2008.

, Navneet Dalal et Bill Triggs. Histograms of Oriented Gradients for Human Detection, Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CV-PR'05, vol.1, p.26, 2005.

[. Debaeke, Francis Flénet et Nicolas Langlade. Sunflower crop and climate change : vulnerability, adaptation, and mitigation potential from case-studies in Europe, OCL Oilseeds and fats crops and lipids, vol.24, issue.1, p.102, 2017.

. Dhondt, Stijn Dhondt, Nathalie Wuyts et Dirk Inzé. Cell to wholeplant phenotyping : the best is yet to come, Trends in Plant Science, vol.18, issue.8, pp.428-439, 2013.

W. Edsger and . Dijkstra, A note on two problems in connexion with graphs, Numerische Mathematik, vol.1, p.67, 1959.

[. Feller, Chrystel Feller, Christian Mazza et Florence Yerly. Plantes, spirales et nombre : les plantes fontelles des maths ? Bulletin de la Société Fribourgeoise des Sciences Naturelles, vol.99, p.84, 2010.

F. Fiorani and U. Schurr, Future Scenarios for Plant Phenotyping. Annual review of plant biology, vol.64, pp.267-291, 2013.

A. Martin, R. C. Fischler, and . Bolles, Random Sample Consensus : A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography, Commun. ACM, vol.24, issue.6, pp.381-395, 1981.

. Fourcaud, Hans Lambers et Christian Körner. Plant Growth Modelling and Applications : The Increasing Importance of Plant Architecture in Growth Models, Ann Bot, vol.101, issue.8, pp.1053-1063, 2008.

T. Robert, M. Furbank, and . Tester, Phenomics -technologies to relieve the phenotyping bottleneck, Trends in Plant Science, vol.16, issue.12, pp.635-644, 2011.

Y. Furukawa and J. Ponce, Accurate, Dense, and Robust Multi-View Stereopsis, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.32, issue.8, p.27, 2010.

. Furukawa, CVPR, p.27, 2010.

[. Gélard, Philippe Debaeke, Michel Devy et Ariane Herbulot. 3D plant phenotyping in sunflower using architecture-based organ segmentation from 3D point clouds, 5th International Workshop on Image Analysis Methods for the Plant Sciences, p.19, 2016.

[. Gélard, Model-based Segmentation of 3D Point Clouds for Phenotyping Sunflower Plants, Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, p.19, 2017.

[. Bibliographie and . Gélard, Segmentation de nuages de points 3D pour le phénotypage de tournesols, 16ème Journées Francophones des Jeunes Chercheurs en Vision par Ordinateur (ORASIS, p.19, 2017.

[. Gélard, Leaves Segmentation in 3D Point Cloud, Advanced Concepts for Intelligent Vision Systems, vol.20, pp.664-674, 2017.

[. Gélard, Michel Devy et Pierre Casadebaig. 3D Leaf Tracking for Plant Growth Monitoring, 25th IEEE International Conference on Image Processing (ICIP), vol.20, pp.3663-3667, 2018.

[. Gélard, Michel Devy et Pierre Casadebaig. Suivi de la croissance de plantes par vision 3D, Reconnaissance des Formes, Image, Apprentissage et Perception (RFIAP), vol.20, 2018.

[. Génard, A Biophysical Analysis of Stem and Root Diameter Variations in Woody Plants, Plant Physiology, vol.126, issue.1, pp.188-202, 2001.

[. Gokturk, A TimeOf-Flight Depth Sensor -System Description, Issues and Solutions, Proceedings of the 2004 Conference on Computer Vision and Pattern Recognition Workshop, vol.3, pp.35-44, 2004.

[. Golzarian, Accurate inference of shoot biomass from high-throughput images of cereal plants, Plant Methods, 2010.

[. Gosseau, Pierre Casadebaig et Nicolas Langlade. Heliaphen, an outdoor high-throughput phenotyping platform designed to integrate genetics and crop modeling. bioRxiv, 2018.

, Phenotyping and beyond : modelling the relationships between traits, Genome Studies and Molecular Genetics, vol.18, pp.96-102, 2014.

[. Granier, PHENOPSIS, an automated platform for reproducible phenotyping of plant responses to soil water deficit in Arabidopsis thaliana permitted the identification of an accession with low sensitivity to soil water deficit, The New phytologist, vol.169, issue.3, pp.623-658, 2006.

[. Grift, High-throughput phenotyping technology for maize roots, 2011.

[. Hansen, Morten Bisgaard, Anders la Cour-Harbo, Jesper Rasmussen et Hans Jørgen Andersen. An Autonomous Robotic System for Mapping Weeds in Fields, 8th IFAC Symposium on Intelligent Autonomous Vehicles, vol.46, p.15, 2013.

J. A. Hartigan and M. A. Wong, Algorithm AS 136 : A KMeans Clustering Algorithm, Journal of the Royal Statistical Society. Series C (Applied Statistics), vol.28, issue.1, p.45, 1979.

R. I. Hartley and A. Zisserman, Multiple view geometry in computer vision, 2004.

. Hartmann, HTPheno : An image analysis pipeline for highthroughput plant phenotyping, BMC Bioinformatics, vol.12, issue.1, p.148, 2011.

L. F. Hernandez, Leaf angle and light interception in sunflower (Helianthus annuus L.), Phyton-International Journal of Experimental Botany, vol.79, p.103, 2010.

, Open Source Computer Vision Library, vol.32, 2015.

. Iyer-pascuzzi, Imaging and analysis platform for automatic phenotyping and trait ranking of plant root systems, Plant physiology, vol.152, issue.3, pp.1148-57, 2010.

[. Izadi, KinectFusion : Real-time 3D Reconstruction and Interaction Using a Moving Depth Camera, Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology, pp.559-568, 2011.

[. Jay, Daniel Moura et Nathalie Gorretta. In-field crop row phenotyping from 3D modeling performed Bibliographie using Structure from Motion, Computers and Electronics in Agriculture, vol.110, pp.70-77, 2015.

[. Joosen, GERMINATOR : a software package for high-throughput scoring and curve fitting of Arabidopsis seed germination, The Plant journal : for cell and molecular biology, vol.62, issue.1, p.11, 2010.

[. Kazhdan, Poisson Surface Reconstruction, Symposium on Geometry Processing, vol.46, 2006.

. Kelly, An opinion on imaging challenges in phenotyping field crops, Machine Vision and Applications, vol.27, p.14, 2016.

K. Heinsvig-kjaer and C. Ottosen, 3D Laser Triangulation for Plant Phenotyping in Challenging Environments. Sensors, vol.15, pp.13533-13547, 2015.

M. Klodt and D. Cremers, High-Resolution Plant Shape Measurements from Multi-view Stereo Reconstruction, Computer Vision -ECCV 2014 Workshops, p.18, 2015.

[. Kumar, Highthroughput 3D reconstruction of plant shoots for phenotyping, 13th International Conference on Control Automation Robotics and Vision, p.37, 2014.

[. Lai, Rapid and effective segmentation of 3D models using random walks, Computer Aided Geometric Design, vol.26, p.67, 2009.

M. Lhuillier and L. Quan, A Quasi-Dense Approach to Surface Reconstruction from Uncalibrated Images, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.27, issue.3, p.18, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00272603

J. Li and L. Tang, Developing a low-cost 3D plant morphological traits characterization system, Computers and Electronics in Agriculture, vol.143, pp.1-13, 2017.

[. Li, Analyzing Growing Plants from 4D Point Cloud Data, ACM Trans. Graph, vol.32, issue.6, p.18, 2013.

[. Li, Lei Li, Qin Zhang et Danfeng Huang. A Review of Imaging Techniques for Plant Phenotyping, p.11, 2014.

. Liebisch, Achim Walter et Andreas Hund. Remote, aerial phenotyping of maize traits with a mobile multi-sensor approach, Plant Methods, vol.11, issue.1, p.17, 2015.

. Liu, Novel Low Cost 3D Surface Model Reconstruction System for Plant Phenotyping, Journal of Imaging, vol.3, issue.3, p.37, 2017.

. Lou, Accurate multi-view stereo 3d reconstruction for cost-effective plant phenotyping, pp.349-356, 2014.

. Louarn, Annie Eprinchard et Didier Combes. Characterization of whole plant leaf area properties using laser scanner point clouds, Fourth International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications, 2012.

I. A. Manolis, . Lourakis, A. Antonis, and . Argyros, SBA : A Software Package for Generic Sparse Bundle Adjustment, ACM Trans. Math. Softw, vol.36, issue.1, p.26, 2009.

D. G. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, vol.60, p.26, 2004.

. Mahlein, Plant disease detection by hyperspectral imaging : from the lab to the field, Advances in Animal Biosciences, vol.8, issue.2, p.14, 2017.

. Martin, A density-based algorithm for discovering clusters in large spatial databases with noise, p.45, 1996.

. Màrton, On Fast Surface Reconstruction Methods for Large and Noisy Datasets, Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), vol.46, 2009.

[. Mccormick, 3D Sorghum Reconstructions from Depth Images Identify QTL Regulating Shoot Architecture, Plant Physiol, vol.172, issue.2, pp.823-834, 2016.

[. Merlot, Use of infrared thermal imaging to isolate Arabidopsis mutants defective in stomatal regulation, The Plant journal : for cell and molecular biology, vol.30, issue.5, pp.601-610, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00145341

[. Minervini, Image-based plant phenotyping with incremental learning and active contours, Massimo Minervini, Mohammed M. Abdelsamea et Sotirios A. Tsaftaris, vol.23, pp.35-48, 2014.

[. Mishra, Stijn Dhondt et Paul Scheunders. Close range hyperspectral imaging for plant phenotyping, Hyperspectral Imaging and Applications Conference, 2012.

. Moulon, OpenMVG : Open Multiple View Geometry. Dans Reproducible Research in Pattern Recognition, vol.33, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01497080

. Mueller-sim, The Robotanist : A ground-based agricultural robot for highthroughput crop phenotyping, IEEE International Conference on Robotics and Automation (ICRA), p.111, 2017.

. Munns, New phenotyping methods for screening wheat and barley for beneficial responses to water deficit, Journal of experimental botany, vol.61, issue.13, p.14, 2010.

J. Nocedal, J. Stephen, and . Wright, Numerical optimization, p.26, 1999.

[. Oliver, Using the Kinect As a Navigation Sensor for Mobile Robotics, Proceedings of the 27th Conference on Image and Vision Computing New Zealand, p.29, 2012.

. Özyesil, Onur Özyesil, Vladislav Voroninski, Ronen Basri et Amit Singer, A Survey on Structure from Motion. CoRR, p.26, 2017.

. Papon, Jeremie Papon, Alexey Abramov, Markus Schoeler et Florentin Wörgötter. Voxel Cloud Connectivity Segmentation -Supervoxels for Point Clouds, Computer Vision and Pattern Recognition (CVPR), 2013.

, IEEE Conference on, 2013.

[. Paproki, Robert Furbank et Jurgen Fripp. A novel mesh processing based technique for 3D plant analysis, BMC Plant Biology, vol.12, issue.1, p.63, 2012.

. Paulus, Anne-Katrin Mahlein et Heiner Kuhlmann. Surface feature based classification of plant organs from 3D laserscanned point clouds for plant phenotyping, BMC Bioinformatics, vol.14, issue.1, pp.1-12, 2013.

. Paulus, Low-Cost 3D Systems : Suitable Tools for Plant Phenotyping. Sensors, vol.14, p.3001, 2014.

. Paulus, Automated Analysis of Barley Organs Using 3D Laser Scanning : An Approach for High Throughput Phenotyping, Sensors, vol.14, issue.7, p.19, 2014.

. Paulus, Heiner Kuhlmann et Jens Léon. High-precision laser scanning system for capturing 3D plant architecture and analysing growth of cereal plants, Biosystems Engineering, vol.121, pp.1-11, 2014.

. Pham, Real-Time Obstacle Detection System in Indoor Environment for the Visually Impaired Using Microsoft Kinect Sensor, Journal of Sensors, vol.2016, p.29, 2016.

L. Piegl and W. Tiller, The nurbs book, p.74, 1997.

M. P. Pound, A. P. French, J. A. Fozard, T. P. Murchie-erik, and H. Pridmore, A patch-based approach to 3D plant shoot phenotyping, Machine Vision and Applications, vol.27, pp.767-779, 2016.

A. Pouzet and F. Bougat, Description d'une méthode simple et rapide pour l'estimation de la surface foliaire par plante chez le tournesol, 11th International Sunflower Conference, pp.21-26, 1985.

. Quan, Jingdong Wang et Sing Bing Kang. Image-based Plant Modeling, ACM Trans. Graph, vol.25, issue.3, pp.599-604, 2006.

. Quan, Image-based plant modeling, ACM SIGGRAPH and ACM Transactions on Graphics, vol.25, issue.3, pp.772-778, 2007.

. Rey, Using a 3-D Virtual Sunflower to Simulate Light Capture at Organ, Plant and Plot Levels : Contribution of Organ Interception, Impact of Heliotropism and Analysis of Genotypic Bibliographie Differences, Ann Bot, vol.101, issue.8, pp.1139-1151, 2008.

[. Rose, Accuracy Analysis of a Multi-View Stereo Approach for Phenotyping of Tomato Plants at the, Organ Level. Sensors, vol.15, issue.5, pp.9651-9665, 2015.

, Radu Bogdan Rusu et Steve Cousins. 3D is here : Point Cloud Library (PCL). Dans International Conference on Robotics and Automation, p.47, 2011.

. Rusu, Radu Bogdan Rusu, Nico Blodow et Michael Beetz. Fast Point Feature Histograms (FPFH) for 3D Registration, p.47, 2009.

, Semantic 3D Object Maps for Everyday Manipulation in Human Living Environments, vol.63, 2009.

. Salas-fernandez, Lie Tang et Patrick S. Schnable. A high-throughput, field-based phenotyping technology for tall biomass crops, Plant Physiology, 2017.

. Sankaran, Low-altitude, high-resolution aerial imaging systems for row and field crop phenotyping : A review, European Journal of Agronomy, vol.70, p.17, 2015.

T. T. Santos and A. A. Oliveira, Image-based 3D digitizing for plant architecture analysis and phenotyping, Workshop on Industry Applications (WGARI), 2012.

T. Santos and J. Ueda, Automatic 3D plant reconstruction from photographies, segmentation and classification of leaves and internodes using clustering, 7th International Conference on FunctionalStructural plant Models, p.74, 2013.

. Santos, Jayme Garcia Arnal Barbedo et Gustavo Costa Rodrigues. 3d plant modeling : Localization, mapping and segmentation for plant phenotyping using a single hand-held camera, Computer Vision -ECCV 2014 Workshops. ECCV, vol.8928, pp.247-263, 2014.

[. Schaller, The Yin-Yang of Hormones : Cytokinin and Auxin Interactions in Plant Development, Plant Cell, vol.27, issue.1, p.83, 2015.

C. Scharr, P. Briese, and . Embgenbroich, Andreas Fischbach, Fabio Fiorani et Mark Müller-Linow. Fast High Resolution Volume Carving for 3D Plant Shoot Reconstruction, Frontiers in Plant Science, vol.8, p.18, 2017.

[. Seitz, A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms, IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06), vol.1, p.18, 2006.

[. Shafiekhani, Vinobot and Vinoculer : Two Robotic Platforms for High-Throughput Field Phenotyping. Sensors (Basel), vol.17, p.111, 2017.

[. Shi, Unmanned Aerial Vehicles for High-Throughput Phenotyping and Agronomic Research, vol.11, p.17, 2016.

. Snavely, Photo Tourism : Exploring Photo Collections in 3D, ACM Trans. Graph, vol.25, issue.3, pp.835-846, 2006.

. Sodhi, Srinivasan Vijayarangan et David Wettergreen. In-field segmentation and identification of plant structures using 3D imaging, Paloma Sodhi, 2017.

, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p.112, 2017.

P. Edgar, N. D. Spalding, and . Miller, Image analysis is driving a renaissance in growth measurement, Current Opinion in Plant Biology, vol.16, issue.1, p.11, 2013.

[. Tanger, Field-based high throughput phenotyping rapidly identifies genomic regions controlling yield components in rice, Scientific Reports, vol.7, p.15, 2017.

. Tardieu, Plant Phenomics, From Sensors to Knowledge, Current Biology, vol.27, issue.15, pp.770-783, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01608414

H. M. Bibliographie-;-john and . Thornley, Modelling Stem Height and Diameter Growth in Plants, Annals of Botany, vol.84, issue.2, pp.195-205, 1999.

. Triggs, Bundle Adjustment -A Modern Synthesis, Vision Algorithms : Theory and Practice, p.26, 2000.
URL : https://hal.archives-ouvertes.fr/inria-00548290

V. N. Vapnik, The nature of statistical learning theory, p.47, 1995.

. Vigneau, , 2014.

. Dans-colloque-scientifique-francophone, Drones et moyens légers aéropor-tés d'observation, vol.17, 2014.

. Vijayarangan, Dimitrios (Dimi) Apostolopoulos et David Wettergreen. High-throughput Robotic Phenotyping of Energy Sorghum Crops. Dans Field and Service Robotics, p.112, 2017.

. Virlet, Field Scanalyzer : An automated robotic field phenotyping platform for detailed crop monitoring, Functional Plant Biology, vol.44, issue.1, pp.143-153, 2017.

[. Wahabzada, Automated interpretation of 3D laserscanned point clouds for plant organ segmentation, BMC Bioinformatics, vol.16, issue.1, pp.1-11, 2015.

. Xia, Situ 3D Segmentation of Individual Plant Leaves Using a RGB-D Camera for Agricultural Automation. Sensors, vol.15, p.20463, 2015.

Y. , Unmanned Aerial Vehicle Remote Sensing for Field-Based Crop Phenotyping : Current Status and Perspectives, Frontiers in Plant Science, vol.8, p.15, 2017.

. Zaman-allah, Unmanned aerial platform-based multi-spectral imaging for field phenotyping of maize, Plant Methods, vol.11, issue.1, p.17, 2015.

[. Zhao, Hyperspectral remote sensing of plant biochemistry using Bayesian model averaging with variable and band selection, p.14, 2013.