, Il en est de même lorsque la vitesse de croissance diminue fortement alors que le flux de bismuth est conservé important, ce qui revient au même : La présence d'une plus grande population de bismuth en surface par unité de temps accélère très

, La transformation d'une reconstruction (1x3) en (2x1) est donc facilitée en présence d'une forte population de bismuth disponible en surface, et ceci même si ce bismuth est simultanément incorporé très efficacement, avec un taux d'incorporation unité. Quand la population de bismuth augmente en surface, le rapport d'espèces qui augmente le plus est le rapport des espèces V, Bi/As. Il apparait clair que la compétition entre le bismuth et l'arsenic se

. Bibliographie,

S. Adachi-;-group, -. Iii-v-and, and I. Semiconductors, Properties of Semiconductor Alloys, 2009.

S. Gehrsitz, H. Sigg, N. Herres, K. Bachem, K. Köhler et al., « Compositional dependence of the elastic constants and the lattice parameter of Al x Ga 1 ? x As, Physical Review B, vol.60, pp.11601-11610, 1999.

M. P. Polak, P. Scharoch, and R. Kudrawiec, « First-principles calculations of bismuth induced changes in the band structure of dilute Ga-V-Bi and In-V-Bi alloys: chemical trends versus experimental data », Semicond. Sci. Technol, vol.30, issue.9, p.94001, 2015.

Y. Takehara, Lattice Distortion of GaAsBi Alloy Grown on GaAs by Molecular Beam Epitaxy, vol.45, pp.67-69, 2006.

S. Tixier, Molecular beam epitaxy growth of GaAs1?xBix, vol.82, pp.2245-2247, 2003.

O. Delorme, L. Cerutti, E. Tournié, and J. Rodriguez, « Molecular beam epitaxy and characterization of high Bi content GaSbBi alloys, Journal of Crystal Growth, vol.477, pp.144-148, 2017.

A. Janotti, S. Wei, and S. B. Zhang, « Theoretical study of the effects of isovalent coalloying of Bi and N in GaAs, Phys. Rev. B, vol.65, issue.11, p.115203, 2002.

Y. Zhang, A. Mascarenhas, and L. Wang, Similar and dissimilar aspects of III ? V semiconductors containing Bi versus N », Physical Review B, vol.71, 2005.

K. Alberi, O. D. Dubon, W. Walukiewicz, K. M. Yu, K. Bertulis et al., Valence band anticrossing in GaBixAs1?x, vol.91, p.51909, 2007.

M. Usman, C. A. Broderick, A. Lindsay, and E. P. O'reilly, Tight-binding analysis of the electronic structure of dilute bismide alloys of GaP and GaAs, vol.84, 2011.

J. Yoshida, T. Kita, O. Wada, and K. Oe, « Temperature Dependence of GaAs 1-x Bi x Band Gap Studied by Photoreflectance Spectroscopy, Japanese Journal of Applied Physics, vol.42, issue.2A, pp.371-374, 2003.

S. Imhof, Clustering effects in Ga(AsBi), vol.96, p.131115, 2010.

J. Yoshida, H. Yamamizu, T. Kita, and K. Oe, « Optical transitions in new semiconductor alloy GaAs 1-x Bi x with temperature-insensitive band gap, Conference Proceedings. 2001 International Conference on Indium Phosphide and Related Materials. 13th IPRM, pp.109-112, 2001.

R. N. Kini, L. Bhusal, A. J. Ptak, R. France, and A. Mascarenhas, « Electron Hall mobility in GaAsBi, Journal of Applied Physics, vol.106, p.43705, 2009.

I. P. Marko, Optical gain in GaAsBi/GaAs quantum well diode lasers, vol.6, p.28863, 2016.

X. Liu, Continuous wave operation of GaAsBi microdisk lasers at room temperature with large wavelengths ranging from 1.27 to 1.41µm », vol.7, pp.508-512, 2019.

H. Makhloufi, Epitaxie de nouvelles hétérostructures pour la filière GaAs : puits/boîtes quantiques GaInAs sur surfaces structurées et alliages GaAsBi », phd, 2013.

J. Occena, « Bi-enhanced N incorporation in GaAsNBi alloys, Appl. Phys. Lett, vol.110, p.242102, 2017.

J. Hwang and J. D. Phillips, Band structure of strain-balanced GaAsBi/GaAsN superlattices on GaAs, vol.83, p.19, 2011.

A. J. Shalindar, P. T. Webster, S. T. Schaefer, and S. R. Johnson, Molecular Beam Epitaxy, pp.181-196, 2018.

J. Hader, S. C. Badescu, L. C. Bannow, J. V. Moloney, S. R. Johnson et al., Auger losses in dilute InAsBi, vol.112, p.192106, 2018.

L. Zhang, « Nanoscale distribution of Bi atoms in InP 1?x Bi x, Sci Rep, vol.7, issue.1, pp.1-11, 2017.

K. Wang, « InPBi Single Crystals Grown by Molecular Beam Epitaxy », Scientific Reports, vol.4, 2015.

O. Delorme, L. Cerutti, E. Tournié, and J. Rodriguez, Journal of Crystal Growth, vol.495, pp.9-13, 2018.

M. K. Rajpalke, Growth and properties of GaSbBi alloys, vol.103, p.142106, 2013.

D. Utsa, R. Thangavel, and E. S. Dhar, « First principles study of the structural, electronic and optical properties of epitaxial GaSb 1?x?y N y Bi x , lattice matched to GaSb, Materials Research Express, vol.5, issue.11, p.115901, 2018.

J. Occena, « Mapping the composition-dependence of the energy bandgap of GaAsNBi alloys, Appl. Phys. Lett, vol.115, issue.8, p.82106, 2019.

O. Delorme, GaSb quantum well laser diodes, Appl. Phys. Lett, vol.110, p.222106, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01626914

W. A. Jesser and D. Kuhlmann-wilsdorf, On the Theory of Interfacial Energy and Elastic Strain of Epitaxial Overgrowths in Parallel Alignment on Single Crystal Substrates », phys. stat. sol. (b), vol.19, pp.95-105, 1967.

V. A. Shchukin and D. Bimberg, Spontaneous ordering of nanostructures on crystal surfaces, vol.71, pp.1125-1171, 1999.

Y. Androussi, « Plastic stress relaxation in highly strained In 0.30 Ga 0.70 As/GaAs structures », Appl. Phys. Lett, vol.66, pp.3450-3452, 1995.

G. Grenet, « Surface spinodal decomposition in low temperature Al 0.48 In 0.52 As grown on InP (001) by molecular beam epitaxy, Applied Surface Science, pp.324-328, 1998.

D. F. Reyes, Bismuth incorporation and the role of ordering in GaAsBi/GaAs structures, vol.9, p.23, 2014.

E. Luna, M. Wu, J. Puustinen, M. Guina, and A. Trampert, « Spontaneous formation of nanostructures by surface spinodal decomposition in GaAs 1?x Bi x epilayers, Journal of Applied Physics, vol.117, p.185302, 2015.

A. Rocher, F. W. Da-silva, and E. C. Raisin, Dislocations d'interface et défauts de volume dans l'hétérostructure GaSb/GaAs, vol.25, pp.957-961, 1990.

. Franck, One-dimensional dislocations. I. Static theory, p.12

J. W. Matthews and A. E. Blakeslee, « Defects in epitaxial multilayers: I. Misfit dislocations », Journal of Crystal Growth, vol.27, pp.118-125

D. J. Eaglesham, E. P. Kvam, D. M. Maher, C. J. Humphreys, and J. C. Bean, « Dislocation nucleation near the critical thickness in GeSi/Si strained layers, Philosophical Magazine A, vol.59, issue.5, pp.1059-1073, 1989.

B. W. Dodson and J. Y. Tsao, « Relaxation of strained-layer semiconductor structures via plastic flow, Appl. Phys. Lett, vol.51, pp.1325-1327, 1987.

R. Beanland, « Multiplication of misfit dislocations in epitaxial layers », Journal of Applied Physics, vol.72, issue.9, pp.4031-4035, 1992.

G. Landa, R. Carles, C. Fontaine, and E. Bedel, Muñoz-Yagüe, « Optical determination of strains in heterostructures: GaAs/Si as an example », Journal of Applied Physics, vol.66, issue.1, pp.196-200, 1989.

R. T. Murray, C. J. Kiely, and M. Hopkinson, General characteristics of crack arrays in epilayers grown under tensile strain, vol.15, pp.325-330, 2000.

V. Swaminathan, Ga)As and Ga(As,Sb) Active Layers in 0.82 and 0.87 ?m Injection Lasers, Effect of n-and p-Type Doping on the Microhardness of GaAs, vol.130, p.2468, 1983.

R. France, C. Jiang, and A. J. Ptak, « In situ strain relaxation comparison between GaAsBi and GaInAs grown by molecular-beam epitaxy, vol.98, p.101908, 2011.

M. Yamaguchi, C. Amano, and Y. Itoh, « Numerical analysis for high-efficiency GaAs solar cells fabricated on Si substrates, Journal of Applied Physics, vol.66, issue.2, pp.915-919, 1989.

V. P. Labella, M. R. Krause, Z. Ding, and P. M. Thibado, Arsenic-rich GaAs (0 0 1) surface structure », vol.60, pp.1-53, 2005.

A. Ohtake and N. Koguchi, « Two types of structures for the GaAs (001) -c(4×4) surface », Appl. Phys. Lett, vol.83, pp.5193-5195, 2003.

A. Duzik, J. C. Thomas, A. Van-der-ven, and J. M. Millunchick, Surface reconstruction stability and configurational disorder on Bi-terminated GaAs (001), vol.87, 2013.

C. B. Duke, « Semiconductor Surface Reconstruction: The Structural Chemistry of Two-Dimensional Surface Compounds », Chem. Rev, vol.96, issue.4, pp.1237-1260, 1996.

F. Bastiman, A. G. Cullis, J. P. David, and S. J. Sweeney, Bi incorporation in GaAs (100) -2×1 and 4×3 reconstructions investigated by RHEED and STM », vol.341, pp.19-23

P. Laukkanen, Anomalous Bismuth-Stabilized (2×1) Reconstructions on GaAs (100) and InP (100) Surfaces », vol.100, 2008.

M. Masnadi-shirazi, D. A. Beaton, R. B. Lewis, X. Lu, and T. Tiedje, Surface reconstructions during growth of GaAs1?xBix alloys by molecular beam epitaxy, vol.338, pp.80-84

R. F. Farrow, « The stabilization of metastable phases by epitaxy, J. Vac. Sci. Technol. B, vol.1, issue.2, p.222, 1983.

E. C. Young, S. Tixier, and T. Tiedje, Bismuth surfactant growth of the dilute nitride GaNxAs1?x », vol.279, pp.316-320, 2005.

F. Turco and J. Massies, « Strain-induced In incorporation coefficient variation in the growth of Al 1?x In x As alloys by molecular beam epitaxy, Appl. Phys. Lett, vol.51, 1987.

V. Thierry-mieg, F. Laruelle, and B. Etienne, « RHEED studies of Ga desorption from GaAs and of As desorption from Si-doped GaAs during growth interruption, Journal of Crystal Growth, vol.127, issue.1, pp.1022-1024, 1993.

C. H. Li, L. Li, D. C. Law, S. B. Visbeck, and R. F. Hicks, Arsenic adsorption and exchange with phosphorus on indium phosphide (001), vol.65, p.20, 2002.

O. Dehaese, X. Wallart, O. Schuler, and F. Mollot, As Surface Segregation during the Growth of GaInP on GaAs, vol.36, pp.6620-6624, 1997.

T. Nakai and K. Yamaguchi, « Analysis of Sb-As Surface Exchange Reaction in Molecular Beam Epitaxy of GaSb/GaAs Quantum Wells, Japanese Journal of Applied Physics, vol.44, pp.3803-3807, 2005.

O. Dehaese, X. Wallart, and F. Mollot, « Kinetic model of element III segregation during molecular beam epitaxy of III-III'-V semiconductor compounds », Appl. Phys. Lett, vol.66, issue.1, pp.52-54, 1995.

J. M. Moison, C. Guille, F. Houzay, and F. Barthe, Van Rompay, « Surface segregation of third-column atoms in group III-V arsenide compounds: Ternary alloys and heterostructures, Physical Review B, vol.40, issue.9, pp.6149-6162, 1989.

R. Kaspi and K. R. Evans, « Sb-surface segregation and the control of compositional abruptness at the GaAsSbGaAs interface », Journal of Crystal Growth, pp.838-843, 1997.

X. Lu, D. A. Beaton, R. B. Lewis, T. Tiedje, and M. B. Whitwick, Effect of molecular beam epitaxy growth conditions on the Bi content of GaAs1?xBix, vol.92, p.192110, 2008.

L. Wang, « Novel Dilute Bismide, Epitaxy, Physical Properties and Device Application, Crystals, vol.7, p.63, 2017.

R. B. Lewis, M. Masnadi-shirazi, and E. T. Tiedje, « Growth of high Bi concentration GaAs 1?x Bi x by molecular beam epitaxy, Appl. Phys. Lett, vol.101, issue.8, p.82112, 2012.

P. D. and J. Speight, Lange's Handbook of Chemistry, 2005.

G. J. Davies and D. Williams, The Technology and Physics of Molecular Beam

K. Zhang, W. Hwang, D. L. Miller, and L. W. Kapitan, « Carbon doping of GaAs and (In,Ga)As in solid source molecular beam epitaxy using carbon tetrabromide, Appl. Phys. Lett, vol.63, pp.2399-2401, 1993.

, « Épitaxie de nouvelles hétérostructures pour la filière GaAs : puits-boîtes quantiques GaInAs sur surfaces structurées et alliages GaAsBi

D. Khokhlov, Lead chalcogenides: physics & applications, 2003.

G. Springholz and G. Bauer, « Molecular beam epitaxy of strained PbTe/EuTe superlattices, Appl. Phys. Lett, vol.62, pp.2399-2401, 1993.

S. M. Newstead, R. A. Kubiak, and E. H. Parker, On the practical applications of MBE surface phase diagrams, Journal of Crystal Growth, vol.81, issue.1, pp.49-54, 1987.

V. V. Preobrazhenskii, D. I. Lubyshev, K. Regi?ski, and J. Muszalski, The effect of the MBE growth rate on the surface phase diagram for GaAs (001), vol.267, pp.51-53, 1995.

M. R. Fahy, « MBE growth of lattice-matched and mismatched films on non-(001) GaAs substrates », Thin Solid Films, vol.306, issue.2, pp.192-197, 1997.

M. C. Gallagher, R. H. Prince, and R. F. Willis, On the atomic structure and electronic properties of decapped GaAs (001)(2 × 4) surfaces », vol.275, pp.31-40, 1992.

F. Brunner, A. Knauer, T. Schenk, M. Weyers, and J. Zettler, « Quantitative analysis of in situ wafer bowing measurements for III-nitride growth on sapphire, Journal of Crystal Growth, vol.310, issue.10, pp.2432-2438, 2008.

, On the origin of the metastable & beta;-Ta phase stabilization in tantalum sputtered thin films

J. D. Perkins, « Nitrogen-Activated Transitions, Level Repulsion, and Band Gap Reduction in GaAs 1 ? x N x with x < 0.03, Physical Review Letters, vol.82, pp.3312-3315, 1999.

R. France and A. J. Ptak, « Low-misfit epilayer analyses using in situ wafer curvature measurements, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, vol.29, issue.3, pp.3-115, 2011.

A. Arnoult and J. Colin, « Method for measuring the curvature of a reflective surface and associated optical device, 2018.

H. Fitouri, I. Moussa, A. Rebey, and B. E. Jani, Study of GaAsBi MOVPE growth on (100) GaAs substrate under high Bi flow rate by high resolution X-ray diffraction », Microelectronic Engineering, vol.88, pp.476-479, 2011.

D. B. Williams and C. B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science, 2 e éd, 2009.

S. J. Pennycook, « Scanning Transmission Electron Microscopy for Nanostructure Characterization, Scanning Microscopy for Nanotechnology, pp.152-191, 2006.

G. W. Lorimer, « Quantitative X-ray microanalysis of thin specimens in the transmission electron microscope; a review, Mineralogical Magazine, vol.51, pp.49-60, 1987.

M. Mayer, . Rutherford-backscattering, and . Spectrometry, RBS), p.26

C. T. Foxon, J. A. Harvey, and B. A. Joyce, « The evaporation of GaAs under equilibrium and non-equilibrium conditions using a modulated beam technique, Journal of Physics and Chemistry of Solids, vol.34, issue.10, pp.1693-1701, 1973.

J. C. Garcia, C. Neri, and J. Massies, « A comparative study of the interaction kinetics of As2 and As4 molecules with Ga-rich GaAs (001) surfaces », Journal of Crystal Growth, vol.98, issue.3, pp.511-518, 1989.

Z. Ye, « Thermodynamic analysis of growth of ternary III-V semiconductor materials by molecular-beam epitaxy, Transactions of Nonferrous Metals Society of China, vol.21, pp.146-151, 2011.

V. V. Preobrazhenskii, M. A. Putyato, O. P. Pchelyakov, and B. R. Semyagin, « Experimental determination of the incorporation factor of As4 during molecular beam epitaxy of GaAs », Journal of Crystal Growth, pp.170-173, 1999.

A. K. Ott, S. M. Casey, and S. R. Leone, « Laser ionization mass spectrometry measurements of arsenic sticking and incorporation during GaAs(1 0 0) homoepitaxy », Journal of Crystal Growth, vol.181, issue.4, pp.326-336, 1997.

E. S. Tok, J. H. Neave, J. Zhang, B. A. Joyce, and T. S. Jones, Arsenic incorporation kinetics in GaAs(001) homoepitaxy revisited », vol.374, pp.397-405, 1997.

A. Suda and N. Otsuka, « Arsenic flux dependence of incorporation of excess arsenic in molecular beam epitaxy of GaAs at low temperature », Appl. Phys. Lett, vol.73, issue.11, pp.1529-1531, 1998.

J. H. Neave, P. K. Larsen, J. F. Van-der-veen, P. J. Dobson, and B. A. Joyce, « Effect of arsenic species (As2 OR As4) on the crystallograpffic and electronic structure of mbegrown GaAs(001) reconstructed surfaces », Surface Science, vol.133, issue.1, pp.267-278, 1983.

J. Y. Kim, D. Bassi, and L. Jostad, « Reflection high-energy electron diffraction dynamics study of GaAs, AlAs, and Al 0.5 Ga 0.5 As layer growth under As 4 and/or As 2 molecular beam species », Appl. Phys. Lett, vol.57, pp.2107-2109, 1990.

T. Sugaya, T. Nakagawa, Y. Sugiyama, Y. Tanuma, and E. K. Yonei, « Effects of As2 flux for fabrication of GaAs/AlGaAs quantum wires on V-grooved substrates in molecular beam epitaxy, Journal of Crystal Growth, vol.186, issue.1, pp.27-32, 1998.

H. Künzel, « Molecular beam epitaxy of III-V compounds, Physica B+C, vol.129, issue.1-3, pp.66-80, 1985.

M. Yoshimoto, S. Murata, A. Chayahara, Y. Horino, J. Saraie et al., Metastable GaAsBi Alloy Grown by Molecular Beam Epitaxy, vol.42, p.1235, 2003.

G. Vardar, S. W. Paleg, M. V. Warren, M. Kang, S. Jeon et al., « Mechanisms of droplet formation and Bi incorporation during molecular beam epitaxy of GaAsBi », Appl. Phys. Lett, vol.102, p.42106, 2013.

R. D. Richards, Molecular beam epitaxy growth of GaAsBi using As2 and As4 », vol.390, pp.120-124, 2014.

S. Tixier, M. Adamcyk, E. C. Young, J. H. Schmid, and T. Tiedje, Surfactant enhanced growth of GaNAs and InGaNAs using bismuth, vol.251, pp.449-454, 2003.

M. Copel, M. C. Reuter, M. Horn-von-hoegen, and R. M. Tromp, Influence of surfactants in Ge and Si epitaxy on Si(001), vol.42, pp.11682-11689, 1990.

J. Massies, N. Grandjean, and V. H. Etgens, Surfactant mediated epitaxial growth of In x Ga 1?x As on GaAs (001), vol.61, pp.99-101, 1992.

R. R. Wixom, L. W. Rieth, and G. B. , Stringfellow, « Sb and Bi surfactant effects on homoepitaxy of GaAs on (001) patterned substrates », Journal of Crystal Growth, vol.265, issue.3, pp.367-374, 2004.

W. L. Sarney, S. P. Svensson, E. M. Anderson, A. M. Lundquist, C. Pearson et al., « The influence of growth temperature on Sb incorporation in InAsSb, and the temperature-dependent impact of Bi surfactants, Journal of Crystal Growth, vol.406, pp.8-11, 2014.

N. Grandjean and J. Massies, « Epitaxial growth of highly strained In x Ga 1?x As on GaAs (001): the role of surface diffusion length, Journal of Crystal Growth, vol.134, issue.1, pp.51-62, 1993.

J. Massies and N. Grandjean, « Surfactant effect on the surface diffusion length in epitaxial growth, Physical Review B, vol.48, issue.11, pp.8502-8505, 1993.

T. B. Rockett, « Influence of growth conditions on the structural and optoelectronic quality of GaAsBi », Journal of Crystal Growth, vol.477, pp.139-143, 2017.

T. Hayakawa, M. Morishima, and E. S. Chen, « Surface reconstruction limited mechanism of molecular-beam epitaxial growth of AlGaAs on (111)B face, Applied Physics Letters, vol.59, pp.3321-3323, 1991.

L. H. Li, G. Patriarche, E. H. Linfield, S. P. Khanna, and A. G. Davies, « Effects of using As2 and As4 on the optical properties of InGaAs quantum rods grown by molecular beam epitaxy », Journal of Applied Physics, vol.108, issue.10, p.103522, 2010.

A. J. Ptak, « Kinetically limited growth of GaAsBi by molecular-beam epitaxy, Journal of Crystal Growth, vol.338, issue.1, pp.107-110

J. Steele, « Mechanism of periodic height variations along self-aligned VLSgrown planar nanostructures, Nanoscale, vol.7, 2015.

O. Delorme, L. Cerutti, E. Tournié, and J. Rodriguez, , 2019.

V. Shchukin, N. N. Ledentsov, and D. Bimberg, Epitaxy of Nanostructures, 2004.

H. Makhloufi, « Molecular beam epitaxy and properties of GaAsBi/GaAs quantum wells grown by molecular beam epitaxy: effect of thermal annealing, Nanoscale Research Letters, vol.9, issue.1, p.123, 2014.