.. .. Protocole,

E. Souche and .. .. ,

. .. Souche-pseudomonas-aeroginosa, , p.89

. .. Souche-rhizobium-radiobacter,

.. .. Conclusion,

, Vers une application sur le terrain

.. .. Protocole,

.. .. Mélangeur-fluidique,

.. .. Conclusion,

, est-à-dire assurant la réhydratation des bactéries lyophilisés, puis la préparation de l'échantillon dans les proportions voulues et le remplissage des puits de mesure

, Comme nous l'avons vu, chaque souche bactérienne répond de façon différente à la présence des substances toxiques. Nous pouvons donc imaginer, en associant un traitement du signal adapté, acquérir des spectres de réponses, et définir de signatures propres à chaque polluant, Ces résultats ouvrent de nombreuses perspectives

, « electrochemical device for chemical analysis, pp.0-8047, 1965.

M. Klimant and K. , « fiber-optic oxygen microsensors, a new tool in aquatic biology, Limnology and Oceanography, 1995.

. Mcdonagh, « phase fluorometric dissolved oxygen sensor, Sensors and Actuators B : Chemical, 2001.

. Noor, « characterization of optical fiber dissolved oxygen sensor for aquaculture sensing and monitoring, Procedia Chemistry, 2016.

. Société, , pp.6-2018

K. Rabaey, « microbial fuel cells : novel biotechnology for energy generation, Trends in Biotechnology, vol.23, issue.6, pp.291-298, 2005.

. Chan, « designing an amperometric thick-film microbial BOD sensor, Biosensors and Bioelectronics, vol.15, issue.7, pp.343-353, 2000.

. Ben-yoav, « a whole cell electrochemical biosensor for water genotoxicity biodetection, Electrochimica Acta, vol.54, issue.25, pp.6113-6118, 2009.

A. Liu, . Short-term, and . Bod, BODst) as a parameter for on-line monitoring of biological treatment process : Part II : Instrumentation of integrated flow injection analysis (FIA) system for BODst estimation, Biosensors and Bioelectronics, vol.20, issue.3, pp.571-578, 2004.

J. Liu, short-term BOD (BODst) as a parameter for on-line monitoring of biological treatment process : Part i. a novel design of BOD biosensor for easy renewal of bio-receptor, Biosensors and Bioelectronics, vol.20, issue.3, pp.562-570, 2004.

A. Torrents, « design of a microfluidic respirometer for semi-continuous amperometric short time biochemical oxygen demand (BODst) analysis », Biochemical Engineering Journal, vol.66, pp.27-37, 2012.

H. Nakamura, « a chemiluminescence biochemical oxygen demand measuring method, Analytica Chimica Acta, vol.602, issue.1, pp.94-100, 2007.

L. Recoules, « biocapteur pour la surveillance de la qualité de l'eau. application aux eaux pluviales et de stations d'épurations », these, 2015.

. Thermo-fisher-scientific, , pp.17-27, 2018.

, ISO 5813 :1983. « water quality -determination of dissolved oxygen -iodometric method, 1983.

, « water quality -determination of dissolved oxygen -electrochemical probe method, ISO, vol.5814, 1990.

. Le-bureau-de-recherche-géologiques and . Minère, , pp.7-12, 2018.

, Europe water framework directive, pp.7-12, 2018.

, APHA). « standard methods for the examination of water and wastewater, 1992.

R. Lalauze, Capteurs chimiques, biocapteurs et biopuces, 2012.

B. Nechad, « calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters, vol.114, pp.854-866, 2010.

, Water quality monitoring : A practical guide to the design and implementation of freshwater quality studies and monitoring programmes. ballance, richard and bartram, jamie, 1998.

L. Jarup, « hazards of heavy metal contamination, British Medical Bulletin, vol.68, issue.1, pp.167-182, 2003.

P. Crouzet, Nutrients in European ecosystems, 1999.

R. J. Gilliom, « pesticides in the nation's streams and ground water, 1992.

J. Wang, « electrochemical glucose biosensors, Chemical Reviews, vol.108, issue.2, pp.814-825, 2008.

D. A. Noren, « clarifying the butler volmer equation and related approximations for calculating activation losses in solid oxide fuel cell models, Journal of Power Sources, vol.152, pp.175-181, 2005.

K. Riedel, « microbial sensors on a respiratory basis for wastewater monitoring, History and Trends in Bioprocessing and Biotransformation, pp.81-118

A. Sakumoto, « treatment of waste water by a combined technique of radiation and conventional method, Radiation Physics and Chemistry, vol.24, pp.99-115, 1984.

A. Jang, « state of the art lab chip sensors for environmental water monitoring, Measurement Science and Technology, vol.22, issue.3, p.32001, 2011.

R. D. Swisher, « Surfactant Biodegradation, 1986.

S. Jouanneau, « methods for assessing biochemical oxygen demand (BOD) : A review, Water Research, vol.49, pp.62-82, 2014.

W. Xu, « oxygen sensors based on luminescence quenching : Interactions of metal complexes with the polymer supports, Analytical Chemistry, vol.66, issue.23, pp.4133-4141, 1994.

A. K. Mcevoy, « dissolved oxygen sensor based on fluorescence quenching of oxygen sensitive ruthenium complexes immobilized in sol gel derived porous silica coatings, Analyst, vol.121, issue.6, pp.785-788, 1996.

X. Xiong, dissolved oxygen sensor based on fluorescence quenching of oxygen sensitive ruthenium complex immobilized on silica ni p composite coating, Sensors and Actuators B : Chemical, vol.117, issue.1, pp.172-176, 2006.

, Système de tests en cuve LCK -hach, pp.14-20, 2018.

, Water quality -determination of biochemical oxygen demand after n days (bodn) -part 1 :dilution and seeding method with allylthiourea addition, pp.5815-5816, 2003.

N. Yoshida, « a mediator type biosensor as a new approach to biochemical oxygen demand estimation, Analyst, vol.125, issue.12, pp.2280-2284, 2000.

T. Kalab, « evaluation of mediators for development of amperometric microbial bioelectrodes, Electroanalysis, vol.6, issue.11, pp.1004-1008, 2005.

S. A. Learoyd, « an investigation of dye reduction by food-borne bacteria, Journal of Applied Bacteriology, vol.72, issue.6, pp.479-485, 1992.

G. M. Delaney, « electron transfer coupling in microbial fuel cells. 2. performance of fuel cells containing selected microorganism mediator substrate combinations, Journal of Chemical Technology and Biotechnology. Biotechnology, vol.34, issue.1, pp.13-27, 2008.

H. P. Bennetto, « anodic reactions in microbial fuel cells, Biotechnology and Bioengineering, vol.25, pp.559-568, 2004.

N. Pasco, « biochemical mediator demand â a novel rapid alternative for measuring biochemical oxygen demand, Applied Microbiology and Biotechnology, vol.53, issue.5, pp.613-618, 2000.

M. Grzebyk, « microbial fuel cells (MFCs) with interpolymer cation exchange membranes, Separation and Purification Technology, vol.41, issue.3, pp.321-328, 2005.

B. H. Kim, « novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell, Biotechnology Letters, vol.25, issue.7, pp.541-545, 2003.

M. and D. Lorenzo, « a single-chamber microbial fuel cell as a biosensor for wastewaters, Water Research, vol.43, issue.13, pp.3145-3154, 2009.

I. S. Chang, « continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor, Biosensors and Bioelectronics, vol.19, issue.6, pp.607-613, 2004.

I. S. Chang, « improvement of a microbial fuel cell performance as a BOD sensor using respiratory inhibitors, Biosensors and Bioelectronics, vol.20, issue.9, pp.1856-1859, 2005.

A. Kumlanghan, « microbial fuel cell-based biosensor for fast analysis of biodegradable organic matter, Biosensors and Bioelectronics, vol.22, issue.12, pp.2939-2944, 2007.

J. Liu, « microbial BOD sensors for wastewater analysis, Water Research, vol.36, issue.15, pp.3786-3802, 2002.

I. Karube, « microbial electrode BOD sensors, Biotechnology and Bioengineering, vol.19, issue.10, pp.1535-1547, 1977.

M. Farré, « pesticide toxicity assessment using an electrochemical biosensor with pseudomonas putida and a bioluminescence inhibition assay with vibrio fischeri, Analytical and Bioanalytical Chemistry, vol.373, issue.8, pp.696-703, 2002.

M. Farré, « toxicity assessment of organic pollution in wastewaters using a bacterial biosensor, Analytica Chimica Acta, vol.426, issue.2, pp.155-165, 2001.

E. Mauriz, « determination of carbaryl in natural water samples by a surface plasmon resonance flow-through immunosensor, Biosensors and Bioelectronics, vol.21, issue.11, pp.2129-2136, 2006.

F. Lagarde, cell-based electrochemical biosensors for water quality assessment, Analytical and Bioanalytical Chemistry, vol.400, issue.4, p.947, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00809749

N. Maximova, « a set up of a modern analytical laboratory for wastewaters from pulp and paper industry, Chemical Society Reviews, vol.36, issue.8, pp.1323-1349, 2007.

R. W. Bogue, « biosensors for monitoring the environment, Sensor Review, vol.23, pp.302-310, 2003.

J. Wang, DNA electrochemical biosensors for environmental monitoring. a review, Analytica Chimica Acta, vol.347, issue.1, pp.1-8, 1997.

M. and D. Lorenzo, « a small-scale air-cathode microbial fuel cell for on-line monitoring of water quality, Biosensors and Bioelectronics, vol.62, pp.182-188, 2014.

A. Kumlanghan, « microbial BOD sensor for monitoring treatment of wastewater from a rubber latex industry, Enzyme and Microbial Technology, vol.42, issue.6, pp.483-491, 2008.

M. Raud, comparative study of semi-specific aeromonas hydrophila and universal pseudomonas fluorescens biosensors for BOD measurements in meat industry wastewaters, Enzyme and Microbial Technology, vol.50, issue.4, pp.221-226, 2012.

M. Raud, « bioelectronic tongue and multivariate analysis : A next step in BOD measurements, Water Research, vol.47, issue.7, pp.2555-2562, 2013.

. Ch and . Chan, « measurement of biodegradable substances using the salt-tolerant yeast arxula adeninivorans for a microbial sensor immobilized with poly(carbamoyl) sulfonate (PCS) part i : construction and characterization of the microbial sensor, Biosensors and Bioelectronics, vol.14, issue.2, pp.131-138, 1999.

M. Lehmann, « measurement of biodegradable substances using the salt-tolerant yeast arxula adeninivorans for a microbial sensor immobilized with poly(carbamoyl)sulfonate (PCS) : Part II : application of the novel biosensor to real samples from coastal and island regions, Biosensors and Bioelectronics, vol.14, issue.3, pp.295-302, 1999.

. Sh and . Oota, « development of mediated BOD biosensor system of flow injection mode for shochu distillery wastewater, Biosensors and Bioelectronics, vol.26, issue.1, pp.262-266, 2010.

J. Jia, « co-immobilized microbial biosensor for BOD estimation based on solâgel derived composite material, Biosensors and Bioelectronics, vol.18, issue.8, pp.1023-1029, 2003.

N. Kwok, « an optical biosensor for multi-sample determination of biochemical oxygen demand (BOD), Sensors and Actuators B : Chemical, vol.110, issue.2, pp.289-298, 2005.

L. Liu, « organic inorganic hybrid material for the cells immobilization : Long-term viability mechanism and application in BOD sensors, Biosensors and Bioelectronics, vol.25, issue.2, pp.523-526, 2009.

Z. Liu, « microbial fuel cell based biosensor for in situ monitoring of anaerobic digestion process, Bioresource Technology, vol.102, issue.22, pp.10221-10229, 2011.

D. Chen, Analytical and Bioanalytical Chemistry, vol.372, issue.5, pp.737-739, 2002.

Z. Yang, « disposable sensor for biochemical oxygen demand, Applied Microbiology and Biotechnology, vol.46, issue.1, pp.10-14, 1996.

C. Preininger, « optical fiber sensor for biological oxygen demand, Analtical Chemistry, vol.66, pp.1841-1846, 1994.

L. Xin, « an optical biosensing film for biochemical oxygen demand determination in seawater with an automatic flow sampling system, Measurement Science and Technology, vol.18, issue.9, p.2878, 2007.

J. Liu, « immobilised activated sludge based biosensor for biochemical oxygen demand measurement, Biosensors and Bioelectronics, vol.14, issue.12, pp.883-893, 2000.

Y. Li, « study of BOD microbial sensors for waste water treatment control, Applied Biochemistry and Biotechnology, issue.1, pp.855-863, 1991.

M. Kim, « klebsiella BOD sensor, Sensors and Actuators B : Chemical, vol.80, issue.1, pp.9-14, 2001.

L. Suriyawattanakul, « the use of co-immobilization of emphasis trichosporon cutaneum and emphasis bacillus licheniformis for a BOD sensor, Applied Microbiology and Biotechnology, vol.59, issue.1, pp.40-44, 2002.

G. Chee, « development of highly sensitive BOD sensor and its evaluation using preozonation, Analytica Chimica Acta, vol.394, issue.1, pp.65-71, 1999.

V. Arlyapov, « biosensor analyzer for BOD index express control on the basis of the yeast microorganisms candida maltosa, candida blankii, and debaryomyces hansenii, Enzyme and Microbial Technology, vol.50, issue.4, pp.215-220, 2012.

. Sh and . Rastogi, « development and characterization of a novel immobilized microbial membrane for rapid determination of biochemical oxygen demand load in industrial wastewaters », Biosensors and Bioelectronics, vol.18, issue.1, pp.23-29, 2003.

G. Chee, « biosensor for the estimation of low biochemical oxygen demand, Analytica Chimica Acta, vol.379, issue.1, pp.185-191, 1999.

M. Reiss, Determination of BOD-values of starch-containing waste water by a BOD-biosensor1this paper was presented at the fifth world congress on biosensors, Biosensors and Bioelectronics, vol.1, issue.10, pp.1083-1090, 1998.

P. Villalobos, « a BOD monitoring disposable reactor with alginate-entrapped bacteria, Bioprocess and Biosystems Engineering, vol.33, issue.8, pp.961-970, 2010.

J. Wang, « an innovative reactor-type biosensor for BOD rapid measurement, Biosensors and Bioelectronics, vol.25, issue.7, pp.1705-1709, 2010.

H. Nakamura, « a spectrophotometric biochemical oxygen demand determination method using 2,6-dichlorophenolindophenol as the redox color indicator and the eukaryote saccharomyces cerevisiae, Analytical Biochemistry, vol.369, issue.2, pp.168-174, 2007.

H. Nakamura, « a new BOD estimation method employing a double-mediator system by ferricyanide and menadione using the eukaryote saccharomyces cerevisiae, Talanta, vol.72, issue.1, pp.210-216, 2007.

N. Pasco, « development of a ferricyanide-mediated rapid biochemical oxygen demand method using an immobilised proteus vulgaris biocomponent, Biosensors and Bioelectronics, vol.20, issue.3, pp.524-532, 2004.

K. Catterall, « the use of microorganisms with broad range substrate utilisation for the ferricyanide-mediated rapid determination of biochemical oxygen demand, Talanta, vol.55, issue.6, pp.1187-1194, 2001.

K. Baronian, « detection of two distinct substrate-dependent catabolic responses in yeast cells using a mediated electrochemical method, Applied Microbiology and Biotechnology, vol.60, issue.1, pp.108-113, 2002.

Y. Yashiki, « extracellular reduction of menadione and ferricyanide in yeast cell suspension, Journal of Fermentation and Bioengineering, vol.82, issue.3, pp.319-321, 1996.

L. Rotariu, « yeast cells sucrose biosensor based on a potentiometric oxygen electrode, Analytica Chimica Acta, vol.458, issue.1, pp.215-222, 2002.

L. Rotariu, « new potentiometric microbial biosensor for ethanol determination in alcoholic beverages, Analytica Chimica Acta, vol.513, issue.1, pp.119-123, 2004.

J. K. Jang, « construction and operation of a novel mediator-and membrane-less microbial fuel cell, Process Biochemistry, vol.39, issue.8, pp.1007-1012, 2004.

M. Kim, « immobilization of enzymes for klebsiella BOD sensor, Sensors and Actuators B : Chemical, vol.98, issue.1, pp.1-4, 2004.

R. A. Dobbs, « the use of ultra-violet absorbance for monitoring the total organic carbon content of water and wastewater, Water Research, vol.6, issue.10, pp.1173-1180, 1972.

A. Bari, « measurement of wastewater treatment efficiency by fluorescence and UV absorbance, Environmental Monitoring and Assessment, vol.5, issue.4, pp.423-434, 1985.

M. Mrkva, « evaluation of correlations between absorbance at 254 nm and COD of river waters, Water Research, vol.17, issue.2, pp.231-235, 1983.

D. M. Reynolds, « rapid and direct determination of wastewater BOD values using a fluorescence technique, Water Research, vol.31, issue.8, pp.2012-2018, 1997.

T. M. Lai, estimating the biodegradability of treated sewage samples using synchronous fluorescence spectra, Sensors, vol.11, issue.8, pp.7382-7394, 2011.

J. Hur, « estimation of biological oxygen demand and chemical oxygen demand for combined sewer systems using synchronous fluorescence spectra, Sensors, vol.10, issue.4, pp.2460-2471, 2010.

J. Hur and J. Cho, « prediction of BOD, COD, and total nitrogen concentrations in a typical urban river using a fluorescence excitation-emission matrix with PARAFAC and UV absorption indices, Sensors, vol.12, issue.1, pp.972-986, 2012.

A. C. Tizzard, « a resazurin-based biosensor for organic pollutants, Biosensors and Bioelectronics, vol.22, issue.5, pp.759-763, 2006.

Y. , « a fluorescence-based microplate assay to quantify DOM-induced catabolic activity, Analytical and Bioanalytical Chemistry, vol.384, issue.1, pp.175-179, 2006.

D. Grieshaber, « electrochemical biosensors -sensor principles and architectures, Sensors, vol.8, issue.3, pp.1400-1458, 2008.

S. Liu, « advances in pesticide biosensors : current status, challenges, and future perspectives, Analytical and Bioanalytical Chemistry, vol.405, issue.1, pp.63-90, 2013.

E. Eltzov, whole-cell aquatic biosensors, Analytical and Bioanalytical Chemistry, vol.400, issue.4, pp.895-913, 2011.

A. F. Collings, biosensors : recent advances, vol.60, p.1397, 1997.

A. C. Tizzard, « bacterial oxygenases : In vivo enzyme biosensors for organic pollutants, Biosensors and Bioelectronics, vol.22, issue.11, pp.2400-2407, 2007.

D. M. Schmitt, « antibacterial activity of resazurin-based compounds against neisseria gonorrhoeae in vitro and in vivo, International Journal of Antimicrobial Agents, vol.48, issue.4, pp.367-372, 2016.

M. Cregut, « high throughput and miniaturised systems for biodegradability assessments ». 21, Environmental Science and Pollution Research, 2013.

S. Jouanneau, « online detection of metals in environmental samples : Comparing two concepts of bioluminescent bacterial biosensors, Environmental Science & Technology, vol.46, issue.21, pp.11979-11987, 2012.

L. Recoules, « a mems approach to determine the biochemical oxygen demand (bod) of wastewaters », J. Micromech. Microeng, vol.27, 2004.

A. Mills, « use of luminescent gold compounds in the design of thin-film oxygen sensors, Analytical Chemistry, vol.69, issue.14, pp.2842-2847, 1997.

. Semrock--part and . Number, , pp.17-27, 2018.

C. Haloui, « développement d'un banc de mesure á base de lecteurs de fluorescence miniaturisés », rapport sateg m2, institut national des sciences appliquées toulouse, 2015.

M. Djouaher, « optimisation chaîne instrumentale », rapport stage licence 3, ecole polytechnique de montréal, 2016.

, LIVE/DEAD BacLight bacterial viability kit for microscopy -thermo fisher scientific, pp.23-33, 2018.

R. Courson, « low-cost multilevel microchannel lab on chip : DF-1000 series dry film photoresist as a promising enabler, vol.4, pp.54847-54853, 2014.

, Pentachlorophenol sodium salt, pp.17-29, 2018.

P. Amézaga-madrid, TEM evidence of ultrastructural alteration on pseudomonas aeruginosa by photocatalytic TiO2 thin films, vol.70, pp.45-50, 2003.

P. Amézaga-madrid, « photoinduced bactericidal activity against pseudomonas aeruginosa by T iO 2 based thin films, FEMS Microbiology Letters, vol.211, issue.2, pp.183-188, 2002.

A. Escherichia-coli, , pp.9-10, 2018.

, OPT301 integrated photodiode and amplifier in hermetically sealed package, pp.17-27, 2018.