J. Zhou, J. Li, X. Du, and B. Xu, Supramolecular Biofunctional Materials. Biomaterials, vol.129, pp.1-27, 2017.

A. Keller and . Lecture, Aspects of Polymer Gels, Faraday Discussions, vol.101, 1995.
DOI : 10.1039/fd9950100001

L. Lukyanova, Préparation de Matrices Microporeuses d'organogel et Évaluation En Culture Cellulaire, 2009.

G. M. Whitesides, J. P. Mathias, and C. T. Seto, Molecular Self-Assembly and Nanochemistry: A Chemical Strategy for the Synthesis of Nanostructures, Science, vol.254, issue.5036, pp.1312-1319, 1991.

L. A. Estroff and A. D. Hamilton, Water Gelation by Small Organic Molecules, Chemical reviews, vol.104, issue.3, pp.1201-1218, 2004.
DOI : 10.1002/chin.200420292

P. Dastidar, Supramolecular Gelling Agents: Can They Be Designed?, Chemical Society Reviews, vol.37, issue.12, p.2699, 2008.
DOI : 10.1039/b807346e

R. G. Weiss, The Past, Present, and Future of Molecular Gels. What Is the Status of the Field, and Where Is It Going?, Journal of the American Chemical Society, vol.136, issue.21, pp.7519-7530, 2014.

T. Kunitake, Y. Okahata, M. Shimomura, S. Yasunami, and K. Takarabe, Formation of Stable Bilayer Assemblies in Water from Single-Chain Amphiphiles, Relationship between the Amphiphile Structure and the Aggregate Morphology, vol.103, pp.5401-5413, 1981.

J. H. Fuhrhop, P. Schnieder, E. Boekema, and W. Helfrich, Lipid Bilayer Fibers from Diastereomeric and Enantiomeric N-Octylaldonamides, Journal of the American Chemical Society, vol.110, issue.9, pp.2861-2867, 1988.
DOI : 10.1021/ja00217a028

URL : https://pure.rug.nl/ws/files/14488469/1988JAmChemSocFuhrhop.pdf

K. Saha, A. J. Keung, E. F. Irwin, Y. Li, L. Little et al., Substrate Modulus Directs Neural Stem Cell Behavior, Biophysical Journal, vol.95, issue.9, pp.4426-4438, 2008.
DOI : 10.1529/biophysj.108.132217

URL : https://doi.org/10.1529/biophysj.108.132217

X. Du, J. Zhou, J. Shi, and B. Xu, Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials, Chemical Reviews, vol.115, issue.24, pp.13165-13307, 2015.
DOI : 10.1021/acs.chemrev.5b00299

URL : https://doi.org/10.1021/acs.chemrev.5b00299

N. Zanna, S. Focaroli, A. Merlettini, L. Gentilucci, G. Teti et al., Thixotropic Peptide-Based Physical Hydrogels Applied to Three-Dimensional Cell Culture
DOI : 10.1021/acsomega.7b00322

URL : https://doi.org/10.1021/acsomega.7b00322

, ACS Omega, vol.2017, issue.5, pp.2374-2381

M. Kouchak, Situ Gelling Systems for Drug Delivery, Jundishapur J Nat Pharm Prod, vol.2014, issue.3
DOI : 10.17795/jjnpp-20126

URL : http://europepmc.org/articles/pmc4165193?pdf=render

S. Koutsopoulos and S. Zhang, Long-Term Three-Dimensional Neural Tissue Cultures in Functionalized Self-Assembling Peptide Hydrogels, Matrigel and Collagen I, ACS Applied Materials & Interfaces, vol.2013, issue.2, pp.12474-12484, 2018.

Z. Wu, G. Chen, J. Zhang, Y. Hua, J. Li et al., Treatment of Myocardial Infarction with Gene-Modified Mesenchymal Stem Cells in a Small Molecular Hydrogel, Scientific Reports, vol.7, issue.1, 2017.

T. Cheng, H. Wu, M. Huang, W. Chang, C. Lee et al., Self-Assembling Functionalized Nanopeptides for Immediate Hemostasis and Accelerative Liver Tissue Regeneration, Nanoscale, vol.2013, issue.7
DOI : 10.1039/c3nr33710c

K. M. Galler, J. D. Hartgerink, A. C. Cavender, G. Schmalz, and R. N. Souza, A Customized SelfAssembling Peptide Hydrogel for Dental Pulp Tissue Engineering, Tissue Eng Part A, vol.2012, issue.1-2, pp.176-184

E. J. Berns, S. Sur, L. Pan, J. E. Goldberger, S. Suresh et al., Aligned Neurite Outgrowth and Directed Cell Migration in Self-Assembled Monodomain Gels, Biomaterials, vol.35, pp.185-195, 2014.
DOI : 10.1016/j.biomaterials.2013.09.077

URL : http://europepmc.org/articles/pmc3865987?pdf=render


S. Zhang, M. A. Greenfield, A. Mata, L. C. Palmer, R. Bitton et al., A Self-Assembly Pathway to Aligned Monodomain Gels, Nat Mater, vol.9, issue.7, pp.594-601, 2010.
DOI : 10.1038/nmat2778

URL : http://europepmc.org/articles/pmc3084632?pdf=render

A. J. Matsuoka, Z. A. Sayed, N. Stephanopoulos, E. J. Berns, A. R. Wadhwani et al., Creating a Stem Cell Niche in the Inner Ear Using Self-Assembling Peptide Amphiphiles, PLOS ONE, vol.2017, issue.12

T. Cheng, M. Chen, W. Chang, M. Huang, and T. Wang, Neural Stem Cells Encapsulated in a Functionalized Self-Assembling Peptide Hydrogel for Brain Tissue Engineering, Biomaterials, vol.2013, issue.8, pp.2005-2016


C. Soler-botija, J. R. Bagó, A. Llucià-valldeperas, A. Vallés-lluch, C. Castells-sala et al., Engineered 3D Bioimplants Using Elastomeric Scaffold, Self-Assembling Peptide Hydrogel, and Adipose Tissue-Derived Progenitor Cells for Cardiac Regeneration, Am J Transl Res, vol.6, issue.3, pp.291-301, 2014.

N. Akiyama, T. Yamamoto-fukuda, H. Takahashi, and T. Koji, Situ Tissue Engineering with Synthetic Self-Assembling Peptide Nanofiber Scaffolds, PuraMatrix, for Mucosal Regeneration in the Rat Middle-Ear, Int J Nanomedicine, vol.8, pp.2629-2640, 2013.

T. C. Holmes, S. Lacalle, and . De,

X. Su, G. Liu, A. Rich, and S. Zhang, Extensive Neurite Outgrowth and Active Synapse Formation on Self-Assembling Peptide Scaffolds, PNAS, issue.12, pp.6728-6733, 2000.

R. G. Ellis-behnke, Y. Liang, S. You, D. K. Tay, S. Zhang et al., Nano Neuro Knitting: Peptide Nanofiber Scaffold for Brain Repair and Axon Regeneration with Functional Return of Vision, Proceedings of the National Academy of Sciences of the United States of America, vol.103, pp.5054-5059, 2006.

S. A. Goldman and F. Nottebohm, Neuronal Production, Migration, and Differentiation in a Vocal Control Nucleus of the Adult Female Canary Brain, Proceedings of the National Academy of Sciences, pp.2390-2394, 1983.

B. Reynolds and S. Weiss, Generation of Neurons and Astrocytes from Isolated Cells of the Adult Mammalian Central Nervous System, Science, vol.255, issue.5052, pp.1707-1710, 1992.

P. S. Eriksson, E. Perfilieva, T. Björk-eriksson, A. Alborn, C. Nordborg et al., Neurogenesis in the Adult Human Hippocampus, Nature Medicine, vol.4, issue.11, pp.1313-1317, 1998.

H. Song, C. F. Stevens, and F. H. Gage, Neural Stem Cells from Adult Hippocampus Develop Essential Properties of Functional CNS Neurons, Nature Neuroscience, vol.5, issue.5, pp.438-445, 2002.
DOI : 10.1038/nn844

I. B. Levitan and L. K. Kaczmarek, The Neuron: Cell and Molecular Biology, 2015.

S. F. Sorrells, M. F. Paredes, A. Cebrian-silla, K. Sandoval, D. Qi et al., Human Hippocampal Neurogenesis Drops Sharply in Children to Undetectable Levels in Adults, Nature, vol.555, issue.7696, pp.377-381, 2018.

L. Vaysse, C. Labie, B. Canolle, S. Jozan, A. Béduer et al., Adult Human Progenitor Cells from the Temporal Lobe: Another Source of Neuronal Cells, Brain Injury, vol.26, pp.1636-1645, 2012.


C. Davoust, Greffe de cellules souches neurales adultes sur bioimplants comme stratégie thérapeutique dans un modèle de lésion du cortex moteur primaire chez le petit animal. Suivi par analyses comportementales, 2016.

A. L. Vescovi, R. Galli, and B. A. Reynolds, Brain Tumour Stem Cells, Nature Reviews Cancer, vol.6, issue.6, pp.425-436, 2006.
DOI : 10.1038/nrc1889

N. M. Walton, Derivation and Large-Scale Expansion of Multipotent Astroglial Neural Progenitors from Adult Human Brain, Development, vol.133, issue.18, pp.3671-3681, 2006.
DOI : 10.1242/dev.02541

URL : http://dev.biologists.org/content/133/18/3671.full.pdf

Y. Arsenijevic, J. Villemure, J. Brunet, J. J. Bloch, N. Déglon et al., Isolation of Multipotent Neural Precursors Residing in the Cortex of the Adult Human Brain, Experimental Neurology, vol.170, issue.1, pp.48-62, 2001.


M. C. Nunes, N. S. Roy, H. M. Keyoung, R. R. Goodman, G. Mckhann et al., Identification and Isolation of Multipotential Neural Progenitor Cells from the Subcortical White Matter of the Adult Human Brain, Nature Medicine, vol.9, issue.4, pp.439-447, 2003.

S. Artavanis-tsakonas, K. Matsuno, M. E. Fortini, and . Signaling, Science, vol.268, issue.5208, pp.225-232, 1995.

S. Geraldo and P. R. Gordon-weeks, Cytoskeletal Dynamics in Growth-Cone Steering, Journal of Cell Science, vol.122, issue.20, pp.3595-3604, 2009.
DOI : 10.1242/jcs.042309

URL : http://jcs.biologists.org/content/joces/122/20/3595.full.pdf

P. Forscher and S. J. Smith, Actions of Cytochalasins on the Organization of Actin Filaments and Microtubules in a Neuronal Growth Cone, J. Cell Biol, vol.107, pp.1505-1516, 1988.

R. Itofusa and H. Kamiguchi, Polarizing Membrane Dynamics and Adhesion for Growth Cone Navigation, Molecular and Cellular Neuroscience, vol.48, issue.4, pp.332-338, 2011.
DOI : 10.1016/j.mcn.2011.03.007

K. Saha, A. J. Keung, E. F. Irwin, Y. Li, L. Little et al., Substrate Modulus Directs Neural Stem Cell Behavior, Biophysical Journal, vol.95, issue.9, pp.4426-4438, 2008.
DOI : 10.1529/biophysj.108.132217

URL : https://doi.org/10.1529/biophysj.108.132217

Y. Sun, K. M. Yong, L. G. Villa-diaz, X. Zhang, W. Chen et al., Hippo/YAP-Mediated Rigidity-Dependent Motor Neuron Differentiation of Human Pluripotent Stem Cells, Nature Materials, vol.13, issue.6, pp.599-604, 2014.

A. J. Keung, P. Asuri, S. Kumar, and D. V. Schaffer, Soft Microenvironments Promote the Early Neurogenic Differentiation but Not Self-Renewal of Human Pluripotent Stem Cells, Integrative Biology, vol.2012, issue.9

A. J. Keung, M. Dong, D. V. Schaffer, and S. Kumar, Pan-Neuronal Maturation but Not Neuronal Subtype Differentiation of Adult Neural Stem Cells Is Mechanosensitive, Scientific Reports, vol.2013, issue.3

S. Sur, C. J. Newcomb, M. J. Webber, and S. I. Stupp, Tuning Supramolecular Mechanics to Guide Neuron Development, Biomaterials, vol.34, issue.20, pp.4749-4757, 2013.
DOI : 10.1016/j.biomaterials.2013.03.025

URL : http://europepmc.org/articles/pmc3635952?pdf=render


D. E. Koser, A. J. Thompson, S. K. Foster, A. Dwivedy, E. K. Pillai et al., Mechanosensing Is Critical for Axon Growth in the Developing Brain, Nature Neuroscience, vol.19, issue.12, pp.1592-1598, 2016.

M. Ahearne, Introduction to Cell-Hydrogel Mechanosensing. Interface Focus, vol.4, pp.20130038-20130038, 2014.
DOI : 10.1098/rsfs.2013.0038

URL : http://europepmc.org/articles/pmc3982445?pdf=render

O. Lindvall and Z. Kokaia, Neurogenesis Following Stroke Affecting the Adult Brain, Cold Spring Harb Perspect Biol, vol.7, issue.11, 2015.

R. M. Richardson, A. Singh, D. Sun, H. L. Fillmore, D. W. Dietrich et al., Stem Cell Biology in Traumatic Brain Injury: Effects of Injury and Strategies for Repair, Journal of Neurosurgery, vol.112, issue.5, pp.1125-1138, 2010.

B. M. Maoz, A. Herland, E. A. Fitzgerald, T. Grevesse, C. Vidoudez et al., A Linked Organ-on-Chip Model of the Human Neurovascular Unit Reveals the Metabolic Coupling of Endothelial and Neuronal Cells, Nature Biotechnology, vol.36, issue.9, pp.865-874, 2018.

V. G. Kukekov, E. D. Laywell, O. Suslov, K. Davies, B. Scheffler et al., Multipotent Stem/Progenitor Cells with Similar Properties Arise from Two Neurogenic Regions of Adult Human Brain, Experimental Neurology, vol.156, issue.2, pp.333-344, 1999.

X. Li, E. Katsanevakis, X. Liu, N. Zhang, and X. Wen, Engineering Neural Stem Cell Fates with Hydrogel Design for Central Nervous System Regeneration. Progress in Polymer Science, 2012.

A. R. Murphy, A. Laslett, C. M. O'brien, and N. R. Cameron, Scaffolds for 3D in Vitro Culture of Neural Lineage Cells, Acta Biomaterialia, 2017.

M. D. Tang-schomer, J. D. White, L. W. Tien, L. I. Schmitt, T. M. Valentin et al., Bioengineered Functional Brainlike Cortical Tissue, Proceedings of the National Academy of Sciences, issue.38, pp.13811-13816, 2014.
DOI : 10.1073/pnas.1324214111

URL : http://www.pnas.org/content/111/38/13811.full.pdf

S. Sur, E. T. Pashuck, M. O. Guler, M. Ito, S. I. Stupp et al., A Hybrid Nanofiber Matrix to Control the Survival and Maturation of Brain Neurons, Biomaterials, vol.2012, issue.2, pp.545-555

K. Farrell, J. Joshi, and C. R. Kothapalli, Injectable Uncrosslinked Biomimetic Hydrogels as Candidate Scaffolds for Neural Stem Cell Delivery, Journal of Biomedical Materials Research Part A, vol.2017, issue.3, pp.790-805

H. Duan, X. Li, C. Wang, P. Hao, W. Song et al., Functional Hyaluronate Collagen Scaffolds Induce NSCs Differentiation into Functional Neurons in Repairing the Traumatic Brain Injury, Acta Biomaterialia, vol.45, pp.182-195, 2016.

D. Tarus, L. Hamard, F. Caraguel, D. Wion, A. Szarpak-jankowska et al., Auzély-Velty, R. Design of Hyaluronic Acid Hydrogels to Promote Neurite Outgrowth in Three Dimensions, ACS Applied Materials & Interfaces, vol.8, issue.38, pp.25051-25059, 2016.

D. Diekjürgen and D. W. Grainger, Polysaccharide Matrices Used in 3D in Vitro Cell Culture Systems, Biomaterials, vol.141, pp.96-115, 2017.


C. Gonçalves-pimentel, G. M. Moreno, B. S. Trindade, A. R. Isaac, C. G. Rodrigues et al., Cellulose Exopolysaccharide from Sugarcane Molasses as a Suitable Substrate for 2D and 3D Neuron and Astrocyte Primary Cultures, Journal of Materials Science: Materials in Medicine, issue.9, p.29, 2018.

Z. Wei, J. Zhao, Y. M. Chen, P. Zhang, and Q. Zhang, Self-Healing Polysaccharide-Based Hydrogels as Injectable Carriers for Neural Stem Cells, Scientific Reports, vol.6, p.37841, 2016.

L. Ylä-outinen, T. Joki, M. Varjola, H. Skottman, and S. Narkilahti, Three-Dimensional Growth Matrix for Human Embryonic Stem Cell-Derived Neuronal Cells, J Tissue Eng Regen Med, vol.8, pp.186-194, 2014.

J. R. Thonhoff, D. I. Lou, P. M. Jordan, X. Zhao, and P. Wu, Compatibility of Human Fetal Neural Stem Cells with Hydrogel Biomaterials in Vitro, Brain Research, vol.1187, pp.42-51, 2008.

A. L. Carlson, N. K. Bennett, N. L. Francis, A. Halikere, S. Clarke et al., Generation and Transplantation of Reprogrammed Human Neurons in the Brain Using 3D Microtopographic Scaffolds, Nature Communications, vol.7, 2016.

A. Omidinia-anarkoli, S. Boesveld, U. Tuvshindorj, J. C. Rose, T. Haraszti et al., An Injectable Hybrid Hydrogel with Oriented Short Fibers Induces Unidirectional Growth of Functional Nerve Cells, Small, vol.2017, issue.36, p.1702207

B. Zhu, W. Li, R. V. Lewis, C. U. Segre, R. Wang et al., Composite Fibers of Collagen and Dragline Silk Protein: Fiber Mechanics, Biocompatibility, and Application in Stem Cell Differentiation, Biomacromolecules, vol.16, issue.1, pp.202-213, 2015.


A. Béduer, I. Gonzales-calvo, C. Vieu, I. Loubinoux, and L. Vaysse, Investigation of the Competition Between Cell/Surface and Cell/Cell Interactions During Neuronal Cell Culture on a Micro-Engineered Surface, Macromol. Biosci, vol.13, issue.11, pp.1546-1555, 2013.

A. Béduer, C. Vieu, F. Arnauduc, J. Sol, I. Loubinoux et al., Engineering of Adult Human Neural Stem Cells Differentiation through Surface Micropatterning, Biomaterials, vol.2012, issue.2, pp.504-514

A. Béduer and . Micro, Nano ingénierie pour le contrôle de la croissance de cellules neuronales et l'élaboration d'une bioprothèse cérébrale à base de cellules souches organisées, 2012.

A. Yamada, M. Vignes, C. Bureau, A. Mamane, B. Venzac et al., Mold Patterning and Actionable Axo-Somatic Compartmentalization for on-Chip Neuron Culture, vol.16, pp.2059-2068, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01324932

S. Pautot, C. Wyart, and E. Y. Isacoff, Colloid-Guided Assembly of Oriented 3D Neuronal Networks, Nature Methods, vol.5, issue.8, pp.735-740, 2008.

R. Edmondson, J. J. Broglie, A. F. Adcock, and L. Yang, Three-Dimensional Cell Culture Systems and Their Applications in Drug Discovery and Cell-Based Biosensors, Assay Drug Dev Technol, vol.12, issue.4, pp.207-218, 2014.

K. Muguruma, A. Nishiyama, H. Kawakami, K. Hashimoto, and Y. Sasai, Self-Organization of Polarized Cerebellar Tissue in 3D Culture of Human Pluripotent Stem Cells, Cell Reports, vol.10, issue.4, pp.537-550, 2015.

X. Qian, F. Jacob, M. M. Song, H. N. Nguyen, H. Song et al., Generation of Human Brain Region-Specific Organoids Using a Miniaturized Spinning Bioreactor, Nature Protocols, vol.13, issue.3, pp.565-580, 2018.

W. Ma, T. Tavakoli, S. Chen, D. Maric, J. L. Liu et al., Reconstruction of Functional Cortical-like Tissues from Neural Stem and Progenitor Cells

Y. Ohsedo, M. Oono, K. Saruhashi, H. Watanabe, and . N-alkylamido-d-glucamine, Based Gelators for the Generation of Thixotropic Gels, RSC Adv, vol.2014, issue.89, pp.48554-48558

H. Greim, D. Bury, H. J. Klimisch, M. Oeben-negele, and K. Ziegler-skylakakis, Toxicity of Aliphatic Amines: Structure-Activity Relationship, vol.36, pp.271-295, 1998.

Y. Kuang and B. Xu, Disruption of the Dynamics of Microtubules and Selective Inhibition of Glioblastoma Cells by Nanofibers of Small Hydrophobic Molecules, Angew. Chem. Int. Ed, vol.52, issue.27, pp.6944-6948, 2013.

A. T. Petkova, Self-Propagating, Molecular-Level Polymorphism in Alzheimer's -Amyloid Fibrils, Science, vol.307, issue.5707, pp.262-265, 2005.
DOI : 10.1126/science.1105850

N. Gotoh, K. Moroda, H. Watanabe, K. Yoshinaga, M. Tanaka et al., Metabolism of Odd-Numbered Fatty Acids and Even-Numbered Fatty Acids in Mouse, Journal of Oleo Science, vol.57, issue.5, pp.293-299, 2008.

T. Shimizu and M. Masuda, Stereochemical Effect of Even-Odd Connecting Links on Supramolecular Assemblies Made of 1-Glucosamide Bolaamphiphiles, Journal of the American Chemical Society, vol.119, issue.12, pp.2812-2818, 1997.

G. Liu, D. Zhang, and C. Feng, Control of Three-Dimensional Cell Adhesion by the Chirality of Nanofibers in Hydrogels, Angew. Chem. Int. Ed, vol.53, issue.30, pp.7789-7793, 2014.

J. Y. Wong, J. B. Leach, and X. Q. Brown, Balance of Chemistry, Topography, and Mechanics at the Cell-Biomaterial Interface: Issues and Challenges for Assessing the Role of Substrate Mechanics on Cell Response, Surface Science, vol.570, issue.1-2, pp.119-133, 2004.

X. Du, J. Zhou, J. Shi, and B. Xu, Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials, Chemical Reviews, vol.115, issue.24, pp.13165-13307, 2015.
DOI : 10.1021/acs.chemrev.5b00299

URL : https://doi.org/10.1021/acs.chemrev.5b00299

J. Fitremann, B. Lonetti, E. Fratini, I. Fabing, B. Payré et al.,

S. N. Bhatia and D. E. Ingber, Microfluidic Organs-on-Chips, Nature Biotechnology, vol.32, issue.8, pp.760-772, 2014.

P. Zhuang, A. X. Sun, J. An, C. K. Chua, and S. Y. Chew, 3D Neural Tissue Models: From Spheroids to Bioprinting, Biomaterials, vol.154, pp.113-133, 2018.
DOI : 10.1016/j.biomaterials.2017.10.002


S. V. Murphy and A. Atala, 3D Bioprinting of Tissues and Organs, Nature Biotechnology, vol.32, issue.8, pp.773-785, 2014.
DOI : 10.1038/nbt.2958

C. W. Hull, Apparatus for Production of Three-Dimensional Objects by Stereolithography, vol.4575330, 1986.

L. Bourdon, J. Maurin, K. Gritsch, A. Brioude, and V. Salles, Resolution of Additive Manufacturing: Advances in Two-Photon Polymerization and Direct-Writing Electrospinning Techniques, vol.2018, pp.3927-3938

I. T. Ozbolat and M. Hospodiuk, Current Advances and Future Perspectives in Extrusion-Based Bioprinting, Biomaterials, vol.76, pp.321-343, 2016.
DOI : 10.1016/j.biomaterials.2015.10.076

URL : https://manuscript.elsevier.com/S0142961215008868/pdf/S0142961215008868.pdf


M. C. Nolan, A. M. Fuentes-caparrós, B. Dietrich, M. Barrow, E. R. Cross et al., Optimising Low Molecular Weight Hydrogels for Automated 3D Printing, Soft Matter, vol.13, issue.45, pp.8426-8432, 2017.
DOI : 10.1039/c7sm01694h

URL : https://pubs.rsc.org/en/content/articlepdf/2017/sm/c7sm01694h

B. Raphael, T. Khalil, V. L. Workman, A. Smith, C. P. Brown et al., 3D Cell Bioprinting of Self-Assembling Peptide-Based Hydrogels, Materials Letters, vol.190, pp.103-106, 2017.
DOI : 10.1016/j.matlet.2016.12.127

URL : https://www.research.manchester.ac.uk/portal/files/50904586/Accepted_manuscript.pdf

C. B. Highley, C. B. Rodell, and J. A. Burdick, Direct 3D Printing of Shear-Thinning Hydrogels into Self-Healing Hydrogels, Adv. Mater, vol.27, issue.34, pp.5075-5079, 2015.
DOI : 10.1002/adma.201501234

M. Yan, P. L. Lewis, and R. N. Shah, Tailoring Nanostructure and Bioactivity of 3D-Printable Hydrogels with Self-Assemble Peptides Amphiphile (PA) for Promoting Bile Duct Formation, Biofabrication, vol.2018, issue.3
DOI : 10.1088/1758-5090/aac902

R. Lozano, L. Stevens, B. C. Thompson, K. J. Gilmore, I. Gorkin et al., 3D Printing of Layered Brain-like Structures Using Peptide Modified Gellan Gum Substrates, Biomaterials, vol.67, pp.264-273, 2015.
DOI : 10.1016/j.biomaterials.2015.07.022

M. Costantini, C. Colosi, W. ?wi?szkowski, and A. Barbetta, Co-Axial Wet-Spinning in 3D Bioprinting: State of the Art and Future Perspective of Microfluidic Integration, Biofabrication, vol.2018, issue.1

J. Luciano, Thread Stretching Device for Wet Spinning More Particularly of Viscose Rayon. US2920346A, 1960.

J. L. White and T. A. Hancock, Fundamental Analysis of the Dynamics, Mass Transfer, and Coagulation in Wet Spinning of Fibers, J. Appl. Polym. Sci, vol.26, issue.9, pp.3157-3170, 1981.

A. Rupprecht, Preparation of Oriented DNA by Wet Spinning, Acta Chem. Scand, vol.20, issue.2, pp.494-504, 1966.

S. P. Hersh, T. D. Higgins, and H. W. Krause, The Influence of Processing Variables on the Physical Properties of a Wet-Spun Modacrylic Fiber, J. Appl. Polym. Sci, vol.7, issue.2, pp.411-442, 1963.

K. D. Nelson, A. Romero, P. Waggoner, B. Crow, A. Borneman et al., Technique Paper for Wet-Spinning Poly (L-Lactic Acid) and Poly

, Monofilament Fibers. Tissue engineering, vol.9, issue.6, pp.1323-1330, 2003.

K. Tuzlakoglu, I. Pashkuleva, M. T. Rodrigues, M. E. Gomes, G. H. Van-lenthe et al., A New Route to Produce Starch-Based Fiber Mesh Scaffolds by Wet Spinning and Subsequent Surface Modification as a Way to Improve Cell Attachment and Proliferation, Journal of Biomedical Materials Research Part A, issue.1, pp.369-377, 2010.

D. Puppi and F. Chiellini, Wet-Spinning of Biomedical Polymers: From Single-Fibre Production to Additive Manufacturing of Three-Dimensional Scaffolds: Wet-Spinning of Biomedical Polymers, Polymer International, 2017.

S. C. Neves, C. Mota, A. Longoni, C. C. Barrias, P. L. Granja et al., Additive Manufactured Polymeric 3D Scaffolds with Tailored Surface Topography Influence Mesenchymal Stromal Cells Activity, Biofabrication, vol.2016, issue.2

D. R. Paul, Diffusion during the Coagulation Step of Wet-Spinning, J. Appl. Polym. Sci, vol.12, issue.3, pp.383-402, 1968.

A. Rende, A New Approach to Coagulation Phenomena in Wet-Spinning, J. Appl. Polym. Sci, vol.16, issue.3, pp.585-594, 1972.

X. Dong, C. Wang, Y. Bai, and W. Cao, Effect of DMSO/H2O Coagulation Bath on the Structure and Property of Polyacrylonitrile Fibers during Wet-spinning, Journal of Applied Polymer Science, vol.105, issue.3, pp.1221-1227, 2007.

K. Yi, Q. F. Li, L. Zhang, N. Li, Y. Zhou et al., Diffusion Coefficients of Dimethyl Sulphoxide (DMSO) and H2O in PAN Wet Spinning and Its Influence on Morphology of Nascent Polyacrylonitrile (PAN) Fiber, J. Eng. Fib. Fabr, vol.8, pp.107-113, 2013.

J. B. Speakman and N. H. Chamberlain, The Production of Rayon from Alginic Acid, Journal of the Society of Dyers and Colourists, vol.60, pp.264-272, 1944.

E. B. Denkba?, M. Seyyal, and E. Pi?kin, Implantable 5-Fluorouracil Loaded Chitosan Scaffolds Prepared by Wet Spinning, Journal of membrane Science, vol.172, issue.1-2, pp.33-38, 2000.

Y. Yang, X. Liu, D. Wei, M. Zhong, J. Sun et al., Automated Fabrication of Hydrogel Microfibers with Tunable Diameters for Controlled Cell Alignment, Biofabrication, vol.2017, issue.4

Y. Yang, J. Sun, X. Liu, Z. Guo, Y. He et al., WetSpinning Fabrication of Shear-Patterned Alginate Hydrogel Microfibers and the Guidance of Cell Alignment, Regenerative Biomaterials, vol.2017, issue.5, pp.299-307

S. C. Lin, .. Wang, Y. Wertheim, D. F. Coombes, and A. G. , Production and in Vitro Evaluation of Macroporous, Cell-Encapsulating Alginate Fibres for Nerve Repair, Materials Science and Engineering, vol.73, pp.653-664, 2017.

J. Cheng, Y. Jun, J. Qin, and S. Lee, Electrospinning versus Microfluidic Spinning of Functional Fibers for Biomedical Applications, Biomaterials, vol.114, pp.121-143, 2017.

O. Bonhomme, Étude de la formation de fibres en microfluidique : compétition entre mise en forme et gélification de fluides complexes sous écoulement, 2011.

D. Kiriya, M. Ikeda, H. Onoe, M. Takinoue, H. Komatsu et al., Meter-Long and Robust Supramolecular Strands Encapsulated in Hydrogel Jackets, Angewandte Chemie International Edition, vol.2012, issue.7, pp.1553-1557
DOI : 10.1002/ange.201104043

S. Ghorbanian, M. A. Qasaimeh, M. Akbari, A. Tamayol, and D. Juncker, Microfluidic Direct Writer with Integrated Declogging Mechanism for Fabricating Cell-Laden Hydrogel Constructs, Biomedical Microdevices, vol.16, issue.3, pp.387-395, 2014.
DOI : 10.1007/s10544-014-9842-8


B. R. Lee, K. H. Lee, E. Kang, D. Kim, and S. Lee, Microfluidic Wet Spinning of ChitosanAlginate Microfibers and Encapsulation of HepG2 Cells in Fibers, Biomicrofluidics, vol.5, issue.2, 2011.

M. Yamada, S. Sugaya, Y. Naganuma, and M. Seki, Microfluidic Synthesis of Chemically and Physically Anisotropic Hydrogel Microfibers for Guided Cell Growth and Networking, Soft Matter, vol.2012, issue.11, p.3122
DOI : 10.1039/c2sm07263g

H. Onoe, T. Okitsu, A. Itou, M. Kato-negishi, R. Gojo et al., Metre-Long Cell-Laden Microfibres Exhibit Tissue Morphologies and Functions, Nature Materials, vol.12, issue.6, pp.584-590, 2013.
DOI : 10.1038/nmat3606

Y. Xia, B. Xue, M. Qin, Y. Cao, Y. Li et al., Printable Fluorescent Hydrogels Based on Self-Assembling Peptides, Scientific Reports, vol.7, issue.1, 2017.
DOI : 10.1038/s41598-017-10162-y

URL : https://www.nature.com/articles/s41598-017-10162-y.pdf

M. Allais, D. Mailley, P. Hébraud, D. Ihiawakrim, V. Ball et al., Polymer-Free Electrospinning of Tannic Acid and Cross-Linking in Water for Hybrid Supramolecular Nanofibres, Nanoscale, vol.10, issue.19, pp.9164-9173, 2018.


A. Béduer, C. Vieu, F. Arnauduc, J. Sol, I. Loubinoux et al., Engineering of Adult Human Neural Stem Cells Differentiation through Surface Micropatterning, Biomaterials, vol.2012, issue.2, pp.504-514

C. Davoust, B. Plas, A. Béduer, B. Demain, A. Salabert et al., Loubinoux, I. Regenerative Potential of Primary Adult Human Neural Stem Cells on Micropatterned Bio-Implants Boosts Motor Recovery, Stem Cell Research & Therapy, vol.8, issue.1, 2017.

B. Zhu, W. Li, R. V. Lewis, C. U. Segre, R. Wang et al., Composite Fibers of Collagen and Dragline Silk Protein: Fiber Mechanics, Biocompatibility, and Application in Stem Cell Differentiation, Biomacromolecules, vol.16, issue.1, pp.202-213, 2015.


A. Omidinia-anarkoli, S. Boesveld, U. Tuvshindorj, J. C. Rose, T. Haraszti et al., An Injectable Hybrid Hydrogel with Oriented Short Fibers Induces Unidirectional Growth of Functional Nerve Cells, Small, vol.2017, issue.36, p.1702207
DOI : 10.1002/smll.201702207

S. Zhang, M. A. Greenfield, A. Mata, L. C. Palmer, R. Bitton et al., A Self-Assembly Pathway to Aligned Monodomain Gels, Nat Mater, vol.9, issue.7, pp.594-601, 2010.
DOI : 10.1038/nmat2778

URL : http://europepmc.org/articles/pmc3084632?pdf=render

M. Antman-passig, S. Levy, C. Gartenberg, H. Schori, and O. Shefi, Mechanically Oriented 3D Collagen Hydrogel for Directing Neurite Growth, Tissue Engineering Part A, vol.2017, issue.9, pp.403-414
DOI : 10.1089/ten.tea.2016.0185

M. Numata, Y. Takigami, M. Takayama, T. Kozawa, and N. Hirose, Hierarchical Supramolecular Spinning of Nanofibers in a Microfluidic Channel: Tuning Nanostructures at a Dynamic Interface, Chem. Eur. J, vol.2012, issue.41, pp.13008-13017


J. H. Fuhrhop, P. Schnieder, E. Boekema, and H. Wolfgang, Lipid Bilayer Fibers from Diastereomeric and Enantiomeric N-Octylaldonamides, J. Am. Chem. Soc, vol.110, issue.9, pp.2861-2867, 1988.
DOI : 10.1021/ja00217a028

URL : https://pure.rug.nl/ws/files/14488469/1988JAmChemSocFuhrhop.pdf

C. André, P. Luger, and S. Svenson, The Crystal Packing of N-(n-Octyl)-d-Gulonamide Containing Tail-to-Tail Sheets Compared to Its Gluconamide Diastereomer Showing Headto-Tail Arrangement, Carbohydr. Res, vol.230, issue.1, pp.31-40, 1992.

, , pp.90511-90512

C. André, P. Luger, S. Svenson, and J. Fuhrhop, The X-Ray Crystal Structure of N-(1-Octyl)-d-Talonamide and a Consideration of Its Hydrogen-Bonding Scheme, Carbohydr. Res, vol.240, pp.47-56, 1993.

V. Zabel, A. Müller-fahrnow, R. Hilgenfeld, W. Saenger, B. Pfannemüller et al., Amphiphilic Properties of Synthetic Glycolipids Based on Amide Linkages. II. Crystal and Molecular Structure of N-(n-Octyl)-D-Gluconamide, an Amphiphilic Molecule in Head-to-Tail Packing Mode, Chem. Phys. Lipids, vol.39, issue.4, pp.90113-90114, 1986.

, N-hexyl-?-galactonamide (Gal-C6)

, Sigma) and hexylamine (0.74 mL, 5.6 mmol, Aldrich) were poured in MeOH (21 mL), stirred and heated under reflux at 70 °C for 3 h. A white precipitate is formed throughout the reaction. After cooling, the solid is filtered through a sintered-glass filter (pore n°4) and washed with MeOH. The solid is washed with EtOH, reflux during, p.30

, This step is performed twice and the resulting solid is dried under vacuum (1.05 g, 67 % yield). 1 H NMR (500 MHz, DMSO): ?(ppm) / J(Hz): 7.52, vol.6, p.2

, 8 (C4), 69.8 (C5), 69.2 (C3), 63.2 (C6), 13C NMR (125 MHz, DMSO): ?(ppm): 173.3 (CO), 71.0 (C2), vol.70

, ?-galactonic acid, ?-lactone (1 g, 5.6 mmol, Sigma) and heptylamine (0.83 mL, 5.6 mmol

H. Nmr, , p.300

, 1H, NH), 5.05 (d, J = 7.2, 1H, OH2), vol.294, 1904.

A. Chalard, L. Vaysse, P. Joseph, L. Malaquin, S. Souleille et al., Fitremann ; « Sugar-based supramolecular gelators as scaffolds for neuronal cell growth » ; X e journées de l'Ecole Doctorale Sciences de la Matière, ECIS best oral communication award -Anaïs Chalard, vol.10, pp.17004-17017, 2017.

, Supramolecular gelators for neuronal cell-growth: biocompatibility, 3D-cell growth, fibre alignment and injectability with microfluidics »; Ecole thématique MICROFLUIDICS2017, 2017.

, La dernière étape de ce projet a donc été la mise en forme des hydrogels de Gal-C7. L'idée était ici premièrement de trouver un moyen pour essayer d'aligner les fibres d'hydrogel, pour ensuite orienter la croissance des neurones dans le gel

, Malheureusement cela s'est révélé infructueux puisque les tubes se bouchaient systématiquement. L'étude s'est alors portée sur une autre famille d'hydrogels -les glucamines -qui eux peuvent être extrudés directement grâce à leur propriété de thixotropie, qui est définie comme la variation réversible de la viscosité du gel sous l'effet d'une contrainte. Ce phénomène permet donc l'extrusion directe de l'hydrogel sans détruire son réseau tridimensionnel. Deux molécules

, En effet, le gélifiant est dissout dans un solvant organique avec qui il a beaucoup d'affinité et cette solution est ensuite extrudée dans un bain de « non-solvant » où le gélifiant est peu soluble, provoquant ainsi la formation des fibres constituant le gel lorsque le non-solvant diffuse dans l'autre. Dans notre cas, la molécule de Gal-C7 est dissoute dans du diméthylsulfoxyde (DMSO) et la solution est extrudée dans un bain d'eau ultra pure. L'eau et le DMSO sont des solvants miscibles mais le DMSO étant légèrement plus dense que l'eau, par gravité, celui-ci forme un flux continu lorsqu'il est extrudé à la verticale dans le bain. Le gel prend alors la forme d'un filament

Y. Ohsedo, M. Oono, K. Saruhashi, and H. Watanabe, Alkylamido-D-Glucamine-Based Gelators for the Generation of Thixotropic Gels, vol.4, pp.48554-48558, 2014.