. .. Computing, 116 7.2.1 Parallel molecular simulation methods

T. .. Multi-trrt-algorithm, , p.119

M. .. Materials, , p.125

. .. , Limiting communication between processes (MPI)

D. .. Results, 5.4 Analysis of the multi-threaded algorithm running on a single processor

. .. Analysis, , p.133

.. .. Conclusions,

I. Aguinaga, D. Borro, and L. Matey, Parallel RRT-based path planning for selective disassembly planning, The International Journal of Advanced Manufacturing Technology, vol.36, issue.11-12, p.118, 2008.

I. Al-bluwi, T. Siméon, and J. Cortés, Motion planning algorithms for molecular simulations: A survey, Computer Science Review, vol.6, issue.4, p.116, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01982596

A. Almond and J. B. Axelsen, Physical interpretation of residual dipolar couplings in neutral aligned media, Journal of the American Chemical Society, vol.124, issue.34, p.77, 2002.

N. M. Amato and L. K. Dale, Probabilistic roadmap methods are embarrassingly parallel, Proc. IEEE International Conference on Robotics and Automation (ICRA), p.118, 1999.

M. Arbesú, M. Maffei, T. N. Cordeiro, J. M. Teixeira, Y. Pérez et al., The unique domain forms a fuzzy intramolecular complex in Src family kinases, Structure, vol.25, issue.4, p.78, 2017.

M. Aslam, J. M. Guthridge, B. K. Hack, R. J. Quigg, V. M. Holers et al., The extended multidomain solution structures of the complement protein crry and its chimeric conjugate crry-ig by scattering, analytical ultracentrifugation and constrained modelling: Implications for function and therapy, Journal of Molecular Biology, vol.329, issue.3, p.32, 2003.

M. M. Babu, R. Van-der-lee, N. Sanchez-de-groot, and J. Gsponer, Intrinsically disordered proteins: Regulation and disease, Current Opinion in Structural Biology, vol.21, issue.3, p.13, 2011.

L. Baeten, J. Reumers, V. Tur, F. Stricher, T. Lenaerts et al., Reconstruction of protein backbones from the brix collection of canonical protein fragments, PLOS Computational Biology, vol.4, issue.5, pp.1-11, 2008.

R. L. Baldwin, Protein folding: Matching speed and stability, Nature, vol.369, p.94, 1994.

A. Bax, G. Kontaxis, and N. Tjandra, Dipolar couplings in macromolecular structure determination, Methods in Enzymology, p.27, 2001.

A. Bax and N. Tjandra, High-resolution heteronuclear nmr of human ubiquitin in an aqueous liquid crystalline medium, Journal of Biomolecular NMR, vol.10, issue.3, p.27, 1997.

P. Bernadó, C. W. Bertoncini, C. Griesinger, M. Zweckstetter, and M. Blackledge, Defining long-range order and local disorder in native -synuclein using residual dipolar couplings, Journal of the American Chemical Society, vol.127, issue.51, p.36, 2005.

P. Bernadó and M. Blackledge, A self-consistent description of the conformational behavior of chemically denatured proteins from NMR and small angle scattering, Biophysical Journal, vol.97, issue.10, p.35, 2009.

P. Bernado and M. Blackledge, Structural biology: Proteins in dynamic equilibrium, Nature, vol.468, issue.7327, p.32, 2010.
URL : https://hal.archives-ouvertes.fr/cea-00904201

P. Bernadó, L. Blanchard, P. Timmins, D. Marion, R. W. Ruigrok et al., A structural model for unfolded proteins from residual dipolar couplings and small-angle X-ray scattering, Proceedings of the National Academy of Sciences of the U.S.A, vol.102, pp.17002-17007, 2005.

P. Bernadó, E. Mylonas, M. V. Petoukhov, M. Blackledge, and D. I. Svergun, Structural characterization of flexible proteins using small-angle X-ray scattering, Journal of the American Chemical Society, vol.129, issue.17, p.13, 2007.

P. Bernado and D. I. Svergun, Analysis of intrinsically disordered proteins by small-angle X-ray scattering, Methods Molecular Biology, vol.896, pp.107-122, 2012.

P. Bernadó and D. I. Svergun, Structural analysis of intrinsically disordered proteins by small-angle X-ray scattering, Molecular BioSystems, vol.8, pp.151-167, 2012.

R. B. Best, Atomistic molecular simulations of protein folding, Current Opinion in Structural Biology, vol.22, issue.1, p.94, 2012.

R. B. Best, W. Zheng, and J. Mittal, Balanced protein-water interactions improve properties of disordered proteins and non-specific protein association, Journal of Chemical Theory and Computation, vol.10, issue.11, p.37, 2014.

J. Bialkowski, S. Karaman, and E. Frazzoli, Massively parallelizing the RRT and the RRT*, Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p.118, 2011.

M. Blanc, T. L. Coetzer, M. Blackledge, M. Haertlein, E. P. Mitchell et al., Intrinsic disorder within the erythrocyte bindinglike proteins from plasmodium falciparum, Biochimica et Biophysica Acta, vol.1844, issue.12, pp.2306-2314, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01131129

A. Bondi, Van der Waals volumes and radii, Journal of Physical Chemistry, vol.68, pp.441-451, 1964.

P. Calmettes, D. Durand, M. Desmadril, P. Minard, V. Receveur et al., How random is a highly denatured protein?, Biophysical Chemistry, vol.53, issue.1-2, p.34, 1994.

S. Carpin and E. Pagello, On parallel RRTs for multi-robot systems, Proc. International Conference of the Italian Association for Artificial Intelligence (AI*IA), p.118, 2002.

S. Caselli and M. Reggiani, ERPP: An experience-based randomized path planner, Proc. IEEE International Conference on Robotics and Automation (ICRA), p.118, 2000.

D. Challou, D. Boley, M. Gini, V. Kumar, and C. Olson, Parallel search algorithms for robot motion planning, Practical Motion Planning in Robotics: Current Approaches and Future Directions, p.118, 1998.

Y. Chebaro, A. J. Ballard, D. Chakraborty, and D. J. Wales, Intrinsically disordered energy landscapes. Scientific Reports, vol.5, p.36, 2015.

M. K. Cho, H. Y. Kim, P. Bernadó, C. O. Fernandez, M. Blackledge et al., Amino acid bulkiness defines the local conformations and dynamics of natively unfolded ?-synuclein and tau, Journal of the American Chemical Society, vol.129, issue.11, p.61, 2007.

J. J. Chou, S. Gaemers, B. Howder, J. M. Louis, and A. Bax, A simple apparatus for generating stretched polyacrylamide gels, yielding uniform alignment of proteins and detergent micelles*, Journal of Biomolecular NMR, vol.21, issue.4, p.27, 2001.

G. M. Clore, M. R. Starich, and A. M. Gronenborn, Measurement of residual dipolar couplings of macromolecules aligned in the nematic phase of a colloidal suspension of rod-shaped viruses, Journal of the American Chemical Society, vol.120, issue.40, p.27, 1998.

T. N. Cordeiro, F. Herranz-trillo, A. Urbanek, A. Estaña, J. Cortés et al., Structural characterization of highly flexible proteins by small-angle scattering, Biological Small Angle Scattering: Techniques, Strategies and Tips, p.33, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01664316

T. N. Cordeiro, F. Herranz-trillo, A. Urbanek, A. Estaña, J. Cortés et al., Small-angle scattering studies of intrinsically disordered proteins and their complexes, Current Opinion in Structural Biology, vol.42, pp.15-23, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01391541

G. Cornilescu, J. L. Marquardt, M. Ottiger, and A. Bax, Validation of protein structure from anisotropic carbonyl chemical shifts in a dilute liquid crystalline phase, Journal of the American Chemical Society, vol.120, issue.27, p.77, 1998.

J. Cortés, L. Jaillet, and T. Siméon, Molecular disassembly with rrt-like algorithms, Proceedings 2007 IEEE International Conference on Robotics and Automation, p.37, 2007.

T. Creighton, Proteins: structures and molecular properties, p.18, 1993.

G. E. Crooks, G. Hon, J. Chandonia, and S. E. Brenner, WebLogo: a sequence logo generator, Genome Research, vol.14, p.103, 2004.

V. Csizmok, A. V. Follis, R. W. Kriwacki, and J. D. Forman-kay, Dynamic protein interaction networks and new structural paradigms in signaling, Chemical Reviews, vol.116, issue.11, p.13, 2016.

N. Davey, The functional importance of structure in unstructured protein regions, Current Opinion in Structural Biology, vol.56, pp.155-163, 2019.

A. Biasio, A. Ibáñez-de-opakua, T. N. Cordeiro, M. Villate, N. Merino et al., p15PAF is an intrinsically disordered protein with nonrandom structural preferences at sites of interaction with other proteins, Biophysical Journal, vol.106, issue.4, p.86, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00967481

A. G. De-brevern, Extension of the classical classification of beta-turns, Scientific Reports, vol.6, p.33191, 2016.

P. Debye, Zerstreuung von röntgenstrahlen, Annalen der Physik, vol.351, issue.6, pp.809-823, 1915.

P. Debye and A. M. Bueche, Scattering by an inhomogeneous solid, Journal of Applied Physics, vol.20, issue.6, p.29, 1949.

M. M. Dedmon, K. Lindorff-larsen, J. Christodoulou, M. Vendruscolo, and C. M. Dobson, Mapping long-range interactions in alpha-synuclein using spin-label NMR and ensemble molecular dynamics simulations, Journal of the American Chemical Society, vol.127, issue.2, p.13, 2005.

S. Deforte and V. N. Uversky, Order, disorder, and everything in between, Molecules, vol.21, issue.8, 2016.

E. Delaforge, J. Kragelj, L. Tengo, A. Palencia, S. Milles et al., Deciphering the dynamic interaction profile of an intrinsically disordered protein by nmr exchange spectroscopy, Journal of the American Chemical Society, vol.140, issue.3, pp.1148-1158, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01726157

X. Deng, J. Gumm, S. Karki, J. Eickholt, and J. Cheng, An overview of practical applications of protein disorder prediction and drive for faster, more accurate predictions, International Journal of Molecular Sciences, vol.16, issue.7, pp.15384-15404, 2015.

D. Devaurs, K. Molloy, M. Vaisset, A. Shehu, T. Siméon et al., Characterizing Energy Landscapes of Peptides using a Combination of Stochastic Algorithms, IEEE Transactions on NanoBioscience, vol.14, issue.5, pp.545-552, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01143833

D. Devaurs, A. Shehu, T. Siméon, and J. Cortés, A multi-tree extension of the Transition-based RRT: Application to ordering-and-pathfinding problems in continuous cost spaces, Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol.119, p.116, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01057030

D. Devaurs, T. Siméon, and J. Cortés, Enhancing the Transition-based RRT to deal with complex cost spaces, Proc. IEEE International Conference on Robotics and Automation (ICRA), vol.122, pp.4105-4110, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00872224

D. Devaurs, T. Siméon, and J. Cortés, Parallelizing RRT on largescale distributed-memory architectures, IEEE Transactions on Robotics, vol.29, issue.2, pp.571-579, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00861579

C. M. Dobson, Protein folding and misfolding, Nature, vol.426, p.94, 2003.

S. Doniach, Changes in biomolecular conformation seen by small angle X-ray scattering, Chemical Reviews, vol.101, issue.6, p.32, 2001.

S. M. Douglas, J. J. Chou, and W. M. Shih, DNA-nanotube-induced alignment of membrane proteins for NMR structure determination, Proceedings of the National Academy of Sciences, vol.104, p.27, 2007.

R. Dunbrack, Rotamer libraries in the 21st century, Current Opinion in Structural Biology, vol.12, p.94, 2002.

A. K. Dunker, C. J. Brown, J. D. Lawson, L. M. Iakoucheva, and Z. Obradovic, Intrinsic disorder and protein function, Biochemistry, vol.41, issue.21, pp.6573-6582, 2002.

A. K. Dunker, M. S. Cortese, P. Romero, L. M. Iakoucheva, and V. N. Uversky, Flexible nets. The roles of intrinsic disorder in protein interaction networks, FEBS J, vol.272, issue.20, pp.5129-5148, 2005.

H. J. Dyson and P. E. Wright, Unfolded proteins and protein folding studied by NMR, Chemical Reviews, vol.104, issue.8, p.13, 2004.

D. Eliezer, Biophysical characterization of intrinsically disordered proteins, Current Opinion in Structural Biology, vol.19, issue.1, p.13, 2009.

A. Emperador, P. Sfriso, M. A. Villarreal, J. L. Gelpi, and M. Orozco, PAC-SAB: Coarse-Grained Force Field for the Study of Protein-Protein Interactions and Conformational Sampling in Multiprotein Systems, Journal of Chemical Theory and Computation, vol.11, issue.12, p.37, 2015.

S. Enemark, N. A. Kurniawan, and R. Rajagopalan, ?-hairpin forms by rolling up from C-terminal: Topological guidance of early folding dynamics, Scientific Reports, vol.2, issue.649, 2012.

H. J. Feldman and C. W. Hogue, Probabilistic sampling of protein conformations: new hope for brute force? Proteins: Structure, Function, and Bioinformatics, vol.46, p.39, 2002.

H. J. Feldman and C. W. Hogue, A fast method to sample real protein conformational space, Proteins: Structure, Function, and Bioinformatics, vol.39, issue.2, p.39, 2000.

H. Fink, Structure analysis by small-angle x-ray and neutron scattering, Acta Polymerica, vol.40, issue.3, p.28, 1989.

C. K. Fisher, A. Huang, and C. M. Stultz, Modeling intrinsically disordered proteins with bayesian statistics, Journal of the American Chemical Society, vol.132, issue.42, p.13, 2010.

N. C. Fitzkee, P. J. Fleming, and G. D. Rose, The protein coil library: A structural database of nonhelix, nonstrand fragments derived from the pdb, Proteins, vol.58, issue.4, pp.852-854, 2005.

N. K. Fox, S. E. Brenner, and J. Chandonia, SCOPe: Structural classification of proteins-extended, integrating SCOP and ASTRAL data and classification of new structures, Nucleic Acids Research, vol.42, issue.D1, p.42, 2014.

D. Frenkel and B. Smit, Understanding Molecular Simulations: From Algorithms to Applications, Computational Science Series, vol.1, p.117, 2001.

J. C. Freudenberger, P. Spiteller, R. Bauer, H. Kessler, and B. Luy, Stretched poly(dimethylsiloxane) gels as NMR alignment media for apolar and weakly polar organic solvents: an ideal tool for measuring RDCs at low molecular concentrations, Journal of the American Chemical Society, vol.126, issue.45, p.26, 2004.

M. Ghallab, D. Nau, and P. Traverso, Automated Planning: Theory and Practice, vol.114, p.95, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01982019

B. Gipson, D. Hsu, L. Kavraki, and J. C. Latombe, Computational models of protein kinematics and dynamics: Beyond simulation, Annual Review of Analytical Chemistry, vol.5, p.116, 2012.

M. A. Graewert and D. I. Svergun, Impact and progress in small and wide angle x-ray scattering (saxs and waxs), Current Opinion in Structural Biology, vol.23, issue.5, p.28, 2013.

S. Granier, S. Kim, A. M. Shafer, V. R. Ratnala, J. J. Fung et al., Structure and conformational changes in the c-terminal domain of the beta2-adrenoceptor: insights from fluorescence resonance energy transfer studies, Journal of Biological Chemistry, vol.282, p.128, 2007.

D. Gront and A. Kolinski, Efficient scheme for optimization of parallel tempering Monte Carlo method, Journal of Physics: Condensed Matter, vol.19, p.117, 2007.

J. Gu and P. E. Bourne, Structural bioinformatics, vol.44, p.18, 2009.

J. C. Le-guillou and J. Zinn-justin, Critical exponents for the n-vector model in three dimensions from field theory, Large-Order Behaviour of Perturbation Theory, vol.7, pp.527-530, 1990.

A. Guinier, La diffraction des rayons x aux très petits angles : application à l'étude de phénomènes ultramicroscopiques, Annals of Physics, vol.11, issue.12, p.31, 1939.

F. Bovey, P. Mirau, and H. S. Gutowsky, Nuclear Magnetic Resonance Spectroscopy, p.22, 1988.

K. F. Han and D. Baker, Global properties of the mapping between local amino acid sequence and local structure in proteins, Proceedings of the National Academy of Sciences of the, vol.93, p.41, 1996.

M. R. Hansen, L. Mueller, and A. Pardi, Tunable alignment of macromolecules by filamentous phage yields dipolar coupling interactions, Nature Structural Biology, vol.5, issue.12, p.27, 1998.

A. R. Hawkins and H. K. Lamb, The molecular biology of multidomain proteins selected examples, European Journal of Biochemistry, vol.232, issue.1, pp.7-18, 1995.

D. Henrich, Fast motion planning by parallel processing -a review, Journal of Intelligent and Robotic Systems, vol.20, issue.1, p.118, 1997.

J. Henriques, C. Cragnell, and M. Skepö, Molecular dynamics simulations of intrinsically disordered proteins: force field evaluation and comparison with experiment, Journal of Chemical Theory and Computation, vol.11, issue.7, pp.3420-3431, 2015.

K. Henzler-wildman and D. Kern, Dynamic personalities of proteins, Nature, vol.450, pp.964-972, 2007.

S. Honda, K. Yamasaki, Y. Sawada, and H. Morii, 10 residue folded peptide designed by segment statistics, Structure, vol.12, issue.8, pp.1507-1518, 2004.

P. Hore, Nuclear Magnetic Resonance, p.22, 2015.

D. Hsu, R. Kindel, J. C. Latombe, and S. M. Rock, Randomized kinodynamic motion planning with moving obstacles, The International Journal of Robotics Research, vol.21, issue.3, p.119, 2002.

J. R. Huang, V. Ozenne, M. R. Jensen, and M. Blackledge, Direct prediction of NMR residual dipolar couplings from the primary sequence of unfolded proteins, Angewandte Chemie International Edition, vol.52, issue.2, pp.687-690, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01321602

J. C. Hus, D. Marion, and M. Blackledge, Determination of protein backbone structure using only residual dipolar couplings, Journal of chemical information and modeling, vol.58, p.27, 2018.

J. Ichnowski and R. Alterovitz, Scalable multicore motion planning using lock-free concurrency, IEEE Transactions on Robotics, vol.30, issue.5, p.118, 2014.

J. Iglesias, M. Sanchez-martínez, and R. Crehuet, SS-map: Visualizing cooperative secondary structure elements in protein ensembles, Intrinsically Disordered Proteins, vol.1, issue.1, p.86, 2013.

S. A. Jacobs, N. Stradford, C. Rodriguez, S. Thomas, and N. M. Amato, A scalable distributed rrt for motion planning, Proc. IEEE International Conference on Robotics and Automation (ICRA), p.119, 2013.

D. A. Jacques and J. Trewhella, Small-angle scattering for structural biologyexpanding the frontier while avoiding the pitfalls, Protein Science, vol.19, issue.4, p.28, 2010.

L. Jaillet, F. J. Corcho, J. J. Pérez, and J. Cortés, Randomized tree construction algorithm to explore energy landscapes, Journal of Computational Chemistry, vol.32, issue.16, pp.3464-3474, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01894030

L. Jaillet, J. Cortés, and T. Siméon, Sampling-based path planning on configuration-space costmaps, IEEE Transactions on Robotics, vol.26, issue.4, p.119, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01986202

S. Jaswinder, H. Jack, H. Rhys, P. Kuldip, Y. Yuedong et al., Detecting proline and non-proline cis isomers in protein structures from sequences using deep residual ensemble learning, Journal of the American Chemical Society, vol.123, p.45, 2001.

M. R. Jensen, G. Communie, E. A. Ribeiro, N. Martinez, A. Desfosses et al., Intrinsic disorder in measles virus nucleocapsids, Proceedings of the National Academy of Sciences of the U.S.A, vol.108, issue.24, pp.9839-9844, 2011.

M. R. Jensen, K. Houben, E. Lescop, L. Blanchard, R. W. Ruigrok et al., Quantitative conformational analysis of partially folded proteins from residual dipolar couplings: Application to the molecular recognition element of sendai virus nucleoprotein, Journal of the American Chemical Society, vol.130, issue.25, pp.8055-8061, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00337329

M. R. Jensen, P. R. Markwick, S. Meier, C. Griesinger, M. Zweckstetter et al., Quantitative determination of the conformational properties of partially folded and intrinsically disordered proteins using NMR dipolar couplings, Structure, vol.17, issue.9, pp.1169-1185, 2009.

M. R. Jensen, M. Zweckstetter, J. Huang, and M. Blackledge, Exploring freeenergy landscapes of intrinsically disordered proteins at atomic resolution using nmr spectroscopy, Chemical Reviews, vol.114, issue.13, pp.6632-6660, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01131146

M. Jensen, P. R. Markwick, S. Meier, C. Griesinger, M. Zweckstetter et al., Quantitative determination of the conformational properties of partially folded and intrinsically disordered proteins using NMR dipolar couplings, Structure, vol.17, issue.9, p.23, 2009.

M. Jensen, R. Ruigrok, and M. Blackledge, Describing intrinsically disordered proteins at atomic resolution by NMR, Current Opinion in Structural Biology, vol.23, issue.3, pp.426-435, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01321604

A. K. Jha, A. Colubri, K. F. Freed, and T. R. Sosnick, Statistical coil model of the unfolded state: Resolving the reconciliation problem, Proceedings of the National Academy of Sciences of the U.S.A, vol.102, issue.37, pp.13099-13104, 2005.

Q. Jiang, X. Jin, S. J. Lee, and S. Yao, Protein secondary structure prediction: A survey of the state of the art, Journal of Molecular Graphics and Modelling, vol.76, p.53, 2017.

W. Kabsch and C. Sander, Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features, Biopolymers, vol.22, issue.12, p.42, 1983.

M. Kachala, E. Valentini, and D. I. Svergun, Application of SAXS for the Structural Characterization of IDPs, Advances in Experimental Medicine and Biology, vol.870, pp.261-289, 2015.

M. Karplus and J. A. Mccammon, Molecular dynamics simulations of biomolecules, Nature Structural & Molecular Biology, vol.9, p.36, 2002.

L. E. Kavraki, P. ?vestka, J. C. Latombe, and M. H. Overmars, Probabilistic roadmaps for path planning in high-dimensional configuration spaces, IEEE Transactions on Robotics and Automation, vol.12, issue.4, p.118, 1996.

A. G. Kikhney and D. I. Svergun, A practical guide to small angle x-ray scattering (saxs) of flexible and intrinsically disordered proteins, FEBS Letters, issue.19, p.32, 2015.

P. M. Kim, A. Sboner, Y. Xia, and M. Gerstein, The role of disorder in interaction networks: a structural analysis, Molecular Systems Biology, vol.4, p.179, 2008.

M. Kjaergaard, S. Brander, and F. M. Poulsen, Random coil chemical shift for intrinsically disordered proteins: effects of temperature and pH, Journal of Biomolecular NMR, vol.49, issue.2, p.26, 2011.

T. P. Knowles, C. M. Vendruscolo, and . Dobson, The amyloid state and its association with protein misfolding diseases, Structure, vol.15, issue.6, p.93, 2014.

M. H. Koch, P. Vachette, and D. I. Svergun, Small-angle scattering: a view on the properties, structures and structural changes of biological macromolecules in solution, Quarterly Reviews of Biophysics, vol.36, issue.2, p.28, 2003.

J. E. Kohn, I. S. Millett, J. Jacob, B. Zagrovic, T. M. Dillon et al., Random-coil behavior and the dimensions of chemically unfolded proteins, Proceedings of the National Academy of Sciences of the U.S.A, vol.101, issue.34, pp.12491-12496, 2004.

P. Kollman, R. Dixon, W. Cornell, T. Fox, C. Chipot et al., The development/application of a "minimalist" organic/biochemical molecular mechanic force field using a combination of ab initio calculations and experimental data, Computer Simulation of Biomolecular Systems, vol.3, pp.83-96

R. Kolodny, P. Koehl, L. Guibas, and M. Levitt, Small libraries of protein fragments model native protein structures accurately, Journal of Molecular Biology, vol.323, issue.2, pp.297-307, 2002.

J. Kragelj, A. Palencia, M. H. Nanao, D. Maurin, G. Bouvignies et al., Structure and dynamics of the MKK7-JNK signaling complex, Proceedings of the National Academy of Sciences of the U.S.A, vol.112, issue.11, pp.3409-3414, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01149468

G. G. Krivov, M. V. Shapovalov, and R. L. Dunbrack, Improved prediction of protein side-chain conformations with SCWRL4, Proteins, vol.77, issue.4, p.77, 2009.

M. Krzeminski, J. A. Marsh, C. Neale, . Wing-yiu, J. D. Choy et al., Characterization of disordered proteins with ensemble. Bioinformatics, vol.29, issue.3, p.13, 2013.

P. Kührová, A. Simone, M. Otyepka, and R. B. Best, Force-field dependence of chignolin folding and misfolding: Comparison with experiment and redesign, Biophysical Journal, vol.102, issue.8, p.105, 2012.

J. C. Latombe, Robot Motion Planning, p.117, 1991.

S. M. Lavalle, Rapidly-exploring Random Trees: a new tool for path planning, vol.37, p.116, 1998.

S. M. Lavalle, Planning Algorithms, p.117, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01993243

S. M. Lavalle and J. J. Kuffner, Rapidly-exploring random trees: progress and prospects, Algorithmic and Computational Robotics: New Directions, p.119, 2001.

K. H. Lee and J. Chen, Multiscale enhanced sampling of intrinsically disordered protein conformations, Journal of Computational Chemistry, vol.37, issue.6, p.36, 2016.

C. , How to fold graciously, Mössbauer Spectroscopy in Biological Systems Proceedings, p.95, 1969.

M. Levitt, A simplified representation of protein conformations for rapid simulation of protein folding, Journal of Molecular Biology, vol.104, issue.1, p.76, 1976.

M. Levitt, Nature of the protein universe, Proceedings of the National Academy of Sciences, vol.106, pp.11079-11084, 2009.

H. Liang, H. Chen, K. Fan, P. Wei, X. Guo et al., De novo design of a ??? motif, Angewandte Chemie International Edition, vol.48, issue.18, p.96, 2009.

E. Lindahl, B. Hess, D. Van-der, and . Spoel, Gromacs 3.0: a package for molecular simulation and trajectory analysis. Molecular modeling annual, vol.7, p.117, 2001.

K. Lindorff-larsen, S. Kristjansdottir, K. Teilum, W. Fieber, C. M. Dobson et al., Determination of an ensemble of structures representing the denatured state of the bovine acyl-coenzyme a binding protein, Journal of the American Chemical Society, vol.126, issue.10, p.36, 2004.

K. Lindorff-larsen, S. Piana, R. O. Dror, and D. E. Shaw, How fast-folding proteins fold, Science, vol.334, issue.6055, pp.517-520, 2011.

R. S. Lipsitz and N. Tjandra, Residual dipolar couplings in NMR structure analysis, Annual Review of Biophysics and Biomolecular Structure, vol.33, issue.1, p.26, 2004.

Y. Liu, X. Wang, and B. Liu, A comprehensive review and comparison of existing computational methods for intrinsically disordered protein and region prediction, Briefings in Bioinformatics, vol.20, issue.1, p.53, 2017.

J. Lorieau, L. Yao, and A. Bax, Liquid crystalline phase of g-tetrad DNA for NMR study of detergent-solubilized proteins, Journal of the American Chemical Society, vol.130, issue.24, p.27, 2008.

M. Louhivuori, K. Pääkkönen, K. Fredriksson, P. Permi, J. Lounila et al., On the origin of residual dipolar couplings from denatured proteins, Journal of the American Chemical Society, vol.125, issue.50, p.27, 2003.

S. C. Lovell, I. W. Davis, W. B. Arendall, P. I. De-bakker, J. M. Word et al., Structure validation by C? geometry: ?, ? and C? deviation, Proteins, vol.50, issue.3, p.89, 2003.

J. Ma, G. I. Goldberg, and N. Tjandra, Weak alignment of biomacromolecules in collagen gels: An alternative way to yield residual dipolar couplings for NMR measurements, Journal of the American Chemical Society, vol.130, issue.48, p.27, 2008.

M. W. Macarthur and J. M. Thornton, Influence of proline residues on protein conformation, Journal of Molecular Biology, vol.218, issue.2, p.79, 1991.

C. O. Mackenzie, J. Zhou, and G. Grigoryan, Tertiary alphabet for the observable protein structural universe, Proceedings of the National Academy of Sciences of the U.S.A, vol.113, issue.47, p.41, 2016.

J. A. Marsh, J. M. Baker, M. Tollinger, and J. D. Forman-kay, Calculation of residual dipolar couplings from disordered state ensembles using local alignment, Journal of the American Chemical Society, vol.130, issue.25, p.27, 2008.

J. A. Marsh, C. Neale, F. E. Jack, W. Y. Choy, A. Y. Lee et al., Improved structural characterizations of the drkN SH3 domain unfolded state suggest a compact ensemble with native-like and non-native structure, Journal of Molecular Biology, vol.367, issue.5, p.39, 2007.

J. Maupetit, P. Derreumaux, and P. Tufféry, A fast method for large-scale de novo peptide and miniprotein structure prediction, Journal of Computational Chemistry, vol.31, issue.4, pp.726-738, 2010.

S. Meier, S. Grzesiek, and M. Blackledge, Mapping the conformational landscape of urea-denatured ubiquitin using residual dipolar couplings, Journal of the American Chemical Society, vol.129, issue.31, pp.9799-9807, 2007.

H. D. Mertens and D. I. Svergun, Structural characterization of proteins and complexes using small-angle X-ray solution scattering, Journal of Structural Biology, vol.172, issue.1, p.28, 2010.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equation of state calculations by fast computing machines, Journal of Chemical Physics, vol.21, p.36, 1953.

T. Mittag, J. Marsh, A. Grishaev, S. Orlicky, H. Lin et al., Structure/function implications in a dynamic complex of the intrinsically disordered sic1 with the cdc4 subunit of an {SCF} ubiquitin ligase, Structure, vol.18, issue.4, pp.494-506, 2010.

T. Mittag, S. Orlicky, W. Choy, X. Tang, H. Lin et al., Dynamic equilibrium engagement of a polyvalent ligand with a single-site receptor, Proceedings of the National Academy of Sciences of the U.S.A, vol.105, issue.46, pp.17772-17777, 2008.

A. Mittermaier and L. E. Kay, New tools provide new insights in nmr studies of protein dynamics, Science, issue.5771, p.22, 2006.

A. Mohan, C. J. Oldfield, P. Radivojac, V. Vacic, M. S. Cortese et al., Analysis of molecular recognition features (MoRFs), Molecular Biology, vol.362, issue.5, p.13, 2006.

R. Mohana-borges, N. K. Goto, G. J. Kroon, H. J. Dyson, and P. E. Wright, Structural characterization of unfolded states of apomyoglobin using residual dipolar couplings, Journal of Molecular Biology, vol.340, issue.5, p.27, 2004.

K. Molloy and A. Shehu, A general, adaptive, roadmap-based algorithm for protein motion computation, IEEE Transactions on NanoBioscience, vol.15, issue.2, pp.158-165, 2016.

M. Muja and D. G. Lowe, Fast approximate nearest neighbors with automatic algorithm configuration, VISAPP International Conference on Computer Vision Theory and Applications, p.126, 2009.

M. D. Mukrasch, P. Markwick, J. Biernat, M. Bergen, P. Bernadó et al., Highly populated turn conformations in natively unfolded tau protein identified from residual dipolar couplings and molecular simulation, Journal of the American Chemical Society, vol.129, issue.16, p.82, 2007.

E. Mylonas, A. Hascher, P. Bernado, M. Blackledge, E. Mandelkow et al., Domain conformation of tau protein studied by solution small-angle X-ray scattering, Biochemistry, vol.47, issue.39, p.38, 2008.

R. L. Narayanan, U. H. Dürr, S. Bibow, J. Biernat, E. Mandelkow et al., Automatic assignment of the intrinsically disordered protein tau with 441-residues, Journal of the American Chemical Society, vol.132, issue.34, p.23, 2010.

H. L. Nguyen, H. Khanmohammadbaigi, and E. Clementi, A parallel molecular dynamics strategy, Journal of Computational Chemistry, vol.6, p.117, 1985.

J. T. Nielsen and F. A. Mulder, POTENCI: prediction of temperature, neighbor and ph-corrected chemical shifts for intrinsically disordered proteins, Journal of Biomolecular NMR, vol.70, issue.3, p.78, 2018.

O. and K. O. Glatter, Small Angle X-ray Scattering, p.28, 1982.

H. Ota and S. Fukuchi, Sequence conservation of protein binding segments in intrinsically disordered regions, Biochemical and Biophysical Research Communications, vol.494, issue.3, p.91, 2017.

M. Otte and N. Correll, C-FOREST: Parallel shortest-path planning with super linear speedup, IEEE Transactions on Robotics, vol.29, p.119, 2013.

M. Ottiger and A. Bax, Journal of Biomolecular NMR, vol.12, issue.3, p.27, 1998.

V. Ozenne, F. Bauer, L. Salmon, J. R. Huang, M. R. Jensen et al., Flexible-meccano: a tool for the generation of explicit ensemble descriptions of intrinsically disordered proteins and their associated experimental observables, Bioinformatics, vol.28, issue.11, p.77, 2012.

V. Ozenne, R. Schneider, M. Yao, J. Huang, L. Salmon et al., Mapping the potential energy landscape of intrinsically disordered proteins at amino acid resolution, Journal of the American Chemical Society, vol.134, issue.36, p.85, 2012.

G. H. Paine and H. A. Scheraga, Prediction of the native conformation of a polypeptide by a statistical-mechanical procedure. III. Probable and average conformations of enkephalin, Biopolymers, vol.26, issue.7, pp.1125-1162, 1987.

J. Pan and D. Manocha, Gpu-based parallel collision detection for fast motion planning, International Journal of Robotics Research, vol.31, issue.2, p.118, 2012.

R. Pancsa and M. Fuxreiter, Interactions via intrinsically disordered regions: What kind of motifs? IUBMB Life, vol.64, pp.513-520, 2012.

L. Pauling and R. B. Corey, Configurations of polypeptide chains with favored orientations around single bonds: Two new pleated sheets, Proceedings of the National Academy of Sciences, vol.37, issue.11, p.53, 1951.

J. Pérez and Y. Nishino, Advances in x-ray scattering: from solution saxs to achievements with coherent beams, Current Opinion in Structural Biology, vol.22, issue.5, p.28, 2012.

Y. Pérez, M. Gairí, M. Pons, and P. Bernadó, Structural characterization of the natively unfolded N-terminal domain of human c-Src kinase: Insights into the role of phosphorylation of the unique domain, Journal of Molecular Biology, vol.391, issue.1, p.82, 2009.

M. V. Petoukhov and D. I. Svergun, Analysis of X-ray and neutron scattering from biomacromolecular solutions, Current Opinion in Structural Biology, vol.17, issue.5, p.28, 2007.

J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid et al., Scalable molecular dynamics with namd, Journal of Computational Chemistry, vol.26, issue.16, p.117, 2005.

S. Piana, A. G. Donchev, P. Robustelli, and D. E. Shaw, Water dispersion interactions strongly influence simulated structural properties of disordered protein states, The Journal of Physical Chemistry B, vol.119, issue.16, pp.5113-5123, 2015.

S. Piana, D. E. Shaw, and J. L. Klepeis, Assessing the accuracy of physical models used in protein-folding simulations: quantitative evidence from long molecular dynamics simulations, p.36

E. Plaku, K. E. Bekris, B. Y. Chen, A. M. Ladd, and L. E. Kavraki, Samplingbased roadmap of trees for parallel motion planning, IEEE Transactions on Robotics, vol.21, issue.4, pp.597-608, 2005.

J. H. Prestegard, C. M. Bougault, and A. I. Kishore, Residual dipolar couplings in structure determination of biomolecules, Chemical Reviews, vol.104, issue.8, p.26, 2004.

C. D. Putnam, M. Hammel, G. L. Hura, and J. A. Tainer, X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution, Quarterly Reviews of Biophysics, vol.40, issue.3, p.28, 2007.

Y. Qi, Y. Huang, H. Liang, Z. Liu, and L. Lai, Folding simulations of a de novo designed protein with a ??? fold, Biophysical Journal, vol.98, issue.2, pp.321-329, 2010.

R. P. Rambo and J. A. Tainer, Super-resolution in solution X-ray scattering and its applications to structural systems biology, Annual Review of Biophysics, vol.42, p.28, 2013.

F. Rao and A. Caflisch, Replica exchange molecular dynamics simulations of reversible folding, Journal of Chemical Physics, vol.119, p.117, 2003.

D. C. Rapaport, The art of molecular dynamics simulation, p.96, 2007.

V. Receveur-brechot and D. Durand, How random are intrinsically disordered proteins? A small angle scattering perspective, Current Protein and Peptide Science, vol.13, issue.1, p.13, 2012.

S. Richter and M. Westphal, The LAMA planner: Guiding cost-based anytime planning with landmarks, Journal of Artificial Intelligence Research, vol.39, issue.1, pp.127-177, 2010.

C. A. Rohl, C. E. Strauss, K. M. Misura, and D. Baker, Protein structure prediction using Rosetta, Numerical Computer Methods, Part D, vol.383, pp.66-93, 2004.

M. Rooman, Y. Dehouck, J. Kwasigroch, C. Biot, and D. Gilis, What is paradoxical about Levinthal paradox, Journal of Biomolecular Structure & Dynamics, vol.20, pp.327-336, 2003.

G. D. Rose, P. J. Fleming, J. R. Banavar, and A. Maritan, A backbone-based theory of protein folding, Proceedings of the National Academy of Sciences of the U.S.A, vol.103, issue.45, p.94, 2006.

J. S. Rosenthal, Parallel computing and monte carlo algorithms, Far East Journal of Theoretical Statistics, vol.4, p.117, 2000.

M. Rückert and G. Otting, Alignment of biological macromolecules in novel nonionic liquid crystalline media for nmr experiments, p.27, 2000.

V. Ruiz-de-angulo, J. Cortés, and J. M. Porta, Rigid-CLL: Avoiding constantdistance computations in cell linked-lists algorithms, Journal of Computational Chemistry, vol.33, issue.3, p.101, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02573424

H. J. Sass, Journal of Biomolecular NMR, vol.18, issue.4, p.27, 2000.

D. Satoh, K. Shimizu, S. Nakamura, and T. Terada, Folding free-energy landscape of a 10-residue mini-protein, chignolin, FEBS Letters, vol.580, issue.14, 2006.

R. Schneider, D. Maurin, G. Communie, J. Kragelj, D. F. Hansen et al., Visualizing the molecular recognition trajectory of an intrinsically disordered protein using multinuclear relaxation dispersion NMR, Journal of the American Chemical Society, vol.137, issue.3, pp.1220-1229, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01132326

. Llc and . Schrödinger, The PyMOL molecular graphics system, version 1.8, vol.102, p.106, 2015.

M. Schwalbe, V. Ozenne, S. Bibow, M. Jaremko, L. Jaremko et al., Predictive atomic resolution descriptions of intrinsically disordered hTau40 and ?-synuclein in solution from NMR and small angle scattering, Structure, vol.22, issue.2, pp.238-249, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01131132

S. Schwarzinger, G. J. Kroon, T. R. Foss, P. E. Wright, and H. J. Dyson, Random coil chemical shifts in acidic 8 M urea: implementation of random coil shift data in NMRView, Journal of Biomolecular NMR, vol.18, issue.1, p.26, 2000.

S. Schwarzinger, G. J. Kroon, T. R. Foss, J. Chung, P. E. Wright et al., Sequence-dependent correction of random coil nmr chemical shifts, Journal of the American Chemical Society, vol.123, issue.13, pp.2970-2978, 2001.

R. Schweitzer-stenner and S. E. , Construction and comparison of the statistical coil states of unfolded and intrinsically disordered proteins from nearest-neighbor corrected conformational propensities of short peptides, Molecular BioSystems, vol.12, pp.3294-3306, 2016.

R. A. Scott and H. Scheraga, Conformational analysis of macromolecules. III. Helical structures of polyglycine and poly-L-alanine, The Journal of Chemical Physics, vol.45, issue.6, pp.2091-2101, 1966.

A. Shehu, Probabilistic search and optimization for protein energy landscapes, Handbook of Computational Molecular Biology, 2013.

A. Shehu and E. Plaku, A survey of computational treatments of biomolecules by robotics-inspired methods modeling equilibrium structure and dynamic, Journal of Artificial Intelligence Research, vol.57, pp.509-572, 2016.

Y. Shen and A. Bax, SPARTA+: a modest improvement in empirical nmr chemical shift prediction by means of an artificial neural network, Journal of Biomolecular NMR, vol.48, issue.1, pp.13-22, 2010.

Y. Shen, J. Maupetit, P. Derreumaux, and P. Tufféry, Improved PEP-FOLD approach for peptide and miniprotein structure prediction, Journal of Chemical Theory and Computation, vol.10, issue.10, p.41, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01498039

Y. Shen, J. Roche, A. Grishaev, and A. Bax, Prediction of nearest neighbor effects on backbone torsion angles and nmr scalar coupling constants in disordered proteins, Protein Science, vol.27, issue.1, pp.146-158, 2018.

Y. Shen, R. Vernon, D. Baker, and A. Bax, De novo protein structure generation from incomplete chemical shift assignments, Journal of biomolecular NMR, vol.43, issue.2, p.26, 2009.

G. N. Shilstone, C. Zannoni, and C. A. Veracini, Solute alignment in liquid crystal solvents the saupe ordering matrix for perylene and pyrene, Liquid Crystals, vol.6, issue.3, p.26, 1989.

A. K. Shukla, G. H. Westfield, and K. Xiao, Visualization of arrestin recruitment by a G protein-coupled receptor, Nature, vol.512, pp.218-222, 2014.

N. Sibille and P. Bernadó, Structural characterization of intrinsically disordered proteins by the combined use of NMR and SAXS, Biochemical Society Transactions, vol.40, issue.5, pp.955-962, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02347934

J. Silvestre-ryan, C. W. Bertoncini, R. Fenwick, S. Esteban-martin, and X. Salvatella, Average conformations determined from pre data provide highresolution maps of transient tertiary interactions in disordered proteins, Biophysical Journal, vol.104, issue.8, p.13, 2013.

L. J. Smith, K. A. Bolin, H. Schwalbe, M. W. Macarthur, J. M. Thornton et al., Analysis of main chain torsion angles in proteins: Prediction of NMR coupling constants for native and random coil conformations, Journal of Molecular Biology, vol.255, issue.3, pp.494-506, 1996.

C. Snow, B. Zagrovic, and V. Pande, The Trp-cage: Folding kinetics and unfolded state topology via molecular dynamics simulations, Journal of the American Chemical Society, vol.124, p.96, 2003.

P. Sormanni, C. Camilloni, P. Fariselli, and M. Vendruscolo, The s2D method: Simultaneous sequence-based prediction of the statistical populations of ordered and disordered regions in proteins, Journal of Molecular Biology, vol.427, issue.4, p.53, 2015.

P. Sormanni, D. Piovesan, G. T. Heller, M. Bonomi, P. Kukic et al., Simultaneous quantification of protein order and disorder, Nature Chemical Biology, vol.13, issue.4, pp.339-342, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01802823

Y. G. Sterckx, A. N. Volkov, W. F. Vranken, J. Kragelj, M. R. Jensen et al., Small-angle X-ray scattering-and nuclear magnetic resonancederived conformational ensemble of the highly flexible antitoxin PaaA2, vol.22, p.36, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01131143

I. Strid, Efficient parallelisation of metropolis-hastings algorithms using a prefetching approach, Computational Statistics & Data Analysis, vol.54, p.117, 2009.

K. Sugase, H. J. Dyson, and P. E. Wright, Mechanism of coupled folding and binding of an intrinsically disordered protein, Nature, vol.447, p.91, 2007.

Y. Sugita and Y. Okamoto, Replica-exchange molecular dynamics method for protein folding, Chemical Physics Letter, vol.314, p.117, 1999.

D. Svergun, C. Barberato, and M. H. Koch, CRYSOL -a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates, Journal of Applied Crystallography, vol.28, issue.6, pp.768-773, 1995.

D. I. Svergun and L. A. Feigin, Structure Analysis by Small-Angle X-Ray and Neutron Scattering, p.28, 1987.

D. I. Svergun and M. H. Koch, Small-angle scattering studies of biological macromolecules in solution, Reports on Progress in Physics, p.28, 2003.

R. H. Swendsen and J. Wang, Replica monte carlo simulation of spin-glasses, Physical Review Letters, vol.57, p.117, 1986.

K. Tamiola, B. Acar, and F. A. Mulder, Sequence-specific random coil chemical shifts of intrinsically disordered proteins, Journal of the American Chemical Society, vol.132, issue.51, pp.18000-18003, 2010.

T. Terakawa and S. Takada, Multiscale ensemble modeling of intrinsically disordered proteins: p53 N-terminal domain, Biophysical Journal, vol.101, issue.6, p.36, 2011.

D. Ting, G. Wang, M. Shapovalov, R. Mitra, M. I. Jordan et al., Neighbor-dependent ramachandran probability distributions of amino acids developed from a hierarchical dirichlet process model, PLOS Computational Biology, vol.6, issue.4, pp.1-21, 2010.

N. Tjandra, A. Szabo, and A. Bax, Protein backbone dynamics and 15n chemical shift anisotropy from quantitative measurement of relaxation interference effects, Journal of the American Chemical Society, vol.118, issue.29, p.26, 1996.

J. R. Tolman and K. Ruan, NMR residual dipolar couplings as probes of biomolecular dynamics, Chemical Reviews, vol.106, issue.5, p.27, 2006.

P. Tompa, N. E. Davey, T. Gibson, and M. M. Babu, A million peptide motifs for the molecular biologist, Molecular Cell, vol.55, issue.2, p.93, 2014.

P. Tompa, E. Schad, A. Tantos, and L. Kalmar, Intrinsically disordered proteins: emerging interaction specialists, Current Opinion in Structural Biology, vol.35, pp.49-59, 2015.

R. Tycko, F. J. Blanco, and Y. Ishii, Alignment of biopolymers in strained gels: a new way to create detectable dipole-dipole couplings in high-resolution biomolecular NMR, Journal of the American Chemical Society, vol.122, issue.38, p.27, 2000.

V. N. Uversky, C. J. Oldfield, and A. K. Dunker, Intrinsically disordered proteins in human diseases: Introducing the D2 concept, Annual Review of Biophysics, vol.37, issue.1, p.13, 2008.

J. S. Valastyan and S. Lindquist, Mechanisms of protein-folding diseases at a glance, Disease Models & Mechanisms, vol.7, issue.1, p.93, 2014.

R. Van-der-lee, M. Buljan, B. Lang, R. J. Weatheritt, G. W. Daughdrill et al., Classification of intrinsically disordered regions and proteins, Chemical Reviews, vol.114, issue.13, pp.6589-6631, 2014.

K. Van-roey, B. Uyar, R. J. Weatheritt, H. Dinkel, M. Seiler et al., Short linear motifs: Ubiquitous and functionally diverse protein interaction modules directing cell regulation, Chemical Reviews, vol.114, issue.13, p.13, 2014.

M. Vendruscolo, J. Zurdo, C. Macphee, and C. Dobson, Protein folding and misfolding: A paradigm of self-assembly and regulation in complex biological systems, Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, vol.361, p.93, 2003.

A. Vitalis and R. V. Pappu, ABSINTH: a new continuum solvation model for simulations of polypeptides in aqueous solutions, Journal of Computational Chemistry, vol.30, issue.5, p.37, 2009.

A. Vitalis and R. V. Pappu, Methods for Monte Carlo simulations of biomacromolecules, Annual Reports in Computational Chemistry, vol.5, p.36, 2009.

D. Wales, Energy Landscapes: Applications to Clusters, Biomolecules and Glasses, p.95, 2003.

F. T. Wall, Principles of polymer chemistry, Science, vol.119, issue.3095, pp.555-556, 1954.

M. Wells, H. Tidow, T. J. Rutherford, P. Markwick, M. R. Jensen et al., Structure of tumor suppressor p53 and its intrinsically disordered N-terminal transactivation domain. Proceedings of the National Academy of, Sciences of the U.S.A, vol.105, issue.15, pp.5762-5767, 2008.
URL : https://hal.archives-ouvertes.fr/pasteur-01524472

D. S. Wishart, C. G. Bigam, A. Holm, R. S. Hodges, and B. D. Sykes,

I. , Investigations of nearest-neighbor effects, Journal of Biomolecular NMR, vol.5, issue.1, p.26, 1995.

D. S. Wishart and B. D. Sykes, The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data, Journal of Biomolecular NMR, vol.4, issue.2, p.26, 1994.

P. Wolynes, J. N. Onuchic, and D. Thirumalai, Navigating the folding routes, Science, vol.267, pp.1619-1620, 1995.

P. E. Wright and H. J. Dyson, Intrinsically unstructured proteins: reassessing the protein structure-function paradigm, Journal of Molecular Biology, vol.293, issue.2, pp.321-331, 1999.

P. E. Wright and H. J. Dyson, Intrinsically disordered proteins in cellular signalling and regulation, Nature Reviews Molecular Cell Biology, vol.16, issue.1, p.20, 2015.

K. P. Wu, D. S. Weinstock, C. Narayanan, R. M. Levy, and J. Baum, Structural reorganization of alpha-synuclein at low pH observed by NMR and REMD simulations, Journal of Molecular Biology, vol.391, issue.4, p.36, 2009.

H. Xie, S. Vucetic, L. M. Iakoucheva, C. J. Oldfield, A. K. Dunker et al., Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions, Journal of Proteome Research, vol.6, issue.5, p.13, 2007.

G. H. Zerze, C. M. Miller, D. Granata, and J. Mittal, Free energy surface of an intrinsically disordered protein: Comparison between temperature replica exchange molecular dynamics and bias-exchange metadynamics, Journal of Chemical Theory and Computation, vol.11, issue.6, p.36, 2015.

H. X. Zhou, Polymer models of protein stability, folding, and interactions, Biochemistry, vol.43, issue.8, pp.2141-2154, 2004.

J. M. Zimmerman, N. Eliezer, and R. Simha, Characterization of amino acid sequences in proteins by statistical methods, Journal of Theoretical Biology, vol.21, issue.X, p.61, 1968.

, The time-course of H16 protein synthesis was monitored using a fluorescence read-out (sfGFP) and a plate reader/incubator (Gen5, BioTek Instruments, 485 nm (excitation), 528 nm (emission)). Assays were carried out as triplicates in a reaction volume of 50 µL dispensed in 96-well plates. The reactions /mL [ 15 N, 13 C]-labeled ISOGRO® 40 (an algal extract lacking four amino acids: Asn, Cys, Gln and Trp) and additionally supplying [ 15 N, 13 C]-labeled Asn, Cys, Gln and Trp (1 mM each). Furthermore, potassium glutamate was substituted by 80 mM potassium acetate to enable the labeling of glutamates, Plasmids of all 22 amber mutants of wild-type H16 were tested for possible position specific effects of the amber codon placement on the suppression efficiency at a final concentration of 10 µM tRNA CUA

, mM imidazole) before loading onto a Ni gravity-flow column of 1 mL bed volume (cOmplete? His-Tag Purification Resin, The column was washed with buffer B (50 mM Tris-HCl pH 7.5, 1000 mM NaCl, 5 mM imidazole) and the target protein was eluted with buffer C (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 250 mM imidazole), vol.5

, Dialyzed protein was then concentrated with 10 kDa MWCO Vivaspin centrifugal concentrators (3500 x g, 4°C) (Sartorius)

, Experiments were performed at 293 K on a Bruker Avance III spectrometer equipped with a cryogenic triple resonance probe and Z gradient coil, operating at a 1 H frequency of 700 MHz or 800 MHz. 15 N-HSQC and 13 C-HSQC were acquired for each sample in order to determine amide ( 1 H N and 15 N) and aliphatic ( 1 H aliphatic and 13 C aliphatic ) chemical shifts, Integrated Structural Biology (FRISBI), 2 national infrastructures supported by the French National Research Agency, All NMR samples contained final concentrations of 10% D 2 O and 0.5 mM 4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS), 2016.

F. O. Walker, Huntington's Disease, Lancet, vol.369, issue.9557, pp.218-228, 2007.

E. E. Wanker, Protein Aggregation and Pathogenesis of Huntington's Disease: Mechanisms and Correlations, Biol. Chem, vol.381, issue.9, pp.937-942, 2000.

M. Difiglia, E. Sapp, K. O. Chase, S. W. Davies, G. P. Bates et al., Aggregation of Huntingtin in Neuronal Intranuclear Inclusions and Dystrophic Neurites in Brain, Science, vol.277, issue.5334, pp.1990-1993, 1997.

H. T. Orr, Beyond the Qs in the Polyglutamine Diseases, Genes Dev, vol.15, issue.8, pp.925-932, 2001.

F. Hosp, S. Gutiérrez-Ángel, M. H. Schaefer, J. Cox, F. Meissner et al., Spatiotemporal Proteomic Profiling of Huntington's Disease Inclusions Reveals Widespread Loss of Protein Function, Cell Rep, vol.21, issue.8, pp.2291-2303, 2017.

L. Mangiarini, K. Sathasivam, M. Seller, B. Cozens, A. Harper et al., Exon I of the HD Gene with an Expanded CAG Repeat Is Sufficient to Cause a Progressive Neurological Phenotype in Transgenic Mice, Cell, vol.87, issue.3, pp.493-506, 1996.

J. M. Isas, R. Langen, and A. B. Siemer, Solid-State Nuclear Magnetic Resonance on the Static and Dynamic Domains of Huntingtin Exon-1 Fibrils, Biochemistry, vol.54, issue.25, pp.3942-3949, 2015.

C. L. Hoop, H. Lin, K. Kar, G. Magyarfalvi, J. M. Lamley et al., Huntingtin Exon 1 Fibrils Feature an Interdigitated ?-Hairpin-Based Polyglutamine Core, Proc. Natl. Acad. Sci. U. S. A, vol.113, issue.6, pp.1546-1551, 2016.

M. Jayaraman, R. Kodali, B. Sahoo, A. K. Thakur, A. Mayasundari et al., Slow Amyloid Nucleation via ?-Helix-Rich Oligomeric Intermediates in Short Polyglutamine-Containing Huntingtin Fragments, J. Mol. Biol, vol.2012, issue.5, pp.881-899

F. Fiumara, L. Fioriti, E. R. Kandel, and W. A. Hendrickson, Essential Role of Coiled Coils for Aggregation and Activity of Q/N-Rich Prions and PolyQ Proteins, Cell, issue.7, pp.1121-1135, 2010.

E. Scherzinger, R. Lurz, M. Turmaine, L. Mangiarini, B. Hollenbach et al., Huntingtin-Encoded Polyglutamine Expansions Form Amyloid-like Protein Aggregates in Vitro and in Vivo, Cell, vol.90, issue.3, pp.549-558, 1997.

K. Shen, B. Calamini, J. A. Fauerbach, B. Ma, S. H. Shahmoradian et al., Control of the Structural Landscape and Neuronal Proteotoxicity of Mutant Huntingtin by Domains Flanking the PolyQ Tract, Elife, vol.2016, pp.1-29, 2016.

M. Michalek, E. S. Salnikov, and B. Bechinger, Structure and Topology of the Huntingtin, pp.1-17

A. Ceccon, T. Schmidt, V. Tugarinov, S. A. Kotler, C. D. Schwieters et al., Interaction of Huntingtin Exon-1 Peptides with Lipid-Based Micellar Nanoparticles Probed by Solution NMR and Q-Band Pulsed EPR, J. Am. Chem. Soc, vol.140, issue.20, pp.6199-6202, 2018.

A. K. Thakur, M. Jayaraman, R. Mishra, M. Thakur, V. M. Chellgren et al.,

, Huntingtin Exon 1 N Terminus Triggers a Complex Aggregation Mechanism, Nat. Struct. Mol. Biol, vol.16, issue.4, pp.380-389, 2009.

S. Tam, C. Spiess, W. Auyeung, L. Joachimiak, B. Chen et al., The Chaperonin TRiC Blocks a Huntingtin Sequence Element That Promotes the Conformational Switch to Aggregation, Nat. Struct. Mol. Biol, vol.16, issue.12, pp.1279-1285, 2009.

S. A. Kotler, V. Tugarinov, T. Schmidt, A. Ceccon, D. S. Libich et al., Probing Initial Transient Oligomerization Events Facilitating Huntingtin Fibril Nucleation at Atomic Resolution by Relaxation-Based NMR, Proc. Natl

. Acad and . U. Sci, , vol.116, pp.3562-3571, 2019.

J. S. Steffan, N. Agrawal, J. Pallos, E. Rockabrand, L. C. Trotman et al., SUMO Modification of Huntingtin and Huntington's Disease Pathology, Science, vol.304, issue.5667, pp.100-104, 2004.

D. E. Ehrnhoefer, L. Sutton, M. R. Hayden, and . Changes, Big Impact: Posttranslational Modifications and Function of Huntingtin in Huntington Disease, Neuroscientist, vol.17, issue.5, pp.475-492, 2011.

R. S. Atwal, C. R. Desmond, N. Caron, T. Maiuri, J. Xia et al., Kinase Inhibitors Modulate Huntingtin Cell Localization and Toxicity, Nat. Chem. Biol, vol.7, issue.7, pp.453-460, 2011.

R. Mishra, C. L. Hoop, R. Kodali, B. Sahoo, P. C. Van-der-wel et al., Serine Phosphorylation Suppresses Huntingtin Amyloid Accumulation by Altering Protein Aggregation Properties, J. Mol. Biol, vol.2012, issue.1-2, pp.1-14

A. Ansaloni, Z. Wang, J. S. Jeong, F. S. Ruggeri, G. Dietler et al., One-Pot Semisynthesis of Exon 1 of the Huntingtin Protein: New Tools for Elucidating the Role of Posttranslational Modifications in the Pathogenesis of Huntington's Disease, Angew. Chem. Int. Ed. Engl, vol.53, issue.7, pp.1928-1933, 2014.

A. Chiki, S. M. Deguire, F. S. Ruggeri, D. Sanfelice, A. Ansaloni et al., Mutant Exon1 Huntingtin Aggregation Is Regulated by T3 Phosphorylation-Induced Structural Changes and Crosstalk between T3 Phosphorylation and Acetylation at K6, Angew. Chem. Int. Ed. Engl, vol.2017, issue.19, pp.5202-5207

A. Bhattacharyya, A. K. Thakur, V. M. Chellgren, G. Thiagarajan, A. D. Williams et al., Oligoproline Effects on Polyglutamine Conformation and Aggregation, J. Mol. Biol, vol.355, issue.3, pp.524-535, 2006.

B. Dehay and A. Bertolotti, Critical Role of the Proline-Rich Region in Huntingtin for Aggregation and Cytotoxicity in Yeast, J. Biol. Chem, issue.47, pp.35608-35615, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-02439167

X. Feng, S. Luo, and B. Lu, Conformation Polymorphism of Polyglutamine Proteins, Trends Biochem. Sci, vol.43, issue.6, pp.424-435, 2018.

J. Miller, M. Arrasate, E. Brooks, C. P. Libeu, J. Legleiter et al., Identifying Polyglutamine Protein Species in Situ That Best Predict Neurodegeneration, Nat. Chem. Biol, vol.7, issue.12, pp.925-934, 2011.

L. G. Nucifora, K. A. Burke, X. Feng, N. Arbez, S. Zhu et al., Identification of Novel Potentially Toxic Oligomers Formed in Vitro from Mammalian-Derived Expanded Huntingtin Exon-1, Protein. J. Biol

. Chem, , vol.287, pp.16017-16028, 2012.

C. Peters-libeu, J. Miller, E. Rutenber, Y. Newhouse, P. Krishnan et al.,

, Monomeric Huntingtin Adopt a Compact Structure, J. Mol. Biol, vol.2012, issue.4-5, pp.587-600

P. Li, K. E. Huey-tubman, T. Gao, X. Li, A. P. West et al., The Structure of a PolyQ-Anti-PolyQ Complex Reveals Binding According to a Linear Lattice Model, Nat. Struct. Mol. Biol, vol.14, issue.5, pp.381-387, 2007.

F. A. Klein, G. Zeder-lutz, A. Cousido-siah, A. Mitschler, A. Katz et al., Linear and Extended: A Common Polyglutamine Conformation Recognized by the Three Antibodies MW1, 1C2 and 3B5H10, Hum. Mol. Genet, vol.22, issue.20, pp.4215-4223, 2013.

G. E. Owens, D. M. New, A. P. West, and P. J. Bjorkman, Anti-PolyQ Antibodies Recognize a Short PolyQ Stretch in Both Normal and Mutant Huntingtin Exon 1, J. Mol. Biol, vol.427, issue.15, pp.2507-2519, 2015.

M. J. Bennett, K. E. Huey-tubman, A. B. Herr, A. P. West, S. A. Ross et al., Linear Lattice Model for Polyglutamine in CAG-Expansion Diseases, Proc. Natl. Acad. Sci. U

S. A. , , vol.99, pp.11634-11639, 2002.

J. B. Warner, K. M. Ruff, P. S. Tan, E. A. Lemke, R. Pappu et al., Monomeric Huntingtin Exon 1 Has Similar Overall Structural Features for Wild-Type and Pathological Polyglutamine Lengths, J. Am. Chem. Soc, vol.2017, issue.41, pp.14456-14469

E. A. Newcombe, K. M. Ruff, A. Sethi, A. R. Ormsby, Y. M. Ramdzan et al., Tadpole-like Conformations of Huntingtin Exon 1 Are Characterized by Conformational Heterogeneity That Persists Regardless of Polyglutamine Length, J. Mol. Biol, vol.430, issue.10, pp.1442-1458, 2018.

J. M. Bravo-arredondo, N. C. Kegulian, T. Schmidt, N. K. Pandey, A. J. Situ et al., The Folding Equilibrium of Huntingtin Exon 1 Monomer Depends on Its Polyglutamine Tract, J. Biol. Chem, issue.51, pp.19613-19623, 2018.

V. Fodale, N. C. Kegulian, M. Verani, C. Cariulo, L. Azzollini et al., Polyglutamine-and Temperature-Dependent Conformational Rigidity in Mutant Huntingtin Revealed by Immunoassays and Circular Dichroism Spectroscopy, PLoS One, vol.9, issue.12, p.112262, 2014.

S. Milles, N. Salvi, M. Blackledge, and M. R. Jensen, Characterization of Intrinsically Disordered Proteins and Their Dynamic Complexes: From in Vitro to Cell-like Environments, Prog. Nucl. Magn. Reson. Spectrosc, vol.109, pp.79-100, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01995911

A. Urbanek, A. Morató, F. Allemand, E. Delaforge, A. Fournet et al., A General Strategy to Access Structural Information at Atomic Resolution in Polyglutamine Homorepeats, Angew. Chem. Int. Ed. Engl, vol.57, issue.14, pp.3598-3601, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01737188

T. Kigawa, T. Yabuki, Y. Yoshida, M. Tsutsui, Y. Ito et al., Cell-Free Production and Stable-Isotope Labeling of Milligram Quantities of Proteins, FEBS Lett, vol.442, issue.1, pp.15-19, 1999.

L. Wang, J. Xie, and P. G. Schultz, Expanding the Genetic Code, Annu. Rev. Biophys. Biomol. Struct, vol.35, pp.225-249, 2006.

J. A. Ellman, B. F. Volkman, D. Mendel, P. G. Schultz, and D. E. Wemmer, Site-Specific Isotopic Labeling of Proteins for NMR Studies, J. Am. Chem. Soc, vol.114, issue.20, pp.7959-7961, 1992.

S. Peuker, H. Andersson, E. Gustavsson, K. S. Maiti, R. Kania et al., Efficient Isotope Editing of Proteins for Site-Directed Vibrational Spectroscopy, J. Am. Chem. Soc, vol.138, issue.7, pp.2312-2318, 2016.

M. Baias, P. E. Smith, K. Shen, L. A. Joachimiak, S. ?erko et al., Structure and Dynamics of the Huntingtin Exon-1 N-Terminus: A Solution NMR Perspective, J. Am. Chem. Soc, vol.2017, issue.3, pp.1168-1176

B. Eftekharzadeh, A. Piai, G. Chiesa, D. Mungianu, J. García et al., Sequence Context Influences the Structure and Aggregation Behavior of a PolyQ Tract, Biophys. J, vol.110, issue.11, pp.2361-2366, 2016.

J. T. Nielsen and F. A. Mulder, POTENCI: Prediction of Temperature, Neighbor and PH-Corrected Chemical Shifts for Intrinsically Disordered Proteins, J. Biomol. NMR, vol.2018, issue.3, pp.141-165

J. A. Marsh, V. K. Singh, Z. Jia, and J. D. Forman-kay, Sensitivity of Secondary Structure Propensities to Sequence Differences between Alpha-and Gamma-Synuclein: Implications for Fibrillation, Protein Sci, vol.15, issue.12, pp.2795-2804, 2006.

H. Zhang, S. Neal, D. S. Wishart, and . Refdb, A Database of Uniformly Referenced Protein Chemical Shifts, J. Biomol. NMR, vol.25, issue.3, pp.173-195, 2003.

A. Estaña, N. Sibille, E. Delaforge, M. Vaisset, J. Cortés et al., Realistic Ensemble Models of Intrinsically Disordered Proteins Using a Structure-Encoding Coil Database, Structure, vol.2019, issue.2, pp.381-391

G. G. Krivov, M. Shapovalov, and R. L. Dunbrack, Improved Prediction of Protein Side-Chain Conformations with SCWRL4, Proteins, vol.77, issue.4, pp.778-795, 2009.

Y. Shen and A. Bax, SPARTA+: A Modest Improvement in Empirical NMR Chemical Shift Prediction by Means of an Artificial Neural Network, J. Biomol. NMR, vol.2010, issue.1, pp.13-22

M. W. Macarthur and J. M. Thornton, Influence of Proline Residues on Protein Conformation, J. Mol. Biol, vol.218, issue.2, pp.397-412, 1991.

J. Iglesias, M. Sanchez-martínez, R. Crehuet, and . Ss-map, Visualizing Cooperative Secondary Structure Elements in Protein Ensembles. Intrinsically Disord, vol.2013, p.25323

N. J. Baxter and M. P. Williamson, Temperature Dependence of 1H Chemical Shifts in Proteins, J. Biomol. NMR, vol.1997, issue.4, pp.359-369

A. Escobedo, B. Topal, M. B. Kunze, J. Aranda, G. Chiesa et al., Side Chain to Main Chain Hydrogen Bonds Stabilize a Polyglutamine Helix in a Transcription Factor, Nat. Commun, vol.10, issue.1, p.2034, 2019.

S. Dasgupta and J. A. Bell, Design of Helix Ends. Amino Acid Preferences, Hydrogen Bonding and Electrostatic Interactions, Int. J. Pept. Protein Res, issue.5, pp.499-511, 1993.

J. S. Richardson and D. C. Richardson, Amino Acid Preferences for Specific Locations at the Ends of Alpha Helices, Science, vol.240, issue.4859, pp.1648-1652, 1988.

J. W. Seale, R. Srinivasan, and G. D. Rose, Sequence Determinants of the Capping Box, a Stabilizing Motif at the N-Termini of Alpha-Helices, Protein Sci, vol.1994, issue.10, pp.1741-1745

N. E. Newell, Mapping Side Chain Interactions at Protein Helix Termini, BMC Bioinformatics, vol.16, issue.1, p.231, 2015.

J. Gao, D. A. Bosco, E. T. Powers, and J. W. Kelly, Localized Thermodynamic Coupling between Hydrogen Bonding and Microenvironment Polarity Substantially Stabilizes Proteins

, Nat. Struct. Mol. Biol, vol.16, issue.7, pp.684-690, 2009.

M. Ramazzotti, E. Monsellier, C. Kamoun, D. Degl'innocenti, and R. Melki, Polyglutamine Repeats Are Associated to Specific Sequence Biases That Are Conserved among Eukaryotes
URL : https://hal.archives-ouvertes.fr/hal-01183156

, PLoS One, vol.2012, issue.2, p.30824

J. Jorda and A. V. Kajava, Protein Homorepeats, Adv. Protein Chem. Struct. Biol, vol.79, pp.59-88, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00533762

M. Y. Lobanov and O. V. Galzitskaya, Occurrence of Disordered Patterns and Homorepeats in Eukaryotic and Bacterial Proteomes, Mol. Biosyst, vol.2012, issue.1, pp.327-337

P. Mier, G. Alanis-lobato, and M. A. Andrade-navarro, Context Characterization of Amino Acid Homorepeats Using Evolution, Position, and Order, Proteins, vol.2017, issue.4, pp.709-719

M. W. Kim, Y. Chelliah, S. W. Kim, and Z. Otwinowski, Bezprozvanny, I. Secondary Structure of Huntingtin Amino-Terminal Region, Structure, vol.17, issue.9, pp.1205-1212, 2009.

E. De-genst, D. Y. Chirgadze, F. A. Klein, D. C. Butler, D. Matak-vinkovi? et al., , p.17

. N-terminal, Residues of Huntingtin Provides Insights into Pathogenic Amyloid Formation and Suppression, J. Mol. Biol, vol.427, issue.12, pp.2166-2178, 2015.

S. M. Deguire, F. S. Ruggeri, M. Fares, A. Chiki, U. Cendrowska et al., N-Terminal Huntingtin (Htt) Phosphorylation Is a Molecular Switch Regulating Htt Aggregation, Helical Conformation, Internalization, and Nuclear Targeting, J. Biol. Chem, issue.48, pp.18540-18558, 2018.

F. Theillet, L. Kalmar, P. Tompa, K. Han, P. Selenko et al., The Alphabet of Intrinsic Disorder: I. Act like a Pro: On the Abundance and Roles of Proline Residues in Intrinsically Disordered Proteins, Intrinsically Disord. proteins, vol.2013, issue.1, p.24360

G. Darnell, J. P. Orgel, R. Pahl, and S. C. Meredith, Flanking Polyproline Sequences Inhibit Beta-Sheet Structure in Polyglutamine Segments by Inducing PPII-like Helix Structure

, J. Mol. Biol, vol.374, issue.3, pp.688-704, 2007.

M. H. Schaefer, E. E. Wanker, and M. A. Andrade-navarro, Evolution and Function of CAG/Polyglutamine Repeats in Protein-Protein Interaction Networks, Nucleic Acids Res, vol.40, issue.10, pp.4273-4287, 2012.

M. Tartari, C. Gissi, V. Lo-sardo, C. Zuccato, E. Picardi et al., Phylogenetic Comparison of Huntingtin Homologues Reveals the Appearance of a Primitive PolyQ in Sea Urchin, Mol. Biol. Evol, vol.25, issue.2, pp.330-338, 2008.

A. L. Darling and V. N. Uversky, Intrinsic Disorder in Proteins with Pathogenic Repeat Expansions, Molecules, vol.2017, issue.12, p.2027

T. E. Williamson, A. Vitalis, S. L. Crick, and R. V. Pappu, Modulation of Polyglutamine Conformations and Dimer Formation by the N-Terminus of Huntingtin, J. Mol. Biol, issue.5, pp.1295-1309, 2010.

R. H. Walters and R. M. Murphy, Examining Polyglutamine Peptide Length: A Connection between Collapsed Conformations and Increased Aggregation, J. Mol. Biol, vol.393, issue.4, pp.978-992, 2009.

S. L. Crick, M. Jayaraman, C. Frieden, R. Wetzel, and R. V. Pappu, Fluorescence Correlation Spectroscopy Shows That Monomeric Polyglutamine Molecules Form Collapsed Structures in Aqueous Solutions, Proc. Natl. Acad. Sci. U. S. A, vol.103, issue.45, pp.16764-16769, 2006.

H. Y. Zoghbi and H. T. Orr, Glutamine Repeats and Neurodegeneration, Annu. Rev. Neurosci, vol.23, pp.217-247, 2000.

E. F. Whelihan and P. Schimmel, Rescuing an Essential Enzyme-RNA Complex with a Non-Essential Appended Domain, EMBO J, vol.16, issue.10, pp.2968-2974, 1997.

S. E. Walker and K. Fredrick, Preparation and Evaluation of Acylated TRNAs, Methods, vol.44, issue.2, pp.81-86, 2008.

K. Loscha,

A. J. Herlt, R. Qi, T. Huber, K. Ozawa, and G. Otting, Multiple-Site Labeling of Proteins with Unnatural Amino Acids, Angew. Chem. Int. Ed. Engl, vol.2012, issue.9, pp.2243-2246

M. A. Apponyi, K. Ozawa, N. E. Dixon, and G. Otting, Cell-Free Protein Synthesis for Analysis by NMR Spectroscopy, Methods Mol. Biol, vol.426, issue.15, pp.257-268, 2008.

W. F. Vranken, W. Boucher, T. J. Stevens, R. H. Fogh, A. Pajon et al., The CCPN Data Model for NMR Spectroscopy: Development of a Software Pipeline, Proteins, vol.59, issue.4, pp.687-696, 2005.

J. L. Markley, A. Bax, Y. Arata, C. W. Hilbers, R. Kaptein et al., Recommendations for the Presentation of NMR Structures of Proteins and Nucleic Acids, J. Mol. Biol, vol.280, issue.5, pp.933-952, 1998.

, Alejandro Estaña 1,2 , Carlos A. Elena-Real 1 , Pablo Mier 3 , Aurélie Fournet 1 , Frédéric Allemand 1 , Stephane Delbecq 4 , Miguel A, vol.3

. Laas-cnrs, CNRS, p.31400

, Laboratoire de Biologie Cellulaire et Moléculaire (LBCM-EA4558 Vaccination Antiparasitaire)

A. K. Dunker, C. J. Brown, J. D. Lawson, L. M. Iakoucheva, and Z. Obradovic, Intrinsic disorder and protein function, Biochemistry, vol.41, pp.6573-6582, 2002.

P. E. Wright and H. J. Dyson, Intrinsically disordered proteins in cellular signalling and regulation, Nat Rev Mol Cell Biol, vol.16, pp.18-29, 2015.

V. Csizmok, A. V. Follis, R. W. Kriwacki, and J. D. Forman-kay, Dynamic protein interaction networks and new structural paradigms in signaling, Chem Rev, vol.116, pp.6424-6462, 2016.

H. Xie, S. Vucetic, L. M. Iakoucheva, C. J. Oldfield, A. K. Dunker et al., Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions, J Proteome Res, vol.6, pp.1882-1898, 2007.

P. Tompa, E. Schad, A. Tantos, and L. Kalmar, Intrinsically disordered proteins: emerging interaction specialists, Curr Opin Struct Biol, vol.35, pp.49-59, 2015.

A. K. Dunker, M. S. Cortese, P. Romero, L. M. Iakoucheva, and V. N. Uversky, Flexible nets. The roles of intrinsic disorder in protein interaction networks, FEBS J, vol.272, pp.5129-5148, 2005.

P. M. Kim, A. Sboner, Y. Xia, and M. Gerstein, The role of disorder in interaction networks: a structural analysis, Mol Systems Biol, vol.4, p.179, 2008.

H. J. Dyson and P. E. Wright, Unfolded proteins and protein folding studied by NMR, Chem Rev, vol.104, pp.3607-3622, 2004.

M. R. Jensen, R. Ruigrok, and M. Blackledge, Describing intrinsically disordered proteins at atomic resolution by NMR, Curr Opin Struct Biol, vol.23, pp.426-435, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01321604

L. A. Feigin and D. I. Svergun, Structure Analysis by Small-angle X-ray and Neutron Scattering, 1987.

C. D. Putnam, M. Hammel, G. L. Hura, and J. A. Tainer, X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution, Quart Rev Biophys, vol.40, pp.191-285, 2007.

D. A. Jacques and J. Trewhella, Small-angle scattering for structural for structural biology-expanding the frontier while avoiding the pitfalls, Protein Sci, vol.19, pp.642-657, 2010.

S. Doniach, Changes in biomolecular conformation seen by small angle X-ray scattering, Chem Rev, vol.101, pp.1763-1778, 2001.

P. Bernadó and D. I. Svergun, Structural analysis of intrinsically disordered proteins by small-angle X-ray scattering, Mol Biosyst, vol.8, pp.151-167, 2012.

V. Receveur-brechot and D. Durand, How random are intrinsically disordered proteins? A small angle scattering perspective, Curr Protein Pept Sci, vol.13, pp.55-75, 2012.

P. Bernadó and M. Blackledge, Structural biology: proteins in dynamic equilibrium, Nature, vol.468, pp.1046-1048, 2010.

H. Zhou, Polymer models of protein stability, folding, and interactions, Biochemistry, vol.43, pp.2141-2154, 2004.

A. K. Jha, A. Colubri, K. F. Freed, and T. R. Sosnick, Statistical coil model of the unfolded state: resolving the reconciliation problem, Proc Natl Acad Sci, vol.102, pp.13099-13104, 2005.

P. Bernadó, L. Blanchard, P. Timmins, D. Marion, R. W. Ruigrok et al., A structural model for unfolded proteins from residual dipolar couplings and small-angle X-ray scattering, Proc Natl Acad Sci, vol.102, pp.17002-17007, 2005.

V. Ozenne, F. Bauer, L. Salmon, J. Huang, M. R. Jensen et al., Description of Flexible-Meccano. This software computes ensembles of IDPs based on the conformational sampling found in coil regions of crystallographic structures. The program computes averaged RDCs and PREs from the ensembles, and provides scripts to add side chains, Bioinformatics, vol.28, pp.1463-1470, 2012.

A. Vitalis and R. V. Pappu, ABSINTH: a new continuum solvation model for simulations of polypeptides in aqueous solutions, J Comput Chem, vol.30, pp.673-699, 2009.

R. B. Best, W. Zheng, and J. Mittal, Balanced protein-water interactions improve properties of disordered proteins and non-specific protein association, J Chem Theory Comput, vol.10, pp.5113-5124, 2014.

J. Henriques, C. Cragnell, and M. Skepö, Molecular dynamics simulations of intrinsically disordered proteins: force field evaluation and comparison with experiment, J Chem Theory Comput, vol.11, pp.3420-3431, 2015.

D. Mercadante, S. Milles, G. Fuertes, D. I. Svergun, and E. A. Lemke, Grä ter F: Kirkwood-buff approach rescues overcollapse of a disordered protein in canonical protein force fields, J Phys Chem B, vol.119, pp.7975-7984, 2015.

Y. Chebaro, A. J. Ballard, D. Chakraborty, and D. J. Wales, Intrinsically disordered energy landscapes. Sci Rep, vol.5, p.10386, 2015.

G. H. Zerze, C. M. Miller, D. Granata, and J. Mittal, Free energy surface of an intrinsically disordered protein: comparison between temperature replica exchange molecular dynamics and biasexchange metadynamics, J Chem Theory Comput, vol.11, pp.2776-2782, 2015.

K. H. Lee and J. Chen, Multiscale enhanced sampling of intrinsically disordered protein conformations, J Comput Chem, vol.37, pp.550-557, 2016.

M. Dedmon, K. Lindorff-larsen, J. Christodoulou, M. Vendruscolo, and C. M. Dobson, Mapping long-range interactions in alphasynuclein using spin-label NMR and ensemble molecular dynamics simulations, J Am Chem Soc, vol.127, pp.476-477, 2005.

M. D. Mukrasch, P. Markwick, J. Biernat, B. Mv, P. Bernadó et al., Highly populated turn conformations in natively unfolded tau protein identified from residual dipolar couplings and molecular simulation, J Am Chem Soc, vol.129, pp.5235-5243, 2007.

K. Wu, D. S. Weinstock, C. Narayanan, R. M. Levy, and J. Baum, Structural reorganization of a-synuclein at low pH observed by NMR and REMD simulations, J Mol Biol, vol.391, pp.784-796, 2009.

J. E. Kohn, I. S. Millett, J. Jacob, B. Zagrovic, T. M. Dillon et al., Randomcoil behavior and the dimensions of chemically unfolded proteins, Proc Natl Acad Sci, vol.101, pp.12491-12496, 2004.

P. Bernadó and M. Blackledge, A self-consistent description of the conformational behavior of chemically denatured proteins from NMR and small angle scattering, Biophys J, vol.97, pp.2839-2845, 2009.

B. Zagrovic, J. Lipfert, E. J. Sorin, I. S. Millett, W. F. Van-gunsteren et al., Unusual compactness of a polyproline type II structure, Proc Natl Acad Sci, vol.102, pp.11698-11703, 2005.

M. Wells, H. Tidow, T. J. Rutherford, P. Markwick, M. R. Jensen et al., Structure of tumor suppressor p53 and its intrinsically disordered Nterminal transactivation domain, Proc Natl Acad Sci, vol.105, pp.5762-5767, 2008.
URL : https://hal.archives-ouvertes.fr/pasteur-01524472

P. Bernadó, E. Mylonas, M. V. Petoukhov, M. Blackledge, and D. I. Svergun, Structural characterization of flexible proteins using smallangle X-ray scattering, J Am Chem Soc, vol.129, pp.5656-5664, 2007.

G. Tria, H. D. Mertens, M. Kachala, and D. I. Svergun, Advanced ensemble modelling of flexible macromolecules using X-ray solution scattering, IUCrJ, vol.2, pp.207-217, 2015.

M. Pelikan, G. L. Hura, and M. Hammel, Structure and flexibility within proteins as identified through small angle X-ray scattering

, Gen Physiol Biophys, vol.28, pp.174-189, 2009.

S. Yang, L. Blachowicz, L. Makowski, and B. Roux, Multidomain assembled states of Hck tyrosine kinase in solution, Proc Natl Acad Sci, vol.107, pp.15757-15762, 2010.

I. Bertini, A. Giachetti, C. Luchinat, G. Parigi, M. V. Petoukhov et al., Conformational space of flexible biological macromolecules from average data, J Am Chem Soc, vol.132, pp.13553-13558, 2010.

B. Rozycki, Y. C. Kim, and G. Hummer, SAXS ensemble refinement of ESCRT-III CHMP3 conformational transitions, Structure, vol.19, pp.109-116, 2011.

G. W. Daughdrill, S. Kashtanov, A. Stancik, S. E. Hill, G. Helms et al., Understanding the structural ensembles of a highly extended disordered protein, Mol Biosyst, vol.8, pp.308-319, 2012.

L. D. Antonov, S. Olsson, W. Boomsma, and T. Hamelryck, Bayesian inference of protein ensembles from SAXS data, Phys Chem Chem Phys, vol.18, pp.5832-5838, 2016.

A. V. Shkumatov, S. Chinnathambi, E. Mandelkow, and D. I. Svergun, Structural memory of natively unfolded tau protein detected by small-angle X-ray scattering, Proteins, vol.79, pp.2122-2131, 2011.

M. Kjaergaard, A. B. Nørholm, R. Hendus-altenburger, S. F. Pedersen, F. M. Poulsen et al., Temperature-dependent structural changes in intrinsically disordered proteins: formation of alpha-helices or loss of polyproline II?, Protein Sci, vol.19, pp.1555-1564, 2010.

C. Leyrat, M. R. Jensen, E. A. Ribeiro, F. C. Gé-rard, R. W. Ruigrok et al., The N(0)-binding region of the vesicular stomatitis virus phosphoprotein is globally disordered but contains transient a-helices, Protein Sci, vol.20, pp.542-556, 2011.

K. Stott, M. Watson, F. S. Howe, J. G. Grossmann, and J. O. Thomas, Tailmediated collapse of HMGB1 is dynamic and occurs via differential binding of the acidic tail to the A and B domains, J Mol Biol, vol.403, pp.706-722, 2010.

N. Sibille and P. Bernadó, Structural characterization of intrinsically disordered proteins by the combined use of NMR and SAXS, Biochem Soc Trans, vol.40, pp.955-962, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02347934

M. R. Jensen, M. Zweckstetter, J. R. Huang, and M. Blackledge, Exploring free-energy landscapes of intrinsically disordered proteins at atomic resolution using NMR spectroscopy, Chem Rev, vol.114, pp.6632-6660, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01131146

J. A. Marsh, C. Neale, F. E. Jack, W. Y. Choy, A. Y. Lee et al., Improved structural characterizations of the drkN SH3 domain unfolded state suggest a compact ensemble with native-like and non-native structure, J Mol Biol, vol.367, pp.1494-1510, 2007.

M. Krzeminski, J. A. Marsh, C. Neale, W. Y. Choy, and J. D. Forman-kay, Characterization of disordered proteins with ENSEMBLE, Bioinformatics, vol.29, pp.398-399, 2013.

M. R. Jensen, K. Houben, E. Lescop, L. Blanchard, R. W. Ruigrok et al., Quantitative conformational analysis of partially folded proteins from residual dipolar couplings: application to the molecular recognition element of Sendai virus nucleoprotein, J Am Chem Soc, vol.130, pp.8055-8061, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00337329

M. Schwalbe, V. Ozenne, S. Bibow, M. Jaremko, L. Jaremko et al., Predictive atomic resolution descriptions of intrinsically disordered hTau40 and a-synuclein in solution from NMR and small angle scattering, Seminal study on the structural properties of a-synuclein and Tau. Using ASTEROIDS the authors interpreted complete CS, RDC and PRE data, vol.22, pp.238-249, 2014.

E. Delaforge, S. Milles, G. Bouvignies, D. Bouvier, S. Boivin et al., Large-scale conformational dynamics control H5N1 influenza polymerase PB2 binding to importin a, J Am Chem Soc, vol.137, pp.15122-15134, 2015.

E. Boura, B. Ró-zycki, D. Z. Herrick, H. S. Chung, J. Vecer et al., Solution structure of the ESCRT-I complex by small-angle X-ray scattering, EPR, and FRET spectroscopy, Proc Natl Acad Sci, vol.108, pp.9437-9442, 2011.

E. Boura, B. Ró-?-ycki, H. S. Chung, D. Z. Herrick, B. Canagarajah et al., In this study the ensemble description of the flexible complex formed by ESCRT-I and II is obtained. The authors integrate SAXS, Structure, vol.20, pp.874-886, 2012.

L. Konermann, S. Vahidi, and M. A. Sowole, Mass spectrometry methods for studying structure and dynamics of biological macromolecules, Anal Chem, vol.86, pp.213-232, 2014.

A. J. Borysik, D. Kovacs, M. Guharoy, and P. Tompa, Ensemble methods enable a new definition for the solution to gas-phase transfer of intrinsically disordered proteins, J Am Chem Soc, vol.137, pp.13807-13817, 2015.

T. R. Keppel and D. D. Weis, Mapping residual structure in intrinsically disordered proteins at residue resolution using millisecond hydrogen/deuterium exchange and residue averaging, J Am Soc Mass Spectrom, vol.26, pp.547-554, 2015.

D. P. O'brien, B. Hernandez, D. Durand, V. Hourdel, A. C. Sotomayor-pé-rez et al., Structural models of intrinsically disordered and calcium-bound folded states of a protein adapted for secretion, Sci Rep, vol.5, p.14223, 2015.

E. Mylonas, A. Hascher, P. Bernadó, M. Blackledge, E. Mandelkow et al., Domain conformation of tau protein studied by solution small-angle X-ray scattering, Biochemistry, vol.47, pp.10345-10353, 2008.

R. Sharma, Z. Raduly, M. Miskei, and M. Fuxreiter, Fuzzy complexes: specific binding without complete folding, FEBS Lett, vol.589, pp.2533-2542, 2015.

S. S. Shell, C. D. Putnam, and R. D. Kolodner, The N terminus of Saccharomyces cerevisiae Msh6 is an unstructured tether to PCNA, Mol Cell, vol.26, pp.565-578, 2007.

N. Rochel, F. Ciesielski, J. Godet, E. Moman, M. Roessle et al., Common architecture of nuclear receptor heterodimers on DNA direct repeat elements with different spacings, Nat Struct Mol Biol, vol.18, pp.564-570, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00667005

, Using a combination of SAXS, SANS and smFRET the authors studied the structure of three hormonal nuclear receptor heterodimers in complex with cognate dsDNA and intrinsically disordered co-activators. Although using ab initio reconstructions, the asymmetric singly-bound nature of the complex with the co-activator is demonstrated

S. Devarakonda, K. Gupta, M. J. Chalmers, J. F. Hunt, P. R. Griffin et al., Disorder-to-order transition underlies the structural basis for the assembly of a transcriptionally active PGC-1a/ERRg complex, Proc Natl Acad Sci, vol.108, pp.18678-18683, 2011.

B. Ró-?-ycki and E. Boura, Large, dynamic, multi-protein complexes: a challenge for structural biology, J Phys Condens Matter, vol.26, p.463103, 2014.

D. Biasio, A. De-opakua, A. I. Mortuza, G. B. Molina, R. Cordeiro et al., Structure of p15(PAF)-PCNA complex and implications for clamp sliding during DNA replication and repair, Nat Commun, vol.6, p.6439, 2015.

F. Yabukarski, C. Leyrat, N. Martinez, G. Communie, I. Ivanov et al., Ensemble structure of the highly flexible complex formed between vesicular stomatitis virus unassembled nucleoprotein and its phosphoprotein chaperone, J Mol Biol, vol.428, pp.2671-2694, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01341130

A. T. Tuukkanen and D. I. Svergun, Weak protein-ligand interactions studied by small-angle X-ray scattering, FEBS J, vol.281, pp.1974-1987, 2014.

J. Blobel, P. Bernadó, D. I. Svergun, R. Tauler, and M. Pons, Lowresolution structures of transient protein-protein complexes using small-angle X-ray scattering, J Am Chem Soc, vol.131, pp.4378-4386, 2009.

H. Chandola, T. E. Williamson, B. A. Craig, A. M. Friedman, and C. Bailey-kellogg, Stoichiometries and affinities of interacting proteins from concentration series of solution scattering data: decomposition by least squares and quadratic optimization, J Appl Crystallogr, vol.47, pp.899-914, 2014.

I. Greving, C. Dicko, A. Terry, P. Callow, and F. Vollrath, Small angle neutron scattering of native and reconstituted silk fibroin, Soft Matter, vol.6, p.4389, 2010.

H. Boze, T. Marlin, D. Durand, J. Pé-rez, A. Vernhet et al., Proline-rich salivary proteins have extended conformations, Biophys J, vol.99, pp.656-665, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02663056

G. E. Owens, D. M. New, A. P. West, and P. J. Bjorkman, Anti-PolyQ antibodies recognize a short PolyQ stretch in both normal and mutant huntingtin exon 1, J Mol Biol, vol.427, pp.2507-2519, 2015.

B. Vestergaard, M. Groenning, M. Roessle, J. S. Kastrup, M. Van-de-weert et al., A helical structural nucleus is the primary elongating unit of insulin amyloid fibrils, PLoS Biol, vol.5, pp.1089-1097, 2007.

L. Giehm, D. I. Svergun, D. E. Otzen, and B. Vestergaard, Low-resolution structure of a vesicle disrupting alpha-synuclein oligomer that accumulates during fibrillation, Proc Natl Acad Sci, vol.108, pp.3246-3251, 2011.

, Small-angle scattering on disordered proteins Cordeiro et al. 23

, www.sciencedirect.com Current Opinion in Structural Biology, vol.42, pp.15-23, 2017.