. Masse-connue-de-nanoparticules-de-cuo, Les nanoparticules de CuO_O2 sont lavées à partir d'acétone anhydre en boîte à gants. La poudre est séchée, pesée puis analysée en IR en mode ATR. Après lavage, les nanoparticules de CuO_air et de CuO_O2 perdent respectivement environ 72 et 87 % de leurs masses initiales. Les nanoparticules lavées sont diluées dans un volume de toluène connu et séparées en plusieurs échantillons, trois lavages à l'acétone sont effectués (centrifugation 10000 Tr.min -1 , 10 minutes)

, Afin d'avoir une surface oxydée, les substrats sont traités dans une solution Piranha (H2SO4 2 : H2O2 1), plongés dans un bain d'eau à 80 °C pendant 30 min. Les substrats sont ensuite séchés puis analysés en IR en mode transmission, en boîte à gants. L'alumine est ensuite déposée par ALD en salle blanche, utilisant 20 cycles de TMA et H2O. L'épaisseur (? 6 nm) est mesurée par un ellipsomètre. Les surfaces d'alumines sont lavées avant de les utiliser, Des substrats de Si (100) sont rincés respectivement dans du dichlorométhane, acétone et méthanol pendant 10 min dans un bain ultrasons

, Les nanoparticules des échantillons à l'état liquide (non lavées) sont déposées brut sur les surfaces de SiO2 avec un cycle de 1500 Tr.min -1 pendant 1 min. Les nanoparticules à l'état solide sont diluées dans du toluène sec pour avoir une solution de 5 mg.mL -1 , et déposées avec un cycle de 3000 Tr, Les nanoparticules sont déposées par spin-coating, en boîte à gants, sur les surfaces de SiO2 ou Al2O3

, Une solution de 1 mM d'acide 12-mercaptododecylphosphonique est préparée dans 18 mL de toluène. La surface d'alumine est immergée dans la solution pendant 1 nuit, à l'abri de la lumière. La surface est ensuite rincée au toluène pendant 10 min dans un bain à ultrasons

, Un deuxième volume d'hexane de 5 mL est versé pour nettoyer les bords du pilulier. Le pilulier contenant le mélange est placé dans un bécher rempli d'eau, et le tout est disposé dans un bain à ultrasons pendant 10 min. Le mélange est ensuite laissé reposer durant 1 jour pour permettre aux nanoparticules de sédimenter dans le fond du pilulier. Le prélèvement se fait à partir d, Suivant la stoechiométrie ? désirée, les poudres d'Al et de CuO sont pesées séparément puis introduites dans un pilulier contenant 5 mL d'hexane

, 29 mmol) et mélangées à l'OA (18,3 mg, 0,14 mmol) durant 1 heure. Le mélange est centrifugé (8700 Tr.min -1 , 10 minutes) and les nanoparticules de CuO_com@OA sont récupérées et séchées avant caractérisation et utilisation, Les nanoparticules de CuO_com sont pesées (500 mg, vol.6

, 04 mol) de THF en boîte à gants. La solution incolore est laissée pendant une durée de 30 minutes et le pilulier contenant la solution est placé dans un réacteur fermé, 365 mmol) de CuAmd sont dilués dans 3 mL

B. Larangot, Conception, Fabrication et Caractérisation de Matrices de Micropulseurs Pyrotechniques Sur Silicium, vol.3, 2004.

G. A. Rodriguez and . Conception, Simulation et Réalisation d'un Micro Actionneur à Base de Matériau Énergétique Pour l'actionnement Microfluidique, vol.3, 2008.

G. Taton, Conception et Réalisation d'un Microsystème d'initiation Pyrotechnique Intelligent et Sécurisé Pour Applications Spatiales, vol.3, 2013.

L. Glavier, Conception et Développement d'un Micro Détonateur Électrique Intégrant Des Nanothermites Pour l'amorçage Par Impact d'explosifs Secondaires. phd, 2017.

R. W. Armstrong, B. Baschung, D. W. Booth, and M. Samirant, Enhanced Propellant Combustion with Nanoparticles, Nano Lett, vol.3, issue.2, pp.253-255, 2003.

C. Rossi and A. Estève, Micropyrotechnics, a New Technology for Making Energetic Microsystems: Review and Prospective. Sens. Actuator A-Phys, vol.120, pp.297-310, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00150261

M. Petrantoni, Nanomatériaux Énergétiques Sur Puce : Élaboration, Modélisation et Caractérisation, vol.3, 2010.

M. M. Bahrami and . Bahrami, Nanothermite Multicouche Al/CuO, Caractérisation et Application, vol.3, 2013.

A. Nicollet, De l'étude de l'initiation de Nanolaminés Réactifs Al/CuO Par Point Chaud à l'intégration de PyroMEMS Pour La Sécurité, vol.3, 2018.

F. Séverac, P. Alphonse, A. Estève, A. Bancaud, and C. Rossi, High-Energy Al/CuO Nanocomposites Obtained by DNA-Directed Assembly, Advanced Functional Materials, vol.22, issue.2, pp.323-329, 2012.

T. Calais, Exploration Des Nanotechnologies ADN Pour l'auto-Assemblage de Nanoparticules d'aluminium et d'oxyde de Cuivre : Application à La Synthèse de Matériaux Énergétiques. thesis, 2017.

C. Amiens, B. Chaudret, D. Ciuculescu-pradines, V. Collière, K. Fajerwerg et al., Organometallic Approach for the Synthesis of Nanostructures, New Journal of Chemistry, vol.37, issue.11, pp.3374-3401, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00992986

C. Pan, K. Pelzer, K. Philippot, B. Chaudret, F. Dassenoy et al., Stabilized Ruthenium Nanoparticles: Synthesis, Organization, and Dynamics, J. Am. Chem. Soc, vol.123, issue.31, pp.7584-7593, 2001.

M. Monge, M. L. Kahn, A. Maisonnat, and B. Chaudret, Room-Temperature Organometallic Synthesis of Soluble and Crystalline ZnO Nanoparticles of Controlled Size and Shape, Angewandte Chemie International Edition, vol.42, issue.43, pp.5321-5324, 2003.

M. L. Kahn, M. Monge, V. Collière, F. Senocq, A. Maisonnat et al., Size-and Shape-Control of Crystalline Zinc Oxide Nanoparticles: A New Organometallic Synthetic Method, Advanced Functional Materials, vol.15, issue.3, pp.458-468, 2005.

M. L. Kahn, A. Glaria, C. Pages, M. Monge, L. S. Macary et al., Organometallic Chemistry: An Alternative Approach towards Metal Oxide Nanoparticles, J. Mater. Chem, vol.19, issue.24, pp.4044-4060, 2009.

C. Nayral, T. Ould-ely, A. Maisonnat, B. Chaudret, P. Fau et al., A Novel Mechanism for the Synthesis of Tin /Tin Oxide Nanoparticles of Low Size Dispersion and of Nanostructured SnO2 for the Sensitive Layers of Gas Sensors -Nayral, Adv. Mater, vol.11, issue.1, pp.61-63, 1999.

C. Nayral, E. Viala, P. Fau, F. Senocq, J. Jumas et al., Synthesis of Tin and Tin Oxide Nanoparticles of Low Size Dispersity for Application in Gas Sensing, Chem. Eur. J, vol.6, issue.22, pp.4082-4090, 2000.

A. Chaalane, Microsystème de propulsion a propergol solide sur silicium: application au controle d'assiette de micro-drone, vol.3, 2009.

H. Goldschmidt, Verfahren Zur Herstellung von Metallen Oder Metalloiden Oder Legierungen Derselben.('Process for the Production of Metals or Metalloids or Alloys of the Same'), vol.96317, p.1895

S. H. Fischer and M. C. Grubelich, Theoretical Energy Release of Thermites, Intermetallics, and Combustible Metals; SAND-98-1176C; CONF-980728-; Sandia National Labs, 1998.

C. E. Aumann, G. L. Skofronick, and J. A. Martin, Oxidation Behavior of Aluminum Nanopowders, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, vol.13, issue.3, pp.1178-1183, 1995.

J. Eckert, J. C. Holzer, C. C. Ahn, Z. Fu, and W. L. Johnson, Melting Behavior of Nanocrystalline Aluminum Powders, Nanostructured Materials, vol.2, issue.4, pp.407-413, 1993.

D. Spitzer, M. Comet, J. Moeglin, E. Stechele, U. Werner et al., Synthesis and Investigation of the Reactivity of Nano Thermite Mixtures: 37th International Annual Conference of ICT, 7th Int. Ann. Conf. ICT, 2006.

J. J. Granier and M. L. Pantoya, Laser Ignition of Nanocomposite Thermites, Combustion and Flame, vol.138, issue.4, pp.373-383, 2004.

D. G. Piercey and T. M. Klapötke, Nanoscale Aluminum -Metal Oxide (Thermite) Reactions for Application in Energetic Materials, Central European Journal of Energetic Materials, vol.7, issue.2, pp.115-129, 2010.

M. R. Weismiller, J. Y. Malchi, J. G. Lee, R. A. Yetter, and T. J. Foley, Effects of Fuel and Oxidizer Particle Dimensions on the Propagation of Aluminum Containing Thermites, Proceedings of the Combustion Institute, vol.33, pp.1989-1996, 2011.

B. André, M. Coulet, P. Esposito, B. Rufino, and R. Denoyel, High-Energy Ball Milling to Enhance the Reactivity of Aluminum Nanopowders, Materials Letters, vol.110, pp.108-110, 2013.

A. Jiang, F. Wang, D. Xia, M. Li, L. Qiang et al., Aluminum Nanoparticles Manufactured Using a Ball-Milling Method with Ammonium Chloride as a Grinding Aid: Achieving Energy Release at Low Temperature, New J. Chem, vol.2019, issue.4, pp.1851-1856

R. J. Jouet, A. D. Warren, D. M. Rosenberg, V. J. Bellitto, K. Park et al., Surface Passivation of Bare Aluminum Nanoparticles Using Perfluoroalkyl Carboxylic Acids, Chem. Mater, vol.17, issue.11, pp.2987-2996, 2005.

J. Wang, Z. Qiao, Y. Yang, J. Shen, Z. Long et al., Core-Shell Al-Polytetrafluoroethylene (PTFE) Configurations to Enhance Reaction Kinetics and Energy Performance for Nanoenergetic Materials, Chemistry -A European Journal, vol.22, issue.1, pp.279-284, 2016.

R. Shende, S. Subramanian, S. Hasan, S. Apperson, R. Thiruvengadathan et al., Nanoenergetic Composites of CuO Nanorods, Nanowires, and Al-Nanoparticles, vol.33, pp.122-130, 2008.

J. Y. Ahn, J. H. Kim, J. M. Kim, D. W. Lee, J. K. Park et al., Combustion Characteristics of High-Energy Al/CuO Composite Powders: The Role of Oxidizer Structure and Pellet Density, Powder Technology, vol.241, pp.67-73, 2013.

H. Wang, G. Jian, G. C. Egan, and M. R. Zachariah, Assembly and Reactive Properties of Al/CuO Based Nanothermite Microparticles, Combustion and Flame, vol.161, issue.8, pp.2203-2208, 2014.

J. L. Cheng, H. H. Hng, Y. W. Lee, S. W. Du, and N. N. Thadhani, Kinetic Study of Thermal-and Impact-Initiated Reactions in Al-Fe2O3 Nanothermite, Combustion and Flame, vol.157, issue.12, pp.2241-2249, 2010.

W. Zhang, B. Yin, R. Shen, J. Ye, J. A. Thomas et al., Significantly Enhanced Energy Output from 3D Ordered Macroporous Structured Fe2O3/Al Nanothermite Film, ACS Appl. Mater. Interfaces, vol.2013, issue.2, pp.239-242

L. Qin, N. Yan, J. Li, H. Hao, F. Zhao et al., Enhanced Energy Performance from Core-Shell Structured Al@Fe2O3 Nanothermite Fabricated by Atomic Layer Deposition, vol.7, pp.7188-7197, 2017.

L. Glavier, G. Taton, J. Ducéré, V. Baijot, S. Pinon et al., Nanoenergetics as Pressure Generator for Nontoxic Impact Primers: Comparison of, Combustion and Flame, vol.162, issue.5, pp.1813-1820, 2015.

K. Lee, D. Kim, J. Shim, S. Bae, D. J. Shin et al., Formation of Cu Layer on Al Nanoparticles during Thermite Reaction in Al/CuO Nanoparticle Composites: Investigation of off-Stoichiometry Ratio of Al and CuO Nanoparticles for Maximum Pressure Change, Combustion and Flame, vol.162, issue.10, pp.3823-3828, 2015.

J. Y. Malchi, T. J. Foley, and R. A. Yetter, Electrostatically Self-Assembled Nanocomposite Reactive Microspheres, ACS Appl. Mater. Interfaces, vol.1, issue.11, pp.2420-2423, 2009.

T. Zhang, Z. Ma, G. Li, and Y. Luo, A New Strategy for the Fabrication of High Performance Reactive Microspheres via Energetic Polyelectrolyte Assembly, vol.7, pp.904-913, 2017.

R. Thiruvengadathan, S. W. Chung, S. Basuray, B. Balasubramanian, C. S. Staley et al., A Versatile Self-Assembly Approach toward High Performance Nanoenergetic Composite Using Functionalized Graphene, Langmuir, vol.30, issue.22, pp.6556-6564, 2014.

Y. Tao, J. Zhang, Y. Yang, H. Wu, L. Hu et al., Metastable Intermolecular Composites of Al and CuO Nanoparticles Assembled with Graphene Quantum Dots, vol.7, pp.1718-1723, 2017.

T. Calais, D. Bourrier, A. Bancaud, Y. Chabal, A. Estève et al., DNA Grafting and Arrangement on Oxide Surfaces for Self-Assembly of Al and CuO Nanoparticles, Langmuir, vol.2017, issue.43, pp.12193-12203
URL : https://hal.archives-ouvertes.fr/hal-01613194

T. Calais, A. Bancaud, A. Estève, and C. Rossi, Correlation between DNA Self-Assembly Kinetics, Microstructure, and Thermal Properties of Tunable Highly Energetic Al-CuO Nanocomposites for Micropyrotechnic Applications, ACS Appl. Nano Mater, vol.1, issue.9, pp.4716-4725, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01874446

T. Zhang, Z. Wang, G. Li, and Y. Luo, Tuning the Reactivity of Al/Fe2O3 Nanoenergetic Materials via an Approach Combining Soft Template Self-Assembly with Sol-Gel Process Process, Journal of Solid State Chemistry, vol.230, pp.1-7, 2015.

Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang et al., Growth Mechanisms, Fundamental Properties, and Applications. Progress in Materials Science, vol.60, pp.208-337, 2014.

A. S. Zoolfakar, R. A. Rani, A. J. Morfa, A. P. O'mullane, and K. Kalantar-zadeh, Nanostructured Copper Oxide Semiconductors: A Perspective on Materials, Synthesis Methods and Applications, J. Mater. Chem. C, vol.2014, issue.27, pp.5247-5270

S. Rehman, A. Mumtaz, and S. K. Hasanain, Size Effects on the Magnetic and Optical Properties of CuO Nanoparticles, J Nanopart Res, vol.13, issue.6, pp.2497-2507, 2011.

S. Anandan, X. Wen, and S. Yang, Room Temperature Growth of CuO Nanorod Arrays on Copper and Their Application as a Cathode in Dye-Sensitized Solar Cells, Materials Chemistry and Physics, vol.93, issue.1, pp.35-40, 2005.

J. Zhang, J. Wang, Y. Fu, B. Zhang, and Z. Xie, Sonochemistry-Synthesized CuO Nanoparticles as an Anode Interfacial Material for Efficient and Stable Polymer Solar Cells, RSC Adv, vol.2015, issue.36, pp.28786-28793

J. Kim, A. Katoch, S. Choi, and S. S. Kim, Growth and Sensing Properties of Networked P-CuO Nanowires, Sensors and Actuators B: Chemical, vol.212, pp.190-195, 2015.

H. Kim, C. Jin, S. Park, S. Kim, and C. Lee, H2S Gas Sensing Properties of Bare and Pd-Functionalized CuO Nanorods, Sensors and Actuators B: Chemical, vol.161, issue.1, pp.594-599, 2012.

M. Breedon, S. Zhuiykov, and N. Miura, The Synthesis and Gas Sensitivity of CuO Micro-Dimensional Structures Featuring a Stepped Morphology, Materials Letters, vol.82, pp.51-53, 2012.

B. J. Hansen, N. Kouklin, G. Lu, I. Lin, J. Chen et al., Analyte Detection, and Opto-Electronic Response of p-Type CuO Nanowires, J. Phys. Chem. C, vol.2010, issue.6, pp.2440-2447

G. Zhu, H. Xu, Y. Xiao, Y. Liu, A. Yuan et al., Facile Fabrication and Enhanced Sensing Properties of Hierarchically Porous CuO Architectures, ACS Appl. Mater. Interfaces, vol.2012, issue.2, pp.744-751

D. P. Volanti, A. A. Felix, M. O. Orlandi, G. Whitfield, D. Yang et al., The Role of Hierarchical Morphologies in the Superior Gas Sensing Performance of CuO-Based Chemiresistors, Advanced Functional Materials, vol.23, issue.14, pp.1759-1766, 2013.

J. Jo?ca, A. Ryzhikov, K. Fajerwerg, M. L. Kahn, B. Chaudret et al., A Novel SnO2 Sensor and Its Selectivity Improvement with Catalytic Filter, Procedia Engineering, vol.87, pp.923-926, 2014.

J. Jo?ca, A. Ryzhikov, M. L. Kahn, K. Fajerwerg, A. Chapelle et al., Russian Doll" Octahedra Prepared by Metalorganic Synthesis: A New Structure for Sub-Ppm CO Detection, Chemistry -A European Journal, vol.22, issue.29, pp.10127-10135, 2016.

J. Jo?ca, A. Ryzhikov, M. L. Kahn, K. Fajerwerg, B. Chaudret et al., Shape-Controlled ZnO Nanostructures for Gas Sensing Applications. Procedia Engineering, vol.87, pp.907-910, 2014.

J. Jo?ca, A. Ryzhikov, S. Palussière, J. Esvan, K. Fajerwerg et al., Organometallic Synthesis of CuO Nanoparticles: Application in Low-Temperature CO Detection, ChemPhysChem, vol.2017, issue.19, pp.2658-2665

Y. Lingmin, F. Xinhui, Q. Lijun, M. Lihe, and Y. Wen, Dependence of Morphologies for SnO2 Nanostructures on Their Sensing Property, Applied Surface Science, vol.257, issue.7, pp.3140-3144, 2011.

M. Fernández-garcía, A. Martínez-arias, J. C. Hanson, and J. A. Rodriguez, Nanostructured Oxides in Chemistry: Characterization and Properties, Chem. Rev, vol.104, issue.9, pp.4063-4104, 2004.

J. N. Tiwari, R. N. Tiwari, K. S. Kim, and . Zero, One-Dimensional, Two-Dimensional and Three-Dimensional Nanostructured Materials for Advanced Electrochemical Energy Devices, Progress in Materials Science, vol.2012, issue.4, pp.724-803

T. Jiang, Y. Wang, D. Meng, X. Wu, J. Wang et al., Controllable Fabrication of CuO Nanostructure by Hydrothermal Method and Its Properties, Applied Surface Science, vol.311, pp.602-608, 2014.

C. Wang, W. Zeng, H. Zhang, Y. Li, W. Chen et al., Synthesis and Growth Mechanism of CuO Nanostructures and Their Gas Sensing Properties, J Mater Sci: Mater Electron, vol.25, issue.5, pp.2041-2046, 2014.

M. Cao, C. Hu, Y. Wang, Y. Guo, C. Guo et al., A Controllable Synthetic Route to Cu, Cu2O, and CuO Nanotubes and Nanorods, Chem. Commun, vol.0, issue.15, pp.1884-1885, 2003.

J. Zhu, H. Bi, Y. Wang, X. Wang, X. Yang et al., CuO Nanocrystals with Controllable Shapes Grown from Solution without Any Surfactants, Materials Chemistry and Physics, vol.109, issue.1, pp.34-38, 2008.

R. V. Kumar, Y. Diamant, and A. Gedanken, Sonochemical Synthesis and Characterization of Nanometer-Size Transition Metal Oxides from Metal Acetates, Chem. Mater, vol.12, issue.8, pp.2301-2305, 2000.

L. L. Hench and J. K. West, The Sol-Gel Process, Chem. Rev, vol.90, issue.1, pp.33-72, 1990.

I. , Jun, vol.12, 2019.

H. Siddiqui, M. R. Parra, and F. Z. Haque, Optimization of Process Parameters and Its Effect on Structure and Morphology of CuO Nanoparticle Synthesized via the Sol?gel Technique, J Sol-Gel Sci Technol, vol.87, issue.1, pp.125-135, 2018.

T. Yamanaka, K. Masumori, R. Ishikawa, K. Ueno, and H. Shirai, Role of Isopropyl Alcohol Solvent in the Synthesis of Organic-Inorganic Halide CH(NH2)2PbIxBr3-x Perovskite Thin Films by a Two-Step Method, J. Phys. Chem. C, vol.2016, issue.44, pp.25371-25377

B. Beverskog and I. Puigdomenech, Revised Pourbaix Diagrams for Copper at 25 to 300°C, J. Electrochem. Soc, vol.144, issue.10, pp.3476-3483, 1997.

Y. Coppel, G. Spataro, C. Pagès, B. Chaudret, A. Maisonnat et al., Full Characterization of Colloidal Solutions of Long-Alkyl-Chain-Amine-Stabilized ZnO Nanoparticles by NMR Spectroscopy: Surface State, Equilibria, and Affinity, Chemistry -A European Journal, vol.18, issue.17, pp.5384-5393, 2012.

C. Pagès, Y. Coppel, M. L. Kahn, A. Maisonnat, and B. Chaudret, Self-Assembly of ZnO Nanocrystals in Colloidal Solutions, ChemPhysChem, vol.10, issue.13, pp.2334-2344, 2009.

Z. Zhao, Systèmes Hybrides : De La Nanoparticule Aux Gels. thesis, vol.3, 2017.

C. Barrière, K. Piettre, V. Latour, O. Margeat, C. Turrin et al., Ligand Effects on the Air Stability of Copper Nanoparticles Obtained from Organometallic Synthesis, Journal of Materials Chemistry, vol.2012, issue.5, pp.2279-2285

A. Glaria, J. Cure, K. Piettre, Y. Coppel, C. Turrin et al., Deciphering Ligands' Interaction with Cu and Cu2O Nanocrystal Surfaces by NMR Solution Tools, Chemistry -A European Journal, vol.21, issue.3, pp.1169-1178, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01923230

J. Cure, A. Glaria, V. Collière, P. Fazzini, A. Mlayah et al., Remarkable Decrease in the Oxidation Rate of Cu Nanocrystals Controlled by Alkylamine Ligands, J. Phys. Chem. C, vol.2017, issue.9, pp.5253-5260
URL : https://hal.archives-ouvertes.fr/hal-01947284

V. V. Kislyuk and O. P. Dimitriev, Nanorods and Nanotubes for Solar Cells, vol.8, pp.131-148, 2008.

M. Song, S. Park, F. M. Alamgir, J. Cho, and M. Liu, Nanostructured Electrodes for Lithium-Ion and Lithium-Air Batteries: The Latest Developments, Challenges, and Perspectives, Materials Science and Engineering: R: Reports, vol.72, issue.11, pp.203-252, 2011.

X. Zhang, W. Shi, J. Zhu, D. J. Kharistal, W. Zhao et al., High-Power and High-Energy-Density Flexible Pseudocapacitor Electrodes Made from Porous CuO Nanobelts and Single-Walled Carbon Nanotubes, ACS Nano, vol.5, issue.3, pp.2013-2019, 2011.

K. J. Choi and H. W. Jang, One-Dimensional Oxide Nanostructures as Gas-Sensing Materials: Review and Issues, Sensors, vol.10, issue.4, pp.4083-4099, 2010.

S. B. Wang, C. H. Hsiao, S. J. Chang, K. T. Lam, K. H. Wen et al., A CuO Nanowire Infrared Photodetector, Sensors and Actuators A: Physical, vol.171, issue.2, pp.207-211, 2011.

K. Zhou, R. Wang, B. Xu, and Y. Li, Synthesis, Characterization and Catalytic Properties of CuO Nanocrystals with Various Shapes, Nanotechnology, vol.17, issue.15, pp.3939-3943, 2006.

Y. Coppel, G. Spataro, V. Collière, B. Chaudret, C. Mingotaud et al., Self-Assembly of ZnO Nanoparticles -An NMR Spectroscopic Study, European Journal of Inorganic Chemistry, vol.2012, issue.16, pp.2691-2699, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02195807

M. L. Kahn, T. Cardinal, B. Bousquet, M. Monge, V. Jubera et al., Optical Properties of Zinc Oxide Nanoparticles and Nanorods Synthesized Using an Organometallic Method, ChemPhysChem, vol.7, issue.11, pp.2392-2397, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00114190

G. Spataro, Y. Champouret, P. Florian, Y. ;. Coppel, and M. Kahn, Multinuclear Solid-State NMR Study: A Powerful Tool for Understanding the Structure of ZnO Hybrid Nanoparticles, Physical Chemistry Chemical Physics, vol.20, issue.18, pp.12413-12421, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01898422

A. Glaria, M. L. Kahn, A. Falqui, P. Lecante, V. Collière et al., An Organometallic Approach for Very Small Maghemite Nanoparticles: Synthesis, Characterization, and Magnetic Properties, ChemPhysChem, vol.9, issue.14, pp.2035-2041, 2008.

A. Glaria, M. L. Kahn, P. Lecante, B. Barbara, and B. Chaudret, Fe1?yO Nanoparticles: Organometallic Synthesis and Magnetic Properties, ChemPhysChem, vol.9, issue.5, pp.776-780, 2008.

J. Cure, Y. Coppel, T. Dammak, P. F. Fazzini, A. Mlayah et al., Monitoring the Coordination of Amine Ligands on Silver Nanoparticles Using NMR and SERS, Langmuir, vol.31, issue.4, pp.1362-1367, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01764991

B. S. Lim, A. Rahtu, J. Park, and R. G. Gordon, Synthesis and Characterization of Volatile, Thermally Stable, Reactive Transition Metal Amidinates, Inorg. Chem, vol.42, issue.24, pp.7951-7958, 2003.

B. Lee, K. J. Choi, A. Hande, M. J. Kim, R. M. Wallace et al., A Novel Thermally-Stable Zirconium Amidinate ALD Precursor for ZrO2 Thin Films, Microelectronic Engineering, vol.86, issue.3, pp.272-276, 2009.

P. Sinsermsuksakul, J. Heo, W. Noh, A. S. Hock, and R. G. Gordon, Atomic Layer Deposition of Tin Monosulfide Thin Films, Advanced Energy Materials, vol.1, issue.6, pp.1116-1125, 2011.

T. Blanquart, J. Niinistö, M. Gavagnin, V. Longo, V. R. Pallem et al., Novel Heteroleptic Precursors for Atomic Layer Deposition of TiO2, Chem. Mater, vol.2012, issue.17, pp.3420-3424

A. R. Mouat, A. U. Mane, J. W. Elam, M. Delferro, T. J. Marks et al., Volatile Hexavalent Oxo-Amidinate Complexes: Molybdenum and Tungsten Precursors for Atomic Layer Deposition, Chem. Mater, vol.28, issue.6, pp.1907-1919, 2016.

M. N. Bochkarev, A. A. Maleev, T. V. Balashova, G. K. Fukin, E. V. Baranov et al., Methyl-and Propylacetamidinates of Lanthanides: Structures, Catalytic and Some Physical Properties, Inorganica Chimica Acta, vol.361, issue.8, pp.2533-2539, 2008.

Z. Li, S. T. Barry, and R. G. Gordon, Synthesis and Characterization of Copper(I) Amidinates as Precursors for Atomic Layer Deposition (ALD) of Copper Metal, Inorg. Chem, issue.6, pp.1728-1735, 2005.

P. Debouttière, Y. Coppel, P. Behra, B. Chaudret, and K. Fajerwerg, One-Pot Organometallic Synthesis of Well-Controlled Gold Nanoparticles by Gas Reduction of Au(I) Precursor: A Spectroscopic NMR Study, Gold Bull, vol.46, issue.4, pp.291-298, 2013.

M. Moreno, L. N. Kissell, J. B. Jasinski, and F. P. Zamborini, Selectivity and Reactivity of Alkylamine-and Alkanethiolate-Stabilized Pd and PdAg Nanoparticles for Hydrogenation and Isomerization of Allyl Alcohol, ACS Catal, vol.2012, issue.12, pp.2602-2613

, ImageJ, 2019.

Z. Zhao, Z. Zheng, C. Roux, C. Delmas, J. Marty et al., Importance of the Correlation between Width and Length in the Shape Analysis of Nanorods: Use of a 2D Size Plot To Probe Such a Correlation, Chemistry -A European Journal, vol.22, issue.35, pp.12424-12429, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01936037

E. Leontidis, K. Kleitou, T. Kyprianidou-leodidou, V. Bekiari, P. Lianos et al., Colloids from Cationic Surfactant Solutions. 1. Mechanisms That Control Particle Morphology, Langmuir, vol.18, issue.9, pp.3659-3668, 2002.

Z. Zhao, Y. Coppel, J. Fitremann, P. Fau, C. Roux et al., Mixing Time between Organometallic Precursor and Ligand: A Key Parameter Controlling ZnO Nanoparticle Size and Shape and Processable Hybrid Materials, Chem. Mater, vol.30, issue.24, pp.8959-8967, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02129949

Z. Zheng, R. Butynska, C. V. Serrano, J. Marty, C. Mingotaud et al., One-Step Synthesis of Hybrid Liquid-Crystal ZnO Nanoparticles: Existence of a Critical Temperature Associated with the Anisotropy of the Nanoparticles, Chemistry -A European Journal, vol.22, issue.44, pp.15614-15618, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01936039

F. Mani, M. Peruzzini, and P. Stoppioni, CO2 Absorption by Aqueous NH3 Solutions: Speciation of Ammonium Carbamate, Bicarbonate and Carbonate by a 13C NMR Study, Green Chem, vol.8, issue.11, pp.995-1000, 2006.

N. Mccann, D. Phan, X. Wang, W. Conway, R. Burns et al., Kinetics and Mechanism of Carbamate Formation from CO2(Aq), Carbonate Species, and Monoethanolamine in Aqueous Solution, J. Phys. Chem. A, issue.17, pp.5022-5029, 2009.

N. E. Hadri, Captage du CO2 par des solutions aqueuses d'amines: Relations structures/propriétés établies par une approche Expérimentation Haut Débit, p.279

C. S. Srikanth and S. S. Chuang, Infrared Study of Strongly and Weakly Adsorbed CO2 on Fresh and Oxidatively Degraded Amine Sorbents, J. Phys. Chem. C, issue.18, pp.9196-9205, 2013.

M. George and R. G. Weiss, Chemically Reversible Organogels via "Latent" Gelators. Aliphatic Amines with Carbon Dioxide and Their Ammonium Carbamates, Langmuir, vol.18, issue.19, pp.7124-7135, 2002.

F. Testud and J. Grillet, Insecticides organophosphorés, carbamates, pyréthrinoïdes de synthèse et divers. /data/traites/in/16-44508, 2007.

N. Belman, J. N. Israelachvili, Y. Li, C. R. Safinya, J. Bernstein et al., Reaction of Alkylamine Surfactants with Carbon Dioxide: Relevance to Nanocrystal Synthesis, Nano Lett, vol.9, issue.5, pp.2088-2093, 2009.

A. Hellström and R. Bordes, Reversible Flocculation of Nanoparticles by a Carbamate Surfactant, Journal of Colloid and Interface Science, vol.536, pp.722-727, 2019.

K. Borgohain, J. B. Singh, M. V. Rama-rao, T. Shripathi, and S. Mahamuni, Quantum Size Effects in CuO Nanoparticles, Phys. Rev. B, issue.16, pp.11093-11096, 2000.

Y. Coppel, G. Spataro, C. Pagès, B. Chaudret, A. Maisonnat et al., Full Characterization of Colloidal Solutions of Long-Alkyl-Chain-Amine-Stabilized ZnO Nanoparticles by NMR Spectroscopy: Surface State, Equilibria, and Affinity, Chemistry -A European Journal, vol.18, issue.17, pp.5384-5393, 2012.

R. J. Dudley, B. J. Hathaway, P. G. Hodgson, J. K. Mulcahy, and A. A. Tomlinson, A Correlation of the Copper-Nitrogen Bond-Lengths, Infrared Spectra and Electronic Spectra of Some Axial Tetraammines and Pentaammines of the Copper(II) Ion, J. inorg. nucl. Chem, vol.36, pp.1947-1950, 1974.

P. Calandra, A. Mandanici, and V. T. Liveri, Self-Assembly in Surfactant-Based Mixtures Driven by Acid-Base Reactions: Bis(2-Ethylhexyl) Phosphoric Acid-n-Octylamine Systems, RSC Adv, vol.2013, issue.3, pp.5148-5155

Z. Bacsik, N. Ahlsten, A. Ziadi, G. Zhao, A. E. Garcia-bennett et al., Mechanisms and Kinetics for Sorption of CO2 on Bicontinuous Mesoporous Silica Modified with N-Propylamine, Langmuir, vol.27, issue.17, pp.11118-11128, 2011.

A. Danon, P. C. Stair, and E. Weitz, FTIR Study of CO2 Adsorption on Amine-Grafted SBA-15: Elucidation of Adsorbed Species, J. Phys. Chem. C, issue.23, pp.11540-11549, 2011.

Z. Bacsik and N. Hedin, Effects of Carbon Dioxide Captured from Ambient Air on the Infrared Spectra of Supported Amines, Vibrational Spectroscopy, vol.87, pp.215-221, 2016.

J. Yu and S. S. Chuang, The Structure of Adsorbed Species on Immobilized Amines in CO2 Capture: An in Situ IR Study, Energy Fuels, vol.30, issue.9, pp.7579-7587, 2016.

B. Holt and . Von,

S. Kudera, A. Weiss, T. E. Schrader, L. Manna, W. J. Parak et al., Ligand Exchange of CdSe Nanocrystals Probed by Optical Spectroscopy in the Visible and Mid-IR, J. Mater. Chem, vol.18, issue.23, pp.2728-2732, 2008.

J. K. Cooper, A. M. Franco, S. Gul, C. Corrado, and J. Z. Zhang, Characterization of Primary Amine Capped CdSe, ZnSe, and ZnS Quantum Dots by FT-IR: Determination of Surface Bonding Interaction and Identification of Selective Desorption, Langmuir, vol.27, issue.13, pp.8486-8493, 2011.

N. C. Anderson, M. P. Hendricks, J. J. Choi, J. S. Owen, and . Ligand, Exchange and the Stoichiometry of Metal Chalcogenide Nanocrystals: Spectroscopic Observation of Facile Metal-Carboxylate Displacement and Binding, J. Am. Chem. Soc, vol.135, issue.49, pp.18536-18548, 2013.

M. Lattuada and T. A. Hatton, Functionalization of Monodisperse Magnetic Nanoparticles, Langmuir, vol.23, issue.4, pp.2158-2168, 2007.

A. Caragheorgheopol and V. Chechik, Mechanistic Aspects of Ligand Exchange in Au Nanoparticles, Physical Chemistry Chemical Physics, vol.10, issue.33, pp.5029-5041, 2008.

S. Basiruddin, A. Saha, N. Pradhan, and N. R. Jana, Advances in Coating Chemistry in Deriving Soluble Functional Nanoparticle, J. Phys. Chem. C, issue.25, pp.11009-11017, 2010.

L. O. Brown and J. E. Hutchison, Controlled Growth of Gold Nanoparticles during Ligand Exchange, J. Am. Chem. Soc, vol.121, issue.4, pp.882-883, 1999.

M. G. Warner, S. M. Reed, J. E. Hutchison, and . Small, Water-Soluble, Ligand-Stabilized Gold Nanoparticles Synthesized by Interfacial Ligand Exchange Reactions, Chem. Mater, vol.12, issue.11, pp.3316-3320, 2000.

R. Sharma, G. P. Holland, V. C. Solomon, H. Zimmermann, S. Schiffenhaus et al., NMR Characterization of Ligand Binding and Exchange Dynamics in Triphenylphosphine-Capped Gold Nanoparticles, J. Phys. Chem. C, issue.37, pp.16387-16393, 2009.

E. Pensa, E. Cortés, G. Corthey, P. Carro, C. Vericat et al., The Chemistry of the Sulfur-Gold Interface: In Search of a Unified Model, Acc. Chem. Res, vol.2012, issue.8, pp.1183-1192

C. Vericat, M. E. Vela, G. Corthey, E. Pensa, E. Cortés et al., Self-Assembled Monolayers of Thiolates on Metals: A Review Article on Sulfur-Metal Chemistry and Surface Structures. RSC Adv, vol.2014, issue.53, pp.27730-27754

Y. Feng, W. Teo, K. Siow, Z. Gao, K. Tan et al., Corrosion Protection of Copper by a Self-Assembled Monolayer of Alkanethiol, J. Electrochem. Soc, vol.144, issue.1, pp.55-64, 1997.

D. A. Hutt and C. Liu, Oxidation Protection of Copper Surfaces Using Self-Assembled Monolayers of Octadecanethiol, Applied Surface Science, vol.252, issue.2, pp.400-411, 2005.

Y. Wang, J. Im, J. W. Soares, D. M. Steeves, and J. E. Whitten, Thiol Adsorption on and Reduction of Copper Oxide Particles and Surfaces, Langmuir, vol.32, issue.16, pp.3848-3857, 2016.

C. Bullen and P. Mulvaney, The Effects of Chemisorption on the Luminescence of CdSe Quantum Dots, Langmuir, vol.22, issue.7, pp.3007-3013, 2006.

K. Li and D. Xue, Estimation of Electronegativity Values of Elements in Different Valence States, J. Phys. Chem. A, vol.110, pp.11332-11337, 2006.

R. J. Boyd and K. E. Edgecombe, Atomic and Group Electronegativities from the Electron-Density Distributions of Molecules, J. Am. Chem. Soc, vol.110, issue.13, pp.4182-4186, 1988.

C. R. Andrew, H. Yeom, J. S. Valentine, B. G. Karlsson, G. Van-pouderoyen et al., Raman Spectroscopy as an Indicator of Cu-S Bond Length in Type 1 and Type 2 Copper Cysteinate Proteins, J. Am. Chem. Soc, vol.116, issue.25, pp.11489-11498, 1994.

M. M. Sung, K. Sung, C. G. Kim, S. S. Lee, and Y. Kim, Self-Assembled Monolayers of Alkanethiols on Oxidized Copper Surfaces, J. Phys. Chem. B, vol.104, issue.10, pp.2273-2277, 2000.

C. A. Calderón, C. Ojeda, V. A. Macagno, P. Paredes-olivera, and E. M. Patrito, Interaction of Oxidized Copper Surfaces with Alkanethiols in Organic and Aqueous Solvents. The Mechanism of Cu2O Reduction, J. Phys. Chem. C, vol.2010, issue.9, pp.3945-3957

D. S. Bergsman, T. Liu, R. G. Closser, K. L. Nardi, N. Draeger et al., Formation and Ripening of Self-Assembled Multilayers from the Vapor-Phase Deposition of Dodecanethiol on Copper Oxide, Chem. Mater, vol.30, issue.16, pp.5694-5703, 2018.

M. J. Romeo and M. Diem, Infrared Spectral Imaging of Lymph Nodes: Strategies for Analysis and Artifact Reduction, Vibrational Spectroscopy, vol.38, issue.1-2, pp.115-119, 2005.

P. Bassan, H. J. Byrne, F. Bonnier, J. Lee, P. Dumas et al., Resonant Mie Scattering in Infrared Spectroscopy of Biological Materials -Understanding the 'Dispersion Artefact, Analyst, vol.134, pp.1586-1593, 2009.

J. A. Kimber, L. Foreman, B. Turner, P. Rich, and S. G. Kazarian, FTIR Spectroscopic Imaging and Mapping with Correcting Lenses for Studies of Biological Cells and Tissues, Faraday Discuss, vol.187, pp.69-85, 2016.

J. B. Swadling, J. L. Suter, H. C. Greenwell, and P. V. Coveney, Influence of Surface Chemistry and Charge on Mineral-RNA Interactions, Langmuir, vol.29, issue.5, pp.1573-1583, 2013.

H. Dietrich, T. Schmaltz, M. Halick, and D. Zahn, Molecular Dynamics Simulations of Phosphonic Acid-Aluminum Oxide Self-Organization and Their Evolution into Ordered Monolayers, vol.19, pp.5137-5144, 2017.

T. Calais, B. Playe, J. Ducéré, J. Veyan, S. Rupich et al., Role of Alumina Coatings for Selective and Controlled Bonding of DNA on Technologically Relevant Oxide Surfaces, J. Phys. Chem. C, issue.41, pp.23527-23543, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01496522

J. Amalric, P. H. Mutin, G. Guerrero, A. Ponche, A. Sotto et al.,

, Phosphonate Monolayers Functionalized by Silver Thiolate Species as Antibacterial Nanocoatings on Titanium and Stainless Steel, J. Mater. Chem, vol.19, issue.1, pp.141-149, 2008.

S. Jang, D. Son, S. Hwang, M. Kang, S. Lee et al., Hybrid Dielectrics Composed of Al2O3 and Phosphonic Acid Self-Assembled Monolayers for Performance Improvement in Low Voltage Organic Field Effect Transistors, Nano Convergence, vol.5, issue.1, p.20, 2018.

J. Kirschner, Z. Wang, S. Eigler, H. Steinrück, C. M. Jäger et al., Driving Forces for the Self-Assembly of Graphene Oxide on Organic Monolayers, Nanoscale, vol.6, issue.19, pp.11344-11350, 2014.

T. Bauer, T. Schmaltz, T. Lenz, M. Halik, B. Meyer et al., Phosphonate-and Carboxylate-Based Self-Assembled Monolayers for Organic Devices: A Theoretical Study of Surface Binding on Aluminum Oxide with Experimental Support, ACS Appl. Mater. Interfaces, vol.2013, issue.13, pp.6073-6080

R. Luschtinetz, A. F. Oliveira, H. A. Duarte, and G. Seifert, Self-Assembled Monolayers of Alkylphosphonic Acids on Aluminum Oxide Surfaces -A Theoretical Study. Zeitschrift für anorganische und allgemeine Chemie, vol.636, pp.1506-1512, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00552441

S. Palussière, J. Cure, A. Nicollet, P. Fau, K. Fajerwerg et al., The Role of Alkylamine in the Stabilization of CuO Nanoparticles as a Determinant of the Al/CuO Redox Reaction, Phys. Chem. Chem. Phys, 2019.

M. A. Trunov, M. Schoenitz, X. Zhu, and E. L. Dreizin, Effect of Polymorphic Phase Transformations in Al2O3 Film on Oxidation Kinetics of Aluminum Powders, Combustion and Flame, vol.140, issue.4, pp.310-318, 2005.

J. J. Granier and M. L. Pantoya, Laser Ignition of Nanocomposite Thermites, Combustion and Flame, vol.138, issue.4, pp.373-383, 2004.

L. Glavier, G. Taton, J. Ducéré, V. Baijot, S. Pinon et al., Nanoenergetics as Pressure Generator for Nontoxic Impact Primers: Comparison of Al/Bi2O3, Al/CuO, Al/MoO3 Nanothermites and Al/PTFE, Combustion and Flame, vol.162, issue.5, pp.1813-1820, 2015.

E. Coker, The Oxidation of Aluminum at High Temperature Studied by Thermogravimetric Analysis and Differential Scanning Calorimetry.; SAND2013-8424, pp.2013-8424, 2013.

D. Stamatis, A. Ermoline, E. L. Dreizin, and . Multi, Step Reaction Model for Ignition of Fully-Dense Al-CuO Nanocomposite Powders, Combust. Theory Model, vol.16, pp.1011-1028, 2012.

J. L. Murray, The Aluminium-Copper System, Int. Met. Rev, vol.30, pp.211-234, 1985.

I. Abdallah, J. Zapata, G. Lahiner, B. Warot-fonrose, J. Cure et al., Structure and Chemical Characterization at the Atomic Level of Reactions in Al/CuO Multilayers, ACS Appl. Energy Mater, vol.1, issue.4, pp.1762-1770, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01759153

T. Wu, X. Wang, J. B. Delisio, S. Holdren, and M. R. Zachariah, Carbon Addition Lowers Initiation and Iodine Release Temperatures from Iodine Oxide-Based Biocidal Energetic Materials, Carbon, vol.130, pp.410-415, 2018.

J. Pike, S. Chan, F. Zhang, X. Wang, and J. Hanson, Formation of Stable Cu2O from Reduction of CuO Nanoparticles, Applied Catalysis A: General, vol.303, issue.2, pp.273-277, 2006.

C. Barrière, G. Alcaraz, O. Margeat, P. Fau, J. B. Quoirin et al., Copper Nanoparticles and Organometallic Chemical Liquid Deposition (OMCLD) for

, Substrate Metallization. J. Mater. Chem, vol.18, issue.26, pp.3084-3086, 2008.

K. Lee, D. Kim, J. Shim, S. Bae, D. J. Shin et al., Formation of Cu Layer on Al Nanoparticles during Thermite Reaction in Al/CuO Nanoparticle Composites: Investigation of off-Stoichiometry Ratio of Al and CuO Nanoparticles for Maximum Pressure Change, Combustion and Flame, vol.162, issue.10, pp.3823-3828, 2015.

W. R. Ashurst, C. Carraro, and R. Maboudian, Vapor Phase Anti-Stiction Coatings for MEMS, IEEE Transactions on Device and Materials Reliability, vol.3, issue.4, pp.173-178, 2003.