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Introduction

This manuscript summarizes the main theoretical and algorithmic frameworks, the objectives and
research outcomes that I obtained in the last few years, together with new perspectives. These
results have been obtained since my recruitment as a CNRS junior researcher in 2015, and some
of them relate to my corresponding research project defended at the entrance competition. Along
the three main chapters, the reader will find many illustrating examples and figures. The proofs of
the different theoretical statements have been removed for the sake of clarity and can be found in
complementary references, available in open access platforms such as arXiv or HAL.

Research field and motivation. Simple mistakes arising in the design of modern cyber-physical
systems can have tragic impacts, from human and economic points of view. In particular, for em-
bedded systems, one tries to avoid incidents such as the Patriot missile crash in 1991, the FDIV Pen-
tium bug in 1994 or more recently the collision of Google’s self-driving car in 2016. To ensure the
safety of such systems, program verification tools allow to validate assertions related to program
executions. In the linear setting, there are numerous efficient and safe algorithms dedicated to
static analysis, producing invariants, or bounding the error due to finite precision representation.
These verification tools include both programming and specification languages but also an inter-
face with decision procedures relying on optimization algorithms. Modern verification software
still have limited capacities of handling nonlinear optimization problems involving polynomials.
This leads to either inaccurate bounds or high analysis time. My research aims to overcome these
limitations by widening the application range of verification tools to the (nonlinear) polynomial
case.

Certified optimization techniques have successfully tackled challenging verification problems
in various fundamental and industrial applications. The formal verification of thousands of non-
linear inequalities arising in the famous proof of Kepler conjecture [J2] was achieved in August
2014.1 I was involved in the related project called Flyspeck during my PhD in 2010-2013. In energy
networks, it is now possible to compute the solution of large-scale power flow problems with up
to thousand variables [148]. This success follows from growing research efforts in polynomial op-
timization, an emerging field extensively developed in the last two decades. One key advantage of
these techniques is the ability to model a wide range of problems using optimization formulations,
which can be in turn solved with efficient numerical tools. My methodology heavily relies on such
methods, including the moment-sums of squares (moment-SOS) approach by Lasserre [180] which
provides numerical certificates for positive polynomials as well as recently developed alternative
methods. However, such optimization methods still encompass many major issues on both practi-
cal and theoretical sides: scalability, unknown complexity bounds, ill-conditionning of numerical
solvers, lack of exact certification, convergence guarantees. This manuscripts presents results in
this line of research with the long-term perspective of obtaining scientific breakthroughs to handle
certification of nonlinear systems arising in real-world applications.

Polynomial optimization focuses on minimizing or maximizing a polynomial under a set of
polynomial inequality constraints. A polynomial is an expression involving addition, subtraction
and multiplication of variables and coefficients. An example of polynomial in two variables x1 and
x2 with rational coefficients is f (x1, x2) = 1/3+ x2

1 + 2x1x2 + x2
2. Semialgebraic sets are defined with

conjunctions and disjunctions of polynomial inequalities with real coefficients. For instance the

1https://code.google.com/p/flyspeck/wiki/AnnouncingCompletion

https://code.google.com/p/flyspeck/wiki/AnnouncingCompletion
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two-dimensional unit disk is a semialgebraic set defined as the set of all points (x1, x2) satisfying
the (single) inequality 1− x2

1 − x2
2 ≥ 0.

In general, computing the exact solution of a polynomial optimization problem (POP) over a
semialgebraic set is an NP-hard problem. In practice, one can at least try to compute an approxi-
mation of the solution by considering a relaxation of the problem instead of the problem itself. The
approximated solution may not satisfy all the problem constraints but still gives useful information
about the exact solution. I illustrate this by considering the minimization of the above polynomial
f (x1, x2) on the unit disk. One can replace this disk by a larger set, for instance the product of
intervals [−1, 1] × [−1, 1]. Using basic interval arithmetics, one easily shows that f belongs to
[−4/3, 4/3]. Next, one can replace the monomials x2

1, x1x2 and x2
2 by three new variables y1, y2

and y3, respectively. One can relax the initial problem by linear programming (LP), with a cost of
1/3 + y1 + 2y2 + y3 and one single linear inequality constraint 1− y1 − y3 ≥ 0. By hand-solving
or by using an LP solver, one finds again a lower bound of −4/3. Even if LP gives more accurate
bounds than interval arithmetics in general, this does not yield any improvement on this example.

One way to obtain more accurate lower bounds is to rely on more sophisticated techniques from
the field of convex optimization, e.g., semidefinite programming (SDP). In the seminal paper [180]
published in 2001, Lasserre introduced a hierarchy of relaxations allowing to obtain a converging
sequence of lower bounds for the minimum of a polynomial over a semialgebraic set. Each lower
bound is computed by SDP. A symmetric matrix is said to be semidefinite positive when all its
eigenvalues are nonnegative. In SDP, one optimizes a linear function under the constraint that
a given matrix is semidefinite positive. Thus, SDP can be seen as a generalization of LP in some
sense. SDP itself is relevant to a wide range of applications (combinatorial optimization [112], con-
trol theory [47], matrix completion [191]) and can be solved efficiently, namely in time polynomial
in its input size, by freely available software, e.g., SeDuMi [279] or MOSEK [289].

The idea behind Lasserre’s hierarchy is to tackle the infinite-dimensional initial problem by solv-
ing several finite-dimensional primal-dual SDP problems. The primal is a moment problem, that is
an optimization problem where variables are the moments of a Borel measure. The first moment
is related to means, the second moment is related to variances, etc. Lasserre showed in [180] that
POP can be cast as a particular instance of the generalized moment problem (GMP). In a nutshell,
the primal moment problem approximates Borel measures. The dual is a sum of squares (SOS)
problem, where the variables are the coefficients of SOS polynomials (e.g. (1/

√
3)2 + (x1 + x2)

2).
It is known that not all positive polynomials can be written with SOS decompositions. However,
when the set of constraints satisfies certain assumptions (slightly stronger than compactness) then
one can represent positive polynomials with weighted SOS decompositions. In a nutshell, the dual
SOS problem approximates positive polynomials. The moment-SOS approach can be used on the
example with either three moment variables or SOS of degree 2 to obtain a lower bound of 1/3.
For this example, the exact solution is obtained at the first step of the hierarchy. There is no need to
go further, i.e., to consider primal with moments of greater order (e.g. the integrals of x3

1, x2
1x2, x4

1)
or dual with SOS polynomials of degree 4 or 6. The reason is that for convex quadratic problems,
the first step of the hierarchy gives the exact solution!

For more general problems involving polynomials, there are several difficulties encountered
while using the moment-SOS hierarchy. My research is structured in 3 related interconnected
layers:

(1) Modeling: we are interested in relying on the moment-SOS hierarchy to analyze dynamical
polynomial systems, either in the discrete-time or continuous-time setting. Examples treated
in this manuscript include approximation of reachable sets, supports of invariant measures
or boundaries of semialgebraic sets. We also wish to model optimization problems involving
noncommuting variables, for example matrices of finite or infinite size, to model quantum
physics operators.
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(2) Certification: by solving the dual SOS problem, one can theoretically compute a positiv-
ity certificate for a given polynomial. For practical problems, the situation is rather differ-
ent. One computes such SOS certificates with SDP solvers often implemented using finite-
precision arithmetic. When relying on non-exact solvers, the initial polynomial is approxi-
mately equal to the SOS certificate. We are interested in designing algorithms which output
exact certificates for either unconstrained or constrained optimization problems.

(3) Scalability : When the initial problem involves n variables, the r-th step relaxation of the
moment-SOS hierarchy involves the rapidly prohibitive cost of (n+r

r ) SDP variables. We are
interested in improving the scalability of the hierarchy by exploiting the specific sparsity
structure of the polynomials involved in real-world problems. Important applications arise
from various fields, including computer arithmetic (roundoff error bounds), quantum infor-
mation (noncommutative optimization), optimal power-flow and deep learning.

The organization of my research program was naturally following my PhD thesis [R6], which
focused on obtaining computer-assisted proofs for general nonlinear optimization problems, by
means of polynomial approximation of transcendental functions and exact certification, in relation
with (2). During my first post-doctoral stay, I started to model problems related to set estima-
tion, such as Pareto curves, images of semialgebraic sets, in relation with (1). During my second
post-doctoral stay, I focused more specifically on scalability issues encountered in optimization
problems coming from computer arithmetic, in relation with (3). After joining in October 2015 the
Tempo team at CNRS VERIMAG, I worked on several modeling topics mentioned in (1). Dur-
ing my long-term visit in the joint PolSys team at CNRS LIP6, I focused on exact certification
aspects mentioned in (2). Finally, I was affiliated to the MAC team at CNRS LAAS in 2019, whose
main goals include providing constructive theoretical conditions for extracting solutions to various
control and optimization problems, while designing effective computational algorithms. In this
context, my research is devoted to modeling, certification and efficient solving of problems with
polynomial data, arising from modern real-world applications such as energy networks, quantum
information, control systems, and deep learning.

Document outline In the sequel, I report on several research outcomes obtained from Octo-
ber 2015 to December 2020. The exhaustive list of publications is displayed at the end of the
manuscript. The references that I co-authored are cited with a prefix as follows: J for journal,
C for proceeding in peer-reviewed international conferences and R for research report (submitted
to a journal or a conference but unpublished yet).

1. Chapter 1 is dedicated to modeling problems involving polynomials as optimization pro-
grams. First, we recall preliminary notions on positive polynomials, Borel measures, and
their respective approximation with SOS and truncated moment sequences. We explain in
Section 1.2 how to approximate as closely as desired the reachable set of discrete-time polyno-
mial systems with a hierarchy of SDP. We derive similar converging hierarchies to approxi-
mate the support/density of invariant measures for polynomial systems in Section 1.3, and to
approximate the moments of the boundary measure of semialgebraic sets in Section 1.4. We
illustrate the practical convergence behavior of each hierarchy with numerical experiments.
Another converging hierarchy is given in Section 1.5 to optimize over trace polynomials, i.e.,
polynomials in noncommuting variables and traces of their products. The results presented
in this chapter are available in [J10, J19, J8, J4, R3].

2. Chapter 2 focuses on certified or “exact” POP, despite the fact that one relies mostly on nu-
merical “inexact” solvers to compute approximate bounds. Section 2.1 interprets some wrong
results, due to numerical inaccuracies, already observed when solving SDP relaxations for
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POP on a double precision floating point SDP solver. Then, we describe, analyze and com-
pare, from the theoretical and practical points of view, several algorithms to obtain exact
nonnegativity certificates for polynomials either in the unconstrained or constrained case. In
Section 2.2, we provide two algorithms computing weighted SOS decomposition with ratio-
nal coefficients for univariate polynomials with rational coefficients. We show how to extend
this to the multivariate case in Section 2.3. At last, we consider in Section 2.4 alternative
certificates and give two algorithms computing exact sums of nonnegative circuits and sums
of arithmetic-geometric-exponentials decompositions. The results presented in this chapter
have been published in [J5, J17, C8, C9, J16, C10]. Our certification algorithms have been
implemented in the RealCertify library available in Maple.

3. Chapter 3 is dedicated to exploit the sparsity structure of the input data to solve large-scale
POP. First, we recall in Section 3.1 some background on correlative sparsity, occurring when
there are flew correlations between the variables of the input problem. Then we apply this
framework in Section 3.2 to provide efficiently upper bounds on roundoff errors of floating-
point nonlinear programs, involving polynomials. A very distinct application is described
for optimization of polynomials in noncommuting variables in Section 3.3. A converging
hierarchy of semidefinite relaxations for eigenvalue and trace optimization is provided. A
complementary framework is presented in Section 3.4, where we show how to exploit term
sparsity of the input polynomials to obtain a new converging hierarchy of SDP relaxations.
Our theoretical framework is then applied to compute lower bounds for POP coming from
the networked systems literature. Finally, we explain how to combine correlative and term
sparsity in Section 3.5. The results outlined in this chapter are available in [J13, J14, J3, J22,
J21, R14, C13, R13, R5]. Our sparsity exploiting algorithms have been implemented in the
TSSOS library available in Julia and are the focus of a dedicated article [R5].

4. Chapter 4 summarizes the main future investigation tracks related to the research outcomes
from the three contribution chapters. I outline further research topics together with poten-
tially useful references.

At last, I provide a CV detailing my PhD candidate and Postdoctoral fellow supervision, teaching,
developed software, conference organization, research projects and grants I am involved in.

https://gricad-gitlab.univ-grenoble-alpes.fr/magronv/RealCertify
https://github.com/wangjie212/TSSOS
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Modeling with polynomial
optimization
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This chapter focuses on modeling various problems arising from dynamical systems and non-
commutative optimization, with the moment-SOS hierarchy.

• We consider in Section 1.2 the problem of approximating the reachable set of a discrete-time
polynomial system from a semialgebraic set of initial conditions under general semialgebraic
set constraints. Assuming inclusion in a given simple set like a box or an ellipsoid, we pro-
vide a method to compute certified outer approximations of the reachable set. The proposed
method consists of building a hierarchy of relaxations for an infinite-dimensional moment
problem. Under certain assumptions, the optimal value of this problem is the volume of
the reachable set and the optimum solution is the restriction of the Lebesgue measure on
this set. Then, one can outer approximate the reachable set as closely as desired with a hi-
erarchy of super level sets of increasing degree polynomials. For each fixed degree, finding
the coefficients of the polynomial boils down to computing the optimal solution of a convex
semidefinite program. When the degree of the polynomial approximation tends to infinity,
we provide strong convergence guarantees of the super level sets to the reachable set. We
also present some application examples together with numerical results.

• In Section 1.3, we consider the problem of approximating numerically the moments and the
supports of measures which are invariant with respect to the dynamics of continuous- and
discrete-time polynomial systems, under semialgebraic set constraints. First, we address
the problem of approximating the density and hence the support of an invariant measure
which is absolutely continuous with respect to the Lebesgue measure. Then, we focus on
the approximation of the support of an invariant measure which is singular with respect
to the Lebesgue measure. Each problem is handled through an appropriate reformulation
into a linear optimization problem over measures, solved in practice with two hierarchies
of finite-dimensional semidefinite moment-SOS relaxations. Under specific assumptions, the
first moment-SOS hierarchy allows to approximate the moments of an absolutely continuous
invariant measure as close as desired and to extract a sequence of polynomials converging
weakly to the density of this measure. The second hierarchy allows to approximate as close as
desired in the Hausdorff metric the support of a singular invariant measure with the level sets
of the Christoffel polynomials associated to the moment matrices of this measure. We also
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present some application examples together with numerical results for several dynamical
systems admitting either absolutely continuous or singular invariant measures. This work
was jointly pursued during the (unofficial) supervision of the postdoc of M. Forets (now at
UTEC) when I was affiliated to CNRS VERIMAG.

• Given a compact basic semialgebraic set we provide in Section 1.4 a numerical scheme to
approximate as closely as desired, any finite number of moments of the Hausdorff measure
on the boundary of this set. This also allows one to approximate interesting quantities like
length, surface, or more general integrals on the boundary, as closely as desired from above
and below.

• Section 1.5 is motivated by recent progress in quantum information theory, and aims at
modeling optimization problems over trace polynomials, i.e., polynomials in noncommut-
ing variables and traces of their products. A novel Positivstellensatz certifying positivity
of trace polynomials subject to trace constraints is presented, and a hierarchy of semidefi-
nite relaxations converging monotonically to the optimum of a trace polynomial subject to
tracial constraints is provided. This hierarchy can be seen as a tracial analog of the Piro-
nio, Navascués and Acín (NPA) hierarchy for optimization of noncommutative polynomials.
The Gelfand-Naimark-Segal (GNS) construction is applied to extract optimizers of the trace
optimization problem if flatness and extremality conditions are satisfied. These conditions
are sufficient to obtain finite convergence of our hierarchy. The main techniques used are
inspired by real algebraic geometry, operator theory, and noncommutative algebra.

These contributions are in collaboration with researchers working in polynomial optimization:
D. Henrion (Senior researcher, LAAS), J.-B. Lasserre (Senior researcher, LAAS), program verifica-
tion: P.-L. Garoche (Professor, ENAC), Xavier Thirioux (Assistant Professor, INPT/IRIT) as well as
in real algebraic geometry: I. Klep (Professor, University of Ljubljana) and his former PhD student
J. Volčič (Postdoc, Texas A & M University).

In what follows, some preliminary notions of polynomial optimization are given in Section 1.1,
before presenting the new contribution in Section 1.2.

1.1 Preliminary notions

Polynomials and sums of squares

Let N (resp. N>0) stands for the set of nonnegative (resp. positive) integers. Given r, n ∈ N, let
R[x] (resp. R[x]2r) stands for the vector space of real-valued n-variate polynomials (resp. of degree
at most 2r) in the variable x = (x1, . . . , xn) ∈ Rn. Let C[x] be the vector space of complex-valued
n-variate polynomials. A basic compact semialgebraic set X is a finite conjunction of polynomial
super levelsets. Namely, given m ∈N and polynomials g1, . . . , gm ∈ R[x], one has

X := {x ∈ Rn : g1(x) ≥ 0, . . . , gm(x) ≥ 0} . (1.1)

Let Σ[x] stand for the cone of polynomial SOS and let Σ[x]r denote the cone of SOS polynomials
of degree at most 2r, namely Σ[x]r := Σ[x] ∩R[x]2r.

For the ease of further notation, we set g0(x) := 1, and rj := d(deg gj)/2e, for all j = 0, . . . , m.
Given a basic compact semialgebraic set X as above and an integer r, letM(X)r be the r-truncated
quadratic module generated by g0, . . . , gm:

M(X)r :=
{ m

∑
j=0

sj(x)gj(x) : sj ∈ Σ[x]r−rj , j = 0, . . . , m
}

.
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To guarantee the convergence behavior of the relaxations presented in the sequel, we need to
ensure that polynomials which are positive on X lie inM(X)r for some r ∈ N. The existence of
such SOS-based representations is guaranteed by Putinar’s Positivstellensaz (see, e.g., [182, Section
2.5]), when the following condition holds:

Assumption 1.1.1 There exists a large enough integer N such that one of the polynomials describing the
set X is equal to N − ‖x‖2

2.

This assumption is slightly stronger than compactness. Indeed, compactness of X already ensures
that each variable has finite lower and upper bounds. One (easy) way to ensure that Assump-
tion 1.1.1 holds is to add a redundant constraint involving a well-chosen N depending on these
bounds, in the definition of X.

Borel measures

Given a compact set A ⊂ Rn, we denote by M (A) the vector space of finite signed Borel measures
supported on A, namely real-valued functions from the Borel sigma algebra B(A). The support of
a measure µ ∈M (A) is defined as the closure of the set of all points x such that µ(B) 6= 0 for any
open neighborhood B of x. We note C (A) the Banach space of continuous functions on A equipped
with the sup-norm. Let C (A)′ stand for the topological dual of C (A) (equipped with the sup-
norm), i.e., the set of continuous linear functionals of C (A). By a Riesz identification theorem (see
for instance [196]), C (A)′ is isomorphically identified with M (A) equipped with the total variation
norm denoted by ‖ · ‖TV. Let C+(A) (resp. M+(A)) stand for the cone of nonnegative elements
of C (A) (resp. M (A)). The topology in C+(A) is the strong topology of uniform convergence in
contrast with the weak-star topology in M+(A). See [252, Section 21.7] and [27, Chapter IV] or [201,
Section 5.10] for functional analysis, measure theory and applications in convex optimization.

With X a basic compact semialgebraic set, the restriction of the Lebesgue measure on a subset
A ⊆ X is λA(dx) := 1A(x) dx, where 1A : X→ {0, 1} stands for the indicator function of A, namely
1A(x) = 1 if x ∈ A and 1A(x) = 0 otherwise. A sequence y := (yβ)β∈Nn ∈ RNn

is said to have a
representing measure on X if there exists µ ∈M (X) such that yβ =

∫
xβµ(dx) for all β ∈Nn.

The moments of the Lebesgue measure on A are denoted by

yA
β :=

∫
xβλA(dx) ∈ R , β ∈Nn (1.2)

where we use the multinomial notation xβ := xβ1
1 xβ2

2 . . . xβn
n . The Lebesgue volume of A is vol A :=

yA
0 =

∫
λA(dx).

Given µ, ν ∈M (A), the notation
µ ≤ ν

stands for ν− µ ∈ M+(A), and we say that µ is dominated by ν. Given µ ∈ M+(A), there exists
a unique Lebesgue decomposition µ = ν + ψ with ν, ψ ∈ M+(A), ν � λ and ψ ⊥ λ. Here, the
notation ν � λ means that ν is absolutely continuous with respect to (w.r.t.) λ, that is, for every
A ∈ B(X), λ(A) = 0 implies ν(A) = 0. The notation ψ ⊥ λ means that ψ is singular w.r.t. λ, that
is, there exist disjoint sets A, B ∈ B(X) such that A ∪ B = X and ψ(A) = λ(B) = 0.

Given µ ∈ M+(X), the so-called pushforward measure or image measure, see, e.g., [4, Section
1.5], of µ under f is defined as follows:

f#µ(A) := µ( f−1(A)) = µ({x ∈ X : f (x) ∈ A})

for every set A ∈ B(X). The main property of the pushforward measure is the change-of-variable
formula:

∫
A v(x) f#µ(dx) =

∫
f−1(A) v( f (x))µ(dx), for all v ∈ C (A).
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Moment and localizing matrices

For all r ∈N, we set Nn
r := {β ∈Nn : ∑n

j=1 β j ≤ r}, whose cardinality is (n+r
r ). Then a polynomial

g ∈ R[x] is written as follows:
x 7→ g(x) = ∑

β∈Nn
gβ xβ ,

and g is identified with its vector of coefficients g = (gβ) in the canonical basis (xβ), β ∈Nn.
Given a real sequence y = (yβ)β∈Nn , let us define the linear functional Ly : R[x] → R by

Ly(g) := ∑β gβyβ, for every polynomial g.
Then, we associate to y the so-called moment matrix Mr(y), that is the real symmetric matrix

with rows and columns indexed by Nn
r and the following entrywise definition:

(Mr(y))β,γ := Ly(xβ+γ) , ∀β, γ ∈Nn
r .

Given g ∈ R[x], we also associate to y the so-called localizing matrix, that is the real symmetric
matrix Mr(g y) with rows and columns indexed by Nn

r and the following entrywise definition:

(Mr(g y))β,γ := Ly(g(x) xβ+γ) , ∀β, γ ∈Nn
r .

Let X be a basic compact semialgebraic set as in (1.1). Then it is easy to check that if y has a
representing measure µ ∈ M+(X) then Mr(gj y) � 0, for all j = 0, . . . , m (the notation � 0 stands
for positive semidefinite).

1.2 Reachable sets of polynomial systems

Given a dynamical polynomial system described by a continuous-time or discrete-time equation,
the (forward) reachable set (RS) is the set of all states that can be reached from a set of initial
conditions under general state constraints. This set appears in different fields such as optimal
control, hybrid systems or program analysis. In general, computing or even approximating the
RS is a challenge. Note that the RS is typically non-convex and non-connected, even in the case
when the set of initial conditions is convex and the dynamics are linear. We are interested in the
polynomial discrete-time system defined by

• a set of initial constraints assumed to be compact basic semialgebraic:

X0 := {x ∈ Rn : g0
1(x) ≥ 0, . . . , g0

m0(x) ≥ 0} (1.3)

defined by given polynomials g0
1, . . . , g0

m0 ∈ R[x], m0 ∈N>0;

• a polynomial transition map f : Rn → Rn, x 7→ f (x) := ( f1(x), . . . , fn(x)) ∈ Rn[x] of degree
d := max{deg f1, . . . , deg fn}.

Given T ∈ N, let us define the set of all admissible trajectories after at most T iterations of the
polynomial transition map f , starting from any initial condition in X0:

XT := X0 ∪ f (X0) ∪ f ( f (X0)) ∪ · · · ∪ f T(X0) ,

with f T denoting the T-fold composition of f . Then, we consider the RS of all admissible trajecto-
ries:

X∞ := lim
T→∞

XT

and we make the following assumption in the sequel:
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Assumption 1.2.1 The RS X∞ is included in a given basic compact semialgebraic set as in (1.1):

X := {x ∈ Rn : g1(x) ≥ 0, . . . , gm(x) ≥ 0} (1.4)

defined by polynomials g1, . . . , gm ∈ R[x], m ∈N.

Example 1.2.1 Let us consider X0 = [1/2, 1] and f (x) = x/4. Then X∞ = [1/2, 1] ∪ [1/8, 1/4] ∪
[1/32, 1/16] . . . is included in the basic compact semialgebraic set X = [0, 1], so Assumption 1.2.1 holds.
Note that X∞ is not connected within X.

We denote the closure of X∞ by X̄∞ . Obviously X∞ ⊆ X̄∞ and the inclusion can be strict. To
circumvent this difficulty later on, we make the following assumption in the remainder of this
section.

Assumption 1.2.2 The volume of the RS is equal to the volume of its closure, i.e., vol X∞ = vol X̄∞.

Example 1.2.2 Let X0 = [1/2, 1] and f (x) = x/2. Then X∞ = [1/2, 1] ∪ [1/4, 1/2] ∪ [1/8, 1/4] . . . =
(0, 1] is a half-closed interval within X = [0, 1]. Note that X̄∞ = X, so that vol X∞ = vol X̄∞ = 1 and
Assumption 1.2.2 is satisfied.

From now on, the over approximation set X of the set X∞ is assumed to be “simple” (e.g. a ball
or a box), meaning that X fulfills the following condition:

Assumption 1.2.3 The moments (1.2) of the Lebesgue measure on X are available analytically.

Remark 1.2.1 Since we are interested in characterizing the RS of polynomial systems with bounded trajec-
tories, Assumption 1.2.1 and Assumption 1.2.3 are not restrictive. As mentioned above, Assumption 1.1.1
can be ensured by using Assumption 1.2.1. While relying on Assumption 1.2.2, we restrict ourselves to
discrete-time systems where the boundary of the RS has zero Lebesgue volume.

To illustrate these concepts, let us consider the discrete-time polynomial system defined by

x+1 :=
1
2
(x1 + 2x1x2) , x+2 :=

1
2
(x2 − 2x3

1) ,

with initial state constraints X0 := {x ∈ R2 : (x1 − 1
2 )

2 + (x2 − 1
2 )

2 ≤ 4−2} and general state
constraints within the unit ball X = {x ∈ R2 : ‖x‖2

2 ≤ 1}. On Figure 1.1, the colored sets of points
are obtained by simulation for the first 7 iterates. More precisely, each colored set correspond to
(under approximations of) the successive image sets f (X0), . . . , f 7(X0) of the points obtained by
uniform sampling of X0 under f , . . . , f 7 respectively. The set X0 is blue and the set f 7(X0) is red,
while intermediate sets take intermediate colors. The dotted circle represents the boundary of the
unit ball X.

Figure 1.1: Sampling of X∞ (color dot points)
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Classical approaches

A classical approach relies on Lyapunov theory (see, e.g., [274, § 5.7]) in order to approximate from
outside. This can be done in a continuous-time setting (with possible extension to discrete-time
systems), i.e., when the state variable is constrained from an initial condition to satisfy an ordinary
differential equation ẋ = f (x, t). The idea is to search for a Lyapunov function v (also called value
or Bellman function in the context of optimal control) which is negative on the set of initial condi-
tions and with negative derivative of states satisfying some general constraints. These inequalities
provide sufficient conditions for the RS to be included in the sublevel set of v. In the case where the
set of initial (resp. general) state constraints are defined by polynomial inequalities, the difficulty of
computing such a function v can be practically addressed. This is done while reducing the search
space to polynomials of bounded degree and by replacing the inequalities satisfied by v (and its
total derivative) by stronger equality constraints involving v and (weighted) SOS of polynomials.
Since the weights are the polynomials defining the set of initial and general constraints, computing
v together with these SOS polynomials boils down to solving an SDP of fixed size. This general
framework has been used in [242] for the safety verification of hybrid systems. In this case, the
function v is called a “barrier certificate” and can be constructed by computing an SOS decompo-
sition. The zero level set of v separates a given unsafe region from all possible trajectories starting
from a prescribed set of initial conditions.
These dual Lyapunov certificates relying on SOS decompositions also allow to obtain approxima-
tions of the (backward) RS (also called region of attraction) [60]. In [294], the authors proved the
existence of a Lyapunov function, whose sublevel set is the region of attraction of a given equi-
librium point of a continuous-time system. When the degree of the approximation v is fixed in
advance, one can obtain convergence guarantees by increasing the degree of the SOS polynomials.
However, one has no guarantee that when the degree of v goes to infinity, the approximation con-
servatism asymptotically vanishes. In addition, the conservatism of such approximations relying
on dual Lyapunov certificates is not easy to estimate in a systematic way.

Here, we propose a characterization of the RS as the solution of an infinite-dimensional LP
problem. Most materials from this section have been published in [J19]. This characterization is
done by considering a hierarchy of converging convex programs through moment relaxations of
the LP. Doing so, one can compute tight outer approximations of the RS. Such outer approxima-
tions yield invariants for the discrete-time system, which are sets where systems trajectories are
confined.

The general methodology is deeply inspired from previous research efforts. The idea of for-
mulation relying on LP optimization over probability measures appears in [180], with a hierarchy
of SDP also called the moment-SOS hierarchy, whose optimal values converge from below to the
infimum of a multivariate polynomial. One can see outer approximations of sets as the analogue of
lower approximations of real-valued functions. In [130], the authors leverage on these techniques
to address the problem of computing outer approximations by single polynomial super level sets of
basic compact semialgebraic sets described by the intersection of a finite number of given polyno-
mial super level sets. Further work focused on approximating semialgebraic sets for which such a
description is not explicitly known or difficult to compute: in [185], the author derives converging
outer approximations of sets defined with existential quantifiers; in [J10], the authors approximate
the image of a compact semialgebraic set under a polynomial map. The current study can be seen
as an extension of [J10] where instead of considering only one iteration of the map, we consider
infinitely many iterations starting from a set of initial conditions.

This methodology has also been successfully applied for several problems arising in the context
of polynomial systems control. Similar convergent hierarchies appear in [129], where the authors
approximate the region of attraction (ROA) of a controlled polynomial system subject to compact
semialgebraic constraints in continuous time, or in [231] where the authors consider maximal pos-



1.2. Reachable sets of polynomial systems 11

itively invariant sets for continuous-time polynomial systems. This framework is extended to hy-
brid systems in [267]. Note that the ROA is not a semialgebraic set in general. The authors of [162]
build upon the infinite-dimensional LP formulation of the ROA problem while providing a similar
framework to characterize the maximum controlled invariant (MCI) for discrete and continuous
time polynomial dynamical systems. The framework used for ROA and MCI computation both
rely on occupation measures. These allow to measure the time spent by solutions of differential
or difference equations. As solutions of a linear transport equation called the Liouville Equation,
occupation measures also capture the evolution of the semialgebraic set describing the initial con-
ditions. As mentioned in [129], the problem of characterizing the (forward) RS in a continuous
setting and finite horizon could be done as ROA computation by using a time-reversal argument.

The modeling power of this approach also extends to the analysis of attractors of dynamical
systems, e.g., by approximating the moments and support of invariant measures in both continu-
ous and discrete-time settings [165, J8], see Section 1.3. In the present study, we handle the problem
in a discrete setting and infinite horizon. Our contribution follows a similar approach but requires
to describe the solution set of another Liouville Equation.

Forward reachable sets and Liouville’s Equation

For a given terminal time T ∈N>0 and an initial measure µ0 ∈M+(X0), let us define the measures
µ1, . . . , µT , µ ∈M+(X) as follows:

µt+1 := f#µt = f t+1
# µ0 , t = 0, . . . , T − 1 ,

ν :=
T−1

∑
t=0

µt =
T−1

∑
t=0

f t
#µ0 .

(1.5)

The measure ν is a (discrete-time) occupation measure: if µ0 = δx0 is the Dirac measure at
x0 ∈ X0 then µt = δxt and ν = δx0 + δx1 + · · ·+ δxT−1 , i.e., ν measures the time spent by the state
trajectory in any subset of X after T iterations, if initialized at x0.

Lemma 1.2.4 See [J19] For any T ∈ N>0 and µ0 ∈ M (X0), there exist µT , ν ∈ M (X) solving the
discrete Liouville Equation:

µT + ν = f#ν + µ0 . (1.6)

Now let
Y0 := X0, Yt := f t(X0)\Xt−1, t = 1, . . . , T.

Note that the RS is equal to
XT = ∪T

t=0Yt.

Further results involve statements relying on the following technical assumption:

Assumption 1.2.5 limT→∞ ∑T
t=0 t vol Yt < ∞.

This assumption seems to be strong or unjustified at that point. Moreover, if we do not know if the
assumption is satisfied a priori, there is an a posteriori validation based on duality theory. Thanks
to this validation procedure, we could check that the assumption was satisfied in all the examples
we processed. Moreover, we were not able to find a discrete-time polynomial system violating this
assumption.

In the sequel, we prove that equation (1.6) holds when µT = λXT , the restriction of the Lebesgue
measure over the RS. We rely on the auxiliary result from [J10, Lemma 4.1]:

Lemma 1.2.6 Let S, B ⊆ X be such that f (S) ⊆ B. Given a measure µ1 ∈ M+(B), there is a measure
µ0 ∈ M+(S) such that f#µ0 = µ1 if and only if there is no continuous function v ∈ C (B) such that
v( f (x)) ≥ 0 for all x ∈ S and

∫
B v(y)dµ1(y) < 0.



12 Chapter 1. Modeling with polynomial optimization

Lemma 1.2.7 For any T ∈ N>0, there exist µT
0 ∈M+(X0) and νT ∈M+(X) such that the restriction of

the Lebesgue measure over XT solves the discrete Liouville Equation:

λXT + νT = f#νT + µT
0 . (1.7)

In addition, if Assumption 1.2.5 holds, then there exist µ0 ∈ M+(X0) and ν ∈ M+(X) such that the
restriction of the Lebesgue measure over X∞ solves the discrete Liouville Equation:

λX∞ + ν = f#ν + µ0 . (1.8)

Remark 1.2.2 In Lemma 1.2.7, the measure µT
0 (resp. µ0) can be thought as distribution of mass for the ini-

tial states of trajectories reaching XT (resp. X∞) but it has a total mass which is not required to be normalized
to one.

The mass of νT measures the volume averaged w.r.t. µ0 occupied by state trajectories reaching XT after
T iterations, by contrast with the mass of λXT which measures the volume of XT .

The mass of ν measures the volume averaged w.r.t. µ0 occupied by state trajectories reaching the RS X∞,
by contrast with the mass of λX∞ which measures the exact RS volume.

Primal-dual LP formulation

To approximate the set X∞, one considers the infinite-dimensional LP, for any T ∈N>0:

pT := sup
µ0,µ,µ̂,ν,a

∫
X

µ

s.t.
∫

X
ν + a = T vol X ,

µ + ν = f#ν + µ0 ,

µ + µ̂ = λX ,

µ0 ∈M+(X0) , µ, µ̂, ν ∈M+(X) , a ∈ R+ .

(1.9)

The first equality constraint ensures that the mass of the occupation measure ν is bounded (by
T vol X). The second one ensures that Liouville’s equation is satisfied by the measures µ0, ν and
µ, as in Lemma 1.2.7. The last one ensures that µ is dominated by the restriction of the Lebesgue
measure on X implying that the mass of µ (and thus the optimal value pT) is bounded by vol X.
The next result explains how the solution of LP (1.9) relates to λX∞ , the restriction of the Lebesgue
measure to the RS.

Theorem 1.2.1 For any T ∈ N>0, LP (1.9) has an optimal solution (µ∗0 , µ∗, µ̂∗, ν∗, a∗) such that
µ∗ = λST for some set ST satisfying XT ⊆ ST ⊆ X̄∞ and vol ST = pT .

In addition if Assumption 1.2.5 holds then there exists T0 ∈ N such that for all T ≥ T0 one has
ST = X̄∞, LP (1.9) has a unique optimal solution with µ∗ = λX∞ and pT = vol X∞.

From now on, we refer to ST as the support of the optimal solution µ∗ of LP (1.9) which satisfies
the condition of Lemma 1.2.1, i.e., XT ⊆ ST ⊆ X̄∞.

In the sequel, we formulate LP (1.9) as an infinite-dimensional conic problem on appropriate
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vector spaces. By construction, a feasible solution of problem (1.9) satisfies:

∫
X

ν(dx) + a =
∫

X
Tλ(dx) , (1.10)∫

X
v(x) µ(dx) +

∫
X

v(x) ν(dx) =
∫

X
v( f (x)) ν(dx) +

∫
X0

v(x) µ0(dx) , (1.11)∫
X

w(x) µ(dx) +
∫

X
w(x) µ̂(dx) =

∫
X

w(x) λ(dx) , (1.12)

for all continuous test functions v, w ∈ C (X).

Then, we cast problem (1.9) as a particular instance of a primal LP in the canonical form given
in [27, p. 7.1.1] and consider its dual. With our notation, the dual LP reads:

dT := inf
u,v,w

∫
X
(w(x) + Tu) λX(dx)

s.t. v(x) ≥ 0, ∀x ∈ X0,

w(x) ≥ 1 + v(x), ∀x ∈ X,

w(x) ≥ 0, ∀x ∈ X,

u + v( f (x)) ≥ v(x), ∀x ∈ X,

u ≥ 0,

u ∈ R , v, w ∈ C (X).

(1.13)

Theorem 1.2.2 For a fixed T ∈ N>0, there is no duality gap between primal LP (1.9) and dual
LP (1.13), i.e., pT = dT and there exists a minimizing sequence (uk, vk, wk)k∈N for the dual LP (1.13).

In addition, if uk = 0 for some k ∈N, then Assumption 1.2.5 holds and pT = dT = vol X∞.

Remark 1.2.3 When u = 0, the first and third inequalities satisfied by −v in dual LP (1.13) can be seen as
a discrete-time analogue of the conditions satisfied by the barrier certificate in [242], that is −v ≤ 0 on X0

and −v ◦ f ≤ −v on X, the latter one being similar to the barrier condition ∇(−v) · f ≤ −v.

In the sequel, we propose a method to compute an outer approximation of X∞ as the super
level set of a polynomial. Given its degree 2r, such a polynomial may be produced using standard
numerical optimization tools. Under certain assumptions, the resulting outer approximation can
be as tight as desired and converges (with respect to the L 1 norm on X) to the set X∞ as r tends to
infinity.

Primal-dual hierarchies of SDP approximations

Given a positive m ∈N, let us note [m] = {1, . . . , m}. With X0 a basic compact semialgebraic set as
in 1.3, let us define r0

j := d(deg g0
j )/2e, for all j ∈ [m0], and with X a basic compact semialgebraic

set as in (1.1), we set rj := d(deg gj)/2e, j ∈ [m]. For each r ≥ rmin := max{r0
1, . . . , r0

m0 , r1, . . . , rm},
let y0 = (y0β)β∈Nn

2r
be the finite sequence of moments up to degree 2r of the measure µ0. Similarly,

let y, ŷ and z stand for the sequences of moments up to degree 2r, respectively associated with µ,
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µ̂ and ν. The infinite primal LP (1.9) can be relaxed with the following SDP:

pT
r := sup

y0,y,ŷ,z,a
y0

s.t. z0 + a = TyX
0 ,

yβ + zβ = Lz( f (x)β) + y0β , ∀β ∈ Nn
2r ,

yβ + ŷβ = yX
β , ∀β ∈ Nn

2r ,

Mrd−r0
j
(g0

j y0) � 0, j = 0, . . . , m0 ,

Mr−rj(gj y) � 0 , Mr−rj(gj ŷ) � 0 , Mr−rj(gj z) � 0 , j = 0, . . . , m ,

a ≥ 0 .

(1.14)

Consider also the following SDP, which is a strengthening of the infinite dual LP (1.13) and also
the dual of Problem (1.14):

dT
r := inf

u,v,w ∑
β∈Nn

2r

wβyX
β + uTyX

0

s.t. v ∈ M(X0)r ,

w− 1− v ∈ M(X)r ,

u + v ◦ f − v ∈ Mrd(X) ,

w ∈ M(X)r ,

u ∈ R+ ,

v, w ∈ R[x]2r ,

(1.15)

whereM(X0)r,M(X)r (resp.M(X)rd) are the r-truncated (resp. rd) quadratic module respectively
generated by g0

0, . . . , gm0
m and g0, . . . , gm, as defined in Section 1.1.

Theorem 1.2.3 Let r ≥ rmin. Suppose that the three sets X0, ST and X\ST have nonempty interior.
Then:

1. pT
r = dT

r , i.e., there is no duality gap between the primal SDP program (1.14) and the dual SDP
program (1.15).

2. The dual SDP program (1.15) has an optimal solution (ur, vr, wr) ∈ R×R[x]2r ×R[x]2r, and
the sequence (wr + urT) converges to 1ST in L 1 norm on X:

lim
r→∞

∫
|wr(x) + urT − 1ST (x)| λX(dx) = 0. (1.16)

3. Defining the sets
XT

r := {x ∈ X : vr(x) + urT ≥ 0} ,

it holds that
XT

r ⊇ XT .

4. In addition, if ur = 0 then the sequence (wr) converges to 1X̄∞ in L 1 norm on X. Defining the
sets

X∞
r := {x ∈ X : vr(x) ≥ 0} ,
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its holds that
X∞

r ⊇ X̄∞ ⊇ X∞ .

and
lim
r→∞

vol(X∞
r \X∞) = vol(X∞

r \X̄∞) = 0 .

Remark 1.2.4 Theorem 1.2.3 states that one can over approximate the reachable states of the system after
any arbitrary finite number of discrete-time steps (third item). In addition, Theorem 1.2.3 provides a suffi-
cient condition to obtain a hierarchy of over approximations converging in volume to the RS (fourth item).
If ur = 0, then the sequence of optimal values of SDP (1.15) is nonincreasing and converges to the volume
of the RS. If one defines the piecewise polynomial vr := mink≤r vk, then one shows as in [135, Theorem 1]
that we obtain a nonincreasing sequence of functions converging to the indicator function of the RS: one has
vr ↓ 1X∞ almost everywhere, almost uniformly and in Lebesgue measure.

Special case: linear systems with ellipsoid constraints

Given A ∈ Rn×n, let us consider a discrete-time linear system xt+1 = A xt with a set of initial
constraints defined by the ellipsoid X0 := {x ∈ Rn : 1 ≥ xT V0 x } with V0 ∈ Rn×n a positive
definite matrix.

Similarly the set of state constraints is defined by the ellipsoid X = {x ∈ Rn : 1 ≥ xT G x }with
G ∈ Rn×n a positive definite matrix. Since one has X0 ⊆ X, it follows that V0 � G.

Then, one can look for a quadratic function v(x) := 1 − xT V x, with V ∈ Rn×n a positive
definite matrix solution of the following SDP optimization problem:

sup
V∈Rn×n

〈MV〉

s.t. V0 � V � ATVA ,

V � 0 ,

(1.17)

where 〈·〉 stands for the matrix trace, and M is the second-order moment matrix of the Lebesgue
measure on X, i.e., the matrix with entries

(M)α,β = yX
α+β, , α, β ∈Nn, |α|+ |β| = 2.

Note that in this special case SDP (1.17) can be retrieved from SDP (1.15) and one can over
approximate the RS with the superlevel set of v or w− 1:

Lemma 1.2.8 SDP (1.17) is equivalent to SDP (1.15) with r := 1, ur := 0, v(x) := 1 − xT V x and
w(x) = 1 + v(x). Thus, one has:

{x ∈ X : v(x) ≥ 0} = {x ∈ X : w(x) ≥ 1} ⊇ X∞ .

Numerical experiments

Here, we present experimental benchmarks that illustrate our method. For a given positive inte-
ger r, we compute the polynomial solution wr of the dual SDP program (1.15). This dual SDP is
modeled using the YALMIP toolbox [200] available within MATLAB and interfaced with the SDP
solver MOSEK [7]. Performance results were obtained with an Intel Core i7-5600U CPU (2.60 GHz)
running under Debian 8.
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For all experiments, we could find an optimal solution of the dual SDP program (1.15) either
by adding the constraint u = 0 or by setting T = 100. In the latter case, the optimal solution is
such that ur ' 0 and the polynomial solution wr is the same than in the former case, up to small
numerical errors (in practice the value of ur is less than 1e–5). This implies that Assumption 1.2.5
is satisfied, i.e., the constraint of the mass of the occupation measure is not saturated, and yield-
ing valid outer approximations of X∞. The implementation is freely available on-line1. We first
consider the toy example described at the beginning of this section. On Figure 1.2, we represent
in light gray the outer approximations X∞

r of X∞ obtained by our method, for increasing values of
the relaxation order r (from r = 3 to 7). Figure 1.2 shows that the over approximations are already
quite tight for low degrees.

(a) r = 3 (b) r = 5 (c) r = 7

Figure 1.2: Outer approximations X∞
r (light gray) of X∞ (color dot samples) for the toy example,

r ∈ {3, 5, 7}.

Next, we consider the discretized version (taken from [33, Section 5]) of the FitzHugh-Nagumo
model [90], which is originally a continuous-time polynomial system modelling the electrical ac-
tivity of a neuron:

x+1 := x1 + 0.2(x1 − x3
1/3− x2 + 0.875) ,

x+2 := x2 + 0.2(0.08(x1 + 0.7− 0.8x2)) ,

with initial state constraints X0 := [1, 1.25] × [2.25, 2.5] and state constraints X = {x ∈ R2 :
( x1−0.1

3.6 )2 + ( x2−1.25
1.75 )2 ≤ 1}. Figure 1.3 illustrates that the outer approximations provide useful

indications on the system behavior, in particular for higher values of r. Indeed X∞
5 and X∞

6 capture
the presence of the central “hole” made by periodic trajectories and X∞

7 shows that there is a gap
between the first discrete-time steps and the iterations corresponding to these periodic trajectories.

Lastly, we consider the discretized version of the Phytoplankton growth model (also taken
from [33, Section 5]). This model is obtained after making assumptions, corroborated experi-
mentally by biologists in order to represent such growth phenomena [37], yielding the following
discrete-time polynomial system:

x+1 := x1 + 0.01(1− x1 − 0.25x1x2) ,

x+2 := x2 + 0.01(2x3 − 1)x2 ,

x+3 := x3 + 0.01(0.25x1 − 2x2
3) ,

with initial state constraints X0 := [−0.3,−0.2]2 × [−0.05, 0.05] and state constraints X =
[−0.5, 1.5]× [−0.5, 0.5]2. Figure 1.4 illustrates the system convergence behavior towards an equi-
librium point for initial conditions near the origin. One way to obtain more accurate information

1https://homepages.laas.fr/vmagron/files/reachsdp.tar.gz

https://homepages.laas.fr/vmagron/files/reachsdp.tar.gz
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(a) r = 4 (b) r = 5

(c) r = 6 (d) r = 7

Figure 1.3: Outer approximations X∞
r (light gray) of X∞ (color dot samples) for the FitzHugh-

Nagumo model, r ∈ {4, 5, 6, 7}.

on such systems would be to design a subdivision procedure (e.g. with branch-and-bound tech-
niques), which boils down to zooming on specific areas of the RS.

(a) r = 2 (b) r = 3 (c) r = 4

(d) r = 5 (e) r = 6 (f) r = 7

Figure 1.4: Outer approximations X∞
r (red) of X∞ (color dot samples) for the Phytoplankton growth

model, from r = 2 to 7.
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1.3 Invariant measures for polynomial systems

Given a polynomial system described by a discrete-time (difference) or continuous-time (differ-
ential) equation under general semialgebraic constraints, we propose numerical methods to ap-
proximate the moments and the supports of the measures which are invariant under the sytem
dynamics.

The characterization of invariant measures allows to determine important features of long term
dynamical behaviors [172].

We develop our approach in parallel for discrete-time and continuous-time systems. As in Sec-
tion 1.2, we have a polynomial transition map f : Rn → Rn, x 7→ f (x) := ( f1(x), . . . , fn(x)) ∈
Rn[x] and we have a set X of basic compact semialgebraic state constraints as in (1.1). As in Section
1.2, we assume that X satisfies both Assumptions 1.1.1 (Archimedean quadratic module) and 1.2.3
(available moments of the Lebesgue measure). We consider either the discrete-time system:

xt+1 = f (xt) , xt ∈ X , t ∈N , (1.18)

or the continuous-time system:

ẋ(t) =
dx(t)

dt
= f (x(t)) , x(t) ∈ X , t ∈ [0, ∞) . (1.19)

Let us define the linear operator Ldisc
f : C (X)′ → C (X)′ by:

Ldisc
f (µ) := f#µ− µ

and the linear operator Lcont
f : C 1(X)′ → C (X)′ by:

Lcont
f (µ) := div( f µ) =

n

∑
i=1

∂( fiµ)

∂xi

where the derivatives of measures are understood in the sense of distributions, that is, through
their action on test functions of C 1(X). In the sequel, we use the more concise notation L f to refer
to Ldisc

f (resp. Lcont
f ) in the context of discrete-time (resp. continuous-time) systems.

Definition 1.3.1 (Invariant measure) We say that a measure µ is invariant w.r.t. f when L f (µ) = 0 and
refer to such a measure as an invariant measure. We also omit the reference to the map f when it is obvious
from the context and write L(µ) = 0.

When considering discrete-time systems as in (1.18), a measure µ is called invariant w.r.t. f
when it satisfies Ldisc

f (µ) = 0. When considering continuous-time systems as in (1.19), a measure
is called invariant w.r.t. f when it satisfies Lcont

f (µ) = 0.
It was proved in [166] that a continuous map of a compact metric space into itself has at least

one invariant probability measure. A probability measure µ is ergodic w.r.t. f if for all A ∈ B(X)
with f−1(A) = A, one has either µ(A) = 0 or µ(A) = 1. The set of invariant probability measures
is a convex set and the extreme points of this set consist of the so-called ergodic measures. For more
material on dynamical systems and invariant measures, we refer the interested reader to [172].

Classical approaches

One classical way to approximate such features is to perform numerical integration of the equation
satisfied by the system state after choosing some initial conditions. However, the resulting trajec-
tory could exhibit some chaotic behaviors or great sensitivity with respect to the initial conditions.
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Numerical computation of invariant sets and measures of dynamical systems have previously
been studied using domain subdivision techniques, where the density of an invariant measure is
recovered as the solution of fixed point equations of the discretized Perron-Frobenius operator [76,
14]. The underlying method, integrated in the software package GAIO [74], consists of covering the
invariant set by boxes and then approximating the dynamical behaviour by a Markov chain based
on transition probabilities between elements of this covering. More recently, in [75] the authors
have developed a multilevel subdivision scheme that can handle uncertain ordinary differential
equations as well.

By contrast with most of the existing work in the literature, our method does not rely neither on
time nor on space discretization. In our approach, the invariant measures are modeled with finitely
many moments, leading to approximate recovery of densities in the absolutely continuous case or
supports in the singular case. Our contribution is in the research trend aiming at characterizing
the behavior of dynamical nonlinear systems through LP, whose unkown are measures supported
on the system constraints.

In our case, we first focus on the characterization of densities of absolutely continuous invariant
measures with respect to some reference measure (for instance the Lebesgue measure). For this
first problem, our method is inspired by previous contributions looking for moment conditions
ensuring that the underlying unknown measure is absolutely continuous [177] with a bounded
density in a Lebesgue space, as a follow-up of the volume approximation results of [130]. When
the density function is assumed to be square-integrable, one can rely on [133] to build a sequence
of polynomial approximations converging to this density in the L 2-norm.

We focus later on the characterization of supports of singular invariant measures. For this
second problem, we rely on previous works [130, 181, 187] aiming at extracting as much informa-
tion as possible on the support of a measure from the knowledge of its moments. The numerical
scheme proposed in [130] allows to approximate as close as desired the moments of a measure uni-
formly supported on a given semialgebraic set. The framework from [181] uses similar techniques
to compute effectively the Lebesgue decomposition of a given measure, while [187] relies on the
Christoffel function associated to the moment matrix of this measure. When the measure is uni-
form or when the support of the measure satisfies certain conditions, the sequence of level sets of
the Christoffel function converges to the measure support with respect to the Hausdorff distance.

Previous work [128] shows how to use the Lasserre hierarchy to characterize invariant mea-
sures for one-dimensional discrete polynomial dynamical systems. We extend significantly this
work in the sense that we now characterize invariant measures on more general multidimensional
semialgebraic sets, in both discrete and continuous settings, and we establish convergence guar-
antees under certain assumptions. In the concurrent work [165], the authors are also using the
Lasserre hiearchy for approximately computing extremal measures, i.e., invariant measures opti-
mal w.r.t. a convex criterion. They have weaker convergence guarantees than ours, but the problem
is formulated in a more general setting allowing to use the criterion to single-out some class of ex-
tremal measures, including physical measures, ergodic measures or atomic measures (for instance
periodic orbits) or invariant densities.

A first observation

For a given invariant measure µ ∈M (X), one has L(µ) = 0. It follows from the Stone-Weierstrass
Theorem that monomials are dense in continuous functions on the compact set X. The equation
L(µ) = 0 is then equivalent to

Ly( f (x)α)− Ly(xα) = 0 , ∀α ∈Nn ,
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in the context of a discrete-time system (1.18) and

n

∑
i=1

Ly

(
∂(xα)

∂xi
fi(x)

)
= 0 , ∀α ∈Nn ,

in the context of a continuous-time system (1.19).
Hence, we introduce the linear functionals I disc

y : R[x]→ R defined by

I disc
y (g) := Ly(g ◦ f )− Ly(g)

and I cont
y : R[x]→ R defined by

I cont
y (g) := Ly(grad g · f )

for every polynomial g and where grad g := ( ∂g
∂xi

)i=1,...,n. In the sequel, we use the more concise

notation Iy to refer to I disc
y (resp. I cont

y ) in the context of discrete-time (resp. continuous-time)
systems.

Absolutely continuous invariant measures

For p ∈N∪{∞}, let L p(X) (resp. L p
+(X)) be the space of (resp. nonnegative) Lebesgue integrable

functions f on X, i.e., such that ‖ f ‖p := (
∫

X | f (x)|
pλ(dx))1/p < ∞. Let L ∞(X) (resp. L ∞

+(X))
be the space of (resp. nonnegative) Lebesgue integrable functions f on X which are essentially
bounded on X, i.e., such that ‖ f ‖∞ := ess supx∈X| f (x)| < ∞. Two integers p and q are said to be
conjugate if 1/p + 1/q = 1, and by Riesz’s representation theorem (see, e.g., [196, Theorem 2.14]),
the dual space of L q(X) for 1 ≤ q < ∞ (i.e., the set of continuous linear functionals on L q(X)) is
isometrically isomorphic to L p(X).

For µ ∈ M (X), if µ � λ then there exists a measurable function h on X such that dµ = h dλ
and the function h is called the density of µ. If h ∈ L p(X), by a slight abuse of notation, we write
µ ∈ L p(X) and ‖µ‖p := ‖h‖p. If in addition µ is invariant w.r.t. f then we say that f has an
invariant density in L p(X).

Next, we state some conditions fulfilled by the moments of an absolutely continuous measure
with a density in L p(X). In the case of invariant measures, we rely on these conditions to provide
an infinite-dimensional LP characterization. We show how to approximate the solution of this LP
by using a hierarchy of finite-dimensional SDP relaxations. We also explain how to approximate
the invariant density.

Theorem 1.3.1 Let p and q be conjugate with 1 ≤ q < ∞. Consider a sequence y ⊂ R. The following
statements are equivalent:

(i) y has a representing measure µ ∈ L
p
+(X) with ‖µ‖p ≤ γ < ∞ for some γ ≥ 0;

(ii) there exists γ ≥ 0 such that for all g ∈ R[x] it holds

|Ly(g)| ≤ γ

(∫
X
|g|qdλ

)1/q
, (1.20)

and for all polynomial g nonnegative on X, it holds Ly(g) ≥ 0.
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Theorem 1.3.1 provides necessary and sufficient conditions satisfied by the moments of an ab-
solutely continuous Borel measure with a density in L

p
+(X). We now state further characteriza-

tions when p = q = 2 in Theorem 1.3.2 and when p = ∞ and q = 1 in Theorem 1.3.3. For a
given sequence y = (yα)α and r ∈ N, the notation yr stands for the truncated sequence (yα)|α|≤2r.
The notation � 0 means positive semidefinite. Recall that yX stands for the sequence of Lebesgue
moments on X, as defined after (1.2) in Section 1.1.

Theorem 1.3.2 Consider a sequence y ⊂ R. The following statements are equivalent:

(i) y has a representing measure µ ∈ L 2
+(X) with ‖µ‖2 ≤ γ < ∞ for some γ ≥ 0;

(ii) there exists γ ≥ 0 such that for all r ∈N:(
Mr(yX) yr

(yr)T γ2

)
� 0 (1.21)

and

Mr−rj(gjy) � 0 , j = 0, . . . , m . (1.22)

Theorem 1.3.3 Consider a sequence y ⊂ R. The following statements are equivalent:

(i) y has a representing measure µ ∈ L ∞
+(X) with ‖µ‖∞ ≤ γ for some γ ≥ 0;

(ii) there exists γ ≥ 0 such that for all r ∈N:

γMr(yX) � Mr(y) (1.23)

Mr−rj(gjy) � 0 , j = 0, 1, . . . , m . (1.24)

From now on, we will restrict to the case where p = 2 or p = ∞ while relying on one of the
two characterizations stated in the two previous theorems. Let us consider the following infinite-
dimensional conic program:

ρac := sup
µ

∫
X

µ

s.t. L(µ) = 0 ,

‖µ‖p ≤ 1 ,

µ ∈ L
p
+(X) .

(1.25)

Theorem 1.3.4 Problem (1.25) admits an optimal solution. If the optimal value ρac is positive, then
the optimal solution is a nonzero invariant measure.
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Assumption 1.3.2 There exists a unique invariant probability measure µac ∈ L p(X) for some p ≥ 1.

Note that Assumption 1.3.2 is equivalent to supposing that there exists a unique ergodic probabil-
ity measure.

Theorem 1.3.5 If Assumption 1.3.2 holds, then problem (1.25) admits a unique optimal solution
µ

opt
ac := ρac µac.

The choice of maximizing the mass of the invariant measure in problem (1.25) is motivated by
the following reasons:

• If we consider to solve only the feasibility constraints associated to problem (1.25), one could
end up with a solution being the zero measure, even under Assumption 1.3.2.

• Enforcing the feasibility constraints by adding the condition for µ to be a probability measure
(i.e.,

∫
X µ = ‖µ‖1 = 1) would not provide any guarantee to obtain a feasible solution as the

inequality constraints ‖µ‖p ≤ 1 may not be fulfilled since ‖µ‖1 ≤ vol X‖µ‖p ≤ ‖µ‖p when
µ ∈ L p(X) for some p ≥ 1.

Let

C2
r (y) :=

(
Mr(yX) yr

(yr)T 1

)
, C∞

r (y) := Mr(yX)−Mr(y),

and from now on, let p = 2 or p = ∞ and r ∈ N be fixed, with r ≥ rmin. We build the following
hierarchy of finite-dimensional SDP relaxations for problem (1.25):

ρr
ac := sup

y
y0

s.t. Iy(xα) = 0 , ∀α ∈Nn
2r ,

Cp
r (y) � 0 ,

Mr−rj(gj y) � 0, j = 0, 1, . . . , m .

(1.26)

Lemma 1.3.3 Problem (1.26) has a compact feasible set and an optimal solution yr.

Let us denote by R[x]′ the dual set of R[x], i.e., the linear functionals acting on R[x].

Lemma 1.3.4 Let Assumption 1.3.2 hold and let µ
opt
ac be the unique optimal solution of problem (1.25).

For every r ≥ rmin, let yr be an arbitrary optimal solution of problem (1.26) and by completing with
zeros, consider yr as an element of R[x]′. Then the sequence (yr)r≥rmin ⊂ R[x]′ converges pointwise to
yopt ∈ R[x]′, that is, for any fixed α ∈Nn:

lim
r→+∞

yr
α = yopt

α . (1.27)

Moreover, yopt has representing measure µ
opt
ac . In addition, one has:

lim
r→+∞

ρr
ac = ρac = ‖µopt

ac ‖1. (1.28)
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Remark 1.3.1 Note that without the uniqueness hypothesis made in Assumption 1.3.2, we are not able to
guarantee the pointwise convergence of the sequence of optimal solutions (yr)r≥rmin to yopt.

Remark 1.3.2 One could consider the dual of SDP (1.26), which is an optimization problem over polyno-
mial SOS. One way to prove the non-existence of invariant densities in L p(X) for p ∈ {2, ∞} is to use the
output of this dual program, yielding SOS certificates of infeasibility.

Recall that p = 2 or ∞. Given a solution yr of the SDP (1.26) at finite order r ≥ rmin, let hr ∈ R[x]2r
be the polynomial with vector of coefficients hr given by:

hr := Mr(yX)−1yr (1.29)

where the moment matrix Mr(yX) is positive definite hence invertible for all r ∈ N. Note that
the degree of the extracted invariant density depends on the SDP relaxation order r, and higher
relaxation orders lead to higher degree approximations.

Lemma 1.3.5 Let Assumption 1.3.2 hold. For every r ≥ rmin, let yr be an optimal solution of SDP (1.26),
let hr be the corresponding polynomial obtained as in (1.29) and let µ

opt
ac be the unique optimal solution of

problem (1.25) with density hopt
ac . Then, the following convergence holds:

lim
r→+∞

∫
X

g(x) hr(x)dλ =
∫

X
g(x) hopt

ac (x)dλ ,

for all g ∈ R[x].

In [J8, § 3.5], this methodology is extended to piecewise polynomial systems. The idea, inspired
from [1], consists in using the piecewise structure of the dynamics and the state-space partition
to decompose the invariant measure into a sum of local invariant measures supported on each
partition cell while being invariant w.r.t. the local dynamics.

Singular invariant measures

In the sequel, we focus on computing the support of singular measures for either discrete-time
or continuous-time polynomial systems. Our approach is inspired from the framework presented
in [181], yielding a numerical scheme to obtain the Lebesgue decomposition of a measure µ w.r.t. λ,
for instance when λ is the Lebesgue measure. By contrast with [181] where all moments of µ and
λ are a priori given, we only know the moments of the Lebesgue measure λ in our case but we
impose an additional constraint on µ to be an invariant probability measure.

We start by considering the infinite-dimensional linear optimization problem:

ρsing = sup
µ,ν,ν̂,ψ

∫
X

ν

s.t.
∫

X
µ = 1 , L(µ) = 0 ,

ν + ψ = µ , ν + ν̂ = λX ,

µ, ν, ν̂, ψ ∈M+(X) .

(1.30)

Assumption 1.3.6 There exists a unique invariant probability measure µopt ∈M+(X).

For a measure ν with density h ∈ L ∞
+(X), let us denote by min{1, ν} the measure with density

x 7→ min{1, h(x)} ∈ L ∞
+(X).
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Theorem 1.3.6 Under Assumption 1.3.6, LP (1.30) has a unique optimal solution (µopt, ν
opt
1 , λX −

ν
opt
1 , µopt− ν

opt
1 ), where (νopt, µopt− νopt) is the Lebesgue decomposition of µopt w.r.t. λX and ν

opt
1 :=

min{1, νopt} ∈ L ∞
+(X).

Now we explain the rationale behind LP (1.30). When there is no absolutely continuous invari-
ant probability measure supported on X, then LP (1.30) has an optimal solution (µopt, 0, λX, µopt)
with µopt being the unique singular invariant probability measure. In this case, the value of
LP (1.30) is ρsing = 0. Note that in the general case where Assumption 1.3.6 does not hold, there
may be several invariant probability measures. In this case, LP (1.30) still admits an optimal solu-
tion and the optimal value is the maximal mass of the ν-component among all invariant probability
measures.

By contrast with problem (1.25) for absolutely continuous invariant densities, we enforce the
feasibility constraints by adding the condition for µ to be a probability measure. The reason is
that if we remove this condition, the value ρsing = 0 could still be obtained with another optimal
solution (0, 0, λX, 0), and we could not retrieve the unique invariant probability measure µopt. For
every r ≥ rmin, we consider the following optimization problem:

ρr
sing := sup

u,v,v̂,y
v0

s.t. u0 = 1 , Iu(xα) = 0 , ∀α ∈Nn
2r ,

vα + yα = uα , vα + v̂α = yX
α , ∀α ∈Nn

2r ,

Mr−rj(gj u) , Mr−rj(gj v) � 0 , j = 0, . . . , m ,

Mr−rj(gj v̂) , Mr−rj(gj y) � 0 , j = 0, . . . , m .

(1.31)

Problem (1.31) is a finite-dimensional SDP relaxation of LP (1.30), implying that ρr
sing ≥ ρsing for

every r ≥ rmin.

Theorem 1.3.7 Problem (1.31) has a compact feasible set and an optimal solution, denoted by
(uopt, vopt, v̂opt, yopt).

Theorem 1.3.8 Let Assumption 1.3.6 hold. For every r ≥ rmin, let (ur, vr, v̂r, yr) be an arbitrary
optimal solution of SDP (1.31) and by completing with zeros, consider ur, vr, v̂r, yr as elements of
R[x]′. The sequence (ur, vr, v̂r, yr)r≥rmin ⊂ (R[x]′)4 converges pointwise to (uopt, vopt, v̂opt, yopt) ⊂
(R[x]′)4, that is, for any fixed α ∈Nn:

lim
r→∞

ur
α = uopt

α , lim
r→∞

vr
α = vopt

α , lim
r→∞

v̂r
α = zX

α − vopt
α , lim

r→∞
yr

α = uopt
α − vopt

α . (1.32)

Moreover, with (µopt, ν
opt
1 , λX − ν

opt
1 , µopt − ν

opt
1 ) being the unique optimal solution of LP (1.30),

uopt is the moment sequence of the unique invariant probability measure µopt, vopt and yopt are the
respective moment sequences of ν

opt
1 , ν̂opt = λX − ν

opt
1 , µopt − ν

opt
1 .

In addition, one has:
lim
r→∞

ρr
sing = ρsing .
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The meaning of Theorem 1.3.8 is similar to the one of Theorem 3.4 in [181]. By noting
(νopt, ψopt) the Lebesgue decomposition of the unique invariant probability measure µopt, one
has νopt (resp. ψopt) which is absolutely continuous (resp. singular) w.r.t. λX. We have the two
following cases:

1. If the decomposition (νopt, ψopt) is feasible for LP (1.30), then νopt ∈ L ∞
+(X) with ‖νopt‖∞ ≤

1. So, we can obtain all the moment sequences associated to νopt and ψopt by computing
vr and yr through solving SDP (1.31) as r → ∞. In [181], the sup-norm must be less than
an arbitrary fixed γ > 0 while in the present study we select γ = 1 as we consider an
invariant probability measure µopt. In particular, when there is no invariant measure which
is absolutely continuous w.r.t. λ, one has νopt = ν

opt
1 = 0, ψopt = µopt and we obtain in the

limit the moment sequence yopt of the singular measure µopt.

2. If the decomposition (νopt, ψopt) is not feasible for LP (1.30), one has either νopt /∈ L ∞
+(X)

or νopt ∈ L ∞
+(X) with ‖νopt‖∞ > 1. Then one can define ν′ = min{1, νopt} ∈ L ∞

+(X) and
ψ′ = µopt− ν′, such that (ν′, ψ′) is feasible for LP (1.30). In this case, the invariant probability
measure µopt is equal to ν′ + ψ′, but ψ′ is not singular w.r.t. λ.

Definition 1.3.7 (Christoffel polynomial) Assume that µ ∈ M+(X) is such that its moments are all
finite and that for all r ∈N, the moment matrix Mr(u) is positive definite. With vr(x) denoting the vector
of monomials of degree less or equal than r, sorted by graded lexicographic order, the Christoffel polynomial
is the function pµ,r : X→ R such that

x 7→ pµ,r(x) := vr(x)TMr(u)−1vr(x).

The following assumption is similar to [187, Assumption 3.6 (b)]. It provides the existence of a
sequence of thresholds (αr)r∈N for the Christoffel function associated to a given measure µ in order
to approximate the support S of this measure. Here, we do not assume as in [187, Assumption 3.6
(a)] that the closure of the interior of S is equal to S.

Assumption 1.3.8 Given a measure µ ∈ M+(X) with support S ⊆ X, S has nonempty interior and there
exist three sequences (δr)r∈N, (αr)r∈N, (dr)r∈N such that:

• (δr)r∈N is a decreasing sequence of positive numbers converging to 0.

• For every r ∈N, dr is the smallest integer such that:

23− δrdr
δr+diam S dn

r

(
e
n

)n

exp
(

n2

dr

)
≤ αr . (1.33)

• For every r ∈N, αr is defined as follows:

αr :=
δn

r ωn

vol S
(dr + 1)(dr + 2)(dr + 3)

(dr + n + 1)(dr + n + 2)(2dr + n + 6)
,

where diam S denotes the diameter of the set S and ωn := 2π
n+1

2

Γ( n+1
2 )

is the surface of the n-dimensional

unit sphere in Rn+1.

Remark 1.3.3 Regarding Assumption 1.3.8, as mentioned in [187, Remark 3.7], dr is well defined for all
r ∈N and the sequence (dr)r∈N is nondecreasing. This comes from the fact that the left-hand side of (1.33)
goes to 0 as dr → ∞ and that αr → δn

r ωn
2 vol S as dr → ∞. Since diam S ≤ diam X ≤ 1 and vol S ≤ vol X ≤

1, replacing diam S and vol S by 1 in (1.33) yields a result similar to Theorem 1.3.9. Assume that one
has a given sequence (δr)r∈N. Then, since (dr)r∈N is a nondecreasing sequence of integers, one can simply
start from d0 := 1, and increase the value of d0 until (1.33) holds. This yields a simple recursive method to
compute (dr)r∈N as well as the corresponding threshold αr for the Christoffel polynomial.
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Theorem 1.3.9 Let Assumption 1.3.6 hold and let S ⊆ X be the support of the invariant probability
measure µopt. Suppose that there exist sequences (δr)r∈N, (αr)r∈N and (dr)r∈N such that µopt, S,
(δr)r∈N, (αr)r∈N and (dr)r∈N fulfill Assumption 1.3.8. For every r ∈N, let:

Sr := {x ∈ X : pµopt,dr
(x) ≤

(dr+n
n )

αr
} . (1.34)

Then lim
r→∞

supx∈Sr dist (x, S) = 0.

The proof can be found in [J8] and relies on Assumption 1.3.8 and [187, Lemma 6.6].

Remark 1.3.4 In the case when the invariant measure is discrete singular, its moment matrix may not be
invertible. Indeed, if the invariant measure is a convex combination of r atoms, then the rank of the moment
matrix is upper bounded by r. Thus, we cannot approximate the support of such a measure with the level
sets of the Christoffel polynomial. In this case, one way to recover the support of the measure is to rely
on the numerical linear algebra algorithm proposed in [131] for detecting global optimality and extracting
solutions of moment problems. This algorithm is implemented in the GLOPTIPOLY [132] software and has
been already used in previous work [128] to recover finite cycles in the context of discrete-time systems.
Note that if the invariant measure has a non trivial absolutely continuous component ν (in its Lebesgue
decomposition), our approach based on Christoffel polynomials also allows to approximate the support of ν,
while relying on the inverse of Mr(v) at relaxation order r. However, in this case, we are more interested in
approximating the density of ν, by relying on the first Lasserre hierarchy provided for absolutely continuous
invariant densities.

Numerical experiments

Here, we present experimental benchmarks that illustrate our method. For invariant densities, we
compute the optimal solution yr of the primal SDP program (1.26) for a given positive integer r
and p = 2 or ∞, as well as the approximate polynomial density hr

p defined in (1.29). For singu-
lar measures, we compute the optimal solution ur of the primal SDP program (1.31) for a given
positive integer r as well as Sr, the sublevel set of the Christoffel polynomial defined in (1.34). In
practice, accordingly with the discussion from Remark 1.3.3, the computation of αr in (1.34) relies
on the following iterative procedure: we select dr = r, δr = 1 and increment the value of δr until
the inequality (1.33) from Assumption 1.3.8 is satisfied. SDPs (1.26) and (1.31) are both modeled
through GLOPTIPOLY [132] via YALMIP toolbox [200] available within Matlab and interfaced with
the SDP solver MOSEK [7]. The sources of our code are available online2.

For each problem, we apply a preprocessing step which consists in scaling data (dynamics,
general state constraints) so that the constraint sets become unit boxes. Note that our theoretical
framework (including convergence of the SDP relaxations) only works after assuming that there
exists a unique invariant probability measure (Assumption 1.3.2 and Assumption 1.3.6). Even
though this may not hold for some of the considered systems, numerical experiments show that
satisfying results can be obtained when approximating invariant densities and supports of singular
measures.

First, let us consider the one-dimensional discrete-time polynomial system defined by

t+ = A(t) := t + w mod 1 ,

2http://homepages.laas.fr/vmagron/invsdp.tar.gz

http://homepages.laas.fr/vmagron/invsdp.tar.gz
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with t being constrained in the interval [0, 1] and w ∈ R\Q be an arbitrary irrational number. This
dynamics corresponds to the circle rotation with an irrational angle w and thus it has a unique
invariant measure equal to the restriction of the Lebesgue measure on [0, 1] [303], i.e., Assump-
tion 1.3.2 is fulfilled here.

Let us consider the square integrable probability density hopt(t) := 3
4 t−1/4 and let F(t) :=∫ t

0 hopt(s)ds = t3/4 be its cumulative distribution function. Since F is invertible, then F−1(t) = t4/3

is distributed according to hopt and hence the following dynamical system

x+ = F−1 ◦ A ◦ F(x) , (1.35)

with x being constrained in the interval X = [0, 1], has the invariant measure with density hopt ∈
L 2(X).

(a) r = 4 (b) r = 6 (c) r = 8

Figure 1.5: Approximate invariant density for the dynamics from (1.35) with corresponding ap-
proximations hr

2 (solid curve) of the exact density hopt (dashed curve) for r ∈ {4, 6, 8} and w =
√

99
10 .

Now, let us take w ∈ (0, 1). In this case one has F−1 ◦ A ◦ F(x) = (x3/4 + w)4/3 if x3/4 + w ≤ 1
and F−1 ◦A ◦ F(x) = (x3/4 +w− 1)4/3 otherwise. In order to cast the dynamical system from (1.35)
as a piecewise polynomial system, we introduce two additional (so-called lifting) variables y, z and
consider the system defined as follows:

x+ = y for (x, y, z) ∈ X1 ∪ X2 (1.36)

where X1 and X2 are defined by

X1 := {(x, y, z) ∈ R3 : z(1− w− z) ≥ 0, z4 = x3, (z + w)4 = y3} ,

X2 := {(x, y, z) ∈ R3 : (1− z)(z + w− 1) ≥ 0, z4 = x3, (z + w− 1)4 = y3} .

Note that the collection {X1, X2} is a partition of [0, 1]3. The variable z represents x3/4, for all
x ∈ [0, 1]. The variable y represents either (x3/4 +w)4/3 on X1 or (x3/4 +w− 1)4/3 on X2. Using the
extension of our results to piecewise polynomial systems, we performed numerical experiments
with the irrational number w =

√
99

10 . The approximate density hr
2 obtained in (1.29) from the r first

moments (for r = 4, 6, 8) and the exact density hopt are displayed on Figure 1.5. These numerical
results indicate that the density approximations become tighter when the value of r increases.

The Hénon map is a famous example of two-dimensional discrete-time systems that exhibit a
chaotic behavior. The system is defined as follows:

x+1 = 1− ax2
1 + x2 ,

x+2 = bx1 .

with general state constraints within the box X = [−3, 1.5]× [−0.6, 0.4]. For a = 1.4 and b = 0.3,
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(a) r = 4 (b) r = 6 (c) r = 8

Figure 1.6: Hénon attractor (blue) and approximations Sr (light gray) for the support of the invari-
ant measure, with r ∈ {4, 6, 8}, a = 1.4 and b = 0.3.

Hénon proves in [127] that the sequence of points obtained by iteration of this map from an initial
point can either diverge or tend to a strange attractor being the product of a one-dimensional
manifold by a Cantor set.

Figure 1.6 displays set approximations Sr obtained from (1.34) of the support of the measure
invariant w.r.t. the Hénon map, for r ∈ {4, 6, 8}. For comparison purpose, we also represented the
“true” Hénon attractor by displaying the sequence of points obtained after hundred iterations of
the map while starting from random sampled initial conditions within the disk of radius 0.1 and
center (−1, 0.4). These numerical experiments show that the level sets of the Christoffel polyno-
mial provide fairly tight approximations of the attractor for modest values of the relaxation order.

The Van der Pol oscillator is an example of an oscillating system with nonlinear damping [291].
The dynamics are given by the following second-order ordinary differential equation:

ẍ1 − a(1− x2
1)ẋ1 + x1 = 0 .

By setting x2 = ẋ1, one can reformulate this one-dimensional system into a two-dimensional
continuous-time system:

ẋ1 = x2 ,

ẋ2 = a(1− x2
1)x2 − x1 .

When a > 0, there exists a limit cycle for the system. Here, we consider a = 0.5 and general state
constraints within the box X = [−3, 3]× [−4, 4].

(a) r = 4 (b) r = 6 (c) r = 8

Figure 1.7: Van der Pol attractor (blue) and approximations Sr (light gray) for the support of the
invariant measure, with r ∈ {4, 6, 8} and a = 0.5.

Figure 1.7 shows set approximations Sr obtained from (1.34) of the support of the measure in-
variant w.r.t. the Van der Pol map. As for the Hénon map, we also represent the “true” limit cycle
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after performing a numerical integration of the Van der Pol system from t0 = 0 to T = 20 with
random sampled initial conditions within the disk of radius 0.1 and center (1,−1). This numer-
ical approximation is done with the ode45 procedure available inside MATLAB. Once again, the
plots exhibit a quite fast convergence behavior of the approximations Sr of the invariant measure
support to the limit cycle when r increases.

1.4 Boundaries of semialgebraic sets

The materials from this section have been published in [J4]. Given m ∈ N>0, let us define [m] :=
{1, . . . , m}. We focus on the Hausdorff boundary measure of a basic compact semialgebraic set
Ω ⊂ Rn

Ω := {x ∈ Rn : gj(x) ≤ bj, j ∈ [m] } , (1.37)

with gj ∈ R[x], for each j ∈ [m]. For later purpose, we also note g0(x) := −1 and b0 := 0.
Throughout this section, we suppose that the following condition is fulfilled:

Assumption 1.4.1 Ω ⊂ B := (−1, 1)n.

Since Ω is compact, Assumption 1.4.1 is satisfied, possibly after rescaling of the data. From now
on, let λB be the Lebesgue measure on B. Its moments are denoted yB = (yB

α )α∈Nn , i.e.,

yB
α :=

∫
B

xαλB(dx) =
∫

B
xα1

1 · · · x
αn
n λB(dx) =

n

∏
i=1

1 + (−1)αi

αi + 1
, α ∈Nn , (1.38)

thus are available analytically. In particular |yB
α | ≤ yB

0 = 2n, for all α ∈ Nn. Other choices of
B (e.g. an Euclidean ball, a box, an ellipsoid) are possible as soon as all moments of λB can be
obtained easily or in closed form. As in [130] and other problems previously described in this
chapter, Assumption 1.4.1 is required to be able to compute moments of the Lebesgue measure on
Ω, which in turn is required to compute moments on the boundary measure on ∂Ω.

Our main contribution is a systematic numerical scheme to approximate as closely as desired
any (fixed) finite number of its moments, in particular its mass (the length or area of ∂Ω) and
integrals of polynomials on ∂Ω.

Besides being a challenge of its own in computational mathematics, computation of moments
(e.g. the mass) of the boundary measure has also important applications: either practical ones,
e.g., in computational geometry [292] (perimeter, surface area), or in control for computing the
length of trajectories in the context of robot motion planning [59], or theoretical ones such as (real)
periods computation [161, 266]. Periods are integrals of rational functions with rational coefficients
over semialgebraic sets and the moments of the Hausdorff boundary measure of Ω are special
cases of periods where the integrated rational functions are monomials. In some applications,
e.g., tomography [115], the moments of the Lebesgue measure on Ω are available after appropriate
measurements. In this case the methodology slightly simplifies as they now appear as data instead
of variables.

Of course certain line or surface specific integrals on ∂Ω reduce to surface of volume integrals of
a related function on Ω via Green’s (or Stokes’) theorem, in which case one may invoke the arsenal
of techniques of multivariate integration on specific domains Ω like Monte-Carlo and/or cubatures
techniques. We refer to [52, 63, 66, 192] for some previous studies on convex and non convex
polytopes. There are few available systematic numerical schemes in the literature for computing
“volume" or moments of the boundary ∂Ω of a basic semialgebraic set Ω. Our work seems to be
one of the first such attempts, at least at this level of generality.
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Classical approaches

Among existing techniques for numerical volume computation and integration, Monte Carlo al-
gorithms [51, 313, 194] generate points uniformly in a box which contains Ω and approximate the
volume by the ratio of the number of points that fall into Ω, and similarly for integration. Cu-
bature formulae [70, 308] provide a way to perform numerical integration on simple sets, such as
simplices, boxes or balls, or tetrahedra [146]. However, such formula are not available for arbitrary
semialgebraic sets. When the set ∂Ω is defined explicitly by polynomial equality constraints, the
algorithm from [49] allows one to compute integrals and perform sampling from distributions on
∂Ω, based on intersecting with random linear spaces. Let us also mention the recent work [168]
which provides arbitrary precision approximations for the volume of Ω. This algorithm is based
on computing the Picard-Fuchs differential equations of appropriate periods and critical point
properties.

Concerning volume computation of a semialgebraic set Ω, its GMP formulation as an infinite-
dimensional LP has been developed in [130]. It requires knowledge of a simple set B ⊃ Ω such that
all moments of the Lebesgue measure on B are available (e.g., B is a Euclidean ball, an ellipsoid,
a box). When Ω is the level set of a single homogeneous polynomial, a related and alternative
method has been proposed in [186], which results in solving a hierarchy of generalized eigenvalue
problems (rather than a sequence of SDP problems) with respect to a pair of Hankel matrices of
increasing size. Here, our approach consists of extracting information on the boundary measure
on ∂Ω from some available moments, here moments of the Lebesgue measure on Ω. The latter are
either already available (e.g., from measurements or computation) or must also be approximated.
A similar approach has been previously exploited in [48] for the moment problem with holonomic
functions and in [99] for inverse moment problems for convex polytopes. In the recent work [80]
the authors propose to reconstruct mixtures of gaussian distributions from knowledge of the so-
called derivatives of moments. Finally we also refer to [6] for a related work in the bi-dimensional
case, using generalized polarization tensors.

Our contribution is in the spirit of the work [130] as we also formulate our problem as a GMP,
i.e., an infinite-dimensional LP on appropriate spaces of measures. Indeed, to compute the mo-
ments of the boundary measure σ on ∂Ω we relate them (linearly) to moments of the Lebesgue
measure λ on Ω via Stokes’ theorem.

Stokes’ theorem

Let Ω be a smooth manifold with boundary ∂Ω. Given a polynomial g ∈ R[x], Stokes’ theorem
with vector field X states that:∫

Ω
div(X g(x)) dx =

∫
∂Ω
〈X,~nx〉 g(x) dσ , (1.39)

where ∂Ω stands for the boundary of Ω, σ is the (n− 1)-dimensional Hausdorff boundary measure
on ∂Ω, and~nx is the outward pointing normal to ∂Ω; see, e.g., Taylor [287, Proposition 3.2, p. 128].
Then Whitney [305, Theorem 14A] generalized Stokes’ theorem to rough domains Ω (e.g. with
corners). For instance, in our case:

∂Ω = ∪m
j=1Ωj with Ωj = {x ∈ Ω : gj(x) = bj }. (1.40)

In the remaining part of this section, we derive preliminary results and required assumptions that
are core components of our framework. Throughout this section, we make the following non-
degeneracy assumption:

Assumption 1.4.2
∀x ∈ Ωj : ‖∇gj(x)‖ 6= 0, j ∈ [m], (1.41)
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and therefore, with x 7→ tj(x) := ‖∇gj(x)‖2,

tj(x) ≥ aj , ∀x ∈ Ωj , j ∈ [m], (1.42)

for some aj > 0, j ∈ [m].

We also make the following technical assumption on the polynomials gj that define the boundary
∂Ω.

Assumption 1.4.3 Let Ωj be as in (1.40) and let σj be the restriction to Ωj of the Hausdorff measure σ on
∂Ω, j ∈ [m].

Then σ(Ωj ∩Ωk) = 0 for all pairs (j, k), j 6= k. In particular, for every j ∈ [m], σj({x : gk(x) =
bk}) = 0 for all k 6= j, and:

σ(∂Ω) = σ(∪m
j=1Ωj) =

m

∑
j=1

σ(Ωj) =
m

∑
j=1

σj(Ωj).

Developing (1.39) yields:∫
Ω

div(X) g(x) + 〈X,∇g(x)〉 dx =
∫

∂Ω
〈X,~nx 〉 g(x) dσ(x) . (1.43)

Next, select the vector field X = x and note that 〈x,∇xα〉 = |α|xα for all α ∈ Nn. Then under
Assumption 1.4.2-1.4.3, letting g(x) := xα in (1.43) with α ∈Nn fixed, arbitrary, yields:

(n + |α|)
∫

Ω
xα dx =

m

∑
j=1

∫
Ωj

〈
x,
∇gj(x)
‖∇gj(x)‖

〉
xα dσj(x), (1.44)

=
m

∑
j=1

∫
Ωi

xα 〈x,∇gj(x)〉
dσj(x)
‖∇gj(x)‖

. (1.45)

Note that the outgoing normal vector ~nx at x ∈ Ωj is
∇gj(x)
‖∇gj(x)‖

, as a consequence of the inequality

“gj(x) ≤ bj” whenever x ∈ Ω.
When α = 0 (1.43) has a simple geometric interpretation, easy to visualize in dimension n = 2.

Indeed with 0 ∈ int(Ω), (i) 〈x,~nx〉 is the “height" from 0 to the hyperplane tangent to Ω at the point
M ∈ ∂Ω (with coordinate x), and (ii) dσ(x) is the infinitesimal “length" [M, M′] on ∂Ω around M,
and so 1

n 〈x,~nx〉dσ(x) is the infinitesimal “area" of the triangle (O, M, M′), that is the length of base
[M, M′] times the height [0, M]; see Figure 1.8.

There is also a non-geometric interpretation. When the gj’s are polynomials then so are the
functions x 7→ 〈x,∇gj(x)〉’s, which yields a simple interpretation for (1.44). Indeed (1.44) states
that for each α ∈ Nn, the moment

∫
Ω

xαdx is some linear combination of moments of the measure
dσ̂ = f dσ on ∂Ω, with density f (x) := ‖∇gj(x)‖−1 on Ωj, j ∈ [m], (recall (1.41)).

Remark 1.4.1 Assumption 1.4.3 will also allow us later on (in Theorem 1.4.1) to characterize the boundary
measure σj of Ωj as the unique optimal solution of an infinite-dimensional LP over measures (LP (1.50)).
Assumption 1.4.3 may fail if for instance two polynomials bj − gj and bk − gk have a common factor h ∈
R[x] which is nonnegative on Ω. That is, bj − gj = g̃j h, bk − gk = g̃k h, and therefore

H := {x ∈ Ω : h(x) = 0 } ⊂ Ωj ∩ Ωk.

So it may happen that σ(H) > 0, which violates the condition σ(Ωj ∩Ωk) = 0 in Assumption 1.4.3, and
which implies that (1.44) is not correct. In such a simple case it is easy to provide an equivalent reformulation
of Ω which prevents the assumption from failing; just replace bj − gj ≥ 0 with g̃j ≥ 0, replace bk − gk ≥ 0
with g̃k ≥ 0, and introduce the additional constraint h ≥ 0. However for more general semialgebraic sets,
such a reformulation might be delicate and beyond the scope of this work. In practical applications, assuming
that σ(Ωj ∩Ωk) = 0 for every arbitrary pair (j, k), j 6= k, seems to us quite reasonable.
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0
M′

M
Ω

∂Ω

〈x,~nx〉

Figure 1.8: Geometric interpretation.

If gj is homogeneous of degree dj, for each j ∈ [m], then 〈x,∇gj(x)〉 = dj gj(x) for all x ∈ Rn,
and therefore (1.44) yields:

(n + |α|)
∫

Ω
xα dx =

m

∑
j=1

dj bj

∫
Ωj

xα
dσj(x)
‖∇gj(x)‖

, α ∈Nn . (1.46)

Recall that λΩ is the restriction of the Lebesgue measure on Ω.

A first observation

Lemma 1.4.4 Let Ω in (1.37) be compact with bj > 0 and where gj ∈ R[x] is homogeneous of degree dj,
j ∈ [m]. Let Assumption 1.4.1 and 1.4.2 hold. Let y = (yα)α∈Nn be the sequence of moments of λΩ. Then
the sequence ŷ = (ŷα)α∈Nn = ((n + |α|)yα)α∈Nn is the sequence of moments uniquely represented by the
boundary measure φ on ∂Ω, absolutely continuous with respect to the Hausdorff measure σ on ∂Ω, which
reads:

dφ(x) :=
m

∑
j=1

bj dj

‖∇gj(x)‖
dσj(x), (1.47)

=
bj dj

‖∇gj(x)‖
dσ(x), ∀x ∈ Ωj, j ∈ [m].

To recover the boundary measure σ from y = (yα)α∈Nn we proceed in two steps. Define

dφj(x) =
dσj(x)
‖∇gj(x)‖

, j ∈ [m], (1.48)

so that by (1.43) and (1.47), for every α ∈Nn:

(n + |α|) yα =
m

∑
j=1

bjdj

∫
Ωj

xα dφj(x) =
∫

∂Ω
xα

m

∑
j=1

djbj dφj. (1.49)

The first step consists of exploiting the latter linear equality constraints (1.49) to approximate as
closely as desired the moments of φj by solving a first hierarchy of SDP. The second step exploits
the linear relations (1.48) between φj and the boundary measure σj to derive a second hierarchy of
SDP. This in turn allows one to compute the moments of σj as closely as desired. In the sequel,
we provide more details on both steps, in the case where the gj’s are homogeneous polynomials.
We refer the interested reader to [J4, § 4] for the general case where the gj’s are not necessarily
homogeneous.
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Step 1: computing moments of the measures φj in (1.48)

Consider the following infinite-dimensional LP:

ρ = sup
µ,µj

∫
Ω

dµ :

s.t. µ ≤ λB ; (n + |α|)
∫

Ω
xαdµ =

m

∑
j=1

dj bj

∫
Ωj

xαdµj, α ∈Nn , (1.50)

µ ∈M+(Ω) , µj ∈M+(Ωj), j ∈ [m] .

We recall that from [130, theorem 3.1], the uniform measure λΩ is the unique optimal solution of
the following infinite-dimensional LP problem:

ρ′ = sup
µ
{
∫

Ω
dµ : µ ≤ λB ; µ ∈M+(Ω) }. (1.51)

and ρ′ = vol (Ω). A dual of (1.51) is the infinite-dimensional LP:

inf
g∈R[x]

{
∫

B
g dλB : g ≥ 1Ω on B }, (1.52)

with same optimal value as (1.51) as strong duality holds.

Theorem 1.4.1 Assume that bj > 0 for all j ∈ [m] and let Assumption 1.4.1, 1.4.2 and 1.4.3 hold.
Then (λΩ, φ1, . . . , φm) with φj on Ωj as in (1.48), j ∈ [m], is the unique optimal solution of LP (1.50)
and ρ = vol (Ω),

Let rj := ddj/2e, for all j ∈ [m] and let r1
min := max{1, r1, . . . , rm}. In practice, fix an integer

r ≥ r1
min and consider the following SDP:

ρr = sup
y,vj

{ y0 :

s.t. (n + |α|) Ly(xα) =
m

∑
j=1

dj bj Lvj(x
α), |α| ≤ 2r ,

Mr(yB) � Mr(y) � 0 , Mr−rj((bj − gj) y)�0 ,
Mr(vj) � 0 , Mr−rj((bj − gj) vj) = 0 , j ∈ [m] ,
Mr−rl ((bl − gl) vj)) � 0 , l 6= j , l, j ∈ [m] } ,

(1.53)

where y = (yα)α∈Nn
2r

, and vj = (vj,α)α∈Nn
2r

, j ∈ [m].
The sequence of SDP (1.53) indexed by r ≥ r1

min form a hierarchy of convex relaxations of (1.50)
whose size increases with r. Let us briefly explain why. The objective function y0 (= Ly(1)) cor-
responds to the mass of the objective function

∫
Ω

dµ of LP (1.50). The equality constraints of (1.53)
directly come from the ones in LP (1.50). As mentioned in Section 1.1, if y has a representing mea-
sure µ ∈ M+(Ω), then Mr−rj((bj − gj) y) � 0. Therefore any solution of LP (1.50) necessarily
satisfies the inequality constraints of (1.53), and so ρr ≥ ρ for all r ≥ r1

min.
Next, (ρr)r∈N is a monotone non increasing sequence and the result below shows that by solv-

ing the hierarchy of SDP (1.53), then asymptotically one recovers the desired solution.



34 Chapter 1. Modeling with polynomial optimization

Theorem 1.4.2 Assume that bj > 0 for all j ∈ [m] and let Assumption 1.4.1, 1.4.2 and 1.4.3
hold. Let (φ1, . . . , φm) be as in (1.48). For each r ≥ r1

min, the SDP (1.53) has an optimal solution
(yr, vr

1, . . . , vr
m). In addition:

lim
r→∞

yr
α =

∫
Ω

xα dλ, ∀α ∈Nn , (1.54)

lim
r→∞

vr
j,α =

∫
Ωj

xα dφj, ∀α ∈Nn; j ∈ [m]. (1.55)

In particular, as r → ∞, yr
0 ↓ ρ = vol(Ω).

For a proof, see [J4, § 7.1].

Remark 1.4.2 (a) In (1.53) one may use another criteria different from y0. For instance on may choose to
maximize the trace of Mr(y) which in some cases accelerates the convergence (1.54)-(1.55).

(b) In the case where one already knows moments y = (yα)α∈Nn of the Lebesgue measure λΩ on Ω (e.g.
from measurements), then in (1.50) and (1.53), the left-hand-side in the moment equality constraints is now
the constant (n + |α|) yα. Then in (1.50) one replaces the criterion sup

∫
Ω

dµ with, e.g., sup ∑j µj(Ωj) or
inf ∑j µj(Ωj). In fact, under Assumption 1.4.3, the feasible set is the singleton (φ1, . . . , φm).

The same modification is done in the semidefinite relaxations (1.53) and if one chooses supvj
∑j vj,0 as

criterion then in Theorem 1.4.2, as d→ ∞,

m

∑
j=1

vr
j,0 ↓

m

∑
j=1

φj(Ω) = lim
r→∞

ρr.

On the other hand, if one chooses infvj ∑j vj,0 as criterion then as r → ∞,

m

∑
j=1

vr
j,0 ↑

m

∑
j=1

φj(Ω) = lim
r→∞

ρr.

Step 2: extracting the boundary measure σj on Ωj

from the measure φj, for every j ∈ [m]. To do so we use its moments vj = (vj,α)α∈Nn , obtained in
Step 1. For each j ∈ [m], define the set Θj ⊂ Ωj ×R+ by:

Θj := { (x, z) ∈ Ωj ×R+ : z2 − ‖∇gj(x)‖2︸ ︷︷ ︸
θj(x,z)

= 0 }, j ∈ [m] . (1.56)

Observe that if z2 = ‖∇gj(x)‖2 and z ≥ 0, then z = ‖∇gj(x)‖. So let ψj be a measure on Θj with
marginal ψj,x = φj on Ωj, and conditional ψ̂j(dz|x) on R+. Then disintegrating ψj yields:

∫
Θj

xα z dψj(x, z) =
∫

Ωj

xα

(∫
R+

z ψ̂j(dz|x)
)

dφj(x)

=
∫

Ωj

xα ‖∇gj(x)‖ dφj(x) (1.57)

=
∫

Ωj

xα dσj(x), ∀α ∈Nn [by (1.48)] .
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Recall that tj = ‖∇gj(x)‖2. Note that deg(tj)/2 = deg(θj)/2 = dj − 1 and let (vj,α)α∈Nn be all mo-
ments of φj obtained in step 1. As Ωj ⊆ (−1, 1)n is compact, let us select M > supx∈Ωj

‖∇gj(x)‖2.
In practice, an easy way to obtain such an upper bound M is to apply interval arithmetic on
‖∇gj(x)‖2 or to approximate from above its supremum with the hierarchy of SDP relaxations from
[180]. After performing the numerical experiments presented later on, it seems that our method
is not sensitive to the accuracy of this approximation. Hence one may and will impose the addi-
tional redundant constraint z2 ≤ M. Then for each j ∈ [m], consider the hierarchy of SDP indexed
by r ∈N:

ρr
max,j = sup

u
{ u0,1 :

s.t. |uα,0 − vj,α| ≤ 1/r, |α| ≤ 2r ,
Mr(u) � 0 , Mr−dj+1(θj u) = 0 ,
Mr−1((M− z2) u) � 0 , Mr−1(z u) � 0 },

(1.58)

and
ρr

min,j = inf
w
{w0,1 :

s.t. |wα,0 − vj,α| ≤ 1/r, |α| ≤ 2r ,
Mr(w) � 0 , Mr−dj+1(θj w) = 0 ,
Mr−1((M− z2)w) � 0 , Mr−1(z w) � 0 },

(1.59)

where u = (uα,k)(α,k)∈Nn+1
2r

and w = (wα,k)(α,k)∈Nn+1
2r

. Let r2
min := max{1, r1, . . . , rm, Lj}.

Theorem 1.4.3 Assume that bj > 0 for all j ∈ [m] and let Assumption 1.4.1, 1.4.2 and 1.4.3 hold.
(a) SDP (1.58) (resp. SDP (1.59)) has a feasible solution for each r ≥ r2

min whenever (vj,α) =

(vd(r)
j,α )α∈Nn

2r
is an optimal solution of (1.53) at step 1, for sufficiently large d(r).

(b) SDP (1.58) (resp. SDP (1.59)) has an optimal solution ur = (ur
α,k) (resp. wr = (wr

α,k)). In
addition:

lim
r→∞

ur
α,1 = lim

r→∞
wr

α,1 =
∫

Ωj

xα dσj, ∀α ∈Nn. (1.60)

In particular, ρr
max,j = ur

0,1 ↓ σj(Ω) and ρr
min,j = wr

0,1 ↑ σj(Ω), as r→ ∞.

The proof can be found in [J4, § 7.2].

Remark 1.4.3 If vj = (vj,α)α∈Nn
2r

is the exact vector of moments of φj on Ωj (up to degree 2r), then
(1.58) has a feasible solution even with the stronger constraint uα,0 = vj,α for all α ∈ Nn

2r. It suffices to
consider the moments u = (uα,k)(α,k)∈Nn+1

2r
of the measure dφ(x, z) = dδ‖∇gj(x)‖(z)dφj(x), where δ• is the

Dirac measure. Indeed such a vector u is feasible by construction. In fact in this case, an infinite sequence
u = (uα,k)(α,k)∈Nn+1 that satisfies all constraints of (1.58) is unique and is the moment sequence of the
measure dδ‖∇gj(x)‖(z) dφj(x), and so (1.60) holds. However, the weaker constraint |uα,0 − vj,α| ≤ 1/r
allows to handle the practical case of approximate solutions obtained in step 1, and one still obtains the
desired convergence result. In our numerical experiments, one could successfully solve (1.58) after replacing
the inequality |uα,0 − vj,α| ≤ 1/r by the equality uα,0 = vj,α. Note that the former inequality can be
interpreted as a perturbation of the latter equality. In general, such perturbations always occur while using
numerical SDP solvers. We refer the interested reader to [J5], outlined in Section 2.1, for more details
on the problem of interpreting wrong results (due to numerical inaccuracies) observed when solving SDP
relaxations for polynomial optimization on a double precision floating point SDP solver.
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Theorem 1.4.3 states that by solving the hierarchy of SDP (1.58), one may approximate as closely
as desired any finite number of moments of the boundary measure σj. In addition, depending on
whether one maximizes or minimizes the same criterion u0,1, one obtains a monotone sequence of
upper bounds or lower bounds that converges to σj(Ωj). After summing up, this allows to obtain
closer and closer approximations

m

∑
j=1

ρr
min,j ≤ σ(∂Ω) ≤

m

∑
j=1

ρr
max,j

of the mass of ∂Ω (length if n = 2 or area if n = 3).

Discussion

One may also approximate moments of the σj’s by solving a single hierarchy that combines the
constraints of (1.53) and (1.58), that is, by solving the following hierarchy of SDP indexed by r ∈N:

ρr = sup
y,vj ,uj

{ y0 :

s.t. (n + |α|) Ly(xα) =
m

∑
j=1

dj bj Lvj(x
α), |α| ≤ 2r ,

Mr(yB) � Mr(y) � 0 , Mr−rj((bj − gj) y) ≥ 0 ,
Mr(vj) � 0 , Mr−rj((bj − gj) vj) = 0 , j ≤ m ,
Mr−rl ((bl − gl) vj)) � 0 , l 6= j , j ≤ m

uj
α,0 = vj,α, |α| ≤ 2r , j ≤ m ,

Mr(uj) � 0 , Mr−Lj(θj uj) = 0 , j ≤ m ,
Mr−1((M− z2) uj) � 0 , Mr−1(z uj) � 0 , j ≤ m } .

(1.61)

Indeed recall Remark 1.4.3. If y = (yα)α∈N is the moment sequence of λΩ then an infinite sequence
uj = (uj

α,k)(α,k)∈Nn+1 that satisfies all constraints of (1.58), after replacing each inequality |uα,0 −
vj,α| ≤ 1/r by the equality uα,0 − vj,α = 0, for all r ∈ N, is unique and is the moment sequence of
the measure dδ‖∇gj(x)‖(z) dφj(x) on Ωj.

So the SDP (1.61) has always a feasible solution. However it has m additional unknown mo-
ment sequences (uj)j≤m, hence is harder than (1.53) to solve, and the numerical results can be less
accurate. If m is small it still may be an interesting alternative to the two-step procedure. On the
other hand, one looses the upper and lower bounds ρr

max,j and ρr
min,j obtained in (1.58) and (1.59)

respectively.

Numerical experiments

Here, we illustrate our theoretical framework on simple basic compact semialgebraic sets, con-
tained in the unit box B := (−1, 1)n (possibly after proper scaling). Our numerical experiments
are performed with the GLOPTIPOLY [132] library. We used SeDuMi 1.3 [279] to solve the SDP
problems. Our code is available online3.

We first consider the two-dimensional unit disk Ω = {x ∈ R2 : ‖x‖2
2 ≤ 1}, corresponding to

g1 = ‖x‖2
2 and b1 = 1. The moments of the Hausdorff boundary measure of ∂Ω are approximated

after solving SDP (1.53) (first step) and SDP (1.58)-(1.59) (second step), successively. The second
step allows one to compute the absolute error gap between the optimal value ρr

max,1 of SDP (1.58)

3http://homepages.laas.fr/vmagron/boundary.tar.gz

http://homepages.laas.fr/vmagron/boundary.tar.gz
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and ρr
min,1 of SDP (1.59), which respectively provide an upper bound and a lower bound on the

perimeter of the boundary of Ω. To ensure that the moments of the uniform measure on Ω are
approximated with good accuracy, we solve the first step with relatively large value of d, namely
with d = 10. These moment approximations are then used as input in the SDP relaxations related
to the second step. At d = 2, we already obtain ρr

max,1 = 6.28319 & 2π & ρr
min,1 = 6.28317.

Then, we provide results for the same problem Ω = {x ∈ Rn : ‖x‖2
2 ≤ 1} in larger dimensions

n = 3, 4, 5, by solving the first and second steps with the same value of r. Table 1.1 indicates that
the relative error regularly decreases when r increases. These numerical results also show that it
is more difficult to obtain accurate bounds, as the moments of the uniform measure on the unit
ball are approximated with less good precision. The symbol “−” in a column entry means that
the SDP solver runs out of memory when trying to solve the corresponding problem. This is a
consequence of the fact that state-of-the-art SDP solvers are limited to solve relaxations of POP of
modest size (e.g., with n + r ≤ 10 on standard laptops) as these relaxations involve a number of
variables proportional to (n+2r

n ) and matrices of size proportional to (n+r
n ).

Table 1.1: Relative and absolute errors obtained for the mass approximation of the Hausdorff mea-
sure on the unit sphere.

n r 2 4 6 8

3
relative error 11.9 % 1.51 % 0.16 % 0.02 %
absolute error 1.50 0.19 0.02 1.9e-3

4
relative error 38.6 % 7.59 % 1.36 % −
absolute error 7.62 1.50 0.27 −

5
relative error 95.5 % 24.0 % − −
absolute error 25.2 6.31 − −

For comparison purpose, we perform the “reverse” experiment of the first one, namely we
consider the square of length

√
2 given by Ω = {x ∈ R2 : ±x1 ≤ 1√

2
,±x2 ≤ 1√

2
}, contained in

the unit disk B = {x ∈ R2 : ‖x‖2
2 ≤ 1}. Here, the set Ω is defined by four inequality constraints

so SDP (1.53) involves four sequences of variables v1, . . . , v4 instead of a single one. Here, we only

need to perform the first step as ‖∇gj‖ = 1, so rφj =
dσj
‖∇gj‖

= rσj, for each j ∈ [4]. We obtain at

r = 1 a very good approximation ρ1 = 5.6498 for the exact perimeter 4×
√

2 ' 5.6569.
As for the unit disk, we repeat the same experiments on the so-called "TV screen", defined by

Ω = {x ∈ R2 : x4
1 + x4

2 ≤ 1}. The approximate value of the perimeter of the boundary is given
by numerical integration of 2×

∫ 1
−1

4
√

1− t4dt ' 7.0177. In Table 1.2, we display the relative errors
in percentage when approximating the perimeter of the boundary of Ω, namely the mass of the
boundary measure, for increasing values of the relaxation order d. We also display the absolute
error gap between the optimal value ρr

max,1 of SDP (1.58) and ρr
min,1 of SDP (1.59). Table 1.2 indicates

that the quality of the approximations increases significantly when the relaxation order grows. We
also implemented SDP (1.61), i.e., the relaxation corresponding to a single hierarchy. In this case,
the approximation of the perimeter is less accurate as we obtain a relative error of 17.9% for r = 3,
5.98% for r = 4 and 5.65% for r = 5. With higher relaxation orders, we encountered numerical
issues, certainly due to the growing number of SDP constraints and SDP variables.

Eventually, we consider the non-convex two-dimensional “star-shaped” curve, defined to be
the boundary of Ω = {x ∈ R2 : x4

1 + x4
2 − 1.7x2

1x2
2 ≤ 0.2}, displayed in Figure 1.9. Again, using

numerical integration scheme, we obtain an approximate value of the perimeter equal to 7.5055.
By contrast with the two previous examples, Table 1.3 shows that this is slightly more difficult to
obtain accurate approximations for the mass of the boundary measure of this non-convex set, as
we need to compute the fifth order relaxation to get a relative error below 0.5 %.
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Table 1.2: Relative and absolute errors obtained for the mass approximation of the Hausdorff mea-
sure on the boundary of the TV screen.

r 3 4 5
relative error 0.18 % 0.02 % 0.01 %
absolute error 4.37 1.5e-3 1.4e-5

x1

x2

Figure 1.9: The non-convex two-dimensional “star-shaped” curve, given by ∂Ω = {x ∈ R2 :
x4

1 + x4
2 − 1.7x2

1x2
2 = 0.2}.

Table 1.3: Relative and absolute errors obtained when approximating the mass of the Hausdorff
measure on the boundary of a “star-shaped” curve.

r 3 4 5
relative error 1.91% 1.19% 0.49%
absolute error 6.77 0.68 0.25

1.5 Optimization over trace polynomials

The goal of this section is to solve the class of POP with noncommuting variables (e.g. fi-
nite/infinite size matrices) and coefficients being some of their trace products. Applications of
interest arise from quantum theory and quantum information science [224, 241] as well as control
theory [270, 230]. Further motivation relates to the generalized Lax conjecture [193], where the goal
is to obtain computer-assisted proofs based on noncommutative SOS in Clifford algebras [225].
The verification of noncommutative polynomial trace inequalities has also been motivated by a
conjecture formulated by Bessis, Moussa and Villani (BMV) in 1975 [40], which has been recently
proved by Stahl [277] (see also the Lieb and Seiringer reformulation [197]). Further efforts focused
on applications arising from bipartite quantum correlations [104], and matrix factorization ranks
in [103]. In a related analytic direction, there has been recent progress on multivariate generaliza-
tions of the Golden-Thompson inequality and the Araki-Lieb-Thirring inequality [280, 138].

There is a plethora of prior research in quantum information theory involving reformulating
problems as optimization of noncommutative polynomials. One famous application is to char-
acterize the set of quantum correlations. Bell inequalities [31] provide a method to investigate
entanglement, which allows two or more parties to be correlated in a non-classical way, and is
often studied through the set of bipartite quantum correlations. Such correlations consist of the
conditional probabilities that two physically separated parties can generate by performing mea-
surements on a shared entangled state. These conditional probabilities satisfy some inequalities
classically, but violate them in the quantum realm [65].
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In the free noncommutative context (i.e., without traces), a polynomial is positive semidefinite
if and only if it can be written as a sum of Hermitian squares (SOHS) [123, 212]. One can rely on
such SOHS decompositions to perform eigenvalue optimization of noncommutative polynomials
over noncommutative semialgebraic sets, i.e., under noncommutative polynomial inequality con-
straints. The noncommutative analogues of Lasserre’s hierarchy [126, 224, 238, 57, 54] allow one
to approximate as closely as desired the optimal value of such eigenvalue minimization problems.
In [224], Navascués, Pironio and Acín provide a way to compute bounds on the maximal violation
levels of Bell inequalities: they first reformulate the initial problem as an eigenvalue optimization
one and then approximate its solution with a converging hierarchy of SDP, based on the non-
commutative version of Putinar’s Positivstellensatz due to Helton and McCullough [126]. This is
the so-called Navascués-Pironio-Acín (NPA for short) hierarchy and can be viewed as the “eigen-
value” version of Lasserre’s hierarchy. This leads to a hierarchy of upper bounds on the maximum
violation level of Bell inequalities (see also [81, 232]). Further extensions [238, 57, 54] have been
provided to optimize the trace of a given polynomial under positivity constraints. NCSOStools [58,
53] can compute lower bounds on minimal eigenvalues or traces of noncommutative polynomial
objective functions over noncommutative semialgebraic sets.

This work greatly extends these frameworks to the case of optimization problems involving
trace polynomials, i.e., polynomials in symmetric noncommutative variables x1, . . . , xn and traces of
their products. Thus naturally each trace polynomial has an adjoint. A pure trace polynomial is a
trace polynomial that is made only of traces, i.e., has no free variables xj. For instance, the trace of
a trace polynomial is a pure trace polynomial, e.g.,

f = x1x2x2
1 − tr(x2) tr(x1x2) tr(x2

1x2)x2x1,

tr( f ) = tr(x3
1x2)− tr(x2) tr(x1x2)

2 tr(x2
1x2),

f ? = x2
1x2x1 − tr(x2) tr(x1x2) tr(x2

1x2)x1x2.

The variables x1 and x2 can be both quantum physics operators. One important underlying moti-
vation is that trace polynomials are involved in several problems arising from quantum informa-
tion theory. For instance, [93] presents a framework to obtain the limit output states for a large
class of input states having specific sets of parameters. To obtain these limits, one needs to com-
pute bounds for generalized traces of tensors. One way to model such generalized traces is to
consider a reformulation as an optimization problem involving trace polynomials. In this prob-
lem, trace polynomials arise as cost functions but they can also appear in the constraints. Convex
relaxations of trace polynomial problems can be obtained as in the NPA hierarchy: one can asso-
ciate a new variable to each word trace (e.g. tr(x1), tr(x2), tr(x1x2), etc. in the above example),
then incorporate the initial constraints into the semidefinite matrix defined in the NPA hierarchy.
Moreover such noncommuting operators in [241], fulfill causal constraints, which leads to equality
constraints. This results in a so-called scalar extension of the NPA hierarchy, which allows the au-
thors to successfully identify correlations not attainable in the entanglement-swapping scenario.
However, [241] does not provide a proof of convergence for this hierarchy. In [142], the author
focuses on the multilinear case and obtains a characterization of all multilinear equivariant trace
polynomials which are positive on the positive cone. In a closely related work in real algebraic
geometry [155], the first and third author derive several Positivstellensätze for trace polynomials
positive on semialgebraic sets of fixed size matrices. In particular, [155] establishes a Putinar-type
Positivstellensatz stating that any positive polynomial admits a weighted SOHS decomposition
without denominators. In the dimension-free setting, finite von Neumann algebras and their tra-
cial states provide a natural framework for studying tracial polynomial inequalities. This work
characterizes trace polynomials which are positive on tracial semialgebraic sets, where the initial
polynomials and constraints involve freely noncommutative variables and traces, and the evalua-
tions are performed on von Neumann algebras.
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Noncommutative polynomials and trace polynomials

Let us denote by Mk (resp. Sk) the space of all real (resp. symmetric) matrices of order k. The
normalized trace of a matrix A ∈Mk is given by tr A = 1

k ∑k
i=1 ai,i. For a fixed n ∈N, we consider

a finite alphabet x1, . . . , xn and generate all possible words of finite length in these letters. The
empty word is denoted by 1. The resulting set of words is the free monoid 〈x〉, with x = (x1, . . . , xn).
We denote by R〈x〉 the set of real polynomials in noncommutative variables, abbreviated as nc
polynomials. The algebra R〈x〉 is equipped with the involution ? that fixes R ∪ {x1, . . . , xn} point-
wise and reverses words, so that R〈x〉 is the ?-algebra freely generated by n symmetric letters
x1, . . . , xn.

We now introduce some algebraic terminology to deal with the trace, following [244] (see also
[154, 155]). We denote by T the commutative polynomial algebra in infinitely many variables
tr(w) with w ∈ 〈x〉, up to ?-cyclic equivalence, that is, T := R[tr(w) , w ∈ 〈x〉/cyc?]. We also let
T := T〈x〉 be the free T-algebra on x. Elements of T are called pure trace polynomials, and elements of
T are trace polynomials. For example, t = tr(x2

1)− tr(x1)
2 ∈ T and x2

1 − tr(x1)x1 − 2t ∈ T = T〈x1〉.
The involution on T, denoted also by ?, fixes {x1, . . . , xn} ∪ T point-wise, and reverses words from
〈x〉. The set of all symmetric elements of T is defined as Sym T := { f ∈ T : f = f ?}. A linear
functional L : T → R is said to be tracial if L(tr( f )) = L( f ) for all f ∈ T. We also consider the
universal trace map τ defined by

τ : T→ T ,

f 7→ tr( f ) .

A linear functional L : T 7→ R is tracial if and only if L ◦ τ = L. Such an L is determined by
L|T : T→ R being an (arbitrary) linear functional. The functional L is called unital if L(1) = 1 and
is called symmetric if L( f ?) = L( f ), for all f belonging to the domain of L.

Tracial semialgebraic sets and von Neumann algebras

Given S ⊆ Sym T, the matricial tracial semialgebraic set DS associated to S is defined as follows:

DS :=
⋃

k∈N

{A = (A1, . . . , An) ∈ Sn
k : g(A) � 0 for all g ∈ S} . (1.62)

While (1.62) looks like a natural candidate for testing positivity of tracial polynomials, the failure
of Connes’ embedding conjecture [147] hinders the existence of a reasonable Positivstellensatz
for (1.62) by [153]. Instead of just matrices of all finite sizes, one is thus led to include bounded
operators, similarly as in the trace-free setting [126]. Since we deal with tracial constraints, the
considered bounded operators need to admit traces. The natural framework is therefore given by
tracial von Neumann algebras, which we discuss next.

A real von Neumann algebra F [15] is a unital, weakly closed, real, self-adjoint subalgebra
of the (real) algebra of bounded linear operators on a complex Hilbert space, with the property
F ∩ iF = {0} (where i denotes the imaginary unit). We restrict ourselves to separable Hilbert
spaces, implying that all von Neumann algebras have separable preduals. Much of the structure
theory of real von Neumann algebras can be transfered from complex von Neumann algebras
[284, Chapter 5]. Namely, the complexification of a real von Neumann algebra yields a complex
von Neumann algebra with an involutory ∗-antiautomorphism; conversely, the fixed set of an in-
volutory ∗-antiautomorphism on a complex von Neumann algebra is a real von Neumann algebra.
A real von Neumann algebra is finite if in its complexification, every isometry is a unitary. By [284,
Theorem 2.4], a von Neumann algebra is finite if and only if it admits sufficiently many normal
tracial states, which will play an important role in this article.
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A (real) von Neumann algebra is a factor if its center consists of only the (real) scalar operators.
By [284, Theorem 2.6], a factor is finite if and only if it admits a faithful normal tracial state; in this
case, such a state is unique, and is called the trace of the factor. Finally, a II1-factor is an infinite-
dimensional finite factor (other finite factors are of type In, which are n × n complex matrices in
the complex setting, and n× n real matrices or n

2 ×
n
2 quaternion matrices in the real setting). In

this article we consider positivity on operator semialgebraic sets. These are defined as follows (cf.
[53, Definition 1.59]):

Definition 1.5.1 A tracial pair (F , τ) consists of a real finite von Neumann algebra F and a faithful
normal tracial state τ on F [284, Chapter 5].

Given S ⊆ Sym T let DF ,τ
S be the set of all self-adjoint tuples X = (X1, . . . , Xn) ∈ Fn making g(X)

a positive semidefinite operator for every g ∈ S; here tr is evaluated as τ. The von Neumann semialgebraic
set DvN

S generated by S is defined as
DvN

S :=
⋃

(F ,τ)

DF ,τ
S ,

where the union is over all tracial pairs (F , τ). Analogously, we define

DII1
S :=

⋃
F
DFS ,

where the union is over all II1-factors (which come equipped with unique traces).

Note that finiteness of S is not needed at this stage. Unlike in the free case [124], these tracial
semialgebraic sets are closed neither under direct sums nor reducing subspace compressions; for
example, if g = tr(x1) tr(x2), then

g(3, 1) > 0 and g(−1,−2) > 0, but g(3⊕−1, 1⊕−2) < 0;

g(−2⊕ 1, 1⊕−2) > 0, but g(−2, 1) < 0 and g(1,−2) < 0.

To sidestep this technical problem we make use of the following well-known fact that is all but
stated in [85, Theorem 2.5].

Proposition 1.5.2 Every tracial pair embeds into a II1-factor.

Non-cyclic Positivstellensatz for pure trace polynomials

In this section we provide our first Positivstellensatz, Theorem 1.5.1, for pure trace polynomials
based on quadratic modules from real algebraic geometry [210]. Given an archimedean quadratic
moduleM⊆ T (in the usual commutative sense, meaning that for each f ∈ T there is N > 0 such
that N ± f ∈ M), we consider the real points of the real spectrum SperM T, namely the set χM
defined by

χM := {ϕ : T→ R | ϕ homomorphism, ϕ(M) ⊆ R≥0, ϕ(1) = 1}. (1.63)

The next proposition is the well-known Kadison-Dubois representation theorem, see, e.g., [210,
Theorem 5.4.4].

Proposition 1.5.3 LetM⊆ T be an archimedean quadratic module. Then, for all a ∈ T, one has

∀ϕ ∈ χM ϕ(a) ≥ 0 ⇔ ∀ε > 0 a + ε ∈ M.

A homomorphism ϕ→ R is determined by the “tracial moments” ϕ(tr(w)) for w ∈ 〈x〉. In this
sense, the following variant of [113, Theorem 1.3] is a solution of the tracial moment problem. In
the given formulation, it is the dimension-free analog of of the extension theorem [155, Theorem
4.8].
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Proposition 1.5.4 Let ϕ : T→ R be a homomorphism. Then there are a tracial pair (F , τ) and X = X∗ ∈
Fn such that ϕ(a) = a(X) for all a ∈ T if and only if the following holds:

(a) ϕ(tr(pp?)) ≥ 0 for all p ∈ R〈x〉;

(b) lim infk→∞
2k
√

ϕ(tr(x2k
j )) < ∞ for j ∈ [n].

Definition 1.5.5 Given S ⊆ T and N > 0 let

S(N) := S ∪ {tr(pp?) | p ∈ R〈x〉} ∪ {Nk − tr(x2k
j ) | 1 ≤ j ≤ n, k ∈N} ⊆ T . (1.64)

For S ⊆ Sym T let

S[N] := S ∪ {N − x2
j | j ∈ [n]} ⊂ T. (1.65)

Lemma 1.5.6 The quadratic moduleM(S(N)) ⊆ T is archimedean for every S, N.

We are now ready to prove our first theorem, the purely tracial analog of the noncommutative
Helton-McCullough archimedean Positivstellensatz [126].

Theorem 1.5.1 Let S ⊆ T and N > 0 be given. Then for a ∈ T the following are equivalent:

(i) a(X) ≥ 0 for all X ∈ DvN
S[N]

;

(ii) a(X) ≥ 0 for all X ∈ DII1
S[N]

;

(iii) a + ε ∈ M(S(N)) for all ε > 0.

SinceM(S(N1)) ⊆M(S(N2)) for N1 ≥ N2, we obtain the following consequence.

Corollary 1.5.7 Let S ⊂ T and a ∈ T. The following are equivalent:

(i) a(X) ≥ 0 for all X ∈ DvN
S ;

(ii) a(X) ≥ 0 for all X ∈ DII1
S ;

(iii) a + ε ∈ M(S(N)) for all ε > 0 and N ∈N.

Cyclic Positivstellensatz for trace polynomials

In this section we prove a Positivstellensatz for trace polynomials that is less inspired by the com-
mutative theory than the one from above and relies more on the tracial structure of trace poly-
nomials. First we introduce the notion of a cyclic quadratic module. A subsetMcyc ⊆ Sym T is
called a cyclic quadratic module if

1 ∈ Mcyc, Mcyc +Mcyc ⊆Mcyc, a?Mcyca ⊆Mcyc ∀a ∈ T, tr(Mcyc) ⊂Mcyc.

Given S ⊂ T letMcyc(S) be the cyclic quadratic module generated by S, i.e., the smallest cyclic
quadratic module in T containing S. A cyclic quadratic moduleMcyc is called archimedean if for
all a ∈ Sym T there exists N > 0 such that N − a ∈ Mcyc. We start with a few preliminary results.

Lemma 1.5.8 Let S ⊂ T.
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(1) Elements ofMcyc(∅) are precisely sums of

tr(h1h?1) · · · tr(hlh?l )h0h?0

for hi ∈ T.

(2) Elements ofMcyc(S) are precisely sums of

q1, h1g1h?1 , tr(h2g2h?2)q2

for hi ∈ T, qi ∈ Mcyc(∅), gi ∈ S.

(3) Elements of tr(Mcyc(S)) =Mcyc(S) ∩ T are precisely sums of

tr(h1h?1) · · · tr(hlh?l ) tr(h0gh?0)

for hi ∈ T and g ∈ S.

Proposition 1.5.9 A cyclic quadratic moduleMcyc is archimedean if and only if there exists N ∈N such
that N −∑n

j=1 x2
j ∈ Mcyc.

Proposition 1.5.10 Let (F , τ) be a tracial pair and X = X∗ ∈ F . The following are equivalent:

(i) X � 0;

(ii) τ(XY) ≥ 0 for all positive semidefinite contractions Y ∈ F ;

(iii) τ(Xp(X)2) ≥ 0 for all p ∈ R[t].

The following is the cyclic version of the Helton-McCullough theorem [126]. Note that while the
constraints in Theorem 1.5.2 are arbitrary trace polynomials, the objective function needs to be a
pure trace polynomial. A direct analog for non-pure trace objective polynomials fails, see Example
1.5.1 below.

Theorem 1.5.2 Let Mcyc ⊆ Sym T be an archimedean cyclic quadratic module and a ∈ T. The
following are equivalent:

(i) a(X) ≥ 0 for all X ∈ DvN
Mcyc ;

(ii) a(X) ≥ 0 for all X ∈ DII1
Mcyc ;

(iii) a + ε ∈ Mcyc for all ε > 0.

For the reader unfamiliar with real algebraic geometry and noncommutative moment prob-
lems, we refer to the appendix of [R3] for a self-contained proof of Theorem 1.5.2 relying only on
convex separation results and basic properties of von Neumann algebras.

Given a set of symmetric polynomials S ⊂ R〈x〉 letM(S) denote the (free) quadratic module
generated by S [53, Section 1.4]. Hence M(S) is the smallest set that contains S ∪ {1}, is closed
under addition, and f ∈ M(S) implies h f h? ∈ M(S) for every h ∈ R〈x〉.

Lemma 1.5.11 Let S1 ⊂ T and S2 ⊂ R〈x〉. If g(0) ≥ 0 for all g ∈ S1, then

Mcyc(S1 ∪ S2) ∩R〈x〉 =M(S2).
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Example 1.5.1 Let n = 1. LetMcyc be the archimedean cyclic quadratic module in Sym T generated by

{1− x2
1} ∪ {tr(x1 p2(x1)) | p ∈ R[t]}.

By Proposition 1.5.10, X1 ∈ DF ,τ
Mcyc implies X1 � 0 for any tracial pair (F , τ). On the other hand, if

ε ∈ [0, 1) then x1 + ε /∈ M({1− x2
1}) and therefore x1 + ε /∈ Mcyc by Lemma 1.5.11.

To mitigate the absence of a non-pure analog of Theorem 1.5.2, we require the following tech-
nical lemma.

Lemma 1.5.12 Let ε > 0 and n = d1/εe. If g2 = ε
2 (t− 1)2n and g1 = g2 + t, then

(a) g1 is positive on R, and thus a sum of (two) squares in R[t];

(b) ε
2 − g2 is nonnegative on [0, 1], and thus an element ofM({t, 1− t}).

Although the tracial version of the Helton-McCullough Positivstellensatz [126] fails, we have the
following positivity certificate for non-pure trace polynomials.

Corollary 1.5.13 LetMcyc ⊆ Sym T be an archimedean cyclic quadratic module and a ∈ Sym T. The
following are equivalent:

(i) a(X) � 0 for all X ∈ DvN
Mcyc ;

(ii) a(X) � 0 for all X ∈ DII1
Mcyc ;

(iii) for every ε > 0, there exist sums of (two) squares g1, g2 ∈ R[t] such that

a = g1(a)− g2(a), ε− tr(g2(a)) ∈ Mcyc; (1.66)

(iv) for every ε > 0, there exist sums of (two) squares g1, g2 ∈ R[t] and q ∈ Mcyc such that

tr(ay) + ε = tr(g1(a)y + g2(a)(1− y)) + q (1.67)

where y is an auxiliary symmetric free variable. That is, tr(ay) + ε is in the cyclic quadratic module
generated byMcyc, y, 1− y (inside the free trace ring generated by x, y).

Towards SDP hierarchies for trace optimization

Here, we apply Theorem 1.5.1 to optimization of pure trace objective functions subject to (pure)
trace constraints and a norm boundedness condition. Doing so, we obtain later on a converg-
ing hierarchy of SDP relaxations. When flatness occurs in this hierarchy, one can extract a finite-
dimensional minimizer. Finally, we apply Proposition 1.5.10 to handle the more general case of
trace polynomials subject to trace constraints and a norm boundedness condition.

We define the set of tracial words (abbreviated as T-words) by {∏i tr(ui)v | ui, v ∈ 〈x〉}, which
is a subset of T. The set of pure trace words (abbreviated as T-words) is the subset of T-words
belonging to T. For instance, tr(x1)

2 is a T-word and tr(x1)x1 is a T-word. For ui, v ∈ 〈x〉, we
define the tracial degree of ∏i tr(ui)v as the sum of the degrees of the ui and the degree of v. The
tracial degree of a trace polynomial f ∈ T is the length of the longest tracial word involved in f up
to cyclic equivalence. Let us denote by WT

r (resp. WT
r ) the vector of all T-words (resp. T-words)

w.r.t. to the lexicographic order. Finally, let Tr (resp. Tr) denote the span of entries of WT
r (resp.

WT
r ) in T (resp. T), and let σT(n, r) (resp. σT(n, r)) the dimension of Tr (resp. Tr), that is, the length

of WT
r (resp. WT

r ).
We introduce the notion of trace Hankel and (pure) trace localizing matrices, which can be

viewed as tracial analogs of the noncommutative localizing and Hankel matrices (see, e.g., [53,
Lemma 1.44]). Given g ∈ T, let us denote rg := ddeg g/2e. To s and a linear functional L : T2r → R,
one associates the following three matrices:
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(a) the tracial Hankel matrix MT
r (L) is the symmetric matrix of size σT(n, r), indexed by T-words

u, v ∈ Tr, with (MT
r (L))u,v = L(tr(u?v));

(b) if g ∈ T, then the pure trace localizing matrix MT
r−rg

(g L) is the symmetric matrix of size

σT(n, r− rg), indexed by T-words u, v ∈ Tr−rg , with (MT
r−rg

(g L))u,v = L(uvg);

(c) the trace localizing matrix MT
r−rg

(g L) is the symmetric matrix of size σT(n, r− rg), indexed by
T-words u, v ∈ Tr−rg , with (MT

r−rg
(g L))u,v = L(tr(u?gv)).

Definition 1.5.14 A matrix M indexed by T-words of degree ≤ r satisfies the tracial Hankel condition if
and only if

Mu,v = Mw,z whenever tr(u?v) = tr(w?z) . (1.68)

Remark 1.5.1 Linear functionals on T2r and matrices from SσT(n,r) satisfying the tracial Hankel condition
(1.68) are in bijective correspondence. To a linear functional L : T2r → R, one can assign the matrix
MT

r (L), defined by (MT
r (L))u,v = L(tr(u?v)), satisfying the tracial Hankel condition, and vice versa.

One can relate the positivity of L and the positive semidefiniteness of its tracial Hankel matrix
MT

r (L). The proof of the following lemma is straightforward and analogous to its free counterpart
[53, Lemma 1.44].

Lemma 1.5.15 Given a linear functional L : T2r → R, one has L(tr( f ? f )) ≥ 0 for all f ∈ Tr, if and only
if, MT

r (L) � 0. Given g ∈ T, one has L(a2g) ≥ 0 for all a ∈ Tr−rg , if and only if, MT
r−rg

(g L) � 0. Given
g ∈ T, one has L(tr( f ? g f )) ≥ 0 for all f ∈ Tr−rg , if and only if, MT

r−rg
(g L) � 0.

SDP hierarchy for pure trace polynomial optimization

For a finite S ⊆ T, N > 0 and r ∈N define

M(S(N))r :=

{
K

∑
i=1

a2
i gi | K ∈N, ai ∈ T, gi ∈ S(N), deg(a2

i gi) ≤ 2r

}
. (1.69)

Given b ∈ T and p ∈ R〈x〉, note that b2 tr(pp?) = tr((bp)(bp)?). Therefore, elements ofM(S(N))r
correspond to sums of elements of the form

a2
1g , a2

2
(

Nk − tr(x2k
j )
)

, tr( f f ?) , (1.70)

which are of degree at most 2r, for ai ∈ T, g ∈ S, 1 ≤ j ≤ n, k ∈N, f ∈ T.
Given a pure trace polynomial a ∈ T, one can then useM(S(N))r for r = 1, 2, . . . to design a

hierarchy of semidefinite relaxations for minimizing a ∈ T over the von Neumann semialgebraic
sets DvN

S[N]
or DII1

S[N]
.

Let us define amin and aII1
min as follows:

amin := inf{a(A) | A ∈ DS[N]} , (1.71)

aII1
min := inf{a(A) | A ∈ DII1

S[N]
} = inf{a(A) | A ∈ DvN

S[N]} . (1.72)

Here the equality in (1.72) holds by Proposition 1.5.2. Since DS[N] is a subset of DvN
S[N]

, one has

aII1
min ≤ amin. Let rmin := max{rg : g ∈ {a} ∪ S(N)}. Then, one can under-approximate aII1

min via the
following hierarchy of SDP programs, indexed by r ≥ rmin:

ar
min = sup{b | a− b ∈ M(S(N))r} . (1.73)



46 Chapter 1. Modeling with polynomial optimization

Lemma 1.5.16 The dual of (1.73) is the following SDP problem:

inf
L:T2r→R
L linear

L(a)

s.t. (MT
r (L))u,v = (MT

r (L))w,z , whenever tr(u?v) = tr(w?z) ,

(MT
r (L))1,1 = 1 ,

MT
r (L) � 0 ,

MT
r−rg(g L) � 0 , for all g ∈ S ,

MT
r−k((Nk − tr(x2k

j )) L) � 0 , for all j ∈ [n] , k ≤ r .

(1.74)

Before proving that SDP (1.73) satisfies strong duality, we recall that an ε-neighborhood of 0 is the
set Nε defined for a given ε > 0 by:

Nε :=
⋃

k∈N

{
A := (A1, . . . , An) ∈ Sn

k : ε2 −
n

∑
i=1

A2
i � 0

}
.

Lemma 1.5.17 If f ∈ T vanishes on an ε-neighborhood of 0, then f = 0.

Theorem 1.5.3 Let S[N] be as in (1.65) and suppose that DS contains an ε-neighborhood of 0. Then
SDP (1.73) satisfies strong duality, i.e., there is no duality gap between SDP (1.74) and SDP (1.73).

Corollary 1.5.18 The hierarchy of SDP programs (1.73) provides a sequence of lower bounds (ar
min)r≥rmin

monotonically converging to aII1
min.

Finite-dimensional GNS representations and minimizer extraction

In the commutative case, Curto and Fialkow provided sufficient conditions for linear functionals
on the set of degree 2r polynomials to be represented by integration with respect to a nonnegative
measure. The main sufficient condition to guarantee such a representation is flatness (see Defini-
tion 1.5.19) of the corresponding Hankel matrix. This notion was exploited in a noncommutative
setting for the first time by McCullough [212] in his proof of the Helton-McCullough Sums of
Squares theorem, cf. [212, Lemma 2.2] and relies on the GNS construction. In the pure noncommu-
tative case [238] (see also [9, Chapter 21] and [53, Theorem 1.69]) provides a first noncommutative
variant for the eigenvalue problem. See [54] for a similar construction for the trace problem.

The goal of this section is to derive an algorithm to extract minimizers of pure trace POP. The
forthcoming statements can be seen as “pure trace” variants of the above mentioned results.

Definition 1.5.19 Suppose L : T2r+2δ → R is a tracial linear functional with restriction L̃ : T2r → R.
We associate to L and L̃ the Hankel matrices MT

r+δ(L) and MT
r (L̃) respectively, and get the block form

MT
r+δ(L) =

[
MT

r (L̃) B
BT C

]
.

We say that L is δ-flat or that L is a δ-flat extension of L̃, if MT
r+δ(L) is flat over MT

r (L̃), i.e., if
rank MT

r+δ(L) = rank MT
r (L̃).
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Proposition 1.5.20 Given S∪ {a} ⊆ T2r let S[N] be as in (1.65). Set δ := max{ddeg s/2e : g ∈ S[N]}.
Assume that L is a δ-flat extreme optimal solution of SDP (1.74). Then, one has

ad+δ
min = L(a) = aII1

min . (1.75)

Moreover, there are finitely many n-tuples A(j) of symmetric matrices, and positive scalars λj with ∑j λj =

1, such that aII1
min = a(

⊕
j A(j)), where the tracial state is given by

w

⊕
j

A(j)

 7→∑
j

λj tr(w(A(j)))

for w ∈ 〈x〉.

Remark 1.5.2 Proposition 1.5.20 guarantees that in a presence of a flat extension, there is an optimizer for
aII1

min arising from a finite-dimensional tracial pair (F , τ); furthermore, the dimensions of A(j) and the scalars
λj explicitly determine F and τ, respectively. It is sensible to ask whether amin = aII1

min, that is, whether the
optimum can be approximated arbitrarily well with a finite-dimensional factor, i.e., fromDS[N]. If there exist

sequences of positive rational numbers (λ(m)
j )m such that ∑j λ

(m)
j = 1 for all m ∈ N, limm λ

(m)
j = λj for

all j, and
⊕

j A(j) ∈ DvN
S[N]

whenever the tracial state is given by

w

⊕
j

A(j)

 7→∑
j

λ
(m)
j tr(w(A(j))) for w ∈ 〈x〉, (1.76)

then amin = aII1
min. Indeed, a finite-dimensional tracial pair with the rational-coefficient tracial state as in

(1.76) embeds into a finite-dimensional factor. However, in general amin 6= aII1
min even if DS contains an

ε-neighborhood of 0 and aII1
min admits a finite-dimensional optimizer; see the following example.

Example 1.5.2 Fix n = 1, i.e., T = R[tr(xi
1) | i ∈N]. For k ∈N let

gk := 1 + (
√

2 + 1)2 −
(

tr
(
(x2

1 − 2x1)
2
)
+
(√

2− tr(x1)
)2
)

tr(x2k
1 ) ∈ T .

Let X be a symmetric matrix. Then X2 6= 2X or tr(X) 6=
√

2. Furthermore, if X is a contraction, then

0 � 2X− X2 � I, |
√

2− tr(X)| ≤
√

2 + 1, tr(X2k) ≤ 1 for all k ∈N.

On the other hand, if X is not a contraction, then there is k ∈N such that

tr(X2k) >
1 + (

√
2 + 1)2

tr ((X2 − 2X)2) +
(√

2− tr(X)
)2 .

Let S = {gk | k ∈ N} and a = − tr(x1). Then DS = D1−x2
1

by the above observations, and consequently

amin = −1. On the other hand, consider the tracial pair (R2, τ) with τ(ξ1, ξ2) = 1√
2

ξ1 + (1− 1√
2
)ξ2.

Then Y = (2, 0) ∈ R2 satisfies Y2 = 2Y and τ(Y) =
√

2, so Y ∈ DvN
S . Therefore aII1

min ≤ a(Y) = −
√

2.
Eventually, let us prove that this finite-dimensional Y is a minimizer for aII1

min. Take any operator X inDS. If
X2 6= 2X or tr(X) 6=

√
2, then tr(X) ≤ 1, as otherwise tr(X2k) > 1 for all k, which would contradict being

in DS. Of course the alternative is that X2 = 2X and tr(X) =
√

2. So this means that for all X ∈ DS,
either tr(X) ≤ 1 or tr(X) =

√
2, which proves that aII1

min = −
√

2.
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Require: an extreme δ-flat linear L : T2r+2δ → R solution of (1.74).
Ensure: (A(1), . . . , A(k)) and (λ1, . . . , λk).

1: Let us consider the set of T-words {wi} of degree at most6 r, such that C , the matrix consisting
of columns of M(L) indexed by the words w1, . . . , wr, has full rank. Assume w1 = 1.

2: Let M(L̂) be the principal submatrix of M(L) of columns and rows indexed by w1, . . . , wr.
3: Let C be the Cholesky factor of M(L̂), i.e., CTC = M(L̂).
4: for i ∈ [n] do
5: Let Ci be the matrix consisting of columns of M(L) indexed by xiw1, . . . , xiwr.
6: Compute Āi as a solution of the system C Āi = Ci.
7: Let Ai = CĀiC−1.
8: end for
9: Compute v = Ce1. . e1 = (1, 0, . . . , 0)

10: Let A be the finite matrix algebra generated by A1, . . . , An. Compute an orthogonal matrix Q
performing the simultaneous block-diagonalization of A1, . . . , An by [219, Algorithm 4.1]. .
QTAQ = {Diag(B(1), . . . , B(k)) | B(i) ∈ Ai} where A1, . . . ,Ak are simple ?-algebras over R

11: Compute QT AiQ = Diag(A(1)
i , . . . , A(k)

i ) for each i ∈ [n], and QTv = ((v1)T , . . . , (vk)T)T .

12: Compute λj = ‖vj‖, and A(j) = (A(j)
1 , . . . , A(j)

n ), for all j ∈ [k].

Figure 1.10: PureTraceGNS.

The proof of Proposition 1.5.20, given in [R3], leads to the following procedure for minimizer
extraction. The correctness of the procedure PureTraceGNS follows from the proof of Proposi-
tion 1.5.20.

Corollary 1.5.21 The procedure PureTraceGNS described in Figure 1.10 is sound and returns the n-tuples
A(j) and λj from Proposition 1.5.20.

Remark 1.5.3 Note that when flatness occurs, Proposition 1.5.20 guarantees convergence (actually stabi-
lization) of our SDP hierarchy even if there is no ε-neighborhood of 0 in the feasible set. Moreover, while a
flat extension is evasive from a numerical point of view, an “almost” flat extension, which is a much more
viable output of an SDP solver, is likely sufficient [J5].

SDP hierarchy for trace polynomial optimization

Here we describe the reduction from the general trace setting to the pure trace setting.
Let S ⊂ Sym T and N > 0. Denote

S̃ = {tr( f g f ?) | g ∈ S, f ∈ T} ⊂ T . (1.77)

Proposition 1.5.22 Let S ⊂ Sym T, N > 0, and let S̃ be as in (1.77). Then DF ,τ
S̃[N]

= DF ,τ
S[N]

for any tracial

pair (F , τ). Furthermore, the following are equivalent for a ∈ T:

(i) a(X) ≥ 0 for all X ∈ DvN
S[N]

;

(ii) a(X) ≥ 0 for all X ∈ DII1
S[N]

;

(iii) a + ε ∈ M(S̃(N)) for all ε > 0.
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For all r ∈N, one has

M(S̃(N))r =

{
K

∑
i=1

a2
i gi | K ∈N, ai ∈ T, gi ∈ S̃(N), deg(a2

i gi) ≤ 2r

}
.

Therefore, elements ofM(S̃(N))r corresponds to sums of elements of the form

tr( f1 g f ?1 ) , a2(Nk − tr(x2k
j )
)

, tr( f2 f ?2 ) , (1.78)

which are of degree at most 2r, for fi ∈ T, a ∈ T, g ∈ S, 1 ≤ j ≤ n, k ∈N.
As before, given a ∈ T, one can under-approximate aII1

min via the following hierarchy of SDP
programs, indexed by r ≥ rmin:

ãr
min = sup{b | a− b ∈ M(S̃(N))r} . (1.79)

The dual of (1.79) is obtained by replacing the pure trace localizing matrix constraints in SDP (1.74)
by trace localizing matrix constraints associated to each g ∈ S:

inf
L:T2r→R
L linear

L(a)

s.t. (MT
r (L))u,v = (MT

r (L))w,z , whenever tr(u?v) = tr(w?z) ,

(MT
r (L))1,1 = 1 ,

MT
r (L) � 0 ,

MT
r−rg(g L) � 0 , for all g ∈ S ,

MT
r−k((Nk − tr(x2k

j )) L) � 0 , for all j ∈ [n] , k ≤ d .

(1.80)

As in Theorem 1.5.3, one can prove that if DS contains an ε-neighborhood of 0, then there is no
duality gap between SDP (1.80) and SDP (1.79). In addition, the hierarchy of SDP programs (1.79)
provides a sequence of lower bounds monotonically converging to aII1

min.
Finally, the next result provides an alternative characterization of (not necessarily pure) trace

polynomials positive on tracial semialgebraic sets (cf. Corollary 1.5.13).

Proposition 1.5.23 Let S ⊂ Sym T, N > 0, and let S̃ be as in (1.77). For a ∈ Sym T, the following are
equivalent:

(i) a(X) � 0 for all X ∈ DvN
S[N]

;

(ii) a(X) � 0 for all X ∈ DII1
S[N]

;

(iii) for every ε > 0, there exist sums of (two) squares g1, g2 ∈ R[t] such that

a = g1(a)− g2(a), ε− tr(g2(a)) ∈ M(S̃(N)); (1.81)

(iv) for every ε > 0, there exist sums of (two) squares g1, g2 ∈ R[t] and q ∈ M(S̃(N)) such that

tr(ay) + ε = tr(g1(a)y + g2(a)(1− y)) + q (1.82)

where y is an auxiliary symmetric free variable.

Note that Proposition 1.5.23 allows one to certify that a given trace polynomial is positive
semidefinite on a tracial semialgebraic set. Constructing a hierarchy of SDP programs converg-
ing to the minimal eigenvalue of trace polynomials is postponed for future work. As Example
1.5.1 indicates, it cannot be simply derived from our scheme for the pure trace polynomial ob-
jective function; namely, the norm of an operator cannot be uniformly estimated with traces in a
dimension-free way.
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A toy example

Consider the optimization problem

inf τ(X1X2X3) + τ(X1X2)τ(X3)

s.t. X2
j = X∗j = Xj for j = 1, 2, 3.

(1.83)

over triples (X1, X2, X3) of operators in tracial pairs (F , τ). Note that if F is a commuta-
tive von Neumann algebra with a tracial state τ and X1, X2, X3 ∈ F are projections, then
τ(X1X2X3), τ(X1X2), τ(X3) ≥ 0. Hence if (1.83) were restricted only to commutative von Neu-
mann algebras, the solution would be 0. On the other hand, the projections

X1 =

(
1 0
0 0

)
, X2 =

(
1
16

√
15

16√
15

16
15
16

)
, X3 =

(
3
8 −

√
15
8

−
√

15
8

5
8

)
give

tr(X1X2X3) + tr(X1X2) tr(X3) = −
1
32

.

Below we show that − 1
32 is actually the solution of (1.83).

Let n = 3, a = tr(x1x2x3) + tr(x1x2) tr(x3) and S = {x2
j − xj, xj − x2

j : j = 1, 2, 3}. The solution
of (1.83) equals limn→∞ ǎr

min, where ǎr
min is the solution of (1.74) for r ≥ 2. In this particular

example, the constraints can be used to vastly simplify (1.74). Namely, it suffices to consider only
tracial words without consecutive repetitions of xj; furthermore, the last two lines in (1.74) are then
superfluous. To state this concretely, let us introduce some auxiliary notation.

A T-word is reduced if no proper powers of x1, x2, x3 appear in it. To each T-word w we can
assign the reduced T-word ρ(w) by repeatedly replacing x2

j with xj. Let Wρ
r be the vector of all

reduced T-words of tracial degree at most r, and let Rr be the span of entries of Wρ
r . Given a

linear functional L : R2r → R, the reduced tracial Hankel matrix Mρ
r (L) is indexed by Wρ

r and
(Mρ

r (L))u,v = L(tr(ρ(u∗v))). Then ǎr
min is the solution of the SDP

inf
L:R2r→R
L linear

L(a)

s.t. (Mρ
r (L))u,v = (Mρ

r (L))w,z , whenever tr(u?v) = tr(w?z) ,

(Mρ
r (L))1,1 = 1 ,

Mρ
r (L) � 0

(1.84)

We start with r = 2. The matrix Mρ
2(L) is indexed by reduced tracial words

1, x1, x2, x3, tr(x1), tr(x2), tr(x3),

x1x2, x2x1, x1x3, x3x1, x2x3, x3x2, tr(x1x2), tr(x1x3), tr(x2x3),

tr(x1)x1, tr(x1)x2, tr(x1)x3, tr(x2)x1, tr(x2)x2, tr(x2)x3, tr(x3)x1, tr(x3)x2, tr(x3)x3,

tr(x1)
2, tr(x2)

2, tr(x3)
2, tr(x1) tr(x2), tr(x1) tr(x3), tr(x2) tr(x3).

The SDP (1.84) minimizes over 31× 31 positive semidefinite matrices subject to 881 linear equa-
tions in their entries. By solving it we get ǎ2

min = −0.0467.
In the next step we have r = 3, and Mρ

3(L) is a 108× 108 matrix with 11270 linear relations.
Now the solution of (1.84) is ǎ3

min = −0.0312, which up to floating point precision agrees with
− 1

32 . Since ǎ3
min is a lower bound for the solution of (1.83) and is attained by the 2× 2 projections

above, we conclude that − 1
32 is the solution of (1.83). While the SDPs themselves were solved

using SeDuMi, the sparse input matrices were construed using Mathematica.
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Chapter 1 was mostly dedicated to the modeling of various problems with moment-SOS hi-
erarchies. We already illustrated the ability of such hierarchies to solve concrete instances with
numerical, thus “inexact”, SDP solvers. We will now focus on certified or “exact” optimization.
In general, certified algorithms provide a way to ensure the safety of several systems in engineer-
ing sciences, program analysis as well as cyber-physical critical components. Since these systems
often involve nonlinear functions, such as polynomials, it is highly desirable to design certified
polynomial optimization schemes and to be able to interpret the behaviors of numerical solvers
implementing these schemes.

• In Section 2.1, we interpret some wrong results (due to numerical inaccuracies) already ob-
served when solving SDP relaxations for polynomial optimization on a double precision
floating point SDP solver. It turns out that this behavior can be explained and justified sat-
isfactorily by a relatively simple paradigm. In such a situation, the SDP solver (and not the
user) performs some “robust optimization” without being told to do so. A mathematical
rationale behind this “autonomous” behavior is described.

• Then, we describe, analyze and compare both from the theoretical and practical points of
view, several algorithms computing weighted sums of squares decomposition for univariate
and multivariate polynomials with rational coefficients, respectively in Section 2.2 and Sec-
tion 2.3. In the univariate case, the first algorithm, developed by Schweighofer [263], relies
on real root isolation, quadratic approximations of positive polynomials and square-free de-
composition but its complexity was not analyzed. We provide bit complexity estimates, both
on runtime and output size of this algorithm. They are exponential in the degree of the input
univariate polynomial and linear in the maximum bitsize of its complexity. This analysis is
obtained using quantifier elimination and root isolation bounds. The second univariate al-
gorithm, due to Chevillard, Harrison, Joldes and Lauter [61], relies on complex root isolation
and square-free decomposition and has been introduced for certifying positiveness of poly-
nomials in the context of computer arithmetics. Again, its complexity was not analyzed. We
provide bit complexity estimates, both on runtime and output size of this algorithm, which
are polynomial in the degree of the input polynomial and linear in the maximum bitsize of
its complexity. This analysis is obtained using Vieta’s formula and root isolation bounds.
We report on our implementations of both algorithms. While the second algorithm is, as ex-
pected from the complexity result, more efficient on most of examples, we exhibit families of
non-negative polynomials for which the first algorithm is better. Then, we provide a hybrid
numeric-symbolic algorithm computing exact rational SOS decompositions for polynomials
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lying in the interior of the SOS cone. It computes an approximate SOS decomposition for a
perturbation of the input polynomial with an arbitrary-precision SDP solver. An exact SOS
decomposition is obtained thanks to the perturbation terms. We prove that bit complexity
estimates on output size and runtime are both polynomial in the degree of the input poly-
nomial and simply exponential in the number of variables. Next, we apply this algorithm to
compute exact Reznick and Putinar’s representations for positive definite forms and positive
polynomials over basic compact semialgebraic sets, respectively. We also compare the imple-
mentation of our algorithms with existing methods in computer algebra including cylindrical
algebraic decomposition and critical point method.

• In Section 2.4, we rely on recently developed alternative methods to obtain nonnegativity
certificates in a potentially cheaper way for sparse input polynomials with rational coef-
ficients. We start to provide two hybrid numeric-symbolic optimization algorithms, com-
puting exact sum of nonnegative circuits (SONC) and sum of arithmetic-geometric-mean-
exponentials (SAGE) decompositions. Moreover, we provide a hybrid numeric-symbolic de-
cision algorithm for polynomials lying in the interior of the SAGE cone. Each framework,
inspired by previous contributions of Parrilo and Peyrl [237], is a rounding-projection pro-
cedure. For a polynomial lying in the interior of the SAGE cone, we prove that the decision
algorithm terminates within a number of arithmetic operations, which is polynomial in the
degree and number of terms of the input, and singly exponential in the number of variables.
We also provide experimental comparisons regarding the implementation of the two opti-
mization algorithms.

These contributions are in collaboration with researchers working in polynomial optimiza-
tion: J.-B. Lasserre, as well as experts at the intersection of real algebraic geometry and com-
puter algebra: M. Schweighofer (Professor, University of Konstanz) M. Safey El Din (Professor,
LIP6/Sorbonne Université), T. de Wolff (Assistant Professor, TU Braunschweig) and his former
PhD student H. Seidler (TU Berlin).

2.1 Two-player games between polynomial optimizers and SDP
solvers

Wrong results (due to numerical inaccuracies) in some output results from SDP solvers have been
observed in quite different applications, and notably in recent applications of the moment-SOS
hierarchy for solving POP, see e.g., [298, 297]. In fact this particular application has even become
a source of illustrating examples for potential pathological behavior of SDP solvers [233]. An in-
tuitive mathematical rationale for the wrong results has been already provided informally in [176]
and [223], but does not yield a satisfactory picture for the whole process.

An immediate and irrefutable negative conclusion is that double precision floating point SDP
solvers are not robust and cannot be trusted as they sometimes provide wrong results in these
so-called “pathological” cases. The present section is an attempt to provide a different and more
positive viewpoint around the interpretation of such inaccuracies in SDP solvers, at least when
applying the moment-SOS hierarchy of semidefinite relaxations in polynomial optimization as
described in [180].

We claim that in such a situation, in fact the floating point SDP solver, and not the user, is pre-
cisely doing some robust optimization, without being told to do so. It solves a “max−min" problem
in a two-player zero-sum game where the solver is the leader who maximizes (over some ball of
radius ε > 0) in the parameter space of the criterion, and the user is a “follower” who minimizes
over the original decision variables. In traditional robust optimization, one solves the “min−max"



2.1. Two-player games between polynomial optimizers and SDP solvers 53

problem where the user (now the leader) minimizes to find a “robust decision variable”, whereas
the SDP solver (now the follower) maximizes in the same ball of the parameter space. In this con-
vex relaxation case, both min−max and max−min problems give the same solution. So it is fair
to say that the solver is doing what the optimizer should have done in robust optimization.

As an active (and even leader) player of this game, the floating point SDP solver can also play
with its two parameters which are (a) the threshold level for eigenvalues to declare a matrix pos-
itive semidefinite, and (b) the tolerance level at which to declare a linear equality constraint to be
satisfied. Indeed, the result of the “max−min" game strongly depends on the absolute value of
both levels, as well as on their relative values.

Of course and so far, the rationale behind this viewpoint which provides a more positive view
of inaccurate results from semidefinite solvers, is proper to the context of semidefinite relaxations
for polynomial optimization. Indeed in such a context we can exploit a mathematical rationale to
explain and support this view. An interesting issue is to validate this viewpoint to a larger class of
SDP and perhaps the canonical form of SDP:

min
G
{ 〈F0, G〉 : 〈Gα, G〉 = cα; G � 0 } ,

in which case the SDP solver would solve the robust optimization problem

max
c̃∈B∞(c,ε)

min
G
{ 〈F0, G〉 : 〈Fα, G〉 = c̃α; G � 0 } ,

where 〈·〉 stands for the matrix trace. This point of view is briefly analyzed and discussed later.

Two examples of surprising phenomenons

Let us consider the general POP

P : fmin = min
x
{ f (x) : x ∈ X }, (2.1)

where f is a polynomial and X is a basic closed semialgebraic set as in (1.1).
One can approximate fmin with the hierarchy of SDP relaxations [180], for which efficient mod-

ern softwares are available. These numerical solvers all rely on interior-point methods, and are
implemented either in double precision arithmetics, e.g., SeDuMi [279], SDPA [310], MOSEK [7],
or with arbitrary precision arithmetics, e.g., SDPA-GMP [221]. When relying on such numerical
frameworks, the input data considered by solvers might differ from the ones given by the user.
Thus the input data, consisting of the cost vector and matrices, are subject to uncertainties. In [96]
the authors study SDP whose input data depend on some unknown but bounded perturbation
parameters. For the reader interested in robust optimization in general, we refer to [34].

In general, when applied for solving P, the moment-SOS hierarchy [180] is quite efficient, mod-
ulo its scalability (indeed for large size problems one has to exploit sparsity often encountered in
the description of P). However, in some cases, some quite surprising phenomena have been ob-
served and provided additional support to the pessimistic and irrefutable conclusion that: Results
returned by double precision floating point SDP solvers cannot be trusted as they are sometimes completely
wrong.

Let us briefly describe two such phenomena, already analyzed and commented in [298, 223].
Case 1: When X = Rn (unconstrained optimization) then the moment-SOS hierarchy collapses

to the single SDP f k
min = maxb { b : f − b ∈ Σ[x]k } (with 2k being the degree of f ). Equivalently,

one solves the SDP:

f k
min = max

G�0,b
{ b : fα − b 1α=0 = 〈G, Bα〉, α ∈Nn

2k } (2.2)
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for some appropriate real symmetric matrices (Bα)α∈Nn
2k

; see, e.g., [180].
Only two cases can happen: if f − fmin ∈ Σ[x]k then f k

min = fmin and f k
min < fmin otherwise

(with possibly f k
min = −∞). Solving f r

min = maxb { b : f − b ∈ Σ[x]r } for r > k is useless as it
would yield f r

min = f k
min because if f − fmin is SOS, then it has to be in Σ[x]k ⊂ Σ[x]r anyway.

The Motzkin-like polynomial x 7→ f (x) = x2y2(x2 + y2 − 1) + 1/27 is nonnegative (with k = 3
and fmin = 0) and has 4 global minimizers, but the polynomial x 7→ f (x)− fmin (= f ) is not an SOS
and f 3

min = −∞, which also implies f r
min = −∞ for all r. However, as already observed in [131], by

solving (2.2) with r = 8 and a double precision floating point SDP solver, we obtain f 8
min ≈ −10−4.

In addition, one may extract 4 global minimizers close the global minimizers of f up to four digits
of precision! The same occurs with r > 8 and the higher is r the better is the result. So undoubtly
the SDP solver is returning a wrong solution as f − f r

min cannot be an SOS, no matter the value of
f r
min.

In this case, a rationale for this behavior is that f̃ = f + ε(1 + x16 + y16) is an SOS for small
ε > 0, provided that ε is not too small (in [176] it is shown that every nonnegative polynomial can
be approximated as closely as desired by a sequence of polynomials that are SOS). After inspection
of the returned optimal solution, the equality constraints

fα − b 1α=0 = 〈G, Bα〉, α ∈Nn
2r, (2.3)

when solving Dr in (2.2), are not satisfied accurately and the result can be interpreted as if the SDP
solver has replaced f with the perturbated criterion f̃ = f + ε, with ε(x) = ∑α εα Gα ∈ R[x]2r, so
that

fα + εα︸ ︷︷ ︸
f̃α

−b 1α=0 = 〈G, Bα〉, α ∈Nn
2r,

and in fact it has done so. A similar “mathematical paradox” has also been investigated in a non-
commutative context [223]. As previously mentioned in Section 1.5, noncommutative polynomials
can also be analyzed thanks to a specific variant of the moment-SOS hierarchy (see [53] for a recent
survey). As in the above commutative case, it is explained in [223] how numerical inaccuracies
allow to obtain converging lower bounds for positive Weyl polynomials that do not admit SOS
decompositions.

Case 2: Another surprising phenomenon occurred when minimizing a high-degree univariate
polynomial f with a global minimizer at x = 100 and a local minimizer at x = 1 with value
f (1) > fmin but very close to fmin = f (100). The double precision floating point SDP solver
returns a single minimizer x̃ ≈ 1 with value very close to fmin, providing another irrefutable proof
that the double precision floating point SDP solver has returned a wrong solution. It turns out that
again the result can be interpreted as if the SDP solver has replaced f with a perturbated criterion f̃ ,
as in Case 1.

When solving (2.2) in Case 1, one has voluntarily embedded f ∈ R[x]6 into R[x]2r (with r > 3)
to obtain a perturbation f̃ ∈ R[x]2r whose minimizers are close enough to those of f . Of course the
precision is in accordance with the solver parameters involved in controlling the semidefiniteness
of the Gram matrix G and the accuracy of the linear equations (2.3). Indeed, if one tunes these
parameters to a much stronger threshold, then the solver returns a more accurate answer with a
much higher precision.

In both contexts, we can interpret what the SDP solver does as perturbing the coefficients of
the input polynomial data. One approach to get rid of numerical uncertainties consists of solving
SDP problems in an exact way [134], while using symbolic computation algorithms. However,
such exact algorithms only scale up to moderate size instances. For situations when one has to
rely on more efficient, yet inexact numerical algorithms, there is a need to understand the behavior
of the associated numerical solvers. In [298], the authors investigate strange behaviors of double-
precision SDP solvers for semidefinite relaxations in polynomial optimization. They compute the
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optimal values of the SDP relaxations of a simple one-dimensional POP. The sequence of SDP val-
ues practically converges to the optimal value of the initial problem while they should converge
to a strict lower bound of this value. One possible remedy, used in [298], is to rely on an arbitrary-
precision SDP solver, such as SDPA-GMP [221] in order to make this paradoxal phenomenon dis-
appear. Relying on such arbitrary-precision solvers comes together with a more expensive cost but
paves a way towards exact certification of nonnegativity. In Section 2.3 (see also [C8]), we present
a hybrid numeric-symbolic algorithm computing exact SOS certificates for a polynomial lying in
the interior of the SOS cone. This algorithm uses SDP solvers to compute an approximate SOS de-
composition after additional perturbation of the coefficients of the input polynomial. The idea is to
benefit from the perturbation terms added by the user to compensate the numerical uncertainties
added by the solver. The present section focuses on analyzing specifically how the solver modifies
the input and perturbates the polynomials of the initial optimization problem.

A “noise" model

Let St be the set of real symmetric matrices of size t = (n+r
n ). Given a finite sequence of matrices

(Fα)α∈Nn
2r
⊂ St, a (primal) cost vector c = (cα)α∈Nn

2r
, we recall the standard form of primal SDP

solved by numerical solvers such as SDPA [310]:

min
y ∑

α∈Nn
2r

cα yα

s.t. ∑
0 6=α∈Nn

2r

Fα yα � F0 ,
(2.4)

whose dual is the following SDP optimization problem:

max
G

〈F0, G〉
s.t. 〈Fα, G〉 = cα , α ∈Nn

2r , α 6= 0 ,
G � 0 , G ∈ St .

(2.5)

We are interested in the numerical analysis of the moment-SOS hierarchy [180] to solve

P : min
x∈X

f (x) ,

where f ∈ R[x]2r and X is a basic compact semialgebraic set as in (1.1). Given α, β ∈ Nn, let 1α=β

stands for the function which returns 1 if α = β and 0 otherwise. Let tj := (n+r−rj
r−rj

). At step r of the

hierarchy, one solves the following SDP primal program.

Pr : inf
y
{ Ly( f ) : y0 = 1; Mr−rj(gj y) � 0, j = 0, . . . , m } , (2.6)

whose dual is the SDP:

supGj ,b
{ b : fα − b 1α=0 =

m

∑
j=0
〈Cj

α, Gj〉 , α ∈Nn
2r ,

Gj � 0 , Gj ∈ Stj , j = 0, . . . , m }
, (2.7)

where we have written Mr−rj(gj y) = ∑α∈Nn
2r

Cj
α yα; the matrix Cj

α has rows and columns indexed
by Nn

r−rj
with (β, γ) entry equal to ∑β+γ+δ=α gj,δ. In particular for m = 0, one has g0 = 1 and the

matrix Bα := C0
α has (β, γ) entry equal to 1β+γ=α.
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Then the dual SDP (2.7) can be rewritten as

supb {b : f − b ∈ M(X)r} = sup
b,σj

{ b : f − b =
m

∑
j=0

σj gj ,

deg(σj gj) ≤ 2r , σj ∈ Σ[x] }.
(2.8)

In the sequel, we suppose that X involves the constraint N − ‖x‖2
2 ≥ 0, so that Assumption 1.1.1

holds and we have strong duality between (2.6) and (2.8) by [148].
In floating point computation, the numerical SDP solver treats all (ideally) equality constraints

as the following inequality constraints
m

∑
j=0
〈Cj

α, Gj〉+ b1α=0 − fα = 0 , α ∈Nn
2r , (2.9)

of (2.7) with the following inequality constraints∣∣∣∣ m

∑
j=0
〈Cj

α, Gj〉+ b1α=0 − fα

∣∣∣∣ ≤ ε , α ∈Nn
2r , (2.10)

for some a priori fixed tolerance ε > 0 (for instance ε = 10−8). Similarly, we assume that for each
j = 0, . . . , m, the SDP constraint Gj � 0 of (2.7) is relaxed to Gj � −η I for some prescribed
individual semidefiniteness tolerance η > 0. This latter relaxation of � 0 to � −η I is used here as an
idealized situation for modeling purpose; in practice it seems to be more complicated, as explained
later in the numerical section.

That is, all iterates (Gj,k)k∈N of the implemented minimization algorithm satisfy (2.10) and
Gj,k � −η I instead of the idealized (2.9) and Gj,k � 0.

Therefore we interpret the SDP solver behavior by considering the following “noise" model
which is the (ε, η)-perturbed version of SDP (2.7):

sup
Gj ,b
{b : −ε ≤

m

∑
j=0
〈Cj

α, Gj〉+ b1α=0 − fα ≤ ε , α ∈Nn
2r ,

Gj � −η I , Gj ∈ Stj , j = 0, . . . , m },
(2.11)

now assuming exact computations. For any real symmetric matrix M, denote by ‖M‖∗ its nuclear
norm and recall that if M � 0 then ‖M‖∗ = 〈I, M〉.
Proposition 2.1.1 The dual of Problem (2.11) is the convex optimization problem

inf
y
{ Ly( f ) + η

m

∑
j=0
‖Mr−rj(gj y)‖∗ + ε‖y‖1 :

s.t. y0 = 1; Mr−rj(gj y) � 0, j = 0, . . . , m }
(2.12)

which is an SDP.

Remark 2.1.1 Notice that the criterion of (2.12) consists of the original criterion Ly( f ) perturbated with a
sparsity-inducing norm ε ‖y‖1 for the variable y and a low-rank-inducing norm η ∑j ‖Mr−rj(gj y)‖∗ for
the localizing matrices. Considering this low-rank-inducing term can be seen as the convexification of a more
realistic penalization with a logarithmic barrier function used in interior-point methods for SDP, namely
−η log det

(
∑m

j=0 Mr−rj(gj y)
)
. One could also consider to replace each SDP constraint Mr−rj(gj y) � 0

with Mr−rj(gj y) � ε3 I, in the primal moment problem (2.6). This corresponds to add −ε3‖G‖∗ in the
related perturbation of the dual SOS problem (2.7). One can in turn interpret this term as a convexification
of the more standard logarithmic barrier penalization term log det G. Even though interior-point algorithms
could practically perform such logarithmic barrier penalizations, we do not have a simple interpretation for
the related noise model.

We now distinguish among two particular cases.
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Priority to trace equalities

With ε = 0 and individual semidefiniteness-tolerance η, Problem (2.12) becomes

inf
y
{ Ly( f ) + η

m

∑
j=0
‖Mr−rj(gj y)‖∗

s.t. y0 = 1; Mr−rj(gj y) � 0, j = 0, . . . , m }.
(2.13)

Given η > 0, j ∈N, let us define:

Br
∞( f , X, η) := { f + θ

m

∑
j=0

gj(x) ∑
β∈Nn

r−rj

x2β : |θ| ≤ η } , (2.14)

B∞( f , X, η) :=
⋃

j∈N

Br
∞( f , X, η) .

Recall that SDP (2.13) is the dual of SDP (2.11) with ε = 0, that is,

sup
Gj ,b
{b : fα − b1α=0 =

m

∑
j=0
〈Cj

α, Gj〉 , α ∈Nn
2r ,

Gj � −η I , Gj ∈ Stj , j = 0, . . . , m },
(2.15)

Fix r ∈N and consider the following robust POP

Pmax
η : max

f̃ ∈B∞( f ,X,η)
{min

x∈X
{ f̃ (x)} } . (2.16)

If in (2.16), we restrict ourselves to Br
∞( f , X, η) and we replace the inner minimization by its step-r

relaxation, we obtain

Pmax,r
η : max

f̃ ∈Br
∞( f ,X,η)

{
inf

y
{ Ly( f̃ ) : y0 = 1; Mr−rj(gj y) � 0, j = 0, . . . , m }

}
.

Observe that Problem Pmax,r
η is a strenghtening of Problem Pmax

η , that is, the optimal value of the
former is smaller than the optimal value of the latter.

Proposition 2.1.2 Under Assumption 1.1.1, there is no duality gap between primal SDP (2.13) and dual
SDP (2.15). In addition, Problem Pmax,r

η is equivalent to SDP (2.13). Therefore, solving primal SDP (2.13)
(resp. dual SDP (2.15)) can be interpreted as solving exactly, i.e., with no semidefiniteness-tolerance, the
step-r strenghtening Pmax,r

η associated with Problem Pmax
η .

In the unconstrained case, i.e., when m = 0, solving Pmax,r
η boils down to minimize the perturbed

polynomial fη,r(x) := f (x) + η ∑|β|≤r x2β, that is the sum of f and all monomial squares of degree
up to 2r with coefficient magnitude η. As a direct consequence from [176], the next result shows
that for given nonnegative polynomial f and perturbation η > 0, the polynomial fη,r is SOS for
large enough r.

Corollary 2.1.3 Let assume that f ∈ R[x] is nonnegative over Rn and let us fix η > 0. Then fη,r ∈ Σ[x],
for large enough r.

Priority to semidefiniteness inequalities

Problem (2.12) with η = 0 and individual trace equality perturbation ε becomes

infy { Ly( f ) + ε ‖y‖1 :
s.t. y0 = 1; Mr−rj(gj y) � 0, j = 0, . . . , m }. (2.17)
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Given ε > 0, r ∈N, let us define

Br
∞( f , ε) := { f̃ ∈ R[x]2r : ‖ f − f̃ ‖∞ ≤ ε } , B∞( f , ε) :=

⋃
r∈N

Br
∞( f , ε) . (2.18)

Recall that (2.17) is the dual of (2.11) with η = 0, that is,

sup
f̃ ,b

{ b : f̃ − b ∈ M(X)r; | fα − f̃α| ≤ ε , α ∈Nn
2r ,

b ∈ R , f̃ ∈ R[x]2r }.
(2.19)

Fix r ∈N and consider the following robust POP:

Pmax
ε : max

f̃ ∈B∞( f ,ε)
{min

x∈X
{ f̃ (x)} }. (2.20)

If in (2.20), we restrict ourselves to Br
∞( f , ε) in the outer maximization problem and we replace the

inner minimization by its step-r relaxation, we obtain

Pmax,r
ε : max

f̃ ∈Br
∞( f ,ε)

{ sup
b
{ b : f̃ − b ∈ M(X)r} }

= max
f̃ ∈Br

∞( f ,ε)
{ inf

y
{ Ly( f̃ ) : y0 = 1; Mj(gj y) � 0, j = 0, . . . , m} } (2.21)

Here, we rely again on Assumption 1.1.1 to ensure strong duality and obtain (2.21). Problem Pmax,r
ε

is a strengthening of Pmax
ε and whose dual is exactly (2.17), that is:

Proposition 2.1.4 Under Assumption 1.1.1, solving (2.17) (equivalently (2.19)) can be interprated as solv-
ing exactly, i.e.,with no trace-equality tolerance, the step-r reinforcement Pmax,r

ε associated with Pmax
ε .

A two-player game interpretation

If we now assume that one can perform computations exactly, we can interpret the whole process
in Pmax,r

η (resp. Pmax,r
ε ) as a two-player zero-sum game in which:

• Player 1 (the solver) chooses a polynomial f̃ ∈ Br
∞( f , X, η) (resp. f̃ ∈ Br

∞( f , ε)).

• Player 2 (the optimizer) then selects a minimizer yopt( f̃ ) in the inner minimization of (2.21),
e.g., with an exact interior point method.

As a result, Player 1 (the leader) obtains an optimal polynomial f̃ opt ∈ Br
∞( f , X, η) (resp. f̃ opt ∈

Br
∞( f , ε)) and Player 2 (the follower) obtains an associated minimizer yopt( f̃ opt).

The polynomial f̃ opt is the worst polynomial in Br
∞( f , X, η) (resp. Br

∞( f , ε)) for the step-r semidefi-
nite relaxation associated with the optimization problem minx{ f̃ (x) : x ∈ X}. This max−min
problem is then equivalent to the single min-problem (2.13) (resp. (2.17)) which is a convex
relaxation and whose convex criterion is not linear as it contains the sum of `∞-norm terms
∑m

j=0 ‖Mr−rj(gj y)‖∗ (resp. the `1-norm term ‖y‖1). Notice that in this scenario the optimizer
(Player 2) is not active; initially he wanted to solve the convex relaxation associated with f . It
is Player 1 (the adversary uncertainty in the solver) who in fact gives the exact algorithm his own
choice of the function f̃ ∈ Br

∞( f , X, η) (resp. f̃ ∈ Br
∞( f , ε)). But in fact, as we are in the convex

case, the following result (a generalization of Von Neumann’s minimax theorem, namely the fol-
lowing Sion’s minimax theorem [269]) implies that this max−min game is also equivalent to the
min−max game:
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Theorem 2.1.5 Let B be a compact convex subset of a linear topological space and Y be a convex subset of
a linear topological space. If h is a real-valued function on B× Y with h(b, ·) lower semi-continuous and
quasi-convex on Y, for all b ∈ B and h(·, y) upper semi-continuous and quasi-concave on B, for all y ∈ Y,
then

max
b∈B

inf
y∈Y

h(b, y) = inf
y∈Y

max
b∈B

h(b, y) .

Indeed, Pmax,r
η is equivalent to

inf
y

max
f̃ ∈Br

∞( f ,X,η)
{ Ly( f̃ ) : y0 = 1; Mj(gj y) � 0, j = 0, . . . , m } ,

and Pmax,r
ε is equivalent to

inf
y

max
f̃ ∈Br

∞( f ,ε)
{ Ly( f̃ ) : y0 = 1; Mj(gj y) � 0, j = 0, . . . , m } ,

So now in this scenario (which assumes exact computations):

• Player 1 (the robust optimizer) chooses a feasible moment sequence y with y0 = 1 and
Mr−rj(gj y) � 0, j = 0, . . . , m.

• When priority is given to trace equalities, Player 2 (the solver) then selects f̃ (y) =
arg max{Ly( f̃ ) : f̃ ∈ Br

∞( f , X, η)} to obtain the value Ly( f ) + η ∑m
j=0 ‖Mr−rj(gj y)‖∗.

When priority is given to semidefinitess inequalities, Player 2 selects f̃ (y) = arg max{Ly( f̃ ) :
f̃ ∈ Br

∞( f , ε)} to obtain the value Ly( f ) + ε‖y‖1, that is f̃ (y)α = fα + sign(yα) ε, α ∈Nn
2r.

Here the optimizer (now Player 1) is “active" as he decides to compute a “robust" optimal relaxation
y assuming uncertainty in the function f in the criterion Ly( f ).

Since both scenarii are equivalent it is fair to say that the SDP solver is indeed solving the robust
convex relaxation that the optimizer whould have given to a solver with exact arithmetic (if he had
wanted to solve robust relaxations)

Relating to robust optimization

Suppose that there is no computation errror but we want to solve a robust version of the optimiza-
tion problem min{ f (x) : x ∈ X} because there is some uncertainty in the coefficients of the nominal
polynomial f ∈ R[x]d. So assume that f ∈ R[x]d can be considered as potentially of degree at most
2r (after perturbation).

When priority is given to trace equalities, the robust optimization problem reads:

Pmin,r
η : min

x∈X
{ max

f̃∈Br
∞( f ,X,η)

{ f̃ (x)} }. (2.22)

Straightforward calculation reduces (2.22) to:

Pmin,r
η : min

x∈X

[
f (x) + η ∑

β∈Nn
r−rj

x2β gj(x)
]

. (2.23)

which is a POP.

Theorem 2.1.1 Suppose that Assumption 1.1.1 holds. Assume that after solving SDP (2.13), one
obtains yopt such that Mr(yopt) is a rank-one matrix. Then Pmin,r

η is equivalent to Pmax,r
η .
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When priority is given to semidefiniteness inequalities, the robust optimization problem reads:

Pmin,r
ε : min

x∈X
{ max

f̃∈Br
∞( f ,ε)

{ f̃ (x)} }. (2.24)

It is easy to see that (2.24) reduces to

Pmin,r
ε : min

x∈X

[
f (x) + ε ∑

α∈Nn
2r

|xα|
]

. (2.25)

which is not a POP (but is still a semialgebraic optimization problem). As for Theorem 2.1.1, one
proves the following result:

Theorem 2.1.2 Suppose that Assumption 1.1.1 holds. Assume that after solving SDP (2.17), one
obtains yopt such that Mr(yopt) is a rank-one matrix. Then Pmin,r

ε is equivalent to Pmax,r
ε .

Notice an important conceptual difference between the two approaches. In the latter one,
i.e., when considering Pmin

η (resp. Pmin
ε ), the user is active. Indeed the user decides to choose

some optimal f̂ ∈ Br
∞( f , X, η) (resp. Br

∞( f , ε)). In the former one, i.e., when considering Pmax
η

(resp. Pmax
ε ), the user is passive, as indeed he imposes f but the solver decides to choose some

optimal fmin ∈ Br
∞( f , X, η) (resp. Br

∞( f , ε)).
If after solving SDP (2.13) (resp. SDP (2.17)), one obtains yopt where Mj(yopt) is rank-one (which
is to be expected), one obtains the same solution: in other words, we can interpret what the solver
does as performing robust polynomial optimization.

In the sequel, we show how this interpretation relates with a more general robust SDP frame-
work, when priority is given to semidefinitess inequalities.

Link with robust semidefinite programming

Let c = (cj) ∈ Rn, Fj be a real symmetric matrix, j = 0, 1, . . . , n, and let F(y) := ∑n
j=1 Fj yj − F0.

Consider the canonical SDP:
P : inf

y
{ cTy : F(y) � 0 } (2.26)

with dual
P∗ : sup

G�0
{〈F0, G〉 : 〈Fj, G〉 = cj, j ∈ [n] }. (2.27)

Given ε > 0 fixed, let B∞(c, ε) := { c̃ : ‖c̃ − c‖∞ ≤ ε } and consider the max-min problem
associated with P:

max
c̃∈B∞(c,ε)

inf
y
{ c̃T y : F(y) � 0 } , (2.28)

whose dual is
sup
X�0
{ 〈F0, X〉 : | 〈Fj, X〉 − cj |≤ ε , j ∈ [n] }. (2.29)

As before, there is a simple two-player game interpretation of (2.28). Player 1 (the leader)
searches for the “best" cost function c̃ ∈ B∞(c, ε) which is “robust" against the worst decision y
made by Player 2 (the follower, the decision maker), once Player 1’s choice c̃ is known.

Proposition 2.1.6 Assume that there exists ŷ such that F(ŷ) � 0. Then solving the max-min prob-
lem (2.28) is equivalent to solving :

inf
y
{ cT y + ε ‖y‖1 : F(y) � 0 }. (2.30)
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So again, with an appropriate value of ε related the the numerical precision of SDP solvers, (2.29)
can be considered as a fair model of treating inaccuracies by relaxing the equality constraints of
(2.27) up to some tolerance level ε. That is, instead of solving exactly (2.27) with nominal criterion
c, Player 1 (the SDP solver) is considering a related robust version where it solves (exactly) (2.27)
but now with some optimal choice of a new cost vector c̃ ∈ B∞(c, ε). But this is a robustness point
of view from the solver (not from the decision maker) and the resulting robust solution is some
optimal cost vector c̃∗ ∈ B∞(c, ε).

In the particular case of SDP relaxations for polynomial optimization, we retrieve (2.17) as an
instance of (2.30) and (2.19) as an instance of (2.29).

Robust SDP

On the other hand, the objective function c̃Ty is bilinear in (c̃, y), the set Br
∞(c, ε) is convex and

compact, and the set Y := {y : F(y) � 0} is convex. Hence by Theorem 2.1.5, (2.28) is equivalent
to solving the min-max problem:

inf
y
{ max

c̃∈B∞(c,ε)
{ c̃Ty } : F(y) � 0 }, (2.31)

which is a “robust" version of (2.26) from the point of view of the decision maker when there is
uncertainty in the cost vector. That is, the cost vector c̃ is not known exactly and belongs to the
uncertainty set B∞(c, ε). The decision maker has to make a robust decision y∗ with is the best
against all possible values of the cost function c̃ ∈ B∞(c, ε). This well-known latter point of view
is that of robust optimization in presence of uncertainty for the cost vector; see, e.g., [96].

So if the latter robustness point of view (of the decision maker) is well-known, what is perhaps
less known (but not so surprising) is that it can be interpreted in terms of a robustness point of
view from an inexact “solver" when treating equality constraints with inaccuracies in a problem
with nominal criterion. Given problem (2.26) with nominal criterion c, and without being asked
to do so, the solver behaves as if it is solving exactly the robust version (2.31) (from the decision
maker viewpoint), whereas the decision maker is willing to solve (2.26) exactly. In other words,
Sion’s minimax theorem validates the informal (and not surprising) statement that the treatment
of inaccuracies by the SDP solver can be viewed as a robust treatment of uncertainties in the cost
vector.

However, in the case of SDP relaxations for polynomial optimization, this behavior is indeed
more surprising and even spectacular. Indeed, some unconstrained optimization instances such as
minimizing Motzkin-like polynomials (i.e., when f − fmin is not SOS), cannot be theoretically han-
dled by SDP relaxations (assuming that one relies on exact SDP solvers). Yet, double floating point
SDP solvers solve them in a practical manner, provided that higher-order relaxations are allowed
so that a polynomial of degree d can be (and indeed is!) treated as a higher degree polynomial (but
with zero coefficients for monomials of degree higher than d).

In general, similar phenomena can occur while relying on general floating point algorithms. We
presume that they could also appear when handling POP with alternative convex programming
relaxations relying on interior-point algorithms, for instance linear/geometric programming.

Examples

All experimental results are obtained by computing the solutions of the primal-dual SDP relax-
ations (2.6)-(2.7) of Problem P. These SDP relaxations are implemented in the RealCertify [C9]
library, available within MAPLE, and interfaced with the SDP solvers SDPA [310] and SDPA-
GMP [221].

https://gricad-gitlab.univ-grenoble-alpes.fr/magronv/RealCertify
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For the two upcoming examples, we rely on the procedure described in [131] to extract the ap-
proximate global minimizer(s) of some given objective polynomial functions. We compare the re-
sults obtained with (1) the SDPA solver implemented in double floating point precision, which cor-
responds to ε = 10−7 and (2) the arbitrary-precision SDPA-GMP solver, with ε = 10−30. The value
of our robust-noise model parameter ε roughly matches with the one of the parameter epsilonStar
of SDPA.

We also noticed that decreasing the value of the SDPA parameter lambdaStar seems to boil
down to increasing the value of our robust-noise model parameter η. An expected justification
is that lambdaStar is used to determine a starting point X0 for the interior-point method, i.e.,
such that X0 = lambdaStar× I (the default value of lambdaStar is equal to 102 in SDPA and is
equal to 104 in SDPA-GMP). A similar behavior occurs when decreasing the value of the parameter
betaBar, which controls the search direction of the interior-point method when the matrix X is not
positive semidefinite.

However, the correlation between the values of lambdaStar (resp. betaBar) and η appears to
be nontrivial. Thus, our robust-noise model would be theoretically valid if one could impose the
value of a parameter η, ensuring that X � −η I when the interior-point method terminates. From
the best of our knowledge, this feature happens to be unavailable in modern SDP solvers. For that
reason, our experimental comparisons are performed by changing the value of epsilonStar in the
parameter file of the SDP solver.

First, we consider the Motkzin polynomial f = 1
27 + x2

1x2
2(x2

1 + x2
2 − 1). This polynomial is

nonnegative but is not SOS. The minimum fmin of f is 0 and f has four global minimizers with
coordinates x1 = ±

√
3

3 and x2 = ±
√

3
3 . As noticed in [131, Section 4], one can retrieve these global

minimizers by solving the primal-dual SDP relaxations (2.6)-(2.7) of Problem P at relaxation order
r = 8:

(1) With ε = 10−7, we obtain an approximate lower bound of −1.81 · 10−4 ≤ fmin, as well as
the four global minimizers of f with the extraction procedure. The dual SDP (2.7) allows to
retrieve the approximate SOS decomposition f (x) = σ(x) + ∆(x), where σ is an SOS polyno-
mial and the corresponding polynomial remainder ∆ has coefficients of approximately equal
magnitude, and which is less than 10−8.

(2) With ε = 10−30, we obtain an approximate lower bound of −1.83 · 101 ≤ fmin and the extrac-
tion procedure fails. The corresponding polynomial remainder has coefficients of magnitude
less than 10−31.

We notice that the support of ∆ contains only terms of even degrees, i.e., terms of the form x2β,
with |β| ≤ 8. Hence we consider a perturbation f̃γ of f defined by f̃γ(x) = f (x) + γ ∑|β|≤r x2β,
with γ = 10−8. By solving the SDP relaxation (with r = 8) associated to f̃γ, with ε = 10−30, we
retrieve again the four global minimizers of f .

Then, we consider the following univariate optimization problem:

fmin = min
x∈R

f (x) ,

with f (x) = (x− 100)2
(
(x− 1)2 + γ

992

)
and γ ≥ 0.

Note that the minimum of f is fmin = 0 = f (100) and f (1) = γ.
We first examine the case where γ = 0. In this case, f has two global minimizers 1 and 100. At

relaxation order r, with 2 ≤ r ≤ 5, we retrieve the following results (rounded to four significant
digits):

(1) With ε = 10−7, we obtain x̂(1) = 0.9999 ' 1, corresponding to the smallest global minimizer
of f .
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(2) With ε = 10−30, we obtain x̂ = 50.5000 = 1+100
2 , corresponding to the average of the two

global minimizers of f .

We also used the realroot procedure, available within Maple, to compute the local minimizers
of the following function on [0, ∞):

f̃ε,r(x) = f (x) + ε ∑
|α|≤2r

|xα| = f (x) + ε ∑
|α|≤2r

xα , (2.32)

(1) With ε = 10−7, we obtain x̃(1) = 0.9961 ' x̂(1).

(2) With ε = 10−30, we obtain x̃(1) = 0.9961 ' x̂(1) and x̃(2) = 99.9960 ' 100, the largest global
minimizer of f . The corresponding values of f̃ε,r are 0.1496 and 0.1495, respectively.

These experiments confirm our explanations that the solver computes the solution of SDP relax-
ations associated to the perturbed function f̃ε,r from (2.32). With double floating point precision
(1), this perturbed function has a single minimizer, retrieved by the extraction procedure. With
higher precision (2), this perturbed function has two local minimizers, whose average is retrieved
by the extraction procedure.

Next, we examine the case where γ = 10−3. In this case, f has a single global minimizer, equal
to 100 and another local minimizer At relaxation order r, with 2 ≤ r ≤ 5, we retrieve the following
results (rounded to four significant digits):

(1) With ε = 10−7, we obtain x̂(1) = 0.9999 ' 1, corresponding to the smallest global minimizer
of f when γ = 0.

(2) With ε = 10−30, we obtain x̂(2) = 99.1593 ' 100, corresponding to the single global mini-
mizer of f .

We also compute the local minimizers of f̃ε,r with realroot:

(1) With ε = 10−7, we obtain x̃(1) = 1.0039 ' x̂(1).

(2) With ε = 10−30, we obtain x̃(1) = 1.0039 ' x̂(1) and x̃(2) = 99.9961 ' 100, the single global
minimizer of f . The corresponding values of f̃ε,r are 0.1505 and 0.1495, respectively. This
confirms that x̃(2) is the single global minimizer of f̃ε,r, approximately extracted, as x̂(2).

Here again, our robust-noise model, relying on the perturbed polynomial function f̃ε,r, fits
with the above experimental observations. This perturbed function has a single global minimizer,
whose value depends on the parameter ε, and which can be approximately retrieved by the extrac-
tion procedure.

2.2 Exact SOS certificates: the univariate case

Despite the fact that “inexact” SDP solvers provide approximate nonnegativity certificates, we can
derive several algorithms to obtain “exact” ones. From now on in this chapter, we focus on this
other two-player game.

The outlined results from this section have been published in [J17]. We begin this section by
recalling the following classical result for nonnegative real-valued univariate polynomials (see
e.g., [243, Section 8.1]):

Theorem 2.2.1 Let f ∈ R[x] be a nonnegative univariate polynomial, i.e., f (x) ≥ 0 for all x ∈ R. Then
f can be written as the sum of two polynomial squares in R[x].
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Given a subfield K of R and a nonnegative univariate polynomial f ∈ K[x], we consider the prob-
lem of proving the existence of, and computing, weighted sum of squares decompositions of f
with coefficients also lying in K, i.e., a1, . . . , al ∈ K≥0 and g1, . . . , gl ∈ K[x] such that f = ∑l

i=1 aig2
i .

Beyond the theoretical interest of this question, finding certificates of nonnegative polynomi-
als is mandatory in many application fields. Among them, one can mention the stability proofs
of critical control systems often relying on Lyapunov functions ([248]), the certified evaluation of
mathematical functions in the context of computer arithmetic (see for instance [61]), the formal ver-
ification of real inequalities ([J2]) within proof assistants such as COQ ([288]) or HOL-LIGHT ([120]);
in these situations the univariate case is already an important one. In particular, formal proofs of
polynomial nonnegativity can be handled with weighted sum of squares certificates. These cer-
tificates are obtained with tools available outside of the proof assistants and eventually verified
inside. Because of the limited computing power available inside such proof assistants, it is crucial
to devise algorithms that produce certificates, whose checking is computationally reasonably sim-
ple. In particular, we would like to ensure that such algorithms output weighted sum of squares
certificates of moderate bitsize and ultimately with a computational complexity being polynomial
with respect to the input.

Related Works Decomposing nonnegative univariate polynomials into weighted SOS has a long
story; very early quantitative aspects like the number of needed squares have been studied. For
the case K = Q, Landau showed in [169] that for every nonnegative polynomial in Q[x], there
exists a decomposition involving a weighted sum of (at most) eight polynomial squares in Q[x]. In
[240], Pourchet improves this result by showing the existence of a decomposition involving only a
weighted sum of (at most) five squares. This is done using approximation and valuation theory;
extracting an algorithm from these tools is not the subject of study of this section.

More recently, the use of SDP for computing weighted SOS certificates of nonnegativity for
polynomials has become very popular since [180]. Given a polynomial f of degree d, this method
consists in finding a real symmetric matrix G with nonnegative eigenvalues (a positive semidefi-
nite matrix) such that f (x) = v(x)TGv(x), where v is the vector of monomials of degree less than
d/2. Hence, this leads to the problem of solving a so-called linear matrix inequality (LMI), and
one can rely on SDP to find the coefficients of G. This task can be delegated to an SDP solver
(e.g., SEDUMI, SDPA, SDPT3). An important technical issue arises from the fact that such SDP
solvers are most of the time implemented with floating-point double precision. More accurate
solvers are available (e.g., SDPA-GMP [221]). However, these solvers always compute numeri-
cal approximations of the algebraic solution to the SDP under consideration. Hence, they are not
sufficient to provide algebraic certificates of posivity with rational coefficients. Hence, a process
is needed to replace the computed numerical approximations of a sum of squares certificate by an
exact, weighted sum of squares certificate with all weights and coefficients rational. This issue was
tackled in [236, 151]. The certification scheme described in [J12] allows one to obtain lower bounds
of nonnegative polynomials over compact sets. However, despite their efficiency, there is no guar-
antee that these methods will output a rational solution to an LMI when it exists (and especially
when it is far from the computed numerical solution).

A more systematic treatment of this problem has been brought by the symbolic computation
community. LMI can be solved as a decision problem over the reals with polynomial constraints
using the Cylindrical Algebraic Decomposition algorithm [67] or more efficient critical point meth-
ods (see e.g., [30] for complexity estimates, and see [141, 100] for practical algorithms). But using
such general algorithms is overkill, and, dedicated algorithms have been designed for computing
exact algebraic solutions to LMI [134, 136]. Computing rational solutions can also be considered,
thanks to convexity properties [260]. In particular, the algorithm in [110] can be used to compute
weighted sum of squares certificates with rational coefficients for a nonnegative univariate poly-
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nomial of degree d with coefficients of bitsize bounded by τ using at most τO (1)2O (d3) boolean
operations (see [110, Theorem 1.1]). In [46], the authors derive positivity certificates of polyno-
mials positive over [−1, 1] in the Bernstein basis. This certificate allows one in turn to produce a
Positivstellensatz identity of total bitsize bounded by O (d4 log d + d4τ), thus polynomial in d and
τ (see [46, Theorem 8]). To the best of our knowledge, there is no available implementation of this
method.

For the case where K is an arbitrary subfield of R, Schweighofer gives in [263] a new proof
of the existence of a decomposition involving a sum of (at most) d polynomial squares in K[x].
This existence proof comes together with a recursive algorithm to compute such decompositions.
At each recursive step, the algorithm performs real root isolation and quadratic approximations of
positive polynomials. Later on, a second algorithm is derived in [61, Section 5.2], where the authors
show the existence of a decomposition involving a sum of (at most) d + 3 polynomial squares in
K[x]. Note that this second algorithm was presented earlier in [144, Section 7] (albeit with less
detail and without a pointer to the code). This algorithm is based on approximating complex roots
of perturbed positive polynomials.

Neither of these latter algorithms were analyzed, despite the fact that they were implemented
and used. An outcome of our work is a bit complexity analysis for both of them, showing that they
have better complexities than the algorithm in [110], the second algorithm being polynomial in d
and τ.

Nichtnegativstellensätze with quadratic approximations

We start with the case of degree d = 2 polynomials.

Lemma 2.2.2 Let K be an ordered field. Let g = ax2 + bx + c ∈ K[x] with a, b, c ∈ K and a 6= 0. Then g

can be rewritten as g = a
(

x + b
2a

)2
+
(

c− b2

4a

)
. Moreover, when g is nonnegative over K, one has a > 0

and c− b2

4a ≥ 0.

Given a field K and g ∈ K[x], one says that g is a square-free polynomial when there is no prime
element p ∈ K[x] such that p2 divides g. Now let f ∈ K[x] \ {0}. A decomposition of f of
the form f = ag1

1g2
2 . . . gd

d with a ∈ K and normalized pairwise coprime square-free polynomials
g1, g2, . . . , gd is called a square-free decomposition of f in K[x].

Lemma 2.2.3 [217, § 6.3.1] & [160, Lemma 9.26] Let K be a field of characteristic 0 and L a field extension
of K. The square-free decomposition in L[x] of any polynomial f ∈ K[x] \ {0} is the same as the square-free
decomposition of f in K[x]. Any polynomial f ∈ K[x] \ {0} which is a square-free polynomial in K[x] is
also square-free in L[x].

Let f ∈ K[x] be a square-free polynomial that is nonnegative over R. Then f is positive over
R; otherwise f would have at least one real root, implying that f would be neither a square-free
polynomial in R[x] nor a square-free polynomial in K[x], according to Lemma 2.2.3. We want to
find a polynomial g ∈ K[x] that fulfills the following conditions:

(i) deg g ≤ 2,

(ii) g is nonnegative over R,

(iii) f − g is nonnegative over R,

(iv) f − g has a root t ∈ K.
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Assume that Property (i) holds. Then the existence of a weighted sum of squares decomposition in
K[x] for g is ensured from Property (ii). Property (iii) implies that h = f − g has only nonnegative
values over R. The aim of Property (iv) is to ensure the existence of a root t ∈ K of h, which is
stronger than the existence of a real root. Note that the case where the degree of h = f − g is less
than the degree of f occurs only when deg f = 2. In this latter case, we can rely on Lemma 2.2.2 to
prove the existence of a weighted sum of squares decomposition.

Now, we investigate the properties of a polynomial g ∈ K[x] that fulfills conditions (i)-(iv).
Using Property (i) and Taylor Decomposition, we obtain g(x) = g(t) + g′(t)(x − t) + c(x − t)2.
By Property (iv), one has g(t) = f (t). In addition, Property (iii) yields f (x)− g(x) ≥ 0 = f (t)−
g(t), for all x ∈ K, which implies that ( f − g)′(t) = 0 and g′(t) = f ′(t). By Property (ii), the
quadratic polynomial g(x + t) = f (t) + f ′(t)x + cx2 has at most one real root. This implies that

the discriminant of g(x + t), namely f ′(t)2 − 4c f (t), cannot be positive; thus one has c ≥ f ′(t)2

4 f (t)
(since f (t) > 0).

Finally, given a polynomial g satisfying (i)-(iii) and (iv), one necessarily has g = ft,c with f ′(t)2

4 f (t) ≤
c ∈ K, and ft,c = f (t) + f ′(t)(x− t) + c(x− t)2.

In this case, one also has that the polynomial g = ft,c′ , with c′ = f ′(t)2

4 f (t) , fulfills (i)-(iii) and (iv).
Indeed, (i) and (iv) trivially hold. Let us prove that (ii) holds: when deg ft,c′ = 0, g = f (t) ≥ 0,

and when deg ft,c′ = 2, g has a single root t− f ′(t)
2c′ , and the minimum of g is g

(
t− f ′(t)

2c′

)
= 0. The

inequalities ft,c′ ≤ ft,c ≤ f over R yield (iii).
Therefore, given f ∈ K[x] with f positive over R, we are looking for t ∈ K such that the

inequality f ≥ ft holds over R, with

ft := f (t) + f ′(t)(x− t) +
f ′(t)2

4 f (t)
(x− t)2 ∈ K[x] .

The main problem is to ensure that t lies in K. If we choose t to be a global minimizer of f ,
then ft would be the constant polynomial min{ f (x) | x ∈ R}. The idea is then to find t in the
neighborhood of a global minimizer of f . The following lemma shows that the inequality ft ≤ f
can always be satisfied for t in some neighborhood of a local minimizer of f .

Lemma 2.2.4 Let f ∈ R[x] and assume that f is positive over R. Let a be a local minimizer of f . For all
t ∈ R with f (t) 6= 0, let us define the polynomial ft:

ft := f (t) + f ′(t)(x− t) +
f ′(t)2

4 f (t)
(x− t)2 ∈ R[x] .

Then there exists a neighborhood U ⊂ R of a such that the inequality ft(x) ≤ f (x) holds for all (x, t) ∈
U ×U.

Lemma 2.2.4 states the existence of a neighborhood U of a local minimizer of f such that the
inequality ft(x) ≤ f (x) holds for all (x, t) ∈ U×U. Now, we show that with such a neighborhood
U of the smallest global minimizer a of f , there exists ε > 0 such that the inequality ft(x) ≤ f (x)
holds for all t ∈ (a− ε, a), and for all x ∈ R.

Proposition 2.2.5 Let f ∈ R[x] with deg f > 0. Assume that f is positive over R. Let a be the smallest
global minimizer of f . Then there exists a positive ε ∈ R such that for all t ∈ R with a− ε < t < a, the
quadratic polynomial ft, defined by

ft := f (t) + f ′(t)(x− t) +
f ′(t)2

4 f (t)
(x− t)2

=
f ′(t)2

4 f (t)

[
2 f (t)
f ′(t)

+ (x− t)

]2

∈ R[x] , (2.33)
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Require: nonnegative polynomial f ∈ K[x] of degree d ≥ 2, with K a subfield of R.
Ensure: pair of lists of polynomials (h_list, q_list) with coefficients in K.

1: h_list← [ ], q_list← [ ].
2: while deg f > 2 do
3: (g, h) := sqrfree( f ) . f = gh2

4: if deg h > 0 then h_list← h_list∪ {h}, q_list← q_list∪ {0}, f ← g
5: else
6: ft := parab( f )
7: (g, h) := sqrfree( f − ft)
8: h_list← h_list∪ {h}, q_list← q_list∪ { ft}, f ← g
9: end if

10: end while
11: h_list← h_list∪ {0}, q_list← q_list∪ { f }
12: return h_list, q_list

Figure 2.1: univsos1: algorithm to compute SOS decompositions of nonnegative univariate poly-
nomials.

satisfies ft ≤ f over R.

Proposition 2.2.6 Let K be a subfield of R and f ∈ K[x] with deg f = d ≥ 1. Then f is nonnegative on
R if and only if f is a weighted sum of d polynomial squares in K[x], i.e., there exist a1, . . . , ad ∈ K≥0 and
g1, . . . , gd ∈ K[x] such that f = ∑d

i=1 aig2
i . (In fact, for d ≥ 4, d− 1 squares suffice.)

Algorithm univsos1

The smallest global minimizer a of f is a real root of f ′ ∈ K[x]. Therefore, by using root isolation
techniques [29, Chap. 10], one can isolate all the real roots of f ′ in non-overlapping intervals with
endpoints in K. Such techniques rely on applying successive bisections, so that one can arbitrarily
reduce the width of every interval and sort them w.r.t. their left endpoints. Eventually, we apply
this procedure to find a sequence of elements in K converging from below to the smallest global
minimizer of f in order to find a suitable t. We denote by parab( f ) the corresponding procedure

performing root isolation and returning the polynomial ft := f ′(t)2

4 f (t) (x − t)2 + f ′(t)(x − t) + f (t)
such that t ∈ K and f ≥ ft over R.

Algorithm univsos1, depicted in Figure 2.1, takes as input a polynomial f ∈ K[x] of even
degree d ≥ 2. The steps performed by this algorithm correspond to what is described in the proof
of Proposition 2.2.6 and rely on two auxiliary procedures. The first one is the procedure parab

(see Step 6). The second one is denoted by sqrfree and performs square-free decomposition:
for a given polynomial f ∈ K[x], sqrfree( f ) returns two polynomials g and h in K[x] such that
f = gh2 and g is square-free. When f is square-free, the procedure returns g = f and h = 1 (in
this case deg h = 0). As in the proof of Proposition 2.2.6, this square-free decomposition procedure
is performed either on the input polynomial f (Step 3) or on the nonnegative polynomial ( f − ft)
(Step 7). The output of Algorithm univsos1 is a pair of lists of polynomials in K[x], allowing one to
retrieve an SOS decomposition of f . By Proposition 2.2.6 the length of all output lists, denoted by l,
is bounded by d/2. If we write hl , . . . , h1 for the polynomials belonging to h_list, and ql , . . . , q1 the
positive definite quadratic polynomials belonging to q_list, one obtains the following Horner-like
decomposition: f = h2

l
(
h2

l−1(h
2
l−2(. . . ) + ql−2) + ql−1

)
+ ql . Since each positive definite quadratic

polynomial qi is a weighted SOS polynomial, this yields a weighted SOS decomposition for f .

Example 2.2.1 Let us consider the polynomial f := 1
16 x6 + x4 − 1

9 x3 − 11
10 x2 + 2

15 x + 2 ∈ Q[x].
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We describe the different steps performed by Algorithm univsos1:

• The polynomial f is square-free, and the algorithm starts by providing the value t = −1 as an
approximation of the smallest minimizer of f . With f (t) = 1397

720 and f ′(t) = −19
8 , one obtains

f−1 = 720
1397 (−

19
16 x + 271

360 )
2.

• Next, after obtaining the square-free decomposition f (x)− f−1 = (x + 1)2g, the same procedure is
applied on g. One obtains the value t = 1 as an approximation of the smallest minimizer of g and
g1 = 502920

237293 (−
1

18 x + 88411
167640 )

2.

• Eventually, one obtains the square-free decomposition g(x) − g1 = (x − 1)2h with h = 1
16 (x −

19108973
17085096 ).

Overall, Algorithm univsos1 provides the lists h_list = [1, x + 1, 1, x − 1, 0] and q_list =
[ 720

1397 (−
19
16 x + 271

360 )
2, 0, 502920

237293 (−
1

18 x + 88411
167640 )

2, 0, 1
16 (x− 19108973

17085096 )], yielding the following weighted SOS
decomposition:

f =(x + 1)2
[
(x− 1)2

(
1

16

(
x− 19108973

17085096

)2)
+

502920
237293

(
− 1

18
x +

88411
167640

)2]
+

720
1397

(
−19

16
x +

271
360

)2

.

In the sequel, we analyze the complexity of Algorithm univsos1 in the particular case K = Q. We
provide bounds on the bitsize of related SOS decompositions as well as bounds on the arithmetic
cost required for computation and verification.

Bit complexity analysis

For complexity estimates, we use the bit complexity model. For an integer b ∈ Z\{0}, we denote
by τ(b) := blog2(|b|)c + 1 the bitsize of b, with the convention τ(0) := 1. We write a given
polynomial f ∈ Z[x] of degree d ∈ N as f = ∑d

i=0 bixi, with b0, . . . , bd ∈ Z. In this case, we
define ‖ f ‖∞ := max0≤i≤d |bi| and, using a slight abuse of notation, we denote τ(‖ f ‖∞) by τ( f ).
Observe that when f has degree d, the bitsize necessary to encode f is bounded by dτ( f ) (when
storing the coefficients of f ). The derivative of f is f ′ = ∑d

i=1 ibixi−1. For a rational number q = b
c ,

with b ∈ Z, c ∈ Z\{0} and gcd(b, c) = 1, we denote max{τ(b), τ(c)} by τ(q). For two mappings
g, h : Nl → R>0, the expression “g(v) = O (h(v))” means that there exists an integer b ∈ N and
N ∈ N such that when all coordinates of v are greater than or equaled to N, g(v) ≤ bh(v). The

expression “g(v) =
∼
O (h(v))” means that there exists an integer c ∈ N such that for all v ∈ Nl ,

g(v) = O(h(v)(log(h(v))c).

Lemma 2.2.7 Let f ∈ Z[x] be a positive polynomial over R, with deg f = d and τ an upper bound on the
bitsize of the coefficients of f . When applying Algorithm univsos1 to f , the sub-procedure parab outputs
a polynomial ft such that τ(t) = O (d2τ).

Lemma 2.2.8 Let f ∈ Z[x] be a positive polynomial over R, with deg f = d and τ an upper bound on the
bitsize of the coefficients of f . Let t and ft be as in Lemma 2.2.7. Let us write t = t1

t2
, with t1 ∈ Z, t2 ∈

Z\{0}, t1 and t2 being coprime. Let f̂ (x) := t2d
2 f (t) f (x) and f̂t(x) := t2d

2 f (t) ft(x). The polynomial ft
has coefficients of bitsize bounded byO (d3τ). Moreover, there exists g ∈ Z[x] such that f̂ − f̂t = (x− t)2g
and τ(g) = O (d3τ).
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Theorem 2.2.1 Let f ∈ Z[x] be a positive polynomial over R, with deg f = d = 2k and τ an upper
bound on the bitsize of the coefficients of f . Then the maximum bitsize of the coefficients involved in the
SOS decomposition of f obtained with Algorithm univsos1 is bounded from above by O ((k!)3τ) =

O
((

d
2 )

3d
2

)
τ
)

.

Theorem 2.2.2 Let f ∈ Z[x] be a positive polynomial over R, with deg f = d = 2k and τ an upper
bound on the bitsize of the coefficients of f . Then, on input f , Algorithm univsos1 runs in

∼
O (k3 · (k!)3τ) =

∼
O
((

d
2

) 3d
2

τ

)

boolean operations.

For a given polynomial f of degree 2k, one can check the correctness of the SOS decomposition
obtained with Algorithm univsos1 by evaluating this SOS polynomial at 2k + 1 distinct points
and compare the results with the ones obtained while evaluating f at the same points.

Theorem 2.2.3 Let f ∈ Z[x] be a positive polynomial over R, with deg f = d = 2k and τ an upper
bound on the bitsize of the coefficients of f . Then one can check the correctness of the SOS decomposition
of f obtained with Algorithm univsos1 within

∼
O (k · (k!)3τ) =

∼
O
((

d
2
)

3d
2

)
τ

)
boolean operations.

Remark 2.2.1 Let fk = f ∈ Z[x]. Under the strong assumption that each polynomial fk, . . . , f1 involved
in Algorithm univsos1 has at least one integer global minimizer, Algorithm univsos1 has polynomial
complexity. Indeed, in this case, qi = fi(ti), τ(ti) = O (τ( fi)) and τ( fi−1) = O (2(i− 1) + τ( fi)), for
all i = 2, . . . , k. Hence, the maximal bitsize of the coefficients involved in the SOS decomposition of f is
bounded from above by O (k2 + τ), and this decomposition can be computed using an expected number of
∼
O (k4 + k3τ) boolean operations.

Nichtnegativstellensätze with perturbed polynomials

Here, we recall the algorithm given in [61, Section 5.2]. The description of this algorithm, denoted
by univsos2, is given in Figure 2.2.

Algorithm univsos2

Given a subfield K of R and a nonnegative polynomial f = ∑d
i=0 fi xi ∈ K[x] of degree d = 2k,

one first obtains the square-free decomposition of f , yielding f = p h2 with p > 0 on R (see
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Require: nonnegative polynomial f ∈ K[x] of degree d ≥ 2, with K a subfield of R, ε ∈ K such
that 0 < ε < fd, precision δ ∈N for complex root isolation

Ensure: list c_list of numbers in K and list s_list of polynomials in K[x]
1: (p, h)← sqrfree( f ) . f = p h2

2: d′ := deg p, k := d′/2
3: pε ← p− ε ∑k

i=0 x2i

4: while has_real_roots(pε) do
5: ε← ε

2 , pε ← p− ε ∑k
i=0 x2i

6: end while
7: ε← ε

2
8: (s1, s2)← sum_two_squares(pε, δ)
9: C ← fd, u← pε − Cs2

1 − Cs2
2, u−1 ← 0, u2k+1 ← 0 . u = ∑2k−1

i=0 uixi

10: while ε < max0≤i≤k
{ |u2i+1|

4 − u2i + |u2i−1|
}

do
11: δ← 2δ, (s1, s2)← sum_two_squares(pε, δ), u← pε − Cs2

1 − Cs2
2

12: end while
13: c_list← [C, C], s_list← [h s1, h s2]
14: for i = 0 to k− 1 do
15: c_list← c_list∪ {|u2i+1|}, s_list← s_list∪ {h (xi+1 +

sgn (u2i+1)
2 xi)}

16: c_list← c_list∪ {ε− |u2i+1|
4 + u2i − |u2i−1|}, s_list← s_list∪ {h xi}

17: end for
18: return c_list∪ {ε + ud − |ud−1|}, s_list∪ {h xk}

Figure 2.2: univsos2: algorithm to compute SOS decompositions of nonnegative univariate poly-
nomials.

Step 1 of Figure 2.2).Then the idea is to find a positive number ε > 0 in K such that the perturbed
polynomial pε(x) := p(x)− ε ∑k

i=0 x2i is also positive on R (see [61, Section 5.2.2] for more details).
This number is computed thanks to the loop going from Step 4 to Step 6, and relies on the auxiliary
procedure has_real_roots, which checks whether the polynomial pε has real roots using root
isolation techniques. As mentioned in [61, Section 5.2.2], the number ε is divided by 2 again to
allow a margin of safety (Step 7).

Note that one can always ensure that the leading coefficient C := pd of p is the same as the
leading coefficient fd of the input polynomial f .

We obtain an approximate weighted rational sum of two polynomial squares decomposition of
the polynomial pε with the auxiliary procedure sum_two_squares (Step 8), relying on an arbitrary
precision complex root finder. Recalling Theorem 2.2.1, this implies that the polynomial p can be
approximated as closely as desired by a weighted sum of two polynomial squares in Q[x], that is
Cs2

1 + Cs2
2.

Thus there exists a remainder polynomial u := pε − Cs2
1 − Cs2

2 with coefficients of arbitrarily
small magnitude (as mentioned in [61, Section 5.2.3]). The magnitude of the coefficients converges
to 0 as the precision δ of the complex root finder goes to infinity. The precision is increased thanks to
the loop going from Step 10 to Step 12 until a condition between the coefficients of u and ε becomes
true, ensuring that ε ∑k

i=0 x2i + u(x) also admits a weighted SOS decomposition. For more details,
see [61, Section 5.2.4].

The reason why Algorithm univsos2 terminates is the following: at first, one can always find
a sufficiently small perturbation ε such that the perturbed polynomial pε remains positive. Next,
one can always find sufficiently precise approximations of the complex roots of pε ensuring that the
error between the initial polynomial p and the approximate SOS decomposition is compensated,
thanks to the perturbation term.
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The outputs of Algorithm univsos2 are a list of numbers in K and a list of polynomials in K[x],
allowing one to retrieve a weighted SOS decomposition of f . The size l of both lists is equal to
2k + 3 = d′+ 3 ≤ d + 3. If we write cl , . . . , c1 for the numbers belonging to c_list and sl , . . . , s1 for
the polynomials belonging to s_list, one obtains the following SOS decomposition: f = cls2

l +
· · ·+ c1s2

1.

Example 2.2.2 Let us consider the same polynomial f := 1
16 x6 + x4 − 1

9 x3 − 11
10 x2 + 2

15 x + 2 ∈ Q[x] as
in Example 2.2.1. We describe the different steps performed by Algorithm univsos2:

• The polynomial f is square-free, so we obtain p = f (Step 1). After performing the loop from Step 3
to Step 4, Algorithm univsos2 provides the value ε = 1

32 at Step 7 as well as the polynomial pε :=
p− 1

32 (1 + x2 + x4 + x6), which has no real root.

• Next, after increasing three times the precision in the loop going from Step 6 to Step 17, the result of
the approximate root computation yields s1 = x3 − 69

8 x and s2 = 7x2 − 1
4 x− 63

8 .

Applying Algorithm univsos2, we obtain the following two lists of size 6 + 3 = 9:

c_list =

[
1

32
,

1
32

,
913

15360
,

731
92160

,
7

1152
,

1
32

,
79

7680
,

1
576

, 0
]

,

s_list =

[
x3 − 69

8
x, 7x2 − 1

4
x− 63

8
, 1, x, x2, x3, x +

1
2

, x(x− 1
2
), x2(x +

1
2
)

]
,

yielding the following weighted SOS decomposition:

f =
1
32

(
x3 − 69

8
x
)2

+
1

32

(
7x2 − 1

4
x− 63

8

)2

+
913

15360
+

731
92160

x2

+
7

1152
x4 +

1
32

x6 +
79

7680

(
x +

1
2

)2

+
1

576
x2
(

x− 1
2

)2

.

Bit complexity analysis

First, we need the following auxiliary result:

Lemma 2.2.9 Let p ∈ Z[x] be a positive polynomial over R, with deg p = d and τ an upper bound on the
bitsize of the coefficients of p. Then, one has

inf
x∈R

p(x) > (d2τ)−d+22−d log2 d−dτ .

Lemma 2.2.10 Let p ∈ Z[x] be a positive polynomial over R, with deg p = d = 2k and let τ be an upper
bound on the bitsize of the coefficients of p. Then there exists a positive integer N = O (d log2 d + dτ) such
that for all N′ ≥ N the following holds. For ε(N′) := 1

2N′ , the polynomial pε(N′) := p− ε(N′)∑k
i=0 x2i is

positive over R.

Theorem 2.2.4 Let f ∈ Z[x] be a positive polynomial over R, with deg f = d and τ an upper bound
on the bitsize of the coefficients of f . Then the maximal bitsize of the weights and coefficients involved
in the weighted SOS decomposition of f obtained with Algorithm univsos2 is bounded from above by
O (d3 + d2τ).
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Theorem 2.2.5 Let f ∈ Z[x] be a positive polynomial over R, with deg f = d = 2k and τ an
upper bound on the bitsize of the coefficients of f . Then, on input f , Algorithm univsos2 runs in
∼
O (d4 + d3τ) boolean operations.

We state now the complexity result for checking the SOS certificates output by Algorithm
univsos2. As for the output of Algorithm univsos1, this is done through evaluation of the output
at d + 1 distinct values where d is the degree of the output.

Theorem 2.2.6 Let f ∈ Z[x] be a positive polynomial over R, with deg f = d = 2k and τ an upper
bound on the bitsize of the coefficients of f . Then one can check the correctness of the weighted SOS

decomposition of f obtained with Algorithm univsos2 using
∼
O (d4 + d3τ) bit operations.

Practical experiments

Now we present experimental results obtained by applying Algorithm univsos1 and Algo-
rithm univsos2. Both algorithms have been implemented in a tool, called RealCertify [C9],
written in Maple. The interested reader can find more details about installation and benchmark
execution on the dedicated webpage.1 The two algorithms are integrated into the RAGlib Maple
package2. SOS decomposition (resp. verification) times are provided after averaging over five
(resp., one thousand) runs.

As mentioned in [61, Section 6], the SOS decomposition performed by Algorithm univsos2 has
been implemented using the PARI/GP software tool3 and is freely available (see [61]). To ensure
fair comparison, we have rewritten this algorithm in Maple. To compute approximate complex
roots of univariate polynomials, we rely on the PARI/GP procedure polroots through an inter-
face with our Maple library. We also tried to use the Maple procedure fsolve, but the polroots

routine from Pari/GP yielded significantly better performance for the polynomials involved in our
examples.

The nine polynomial benchmarks presented in Table 2.1 allow to approximate some given
mathematical functions, considered in [61, Section 6]. Computation and verification of SOS cer-
tificates are a mandatory step required to validate the supremum norm of the difference between
such functions and their respective approximation polynomials on given closed intervals. This
boils down to certifying two inequalities of the form ∀x ∈ [b, c], p(x) ≥ 0, with p ∈ Q[X], b, c ∈ Q

and deg p = d. As explained in [61, Section 5.2.5], this latter problem can be addressed by com-

puting a weighted SOS decomposition of the polynomial q(y) := (1 + y2)d p
(

b+cy2

1+y2

)
, with either

Algorithm univsos1 or Algorithm univsos2. For each benchmark, we indicate in Table 2.1 the de-
gree d and the bitsize τ of the input polynomial, the bitsize τ1 of the weighted SOS decomposition
provided by Algorithm univsos1 as well as the corresponding computation (resp. verification)
time t1 (resp. t′1) in milliseconds. Similarly, we display τ2, t2, t′2 for Algorithm univsos2. The table
results show that for all other eight benchmarks, Algorithm univsos2 yields better certification and
verification performance, together with more concise SOS certificates. This observation confirms

1https://gricad-gitlab.univ-grenoble-alpes.fr/magronv/RealCertify
2http://www-polsys.lip6.fr/~safey/RAGLib/
3http://pari.math.u-bordeaux.fr

https://gricad-gitlab.univ-grenoble-alpes.fr/magronv/RealCertify
http://www-polsys.lip6.fr/~safey/RAGLib/
http://pari.math.u-bordeaux.fr
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what we could expect after comparing the theoretical complexity results.

Table 2.1: Comparison results of output size and performance between Algorithm univsos1 and
Algorithm univsos2 for nonnegative polynomial benchmarks from [61].

Id d τ (bits)
univsos1 univsos2

τ1 (bits) t1 (ms) t′1 (ms) τ2 (bits) t2 (ms) t′2 (ms)
# 1 13 22 682 3 403 218 2 723 0.40 51 992 824 0.14
# 3 32 269 958 11 613 480 13 109 1.18 580 335 2 640 0.68
# 4 22 47 019 1 009 507 4 063 1.45 106 797 1 776 0.31
# 5 34 117 307 8 205 372 102 207 20.1 265 330 5 204 0.60
# 6 17 26 438 525 858 1 513 0.74 59 926 1 029 0.21
# 7 43 67 399 62 680 827 217 424 48.1 152 277 11 190 0.87
# 8 22 27 581 546 056 1 979 0.77 63 630 1 860 0.38
# 9 20 30 414 992 076 964 0.44 68 664 1 605 0.25

# 10 25 42 749 3 146 982 1 100 0.38 98 926 2 753 0.39

Table 2.2: Comparison results of output size and performance between Algorithm univsos1 and
Algorithm univsos2 for nonnegative polynomial benchmarks from [296].

Id d τ (bits)
univsos1 univsos2

τ1 (bits) t1 (ms) t′1 (ms) τ2 (bits) t2 (ms) t′2 (ms)
# A

40

290 265 579 515 1 184 2.27 294 745 7 553 1.14
# B 290 369 579 720 1 008 2.25 294 803 7 543 0.99
# C 282 964 539 693 428 1.01 589 939 9 080 6.21
# D 289 630 552 702 500 1.14 596 604 8 902 0.62
# E 279 304 19 389 110 17 024 1.26 604 918 20 161 0.69

The five benchmarks from Table 2.2 are related to problems arising in verification of digi-
tal filters against frequency specifications (see [296, Section III B)]). As for the problems from
Table 2.1, computation and verification of SOS certificates are mandatory to show the nonneg-
ativity of a polynomial, which allows one in turn to validate the bounds of a rational func-
tion. By contrast with the comparison results from Table 2.1, Algorithm univsos1 is faster for
all examples. In addition, Algorithm univsos1 produces output certificates of smaller size, com-
pared to Algorithm univsos2, on the two benchmarks # C and # D. For all three other bench-
marks, Algorithm univsos2 provides more concise certificates. The slower performance of Al-
gorithm univsos2 is due to the time spent to obtain accurate approximations of the polynomial
roots.

The comparison results available in Table 2.3 are obtained for power sums of increasing de-
grees. For a given natural number d = 2k with 10 ≤ d ≤ 500, we consider the polynomial
Pd := 1 + x + · · ·+ xd. The roots of this polynomial are the (d + 1)-st roots of unity, thus yield-
ing the following SOS decomposition with real coefficients: Pd := ∏k

j=1((x − cos θj)
2 + sin2 θj),

with θj := 2jπ
d+1 , for each j ∈ [k]. By contrast with the benchmarks from Table 2.1, Table 2.3 shows

that Algorithm univsos1 produces output certificates of much smaller size compared to Algo-
rithm univsos2, with a bitsize ratio lying between 6 and 38 for values of d between 10 and 200.
This is due to the fact that Algorithm univsos1 outputs a value of t equal to 0 at each step. The
execution performance of Algorithm univsos1 is also much better in this case. The lack of effi-
ciency of Algorithm univsos2 is due to the computational bottleneck occurring when obtaining
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an accurate approximation of the relatively close roots cos θj ± i sin θj, j ∈ [k]. For d ≥ 300, the
execution of Algorithm univsos2 did not succeed after two hours of computation, as indicated by
the symbol − in the corresponding line.

Table 2.3: Comparison results of output size and performance between Algorithm univsos1 and
Algorithm univsos2 for nonnegative power sums of increasing degrees.

d
univsos1 univsos2

τ1 (bits) t1 (ms) t′1 (ms) τ2 (bits) t2 (ms) t′2 (ms)
10 84 7 0.03 567 264 0.03
20 195 10 0.05 1 598 485 0.06
40 467 26 0.09 6 034 2 622 0.18
60 754 45 0.14 12 326 6 320 0.32
80 1 083 105 0.18 21 230 12 153 0.47

100 1 411 109 0.26 31 823 19 466 0.69
200 3 211 444 0.48 120 831 171 217 2.08
300 5 149 1 218 0.74

− − −400 7 203 2 402 0.95
500 9 251 4 292 1.19

1000 20 483 30 738 2.56

Further experiments are summarized in Table 2.4 for modified Wilkinson polynomials Wd of
increasing degrees d = 2k with 10 ≤ d ≤ 600 and Wd := 1 + ∏k

j=1(x − j)2. The roots j ∈ [k]
of Wd − 1 are relatively close (i.e.,the difference between two consecutive roots is small by com-
parison with the size of the coefficients), which yields again significantly slower performance of
Algorithm univsos2. As observed in the case of power sums, timeout behaviors occur for d ≥ 60.
In addition, the bitsize of the SOS decompositions returned by Algorithm univsos1 are much
smaller. This is a consequence of the fact that in this case, a = 1 is the smallest global minimizer of
Wd. Hence the algorithm always terminates at the first iteration by returning the trivial quadratic
approximation ft = fa = 1 together with the square-free decomposition of Wd− ft = ∏k

j=1(x− j)2.

Table 2.4: Comparison results of output size and performance between Algorithm univsos1 and
Algorithm univsos2 for modified Wilkinson polynomials of increasing degrees.

d τ (bits)
univsos1 univsos2

τ1 (bits) t1 (ms) t′1 (ms) τ2 (bits) t2 (ms) t′2 (ms)
10 140 47 17 0.01 2 373 751 0.03
20 737 198 31 0.01 12 652 3 569 0.08
40 3 692 939 35 0.01 65 404 47 022 0.17
60 9 313 2 344 101 0.01

− − −

80 17 833 4 480 216 0.01
100 29 443 7 384 441 0.01
200 137 420 34 389 3 249 0.01
300 335 245 83 859 11 440 0.01
400 628 968 157 303 34 707 0.02
500 1 022 771 255 767 73 522 0.02
600 1 519 908 380 065 149 700 0.04

Finally, we consider experimentation performed on modified Mignotte polynomials defined by
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Md,m := xd + 2(101x − 1)m and Nd := (xd + 2(101X − 1)2)(xd + 2((101 + 1
101 )x − 1)2), for even

integers d and m ≥ 2. The corresponding results are displayed in Table 2.5 for Md,m with m = 2
and 10 ≤ d ≤ 10000, m = d− 2 and 10 ≤ d ≤ 100 as well as for Nd with 10 ≤ d ≤ 100. Note that
similar benchmarks are used in [278] to anayze the efficiency of (real) root isolation techniques for
polynomials with close roots. As for modified Wilkinson polynomials, Algorithm univsos2 can
only handle instances of small size, due to the limited scalability of the polroots procedure. In
this case, Algorithm univsos1 computes the approximation t = 1

100 of the unique global minimizer
of Md,2. Thus, Algorithm univsos1 always outputs weighted SOS decompositions of polynomi-
als Md,2 within a single iteration by first computing the quadratic polynomial ft = 2(101x − 1)2

and the trivial square-free decomposition Wd − ft = xd. In the absence of such minimizers, Algo-
rithm univsos1 can only handle instances of polynomials Md,d−2 and Nd with d ≤ 100.

Table 2.5: Comparison results of output size and performance between Algorithm univsos1 and
Algorithm univsos2 for modified Mignotte polynomials of increasing degrees.

Id d τ (bits)
univsos1 univsos2

τ1 (bits) t1 (ms) t′1 (ms) τ2 (bits) t2 (ms) t′2 (ms)

Md,2

10

27 23

2

0.01

4 958 1 659 0.04
102 3

− − −103 85
104 3 041

Md,d−2

10 288 25 010 21 0.03 6 079 2 347 0.04
20 1 364 182 544 138 0.04 26 186 10 922 0.06
40 5 936 1 365 585 1 189 0.13

− − −60 13 746 4 502 551 4 966 0.33
100 39 065 20 384 472 38 716 1.66

Nd

10

212

25 567 27 0.04

− − −
20 189 336 87 0.05
40 5 027 377 1 704 0.17
60 16 551 235 8 075 0.84

100 147 717 572 155 458 11.1

2.3 Exact SOS certificates: the multivariate case

Here we extend the previous framework from Section 2.2 to the multivariate case. The outlined
results from this section have been published in [C8, J16, C9]. Namely, with x = (x1, . . . , xn), we
consider the problem of deciding the nonnegativity of f ∈ Q[x] either over Rn or over a compact
semialgebraic set X as in (1.1), defined by some constraints g1 ≥ 0, . . . , gm ≥ 0, with gj ∈ Q[x].
Further, d denotes the maximum of the total degrees of these polynomials.

Classical approaches

The Cylindrical Algebraic Decomposition algorithm due to [67] and [307] allows one to solve it in
time doubly exponential in n (and polynomial in d). This has been significantly improved, through
the so-called critical point method, starting from [105] which culminates with [28] to establish that
this decision problem can be solved in time ((m + 1)d)O(n). These latter ones have been developed
to obtain practically fast implementations which reflect the complexity gain (see, e.g., [24, 20, 258,
257, 22, 109, 21, 101, 102]). These algorithms are “root finding” ones: they are designed to compute
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at least one point in each connected component of the set defined by f < 0. This is done by solv-
ing polynomial systems defining critical points of some well-chosen polynomial maps restricted
to f = −ε for ε small enough. Hence the complexity of these algorithms depends on the difficulty
of solving these polynomial systems (which can be exponential in n as the Bézout bound on the
number of their solutions is). Moreover, when f is nonnegative, they return an empty list with-
out a certificate that can be checked a posteriori. This section focuses on the computation of such
certificates under some favorable situations. Since not all positive polynomials are SOS, what to
do when SOS certificates do not exist? Also, given inputs with rational coefficients, can we obtain
certificates with rational coefficients?

For these questions, we inherit from previous contributions in the univariate case by [61, J17],
stated in Section 2.2, as well as in the multivariate case by [237, 152]. Note that [152, 151] allow us
to compute SOS with rational coefficients on some degenerate examples. Moreover, [151] allows
to compute decompositions into SOS of rational fractions. Diophantine aspects are considered in
[259, 111]. When an SOS decomposition exists with coefficients in a totally real Galois field, [140]
and [246] provide bounds on the total number of squares. In the multivariate unconstrained case,
Parillo and Peyrl designed a rounding-projection algorithm in [237] to compute a weighted ra-
tional SOS decompositon of a given polynomial f in the interior of the SOS cone. The algorithm
computes an approximate Gram matrix of f , and rounds it to a rational matrix. With sufficient
precision digits, the algorithm performs an orthogonal projection to recover an exact Gram matrix
of f . The SOS decomposition is then obtained with an exact LDLT procedure. This approach was
significantly extended in [152] to handle rational functions and in [108] to derive certificates of im-
possibility for Hilbert-Artin representations of a given degree. In a recent work by [170], the author
derives an algorithm based on facial reduction techniques to obtain exact rational decompositions
for some sub-classes of nonnegative polynomials lying in the border of the SOS cone. Among such
degenerate sub-classes, he considers polynomials that can be written as SOS of polynomials with
coefficients in an algebraic extension of Q of odd degree.

Exact SOS representations

Let Σ[x] be the convex cone of SOS in R[x] and Σ̊[x] be the interior of Σ[x]. We will be interested in
those polynomials which lie in Z[x] ∩ Σ[x]. For instance, the polynomial

f = 4x4
1 + 4x3

1x2 − 7x2
1x2

2 − 2x1x3
2 + 10x4

2 = (2x1x2 + x2
2)

2 + (2x2
1 + x1x2 − 3x2

2)
2

lies in Z[x] ∩ Σ[x].
The Newton polytope or cage C ( f ) is the convex hull of the vectors of exponents of monomials that
occur in f ∈ R[x]. For the above example, C ( f ) = {(4, 0), (3, 1), (2, 2), (1, 3), (0, 4)}. For a given
Newton polytope P, let ΣP[x] be the convex cone of SOS whose Newton polytope is contained in
P. Since the Newton polytope P is often clear from the context, we suppress the index P.

With f ∈ R[x] of degree d = 2k, we consider the following formulation, which is the same as
SDP (2.2):

max
G�0,b

{ b : fγ − b 1γ=0 = 〈G, Bγ〉, γ ∈Nn
2k } (2.34)

where 〈G, B〉 stands for the trace of GB. Recall that Bγ has rows (resp. columns) indexed by Nn
k

with (α, β) entry equal to 1 if α + β = γ and 0 otherwise.

Theorem 2.3.1 [180, Theorem 3.2] Let f ∈ R[x] of degree d = 2k and global infimum fmin :=
infx∈Rn f (x). Assume that SDP (2.34) has a feasible solution G = ∑l

i=1 λiqi qT
i , with the qi being the

eigenvectors of G corresponding to the nonnegative eigenvalues λi, for all i ∈ [l]. Then f − fmin =

∑l
i=1 λiq2

i .



2.3. Exact SOS certificates: the multivariate case 77

For the sake of efficiency, one reduces the size of the matrix G by indexing its rows and columns
by half of C ( f ):

Theorem 2.3.2 [16, Theorem 1] Let f ∈ Σ[x] with f = ∑l
i=1 s2

i , P := C ( f ) and B := P/2 ∩Nn. Then
for all i ∈ [l], C (si) ⊆ B.

Given f ∈ R[x], Theorem 2.3.1 states that one can theoretically certify that f lies in Σ[x] by
solving SDP (2.34). However, available SDP solvers are typically implemented in finite-precision
and require the existence of a strictly feasible solution G � 0 to converge. This is equivalent for f
to lie in Σ̊[x] as stated in [64, Proposition 5.5]:

Theorem 2.3.1 Let f ∈ Z[x] with P := C ( f ), B := P/2∩Nn and vk be the vector of all monomials
with support in B. Then f ∈ Σ̊[x] if and only if there exists a positive definite matrix G such that
f = vT

k Gvk.

In the sequel, we state and analyze a hybrid numeric-symbolic algorithm, called intsos, com-
puting weighted SOS decompositions of polynomials in Z[x] ∩ Σ̊[x]. This algorithm relies on per-
turbations of such polynomials. We first establish the following preliminary result.

Proposition 2.3.3 Let f ∈ Z[x]∩ Σ̊[x] of degree d = 2k, with τ = τ( f ), P = C( f ) and B := P/2∩Nn.
Then, there exists N ∈ N − {0} such that for ε := 1

2N , f − ε ∑α∈B x2α ∈ Σ̊[x], with N ≤ τ(ε) ≤
O (τ · (4d + 2)3n+3).

The following can be found in [78, Lemma 2.1] and [78, Theorem 3.2].

Proposition 2.3.4 Let G � 0 be a matrix with rational entries indexed on Nn
r . Let L be the factor of G

computed using Cholesky’s decomposition with finite precision δc. Then LLT = G + F where

|Fα,β| ≤
(r + 1)2−δc |Gα,α Gβ,β|

1
2

1− (r + 1)2−δc
. (2.35)

In addition, if the smallest eigenvalue λ̃ of G satisfies the inequality

2−δc <
λ̃

r2 + r + (r− 1)λ̃
, (2.36)

Cholesky’s decomposition returns a rational nonsingular factor L.

Algorithm intsos

We present our algorithm intsos computing exact weighted rational SOS decompositions for poly-
nomials in Z[x] ∩ Σ̊[x].

Given f ∈ Z[x] of degree d = 2k, one first computes its Newton polytope P := C ( f ) (see line 1)
and B := P/2 ∩Nn using standard algorithms such as quickhull by [55]. The loop going from
line 3 to line 4 finds a positive ε ∈ Q such that the perturbed polynomial fε := f − ε ∑α∈B x2α is
also in Σ̊[x]. This is done thanks to any external oracle deciding the nonnegativity of a polynomial.
Even if this oracle is able to decide nonnegativity, we would like to emphasize that our algorithm
outputs an SOS certificate in order to certify the nonnegativity of the input. In practice, we often
choose the value of ε while relying on a heuristic technique rather than this external oracle, for the
sake of efficiency.



78 Chapter 2. Certified polynomial optimization

Require: f ∈ Z[x], positive ε ∈ Q, precision parameters δ, R ∈ N for the SDP solver, precision
δc ∈N for the Cholesky’s decomposition

Ensure: list c_list of numbers in Q and list s_list of polynomials in Q[x]
1: P := C ( f ), B := P/2∩Nn

2: t := ∑α∈B x2α, fε ← f − εt
3: while fε /∈ Σ̊[x] do ε← ε

2 , fε ← f − εt
4: end while
5: ok := false
6: while not ok do
7: (G̃, λ̃)← sdp( fε, δ, R)
8: (s1, . . . , sl)← cholesky(G̃, λ̃, δc) . fε ' ∑l

i=1 s2
i

9: u← fε −∑l
i=1 s2

i
10: c_list← [1, . . . , 1], s_list← [s1, . . . , sl ]
11: for α ∈ B do εα := ε
12: end for
13: c_list, s_list, (εα)← absorb(u, B, (εα), c_list, s_list)
14: if minα∈B{εα} ≥ 0 then ok := true
15: else δ← 2δ, R← 2R, δc ← 2δc
16: end if
17: end while
18: for α ∈ B do c_list← c_list∪ {εα}, s_list← s_list∪ {xα}
19: end for
20: return c_list, s_list

Figure 2.3: intsos

Require: u ∈ Q[x], multi-index set B, lists (εα) and c_list of numbers in Q, list s_list of poly-
nomials in Q[x]

Ensure: lists (εα) and c_list of numbers in Q, list s_list of polynomials in Q[x]
1: for γ ∈ supp(u) do
2: if γ ∈ (2N)n then α := γ

2 , εα := εα + uγ

3: else
4: Find α, β ∈ B such that γ = α + β

5: εα := εα − |uγ |
2 , εβ := εβ −

|uγ |
2

6: c_list← c_list∪ { |uγ |
2 }

7: s_list← s_list∪ {xα + sgn (uγ)xβ}
8: end if
9: end for

Figure 2.4: absorb

If f ∈ Z[x] ∩ Σ̊[x], then the set {e ∈ R>0 : ∀x ∈ Rn, f (x)− e ∑α∈B x2α ≥ 0} is non empty (see
the proof of Proposition 2.3.3). If the oracle asserts that x 7→ f (x)− e ∑α∈B x2α is nonnegative on
Rn, then e belongs to this set and it is enough to select ε = e/2 to ensure that fε := f − ε ∑α∈B x2α ∈
Σ̊[x].

Next, we enter in the loop starting from line 6. Given fε ∈ Z[x], positive integers δ and R,
the sdp function calls an SDP solver and tries to compute a rational approximation G̃ of the Gram
matrix associated to fε together with a rational approximation λ̃ of its smallest eigenvalue.

In order to analyse the complexity of the procedure (see Remark 2.3.1), we assume that sdp
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relies on the ellipsoid algorithm by [206].

Remark 2.3.1 In [159], the authors analyze the complexity of the short step, primal interior point method,
used in SDP solvers. Within fixed accuracy, they obtain a polynomial complexity, as for the ellipsoid method,
but the exact value of the exponents is not provided.

Also, in practice, we use an arbitrary-precision SDP solver implemented with an interior-point method.

SDP problems are solved with this latter algorithm in polynomial-time within a given accuracy δ
and a radius bound R on the Frobenius norm of G̃. The first step consists of solving SDP (2.34) by
computing an approximate Gram matrix G̃ � 2−δ I such that

|〈G̃, Bγ〉 − ( fε)γ| = | ∑
α+β=γ

G̃α,β − ( fε)γ| ≤ 2−δ

and
√
〈G̃, G̃〉 ≤ R. We pick large enough integers δ and R to obtain G̃ � 0 and λ̃ > 0 when

fε ∈ Σ̊[x].
The cholesky function computes the approximate Cholesky’s decomposition LLT of G̃ with

precision δc. In order to guarantee that L will be a rational nonsingular matrix, a preliminary
step consists of verifying that the inequality (2.36) holds, which happens when δc is large enough.
Otherwise, cholesky selects the smallest δc such as (2.36) holds. Let vk be the size l vector of all
monomials xα with α belonging to B. The output is a list of rational polynomials [s1, . . . , sl ] such
that for all i ∈ [l], si is the inner product of the i-th row of L by vk. By Theorem 2.3.1, one would
have fε = ∑l

i=1 s2
i with si ∈ R[x] after using exact SDP and Cholesky’s decomposition. Here, we

have to consider the remainder u = f − ε ∑α∈B x2α −∑l
i=1 s2

i , with si ∈ Q[x].
After these steps, the algorithm starts to perform symbolic computation with the absorb sub-

routine at line 13. The loop from absorb is designed to obtain an exact weigthed SOS decompo-
sition of εt + u = ε ∑α∈B x2α + ∑γ uγxγ, yielding in turn an exact decomposition of f . Each term
uγxγ can be written either uγx2α or uγxα+β, for α, β ∈ B. In the former case (line 2), one has

εx2α + uγx2α = (ε + uγ)x2α .

In the latter case (line 4), one has

ε(x2α + x2β) + uγxα+β = |uγ|/2(xα + sgn (uγ)xβ)2 + (ε− |uγ|/2)(x2α + x2β) .

If the positivity test of line 14 fails, then the coefficients of u are too large and one cannot ensure
that εt + u is SOS. So we repeat the same procedure after increasing the precision of the SDP solver
and Cholesky’s decomposition.

In prior work [J17], outlined in Section 2.2, we formalized and analyzed the so-called univsos2

algorithm, initially provided in [61]. Given a univariate polynomial f > 0 of degree d = 2k, this
algorithm computes weighted SOS decompositions of f . With t := ∑k

i=0 x2i, the first numeric step
of univsos2 is to find ε such that the perturbed polynomial fε := f − εt > 0 and to compute its
complex roots, yielding an approximate SOS decomposition s2

1 + s2
2. The second symbolic step is

very similar to the loop from line 1 to line 9 in intsos: one considers the remainder polynomial
u := fε − s2

1 − s2
2 and tries to computes an exact SOS decomposition of εt + u. This succeeds

for large enough precision of the root isolation procedure. Therefore, intsos can be seen as an
extension of univsos2 in the multivariate case by replacing the numeric step of root isolation by
SDP and keeping the same symbolic step.

Example 2.3.1 We apply Algorithm intsos on

f = 4x4
1 + 4x3

1x2 − 7x2
1x2

2 − 2x1x3
2 + 10x4

2,
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with ε = 1, δ = R = 60 and δc = 10. Then

B := C ( f )/2∩Nn = {(2, 0), (1, 1), (0, 2)}

(line 1). The loop from line 3 to line 4 ends and we get f − εt = f − (x4
1 + x2

1x2
2 + x2

2) ∈ Σ̊[x]. The sdp
(line 7) and cholesky (line 8) procedures yield

s1 = 2x2
1 + x1x2 −

8
3

x2
2, s2 =

4
3

x1x2 +
3
2

x2
2 and s3 =

2
7

x2
2.

The remainder polynomial is u = f − εt− s2
1 − s2

2 − s2
3 = −x4

1 −
1
9 x2

1x2
2 −

2
3 x1x3

2 −
781

1764 x4
2.

At the end of the loop from line 1 to line 9, we obtain ε(2,0) = (ε− x4
1 = 0, which is the coefficient of x4

1
in εt + u. Then,

ε(x2
1x2

2 + x4
2)−

2
3

x1x3
2 =

1
3
(x1x2 − x2

2)
2 + (ε− 1

3
)(x2

1x2
2 + x4

2).

In the polynomial εt + u, the coefficient of x2
1x2

2 is ε(1,1) = ε − 1
3 −

1
9 = 5

9 and the coefficient of x4
4 is

ε(0,2) = ε− 1
3 −

781
1764 = 395

1764 .
Eventually, we obtain the weighted rational SOS decomposition:

4x4
1 + 4x3

1x2 − 7x2
1x2

2 − 2x1x3
2 + 10x4

2 =
1
3
(x1x2 − x2

2)
2 +

5
9
(x1x2)

2 +
395

1764
x4

2

+ (2x2
1 + x1x2 −

8
3

x2
2)

2 + (
4
3

x1x2 +
3
2

x2
2)

2 + (
2
7

x2
2)

2) .

Bit complexity analysis

Let f ∈ Z[x] ∩ Σ̊[x] of degree d = 2k, τ := τ( f ) and B := C( f )/2∩Nn.

Proposition 2.3.5 Let G be a positive definite Gram matrix associated to f and take 0 < ε ∈ Q as in
Proposition 2.3.3 so that fε = f − ε ∑α∈B x2α ∈ Σ̊[x]. Then, there exist positive integers δ, R such that
G− ε I is a Gram matrix associated to fε, satisfies G− ε I � 2−δ I and

√
〈G− ε I, G− ε I〉 ≤ R. Also,

the maximal bitsizes of δ and R are upper bounded by O (τ · (4d + 2)3n+3) and O (τ · (4d + 2)4n+3),
respectively.

Proposition 2.3.6 Let f be as above. When applying Algorithm intsos to f , the procedure always termi-
nates and outputs a weighted SOS decomposition of f with rational coefficients. The maximum bitsize of
the coefficients involved in this SOS decomposition is upper bounded by O (τ · (4d + 2)4n+3).

Theorem 2.3.2 For f as above, there exist ε, δ, R, δc of bitsizes upper bounded byO (τ · (4d + 2)4n+3)
such that intsos( f , ε, δ, R, δc) runs in boolean time O (τ2 · (4d + 2)15n+6).

Comparison with the rounding-projection algorithm of Peyrl and Parrilo

We recall the algorithm designed in [237]. We denote this rounding-projection algorithm
by RoundProject.

The first main step in Step 5 consists of rounding the approximation G̃ of a Gram matrix asso-
ciated to f up to precision δi. The second main step in Step 8 consists of computing the orthog-
onal projection G of G′ on an adequate affine subspace in such a way that ∑α+β=γ Gα,β = fγ,
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Require: f ∈ Z[x], rounding precision δi ∈N, precision parameters δ, R ∈N for the SDP solver
Ensure: list c_list of numbers in Q and list s_list of polynomials in Q[x]

1: P := C ( f ), B := P/2∩Nn

2: ok := false
3: while not ok do
4: (G̃, λ̃)← sdp( f , δ, R)
5: G′ ← round

(
G̃, δi

)
6: for α, β ∈ B do
7: η(α + β)← #{(α′, β′) ∈ B2 | α′ + β′ = α + β}
8: G(α, β) := G′(α, β)− 1

η(α+β)

(
∑α′+β′=α+β G′(α′, β′)− fα+β

)
9: end for

10: (c1, . . . , cl , s1, . . . , sl)← ldl(G) . f = ∑l
i=1 cis2

i
11: if c1, . . . , cl ∈ Q>0, s1, . . . , sl ∈ Q[x] then ok := true
12: else δ← 2δ, R← 2R, δc ← 2δc
13: end if
14: end while
15: c_list← [c1, . . . , cl ], s_list← [s1, . . . , sl ]
16: return c_list, s_list

Figure 2.5: RoundProject

for all γ ∈ supp( f ). For more details on this orthogonal projection, we refer to [237, Proposi-
tion 7]. The algorithm then performs in (10) an exact diagonalization of the matrix G via the
LDLT decomposition (see, e.g., [97, § 4.1]). It is proved in [237, Proposition 8] that for f ∈ Σ̊[x],
Algorithm RoundProject returns a weighted SOS decomposition of f with rational coefficients
when the precision of the rounding and SDP solving steps are large enough. The main differ-
ences w.r.t. Algorithm intsos are that RoundProject does not perform a perturbation of the input
polynomial f and computes an exact LDLT decomposition of a Gram matrix G. In our case, we
compute an approximate Cholesky’s decomposition of G̃ instead of a projection, then perform an
exact compensation of the error terms, thanks to the initial perturbation.

The next result gives upper bounds on the bitsize of the coefficients involved in the SOS decom-
position returned by RoundProject as well as on the boolean running time. Even though intsos

and RoundProject have the same exponential bit complexity, the upper bound estimates are larger
in the case of RoundProject. It would be worth investigating if these bounds are tight in general.

Theorem 2.3.3 For f as above, there exist δi, δ, R of bitsizes ≤ O (τ · (4d + 2)4n+3) such that
RoundProject( f , δi, δ, R) outputs a rational SOS decomposition of f with rational coefficients.
The maximum bitsize of the coefficients involved in this SOS decomposition is upper bounded by
O (τ · (4d + 2)6n+3) and the boolean running time is O (τ2 · (4d + 2)15n+6).

Exact Reznick’s representations

Next, we show how to apply Algorithm intsos to decompose positive definite forms into SOS of
rational functions.

Let Gn := ∑n
i=1 x2

i and let us consider the unit (n− 1)-sphere {x ∈ Rn : Gn(x) = 1}. A positive
definite form f ∈ R[x] is a homogeneous polynomial which is positive over the unit (n− 1)-sphere.
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Require: f ∈ Z[x], positive ε ∈ Q, precision parameters δ, R ∈ N for the SDP solver, precision
δc ∈N for the Cholesky’s decomposition

Ensure: list c_list of numbers in Q and list s_list of polynomials in Q[x]
1: r := 0
2: while interiorSOScone( f Gn, r) = false do r ← r + 1
3: end while
4: return intsos( f Gr

n, ε, δ, R, δc)

Figure 2.6: Reznicksos

For such a form, we define ε( f ) as the ratio between the minimum and maximum values of f on
the unit (n − 1)-sphere. This ratio measures how close f is to having a zero in the unit sphere.
While there is no guarantee that f ∈ Σ[x], [17] proved that for large enough r ∈ N, f Gr

n ∈ Σ[x].
Such SOS decompositions are called Reznick’s representations and 2r is called the Reznick’s degree.
The next result states that for large enough r ∈N, f Gr

n ∈ Σ̊[x], as a direct consequence of [17].

Lemma 2.3.7 Let f be a positive definite form of degree d = 2k in Z[x] and r ≥ nd(d−1)
4 log 2 ε( f ) −

n+d
2 +1. Then

f Gr
n ∈ Σ̊[x].

Algorithm Reznicksos takes as input f ∈ Z[x], finds the smallest r ∈ N such that f Gr
n ∈ Σ̊[x],

thanks to an oracle which decides if some given polynomial is a positive definite form. Further,
we denote by interiorSOScone a routine which takes as input f , Gn and r and returns true if and
only if f Gr

n ∈ Σ̊[x], else it returns false. Then, intsos is applied on f Gr
n.

Example 2.3.2 Let us apply Reznicksos on the perturbed Motzkin polynomial

f = (1 + 2−20)(x6
3 + x4

1x2
2 + x2

1x4
2)− 3x2

1x2
2x2

3.

With r = 1, one has f Gn = (x2
1 + x2

2 + x2
3) f ∈ Σ̊[x] and intsos yields an SOS decomposition of f Gn

with ε = 2−20, δ = R = 60, δc = 10.

Theorem 2.3.4 Let f ∈ Z[x] be a positive definite form of degree d, coefficients of bitsize at most τ.
On input f , Algorithm Reznicksos terminates and outputs a weighted SOS decomposition for f . The
maximum bitsize of the coefficients involved in the decomposition and the boolean running time of the
procedure are both upper bounded by 2O (τ·(4d+2)4n+3).

The bit complexity of Reznicksos is polynomial in the Reznick’s degree 2r of the representation.
In all the examples we tackled, this degree was rather small as shown.

Exact Putinar’s representations

We let f , g1, . . . , gm in Z[x] of degrees less than d ∈N and τ ∈N be a bound on the bitsize of their
coefficients. Assume that f is positive over X := {x ∈ Rn : g1(x) ≥ 0, . . . , gm(x) ≥ 0} and reaches
its infimum with fmin := minx∈X f (x) > 0. With f = ∑|α|≤d fαxα, we set ‖ f ‖ := max|α|≤d

fαα1!···αn !
|α|!

and g0 := 1.
As usual, we consider the quadratic moduleM(X) :=

{
∑m

j=0 σjgj : σj ∈ Σ[x]
}

and, for r ∈ N,
the 2r-truncated quadratic moduleM(X)r :=

{
∑m

j=0 σjgj : σj ∈ Σ[x] , deg(σjgj) ≤ 2r
}

generated
by g1, . . . , gm. As done several times earlier on, we rely on the following assumption.
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Assumption 2.3.8 The set X is a basic compact semialgebraic set with nonempty interior, included in
[−1, 1]n andM(X) is archimedean.

Under Assumption 2.3.8, f is positive over X only if f ∈ M(X)r for some r ∈N (see [245]). In this
case, there exists a Putinar’s representation f = ∑m

i=0 σjgj with σj ∈ Σ[x] for 0 ≤ j ≤ m. One can
certify that f ∈ M(X)r by solving the next SDP with r ≥ dd/2e:

supGj ,b
{ b : fα − b 1α=0 =

m

∑
j=0
〈Cj

α, Gj〉 , α ∈Nn
2r ,

Gj � 0 , j = 0, . . . , m }
, (2.37)

which the same as SDP (2.7) from Section 2.1. SDP (2.37) is a reformulation of the problem

f r
min := sup{b : f − b ∈ M(X)r} .

Thus f r
min is also the optimal value of SDP (2.37). The next result follows from [180, Theorem 4.2]:

Theorem 2.3.9 We use the notation introduced above. Under Assumption 2.3.8, for r ∈ N large enough,
one has

0 < f r
min ≤ fmin .

In addition, SDP (2.37) has an optimal solution (G0, G1, . . . , Gm), yielding the following Putinar’s repre-
sentation:

f − f r
min =

l

∑
i=1

λi0q2
i0 +

m

∑
j=1

gj

lj

∑
i=1

λijq2
ij ,

where the vectors of coefficients of the polynomials qij are the eigenvectors of Gj with respective eigenvalues
λij, for all j = 0, . . . , m.

The complexity of Putinar’s Positivstellensätz was analyzed by [226]:

Theorem 2.3.10 With the notation and assumptions introduced above, there exists a real χX > 0 depending
on X such that

(i) for all even 2r ≥ χX exp
(
d2nd ‖ f ‖

fmin

)χX , f ∈ M(X)r.

(ii) for all even 2r ≥ χX exp
(
2d2nd)χX , 0 ≤ fmin − f r

min ≤
6d3n2d‖ f ‖
χX
√

log 2r
χX

.

From a computational viewpoint, one can certify that f lies inM(X)r for r large enough, by solving
SDP (2.37). Next, we show how to ensure the existence of a strictly feasible solution for SDP (2.37)
after replacing the set defined by our initial constraints X by the following one

X′ := {x ∈ X : 1− x2α ≥ 0 , ∀α ∈Nn
r } .

We first give a lower bound for fmin.

Proposition 2.3.11 With the above notation and assumptions, one has

fmin ≥ 2−(τ+d+d log2 n+1)dn+1
d−(n+1)dn+1 ≥ 2−O (τ·d2n+2) .
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Theorem 2.3.5 We use the notation and assumptions introduced above. There exists r ∈N such that:
(i) f ∈ M(X)r with the representation

f = f r
min +

m

∑
j=0

σjgj ,

for f r
min > 0, σj ∈ Σ[x] with deg(σjgj) ≤ 2r for all j = 0, . . . , m.

(ii) f ∈ M(X′)r with the representation

f =
m

∑
j=0

σ̊jgj + ∑
|α|≤r

cα(1− x2α) ,

for σ̊j ∈ Σ̊[x] with deg(σ̊jgj) ≤ 2r, for all j = 0, . . . , m, and some sequence of positive numbers
(cα)|α|≤r.
(iii) There exists a real CX > 0 depending on X and ε = 1

2N with positive N ∈N such that

f − ε ∑
|α|≤r

x2α ∈ M(X′)r , N ≤ 2CXτd2n+2
,

where τ is the maximal bitsize of the coefficients of f , g1, . . . , gm.

Algorithm Putinarsos

We can now present Algorithm Putinarsos.

For f ∈ Z[x] positive over a basic compact semialgebraic set X satisfying Assumption 2.3.8, the
first loop outputs the smallest positive integer 2r such that f ∈ M(X)r.
Then the procedure is similar to intsos. As for the first loop of intsos, the loop from line 6 to
line 7 allows us to obtain a perturbed polynomial fε ∈ M(X′)r, with X′ := {x ∈ X : 1− x2α ≥
0 , ∀α ∈Nn

r }.
Then one solves SDP (2.37) with the sdp procedure and performs Cholesky’s decomposition to
obtain an approximate Putinar’s representation of fε = f − εt and a remainder u.
Next, we apply the absorb subroutine as in intsos. The rationale is that with large enough preci-
sion parameters for the procedures sdp and cholesky, one finds an exact weighted SOS decompo-
sition of u + εt, which yields in turn an exact Putinar’s representation of f inM(X′)r with rational
coefficients.

Example 2.3.3 Let us apply Putinarsos to f = −x2
1 − 2x1x2 − 2x2

2 + 6, X := {(x1, x2) ∈ R2 :
1− x2

1 ≥ 0, 1− x2
2 ≥ 0} and the same precision parameters as in Example 2.3.1. The first and second loop

yield r = 1 and ε = 1. After running absorb, we obtain the exact Putinar’s representation

f =
23853407
292204836

+
23
49

x2
1 +

130657269
291009481

x2
2 +

1
24422 + (x1 − x2)

2 + (
x2

2437
)2 +

(
11
7

)2
(1− x2

1)

+

(
13
7

)2
(1− x2

2) .
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Require: f , g1, . . . , gm ∈ Z[x] of degrees less than d ∈ N, X := {x ∈ Rn : g1(x) ≥ 0, . . . , gm(x) ≥
0}, positive ε ∈ Q, precision parameters δ, R ∈ N for the SDP solver , precision δc ∈ N for the
Cholesky’s decomposition

Ensure: lists c_list0, . . . , c_listm, c_alpha of numbers in Q and lists s_list0, . . . , s_listm of
polynomials in Q[x]

1: r ← dd/2e, g0 := 1
2: while f /∈ M(X)r do r ← r + 1
3: end while
4: P := Nn

2r, B := Nn
r , X′ := {x ∈ X : 1− x2α ≥ 0 , ∀α ∈Nn

r }
5: t := ∑α∈B x2α, fε ← f − εt
6: while fε /∈ M(X′)r do ε← ε

2 , fε ← f − εt
7: end while
8: ok := false
9: while not ok do

10: [G̃0, . . . , G̃m, λ̃0, . . . , λ̃m, (c̃α)|α|≤r],← sdp( fε, δ, R, X′)
11: c_alpha← (c̃α)|α|≤r
12: for j ∈ {0, . . . , m} do

13: (s1j, . . . , slj j)← cholesky(G̃j, λ̃j, δc), σ̃j := ∑
lj
i=1 s2

ij
14: c_listj ← [1, . . . , 1], s_listj ← [s1j, . . . , slj j]

15: end for
16: u← fε −∑m

j=0 σ̃j gj −∑|α|≤r c̃α(1− x2α)
17: for α ∈ B do εα := ε
18: end for
19: c_list, s_list, (εα)← absorb(u, B, (εα), c_list, s_list)
20: if minα∈B{εα} ≥ 0 then ok := true
21: else δ← 2δ, R← 2R, δc ← 2δc
22: end if
23: end while
24: for α ∈ B do
25: c_list0 ← c_list0 ∪ {εα}, s_list0 ← s_list0 ∪ {xα}
26: end for
27: return c_list0, . . . , c_listm, c_alpha, s_list0, . . . , s_listm

Figure 2.7: Putinarsos

Bit complexity analysis

Theorem 2.3.6 We use the notation and assumptions introduced above. For some constants CX > 0
and KX depending on S, there exist ε, δ, R, δc and r of bitsizes less than O (2CXτd2n+2

) for which
Putinarsos( f , X, ε, δ, R, δc) terminates and outputs an exact Putinar’s representation with rational
coefficients of f ∈ Q(X′), with X′ := {x ∈ X : 1− x2α ≥ 0 , ∀α ∈ Nn

r }. The maximum bitsize of

these coefficients is bounded by O (2CXτd2n+2
) and the procedure runs in boolean time O

(
22KXτd2n+2 )

.

As for Reznicksos, the complexity is polynomial in the degree 2r of the representation. On all the
examples we tackled, it was close to the degrees of the involved polynomials.
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Require: f , g1, . . . , gm ∈ Z[x] of degrees less than d ∈ N, X := {x ∈ Rn : g1(x) ≥ 0, . . . , gm(x) ≥
0}, rounding precision δi ∈ N, precision parameters δ, R ∈ N for the SDP solver, precision
δc ∈N for the Cholesky’s decomposition

Ensure: lists c_list0, . . . , c_listm of numbers in Q and lists s_list0, . . . , s_listm of polynomials
in Q[x]

1: r ← dd/2e, g0 := 1
2: while f /∈ M(X)r do r ← r + 1
3: end while
4: ok := false
5: while not ok do
6: [G̃0, . . . , G̃m, λ̃0, . . . , λ̃m],← sdp( f , δ, R, X)
7: G′ ← round

(
G̃0, δi

)
8: for j ∈ [m] do

9: (s1j, . . . , slj j)← cholesky(G̃j, λ̃j, δc), σ̃j := ∑
lj
i=1 s2

ij
10: c_listj ← [1, . . . , 1], s_listj ← [s1j, . . . , slj j]

11: end for
12: u← f −∑m

j=1 σ̃j
13: B := Nn

r
14: for α, β ∈ B do η(α + β)← #{(α′, β′) ∈ B2 | α′ + β′ = α + β}
15: G(α, β) := G′(α, β)− 1

η(α+β)

(
∑α′+β′=α+β G′(α′, β′)− uα+β

)
16: end for
17: (c10, . . . , cl00, s10, . . . , sl00)← ldl(G) . f = ∑l0

i=1 ci0s2
i0 + ∑m

j=1 σ̃j

18: if c10, . . . , cmlm ∈ Q≥0, s01, . . . , smlm ∈ Q[x] then ok := true
19: else δi ← 2δi, δ← 2δ, R← 2R, δc ← 2δc
20: end if
21: end while
22: c_list0 ← [c10, . . . , cl00], s_list0 ← [s10, . . . , sl00]
23: return c_list0, . . . , c_listm, s_list0, . . . , s_listm

Figure 2.8: RoundProjectPutinar

Comparison with the rounding-projection algorithm of Peyrl and Parrilo

We now state a constrained version of the rounding-projection algorithm from [237].
For f ∈ Z[x] positive over a basic compact semialgebraic set X satisfying Assumption 2.3.8,

Algorithm RoundProjectPutinar starts as in Algorithm Putinarsos: it outputs the smallest r such
that f ∈ M(X)r, solves SDP (2.37) in Step 6, and performs Cholesky’s factorization in Step 9
to obtain an approximate Putinar’s representation of f . Note that the approximate Cholesky’s
factorization is performed to obtain weighted SOS decompositions associated to the constraints
g1, . . . , gm (i.e. σ̃1, . . . , σ̃m, respectively).
Next, the algorithm applies in Step 15 the same projection procedure of Algorithm RoundProject

on the polynomial u := f − ∑m
j=1 σ̃jgj. Note that when there are no constraints, one retrieves

exactly the projection procedure from Algorithm RoundProject. Exact LDLT is then performed on
the matrix G corresponding to u.
If all input precision parameters are large enough, G is a Gram matrix associated to u and σ̃1, . . . , σ̃m
are weighted SOS polynomals, yielding the exact Putinar’s representation f = u+∑m

j=1 σ̃jgj. As for
Theorem 2.3.3 and Theorem 2.3.6, Algorithm RoundProjectPutinar has a similar bit complexity
than Putinarsos.
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Table 2.6: multivsos vs univsos2 (Table 2.1) for benchmarks from [61].

Id d τ (bits)
multivsos univsos2

τ1 (bits) t1 (s) τ2 (bits) t2 (s)
# 1 13 22 682 387 178 0.84 51 992 0.83
# 3 32 269 958 − − 580 335 2.64
# 4 22 47 019 1 229 036 2.08 106 797 1.78
# 5 34 117 307 10 271 899 69.3 265 330 5.21
# 6 17 26 438 713 865 1.15 59 926 1.03
# 7 43 67 399 10 360 440 16.3 152 277 11.2
# 8 22 27 581 1 123 152 1.95 63 630 1.86
# 9 20 30 414 896 342 1.54 68 664 1.61
# 10 25 42 749 2 436 703 3.02 98 926 2.76

Practical experiments

We provide experimental results for Algorithms intsos, Reznicksos and Putinarsos. These are
implemented in a procedure, called multivsos, and integrated in the RealCertify library by [C9],
written in Maple. We use the Maple Convex package4 to compute Newton polytopes. Our subrou-
tine sdp relies on the arbitrary-precision solver SDPA-GMP by [221] and the cholesky procedure
is implemented with LUDecomposition available within Maple. Most of the time is spent in the
sdp procedure for all benchmarks. To decide nonnegativity of polynomials, we use either RAGLib
or the sdp procedure as oracles. Recall that RAGLib relies on critical point methods whose runtime
strongly depends on the number of (complex) solutions to polynomial systems encoding critical
points. While these methods are more versatile, this number is generically exponential in n. Hence,
we prefer to rely at first on a heuristic strategy based on using sdp first (recall that it does not pro-
vide an exact answer).

In Table 2.6, we compare the performance of multivsos for nine univariate polynomials being
positive over compact intervals. More details about these benchmarks are given in [61, Section 6]
and [J17, Section 5]. In this case, we use Putinarsos. The main difference is that we use SDP in
multivsos instead of complex root isolation in univsos2. The results emphasize that univsos2 is
faster and provides more concise SOS certificates, especially for high degrees (see, e.g., # 5). For
# 3, we were not able to obtain a decomposition within a day of computation with multivsos, as
meant by the symbol − in the corresponding column entries. Large values of d and τ require more
precision. The values of ε, δ and δc are respectively between 2−80 and 2−240, 30 and 100, 200 and
2000.

Next, we compare the performance of multivsos with other tools in Table 2.7. The two
first benchmarks are built from the polynomial f = (x2

1 + 1)2 + (x2
2 + 1)2 + 2(x1 + x2 + 1)2 −

268849736/108 from [180, Example 1], with f12 := f 3 and f20 := f 5. For these two benchmarks,
we apply intsos. We use Reznicksos to handle M20 (resp. M100), obtained as in Example 2.3.2
by adding 2−20 (resp. 2−100) to the positive coefficients of the Motzkin polynomial and ri, which
is a randomly generated positive definite quartic with i variables. We implemented in Maple the
projection and rounding algorithm from [237] also relying on SDP, denoted by RoundProject. For
multivsos, the values of ε, δ and δc lie between 2−100 and 2−10, 60 and 200, 10 and 60.

In most cases, multivsos is more efficient than RoundProject and outputs more concise repre-
sentations. The reason is that multivsos performs approximate Cholesky’s decompositions while
RoundProject computes exact LDLT decompositions of Gram matrices obtained after the two
steps of rounding and projection. This observation matches with the theoretical complexity esti-

4http://www.home.math.uwo.ca/faculty/franz/convex

http://www.home.math.uwo.ca/faculty/franz/convex
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Table 2.7: multivsos vs RoundProject [237] vs RAGLib vs CAD (Reznick).

Id n d
multivsos RoundProject RAGLib CAD

τ1 (bits) t1 (s) τ2 (bits) t2 (s) t3 (s) t4 (s)
f12 2 12 316 479 3.99 3 274 148 3.87 0.15 0.07
f20 2 20 754 168 113. 53 661 174 137. 0.16 0.03
M20 3 8 4 397 0.14 3 996 0.16 0.13 0.05
M100 3 8 56 261 0.26 12 200 0.20 0.15 0.03
r2 2 4 1 680 0.11 1 031 0.12 0.09 0.01
r4 4 4 13 351 0.14 47 133 0.15 0.32 −
r6 6 4 52 446 0.24 475 359 0.37 623. −
r8 8 4 145 933 0.70 2 251 511 1.08 − −
r10 10 4 317 906 3.38 8 374 082 4.32 − −
r2

6 6 8 1 180 699 13.4 146 103 466 112. 10.9 −

mates established in Proposition 2.3.6 and Theorem 2.3.3. Note that we could not solve the exam-
ples of Table 2.7 with less precision.

We compare with RAGLib [261] based on critical point methods (see, e.g., [258, 141]) and
the SamplePoints procedure [195] (abbreviated as CAD) based on CAD [67], both available in
Maple. Observe that multivsos can tackle examples which have large degree but a rather small
number of variables (n ≤ 3) and then return certificates of nonnegativity. The runtimes are slower
than what can be obtained with RAGLib and/or CAD (which in this setting have polynomial com-
plexity when n ≤ 3 is fixed). Note that the bitsize of the certificates which are obtained here is
quite large which explains this phenomenon.

When the number of variables increases, CAD cannot reach many of the problems we considered.
Note that multivsos becomes not only faster but can solve problems which are not tractable by
RAGLib.

Recall that multivsos relies first on solving numerically LMI ; this is done at finite precision in
time polynomial in the size of the input matrix, which, here is bounded by (n+d

d ). Hence, at fixed
degree, that quantity evolves polynomially in n. On the other hand, the quantity which governs
the behaviour of fast implementations based on the critical point method is the degree of the critical
locus of some map. On the examples considered, this degree matches the worst case bound which
is the Bézout number dn. Besides, the doubly exponential theoretically proven complexity of CAD
is also met on these examples.

These examples illustrate the potential of multivsos and more generally SDP-based methods:
at fixed degree, one can hope to take advantage of fast numerical algorithms for SDP and tackle
examples involving more variables than what could be achieved with more general tools.

Recall however that multivsos computes rational certificates of nonnegativity in some “easy”
situations: roughly speaking, these are the situations where the input polynomial lies in the interior
of the SOS cone and has coefficients of moderate bitsize. This fact is illustrated by Table 2.8.

This table reports on problems appearing enumerative geometry (polynomials S1 and S2 com-
municated by Sottile and appearing in the proof of the Shapiro conjecture [275]), computational
geometry (polynomials V1 and V2 appear in [87]) and in the proof of the monotone permanent
conjecture in [114] (M1 to M4).

We were not able to compute certificates of nonnegativity for these problems which we pre-
sume do not lie in the interior of the SOS cone. This illustrates the current theoretical limitation of
multivsos. These problems are too large for CAD but RAGLib can handle them. Note that some of
these examples involve 8 variables ; we observed that the Bézout number is far above the degree
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Table 2.8: multivsos vs RAGLib vs CAD for nonnegative polynomials which are presumably not in
Σ̊[X].

Id n d
multivsos RAGLib CAD

τ1 (bits) t1 (s) t2 (s) t3 (s)
S1 4 24 − − 1788. −
S2 4 24 − − 1840. −
V1 6 8 − − 5.00 −
V2 5 18 − − 1180. −
M1 8 8 − − 351. −
M2 8 8 − − 82.0 −
M3 8 8 − − 120. −
M4 8 8 − − 84.0 −

of the critical loci computed by the critical point algorithms in RAGLib. This explains the efficiency
of such tools on these problems. Recall however that RAGLib did not provide a certificate of non-
negativity.

This whole set of examples illustrates first the efficiency and usability of multivsos as well as
its complementarity with other more general and versatile methods. This shows also the need of
further research to handle in a systematic way more general nonnegative polynomials than what
it does currently. For instance, we emphasize that certificates of nonnegativity were computed for
Mi (1 ≤ i ≤ 4) in [150] (see also [152]).

Table 2.9: multivsos vs RoundProjectPutinar vs RAGLib vs CAD (Putinar).

Id n d
multivsos RoundProject RAGLib CAD

k τ1 (bits) t1 (s) τ2 (bits) t2 (s) t3 (s) t4 (s)
p46 2 4 3 45 168 0.17 230 101 0.19 0.15 0.81
f260 6 3 2 251 411 2.35 5 070 043 3.60 0.12 −
f491 6 3 2 245 392 4.63 4 949 017 5.63 0.01 0.05
f752 6 2 2 23 311 0.16 74 536 0.15 0.07 −
f859 6 7 4 13 596 376 299. 2 115 870 194 5339. 5896. −
f863 4 2 1 12 753 0.13 30 470 0.13 0.01 0.01
f884 4 4 3 423 325 13.7 10 122 450 16.1 0.21 −
f890 4 4 2 80 587 0.48 775 547 0.56 0.08 −
butcher 6 3 2 538 184 1.36 8 963 044 3.35 47.2 −
heart 8 4 2 1 316 128 3.65 35 919 125 14.1 0.54 −
magnetism 7 2 1 19 606 0.29 16 022 0.28 434. −

Finally, we compare the performance of multivsos (Putinarsos) on positive polynomials over
basic compact semialgebraic sets in Table 2.9. The first benchmark is from [180, Problem 4.6]. Each
benchmark fi comes from an inequality of the Flyspeck project [117]. The three last benchmarks
are from [56]. The maximal degree of the polynomials involved in each system is denoted by d. We
emphasize that the degree 2r of each Putinar representation obtained in practice with Putinarsos

is very close to d, which is in contrast with the theoretical complexity estimates obtained earlier.
The values of ε, δ and δc lie between 2−30 and 2−10, 60 and 200, 10 and 30.
As for Table 2.7, RAGLib and multivsos can both solve large problems (involving, e.g., 8 vari-
ables) but note that multivsos outputs certificates of emptiness which cannot be computed with
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implementations based on the critical point method. In terms of timings, multivsos is sometimes
way faster (e.g. magnetism, f859) but that it is hard here to draw some general rules. Again, it is
important to keep in mind the parameters which influence the runtimes of both techniques. As
before, for multivsos, the size of the SDP to be solved is clearly the key quantity. Also, it is impor-
tant to write the systems in an appropriate way also to limit the size of those matrices (e.g. write
1− x2 ≤ 0 to model −1 ≤ x ≤ 1). For RAGLib, it is way better to write −1 ≤ x and x ≤ 1 to
better control the Bézout bounds governing the difficulty of solving systems with purely algebraic
methods. Note also that the number of inequalities increase the combinatorial complexity of those
techniques.

Finally, note that CAD can only solve 3 benchmarks out of 10 and all in all multivsos and RAGLib

solve a similar amount of problems; the latter one however does not provide certificates of empti-
ness. As for Table 2.7, multivsos and RoundProjectPutinar yield similar performance, while the
former provides more concise output than the latter.

2.4 Exact SONC and SAGE certificates

In this section, we provide a hybrid numeric-symbolic framework, in a similar spirit as [237] and
the two previous sections. Our motivation is to improve the scalability of existing certification
frameworks, especially for large-size problems, which are currently out of reach when relying
on SOS-based methods. Most material presented here has been published in [C10]. We focus
on certifying exactly nonnegativity of certain classes of polynomials with sparse support, namely
sums of nonnegative circuits and arithmetic-geometric-mean-exponentials. Such polynomials have a
support, i.e., number of monomial terms, which is small in comparison to (n+d

n ), namely the maxi-
mal support size of fully dense n-variate polynomials of degree d. Alternative relaxations based on
geometric programming (GP) [247], and, more generally, relative entropy programming (REP), po-
tentially allow to obtain lower bounds in a more efficient way than SDP relaxations. Both GP and
REP are (equivalent to) convex optimization problems over the exponential cone. However, one
often encounters numerical issues, even for problems of modest size where the SDP relaxations
can be implemented. These alternative relaxations also provide the possibility to obtain answers
when the SDP relaxations cannot be implemented because their size is too large for state-of-the art
SDP solvers.

Alternative nonnegativity certificates

A first class of alternative certificates is given by SONC polynomials. A circuit polynomial is a
polynomial with support containing only monomial squares, at the exception of at most one term,
whose exponent is a strict convex combination of the other exponents. In [256], the authors derive
a necessary and sufficient condition to prove that a given circuit polynomial is nonnegative. When
the input polynomial has a more general support, a first attempt is given in [205, 204] to com-
pute lower bounds while relying on GP. This approach is generalized in [203] to compute SONC
certificates when the set of constraints is defined as a finite conjunction of polynomial inequali-
ties. In [202] the authors provide a bounded degree hierarchy, which can be computed via REP.
In [264], the authors develop an algorithm computing SONC certificates for sparse unconstrained
polynomials with arbitrary support, together with a software library [265], called POEM (Effective
Methods in Polynomial Optimization). Although this framework yields a very efficient way to obtain
a lower bound for a given polynomial, a drawback is that it currently remains unclear whether
the number of circuits involved in a SONC relaxation is exponential in the number of terms of
this polynomial. A second class of alternative certificates is given by SAGE polynomials. An AGE
polynomial refers to a signomial, i.e., a weighted sum of exponentials composed with linear func-
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tionals of the variables, which is globally nonnegative with at most one negative coefficient. The
framework from [290] derives a hierarchy of convex relaxations providing a sequence of increasing
lower bounds for the optimal value of signomial programs. For an input polynomial belonging to
the SAGE cone, one can compute a SAGE decomposition by solving an REP, involving linear and
relative entropy functions. Furthermore, it is shown in [220, Theorem 20] that the cones of SAGE
and SONC polynomials are related through their equivalence in terms of extreme rays. Namely,
the extreme rays of the SAGE cone are supported on either a single coordinate or a set of coor-
dinates inducing a simplicial circuit (a circuit with t elements containing t − 1 extreme points).
Hence, both cones contain the same polynomials.

However, these alternative schemes share the same certification issues than the ones based
on SDP relaxations. GP/REP solvers rely on interior-point algorithms, implemented in finite-
precision. Thus, they output only approximate certificates.

Sparse polynomials

We mostly regard sparse polynomials f ∈ R[x] supported on a finite set A ⊂ Nn; we write supp( f )
if a clarification is necessary. Thus, f is of the form f (x) = ∑α∈A bαxα with bα ∈ R \ {0} and
xα = xα1

1 · · · x
αn
n . Unless stated differently, we follow the convention t = #A. Sparsity then

means t � (n+2d
2d ) = dim (R[x]2d). The support of f can be expressed as an n × t matrix,

which we denote by A, such that the j-th column of A is α(j). Hence, f is uniquely described
by the pair (A, b), written f = poly(A, b). If 0 ∈ A, then f (0) is called the constant term. Let
C( f ) := conv ({α ∈Nn : bα 6= 0}) be the Newton polytope of f and Vert( f ) be its set of vertices.
We define MoSq( f ) := {α ∈ supp( f ) : α ∈ (2N)n, bα > 0} as the set of monomial squares in the
support of f . Moreover, we use the notation NoSq( f ) = supp( f ) \MoSq( f ) for all elements of the
support of f , which are not monomial squares.

SONC polynomials

We now introduce the fundamental facts of SONC polynomials, which we use in this article. SONC
are constructed by circuit polynomials, which were first introduced in [256]:

Definition 2.4.1 A circuit polynomial f = poly(A, b) ∈ R[x] is of the form f (x) = ∑l
j=1 bα(j)xα(j) +

bβxβ, with 0 ≤ l < n, coefficients bα(j) ∈ R>0, bβ ∈ R, exponents α(j) ∈ (2Z)n, β ∈ Zn, such that the
following condition holds: there exist unique, positive barycentric coordinates λj relative to the α(j) with
j ∈ [l] satisfying

β =
l

∑
j=1

λjα(j) with λj > 0 and
l

∑
j=1

λj = 1. (2.38)

For every circuit polynomial f we define the corresponding circuit number as Θ f = ∏l
j=1

(
bα(j)/λj

)λj
.

Condition (2.38) implies that A( f ) forms a minimal affine dependent set. Those sets are called
circuits, see e.g., [145]. More specifically, Condition (2.38) yields that C( f ) is a simplex with even
vertices α(1), . . . , α(l) and that the exponent β is in the strict interior of C( f ) if dim(C( f )) ≥ 1.
Therefore, we call bβxβ the inner term of f .

Circuit polynomials are proper building blocks for nonnegativity certificates since the circuit
number alone determines whether they are nonnegative.

Theorem 2.4.2 ([256], Theorem 3.8) Let f be a circuit polynomial as in Definition 2.4.1. Then f is non-
negative if and only if:
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1. f is a sum of monomial squares, or

2. the coefficient bβ of the inner term of f satisfies |bβ| ≤ Θ f .

The set of sums of nonnegative circuit polynomials (SONC) is a convex cone. For further details about
SONC see [282, 256, 202].

Let us consider f = poly(A, b) = ∑t
j=1 bjxα(j) and assume that C( f ) is a simplex of dimension

h ≤ n. To compute a lower bound of f via SONC, we first compute a covering, which is a sequence
of sets A1, . . . , At−h ⊆ A such that NoSq( f ) ⊆ ⋃

j Aj and each Aj is the support of a nonnegative
circuit polynomial f j. To obtain a covering, we write each non-square as a minimal convex combi-
nation of monomial squares, by solving a sequence of LP. For more details see [264, § 3.1]. Then,
we solve the following GP, stated in [264, § 3.2]:

fSONC = min
G

t−h

∑
j=1

G0,j

s.t.
t−h

∑
j=1

Gi,j ≤ bi , i = 2, . . . , h ,

h

∏
i=1

(
Gi,j

λi,j

)λi,j

= −bh+j , j ∈ [t− h] ,

Gi,j ≥ 0 , i, j ∈ [t− h] .

(SONC)

For an overview of GP, see [254, 253]. If fSONC is attained at G, then one has f j = ∑h
i=1 Gi,j · xα(i) +

bh+jxα(h+j) ≥ 0 by Theorem 2.4.2, and f + fSONC − b1 = ∑t−h
j=1 f j ≥ 0. Hence, b1 − fSONC is a lower

bound of f on Rn.

SAGE polynomials

Let e := exp (1). The relative entropy function is defined for ν, c ∈ Rt
+ by D(ν, c) := ∑t

j=1 νj log
νj
cj

.
A signomial f is a weighted sum of exponentials composed with linear functionals of a variable
x ∈ Rn: given t ∈N, c1, . . . , ct ∈ Q and α(1), . . . , α(t) ∈Nn, we write f (x) = ∑t

j=1 cj exp (α(j) · x).
Note that for general signomials, one considers c1, . . . , ct ∈ R and α(1), . . . , α(t) ∈ Rn. However,
for certification purpose, we restrict the coefficients to the set of rationals and the exponents to
tuples of nonnegative integers. A globally nonnegative signomial with at most one negative coef-
ficient is called an arithmetic-geometric-mean-exponential (AGE). Certifying the nonnegativity of an
AGE is done by verifying an arithmetic-geometric-mean inequality. This is recalled in the follow-
ing result, stated in [290, Lemma 2.2].

Lemma 2.4.3 Let f (x) = ∑t
j=1 cj exp (α(j) · x) + β exp (α(0) · x), with c1, . . . , ct ∈ Q>0, β ∈ Q and

α(0), α(1), . . . , α(t) ∈ Nn. Then f (x) ≥ 0 for all x ∈ Rn if and only if there exists ν ∈ Rt
+ such that

D(ν, ec) ≤ β and ∑t
j=1 α(j)νj = (1 · ν) α(0).

Given α(0), α(1), . . . , α(t) ∈ Nn, the set of AGE signomials is a convex cone, denoted by CAGE,
and defined as follows:

CAGE :=
{
(c, β) ∈ Rt

+ ×R : ∃ν ∈ Rt
+ s.t. D(ν, ec) ≤ β ,

t

∑
j=1

α(j)νj = (1 · ν) α(0)

}
.
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Given a vector ν ∈ Rn, let us denote by ν\j ∈ Rn−1 the vector obtained from ν after removing
νj. The set of sums of AGE (SAGE) polynomials is also a convex cone, denoted by SAGE. By [290,
Proposition 2.4], one has the following characterisation.

Theorem 2.4.4 A signomial f = ∑t
i=1 bj exp (α(j) · x) lies in SAGE if and only if there is c(1), . . . , c(t),

ν(1), . . . , ν(t) ∈ Rt satisfying the following conditions:

t

∑
j=1

c(j) = b ,
t

∑
i=1

α(i)ν(j)
i = 0 , −1 · ν(j)

\j = ν
(j)
j ,

c(j)
\j , ν

(j)
\j ≥ 0 , D

(
ν
(j)
\j , ec(j)

\j

)
≤ c(j)

j , j ∈ [t] .

(SAGE-feas)

One way to obtain lower bounds of a signomial f is to solve the following REP:

fSAGE = sup
b∈R

{b : f − b ∈ SAGE} . (SAGE)

The constraints of (SAGE) correspond to (SAGE-feas), after replacing b by the vector of coefficients
of f − b.

In the sequel , we present two algorithms for converting a numerical solution for SONC and
SAGE into a lower bound in exact arithmetic. For a polynomial f = ∑t

j=1 bjxα(j), we assume
α(1) = 0, so the first term b1 of f is the constant term f (0). Furthermore, we require that every
non-square monomial lies in the interior of C ( f ) or on a face of C ( f ) including the origin.

Symbolic post-processing for SONC

We focus on certifying exactly lower bounds of a given polynomial via SONC decompositions. We
rely on the numerical procedure from [264], which starts to compute a covering of the Newton
polytope of this polynomial. We strengthen the last assumption further and assume that every
circuit polynomial related to this covering contains the point 0, which means that every circuit
includes a non-zero constant term. Under these assumptions, we design an algorithm, called
optsonc, to convert numerical lower bounds, corresponding to SONC decompositions obtained
via GP, into exact lower bounds.

The procedure to compute a covering, yielding the entries of the matrix λ in Step 1, is the
one from [264, § 3.1]. In Step 2, The gp function calls a GP solver to compute a δ̃-approximation
G̃ of (SONC). This approximation is then rounded in Step 3 to a rational point Ĝ with a pre-
scribed maximal relative error of δ̂. The projection step from Step 5 scales the entries of Ĝ,
yielding ∑

|Cov |
j=1 Gi,j = bi, for all i = 2, . . . , h, to satisfy the first set of inequality constraints

of (SONC). In Step 9, one relies on the round-up procedure in such a way that G1,j ≥ λ1,j ·(
bNoSq( f )(j) ·∏i∈Covj

i>1

(
λi,j
Gi,j

)λi,j

) 1
λ1,j

.

By Theorem 2.4.2, this yields a valid lower bound b1 −∑
|Cov |
j=1 G1,j for f . Our assumption that

every circuit polynomial contains a constant term, is necessary to ensure, that all λ1,j 6= 0 in our
above computations.

Symbolic post-Processing for SAGE

Similarly to Figure 2.9, our algorithm optsage takes a given polynomial as input, obtains a nu-
merical lower bound related to a SAGE decomposition computed via REP, and applies a post-
processing to find a certified lower bound. Given a polynomial g(y) = ∑t

j=1 bjyα(j), one could
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Require: f = ∑t
i=1 bixα(i) ∈ Q[x], rounding precision δ̂ ∈ Q>0, precision parameter δ̃ ∈ Q>0 for

the GP solver.
Ensure: Matrix G of rational numbers, coefficients of the decomposition, certified lower bound

b ∈ Q of f on Rn.
1: λ, Cov← cover( f )
2: G̃← gp( f , δ̃, λ, Cov)
3: Ĝ← round

(
G̃, δ̂

)
. rounding step

4: for i ∈ {2, . . . , t} and j ∈ {1, . . . , |Cov |} do
5: Gi,j ← bi · Ĝi,j/ ∑

|Cov |
k=1 Ĝi,k . projection step

6: end for
7: for j ∈ {1, . . . , |Cov |} do

8: coeff = λ1,j ·
(

bNoSq( f )(j) ·∏i∈Covj
i>1

(
λi,j
Gi,j

)λi,j

) 1
λ1,j

9: G1,j ← round-up
(
coeff, δ̂

)
. adjust constant term

10: end for
11: b← b1 −∑

|Cov |
j=1 X1,j

12: return G, b

Figure 2.9: optsonc

Require: g = ∑t
i=1 bixα(i) ∈ Q[x], rounding precision δ̂ ∈ Q>0, precision parameter δ̃ ∈ Q>0 for

the REP solver.
Ensure: Matrices c, ν of rational numbers, coefficients of the decomposition, certified lower bound

C ∈ Q of g on Rn.
1: f ← g(exp x− exp(−x))
2: Build the (n + 1)× t matrix G with columns (α(1), 1), . . . , (α(t), 1)
3: c̃, ν̃← rep( f , δ̃)
4: ĉ← round

(
c̃, δ̂
)

, ν̂← round
(
ν̃, δ̂
)

. rounding step
5: for j ∈ [t] do
6: LP←

{
G · ν(j) = 0, ν

(j)
\j ≥ 0, ‖ν(j) − ν̃(j)‖∞ ≤ δ̂, ν

(j)
1 ≥ δ̂

}
7: ν(j) ← some element from LP . projection step
8: c(j)

\j ← ĉ(j)
\j , c(j)

j ← bj − 1 · c(j)
\j

9: end for
10: for j ∈ [t] do

11: power← 1− log ν
(j)
1 −

1
ν
(j)
1

(
c(j)

j −∑i>1,i 6=j ν
(j)
i log ν

(j)
i

ec(j)
i

)
12: c(j)

1 ← round-up
(
exp (power) , δ̂

)
. adjust constant term

13: end for
14: b← b1 −∑t

j=1 c(j)
1

15: return c, ν, b

Figure 2.10: optsage

apply the change of variables yi := exp xi when y ∈ Rn
>0. Since this transformation is only

valid on the nonnegative orthant, one workaround used in optsage is to define the signomial
f (x) = g(exp x− exp(−x)) from Step 1, in a such a way that a lower bound of f yields a lower
bound of g. The rep function in Step 3 calls an REP solver to compute a δ̃-approximation (ν̃, c̃)
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of (SAGE). This approximation is then rounded to a rational point (ν̂, ĉ) with a prescribed maximal
relative error of δ̂. Let us build the (n + 1)× t matrix G with columns (α(1), 1), . . . , (α(t), 1). The
projection steps in Step 7 and Step 8 ensure that (ν, c) satisfies exactly the linear equality constraints
of (SAGE), i.e., Gν(j) = 0 and ∑t

j=1 c(j) = b. The first projection step boils down to exactly solve

an LP with the constraint that ν
(j)
1 > 0, for all j ∈ [t], to ensure that further computation in Step 12

are well-defined. Note that this projection could be done while relying on the pseudo-inverse of
G, but one obtains better practical results via this procedure. To ensure that the relative entropy
inequality constraints of (SAGE) are satisfied, the last step of optsage aims at finding c(1)j such that

c(j)
j ≥ D

(
ν
(j)
\j , ec(j)

\j

)
= ∑i>1,i 6=j ν

(j)
i log ν

(j)
i

ec(j)
i

+ ν
(j)
1 log ν

(j)
1

ec(j)
1

. Thus, one relies on the round-up proce-

dure in Step 12 to compute c(j)
1 ≥ exp

(
1− log ν

(j)
1 −

1
ν
(j)
1

(
c(j)

j −∑i>1,i 6=j ν
(j)
i log ν

(j)
i

ec(j)
i

))
. Eventu-

ally, one has ∑t
j=1 c(j)

i = bi, for all i > 1 and ∑t
j=1 c(j)

1 = b1 − b, which certifies that f − b ≥ 0 on
Rn.

Deciding Nonnegativity via SAGE

We denote by INTSAGE the interior of the cone SAGE of SAGE signomials. A signomial f =

∑t
j=1 bj exp (α(j) · x) lies in INTSAGE if and only there is c(1), . . . , c(t), ν(1), . . . , ν(t) ∈ Rt such that

t

∑
j=1

c(j) = b ,
t

∑
i=1

α(i)ν(j)
i = 0 , −1 · ν(j)

\j = ν
(j)
j ,

c(j)
\j , ν

(j)
\j > 0 , D

(
ν
(j)
\j , ec(j)

\j

)
< c(j)

j , j ∈ [t] .

(INTSAGE-feas)

Without the assumptions from the previous subsection, we state and analyze a decision algo-
rithm to certify nonnegativity of signomials belonging to the interior INTSAGE of the SAGE cone.
The resulting hybrid numeric-symbolic algorithm, called intsage, computes exact rational SAGE
decompositions of such signomials. We start with the preliminary result:

Lemma 2.4.5 Let f = ∑t
j=1 bj exp (α(j) · x) ∈ INTSAGE of degree d with τ = τ( f ). Then, there

exists N ∈ N such that for ε := 2−N , f − ε ∑t
j=1 exp (α(j) · x) ∈ SAGE, with N ≤ τ(ε) ∈

O (τ · (4d + 6)3n+3).

We present our algorithm intsage computing exact rational SAGE decompositions for signomials
in INTSAGE.

Algorithm 2.4.6 intsage

Require: f = ∑t
j=1 bj exp (α(j) · x) ∈ INTSAGE, rounding precision δ̂ ∈ Q>0, precision parameter

δ̃ ∈ Q>0 for the REP solver.
Ensure: Matrices c, ν of rational numbers.

1: Build the (n + 1)× t matrix G with columns (α(1), 1), . . . , (α(t), 1)
2: G+ ← pseudoinv(G)
3: ok← false
4: while not ok do
5: (c̃, ν̃)← rep( f , δ̃)
6: ĉ← round

(
c̃, δ̂
)

, ν̂← round
(
ν̃, δ̂
)

. rounding step
7: for j ∈ [t] do . projection step
8: ν(j) ← (I−G+G) ν̂(j)
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9: c(j)
\j ← ĉ(j)

\j , c(j)
j ← bj − 1 · c(j)

\j
10: end for
11: if for all j ∈ [t], ν

(j)
\j , c(j)

\j ≥ 0, c(j)
j ≥ D

(
ν
(j)
\j , ec(j)

\j

)
, then ok← true . verification step

12: else δ̃← δ̃/2, δ̂← δ̂/2
13: end if
14: end while
15: return c, ν

The routine pseudoinv in Step 2 computes the pseudo-inverse of G, i.e., a matrix G+ such that
GG+G = G. Next, we enter in the loop starting from Step 4. The rep function calls an REP solver
to compute a δ̃-approximation (ν̃, c̃) of (INTSAGE-feas). The projection steps ensure that (ν, c)
satisfies exactly the linear equality constraints of (SAGE-feas), i.e., Gν(j) = G(I−G+G)ν(j) =
G − GG+G = 0 and ∑t

j=1 c(j) = b. If the inequality constraints are not verified in Step 11, the
rounding-projection procedure is performed again with more accuracy.

Before analyzing the arithmetic complexity of intsage, we first establish lower bounds for
the nonnegative components of the solutions related to SAGE decompositions of polynomials in
INTSAGE.

Lemma 2.4.7 Let f = ∑t
j=1 bj exp (α(j) · x) ∈ INTSAGE of degree d with τ = τ( f ). Let ε be as in

Lemma 2.4.5.

1. There exists a solution of (ν, c) of (INTSAGE-feas) and δ ∈ Q>0 such that δ ≤ 1, (ν, c) satisfies,
D
(

ν
(j)
\j , e

(
c(j)
\j + δ1

))
+ ε

2 ≤ c(j)
j , ∑t

j=1 c(j) = b, for all i, j ∈ [t].

2. There exists a solution (ν, c) of (INTSAGE-feas) and δ ∈ Q>0 such that (ν, c) satisfies
D
(

ν
(j)
\j + δ1, ec(j)

\j

)
+ ε

2 ≤ c(j)
j , for all j ∈ [t].

3. There exists a solution (ν, c) of (INTSAGE-feas) and δ ∈ Q>0 such that (ν, c) satisfies
D
(
(1 + δ)ν

(j)
\j , ec(j)

\j

)
+ ε

2 ≤ c(j)
j , for all j ∈ [t].

In each case, τ(δ) ∈ O (τ · (4d + 6)3n+3).

Theorem 2.4.1 Let f as in Lemma 2.4.7. There exist δ̂ and δ̃ of bit size less thanO (τ · (4d + 6)3n+3),
such that intsos( f , δ̂, δ̃) terminates and outputs a rational SAGE decomposition of f within
O (τ · (4d + 6)3n+3 t7 log t) arithmetic operations.

Experimental comparisons

We discuss the actual bit sizes and physical running time of optsonc and optsage procedures,
given by Figure 2.9 and Figure 2.10. We describe the setup of our experiment and explain how
our random instances were created. Afterwards, we discuss a few selected examples, which ex-
hibit well the differences of the methods, and present how the program behaved on a large set of
examples. The entire experiment was steered by the PYTHON 3.7 based software POEM 0.2.0.0(a)
[265], POEM is open source, under GNU public license, and available online 5. For our experi-
ment, POEM calls a range of further software and solvers for computing the certificates. For the

5https://www3.math.tu-berlin.de/combi/RAAGConOpt/poem.html

https://www3.math.tu-berlin.de/combi/RAAGConOpt/poem.html
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d = 8, t = 20
n bit size time
2 27723 5.82
3 23572 4.99
4 22965 4.83
8 5678 1.12

10 1749 0.35

d = 10, t = 30
n bit size time
2 61198 12.41
3 57833 11.81
4 53596 10.82
8 13343 2.55

10 6974 1.41

Table 2.10: Dependency of the average bit size and the average running time of optsage, with the
number of variables, for fixed values of degree d and number of terms t; For n = 8 we observe a
drastic drop both in running time and bit size.

numerical solutions of SONC and SAGE, we use CVXPY 1.0.12 [79], to create the convex optimiza-
tion problems, together with the solver ECOS 2.0.7 [82]. The symbolic computations were done in
SYMPY 1.3 [149].
The experiment was carried out on a database containing 2020 randomly generated polyno-
mials. The possible numbers of variables are n = 2, 3, 4, 8, 10; the degree takes values d =
6, 8, 10, 18, 20, 26, 28 and the number of terms can be t = 6, 9, 12, 20, 24, 30, 50. For each combi-
nations we create instances, where the number of negative terms is one of a few fixed ratios of t. In
particular, the size of (SAGE) grows quadratically in t. We created the database using POEM, and
it is available in full at the homepage cited above. Our instances are exactly those from [264] where
the parameters are as above. The overall running time for all our instances was 6780.0 seconds.
For the accuracy of the solver and the precision of the rounding in PYTHON we used a tolerance
of ε = 2−23. The restriction t ≤ 50 was chosen, since otherwise we already encounter problem
in the numerical solution of (SAGE). The bound d < 30 was chosen, because for large degree we
had a significant increase in the memory required to perform the rounding. Both thresholds were
obtained experimentally.

In this section we present and evaluate the results of our experiment and highlight our most
important findings, when investigating the computational data. We focus on the results given by
the procedure optsage via SAGE decompositions and in the end give a comparison to optsonc.
Running time decreases with growing number of variables. The formulation of (SAGE) shows
that the size of the problem only depends on the number of terms t, but in the SAGE decompo-
sition, the number of summands is the number of monomial non-squares. Most significantly, for
more variables, our generating algorithm simply results in a smaller number of these terms. Ad-
ditionally, for n ≥ 8 and d ≤ 10, most exponents lie on faces of the Newton polytope. This leads to
a simpler combinatorial structure, which we believe to result in lower bit sizes and thus in faster
solving faster the exact LP from Step 6 of optsage. Next, we have more equality constraints in
this LP, which could also improve the running time. Lastly, the exponential upper bound is just
the worst case, which does not seem to actually happen among our examples. For some selected
parameters, we exhibit that behavior in Table 2.10.
Dependency of bit size and running time of degree and terms To illustrate how bit size and run-
ning time of optsage vary for different degrees and numbers of terms, we restrict ourselves to
at most 4 variables. Our numbers from the previous point show, that in these cases bit size and
time are similar for fixed (d, t), hence we may aggregate those instances. The results are shown in
Table 2.11. We can see that running time and bit size roughly have a linear dependency. On the
one hand, their growth is quadratic in the number of terms, which matches with the growth of the
problem size in (SAGE). On the other hand, bit size and running time are basically unaffected by
the degree. This shows that the bound, given in the worst case analysis, usually is not met.
Quality of the rounding-projection Our experiments verify that in the majority of cases the sym-
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t \ d 6 8 10 18 20 26 28

6
912
0.24

1000
0.26

1002
0.26

1170
0.28

1014
0.26

955
0.28

900
0.26

9
2731
0.66

2673
0.65

2808
0.70

2890
0.68

2621
0.61

3166
0.82

2471
0.62

12
5599
1.30

6054
1.40

5449
1.27

5747
1.27

5478
1.21

6007
1.53

5027
1.18

20
9990
2.26

24078
5.08

20985
4.40

21364
4.43

19324
3.96

24096
5.23

17210
3.59

24 × 36301
7.62

33414
6.99

37080
7.49

29266
5.87

37618
7.87

28090
5.43

30 × 57744
11.90

56354
11.44

61564
12.57

48622
9.32

59975
12.76

55000
10.80

50 × × 180971
36.11

174464
34.64

146218
27.80

196511
38.19

183598
38.36

Table 2.11: Bit size (upper part) and running time (lower part) of optsage in dependency of the
degree d and the number of terms t for up to 4 variables; A “×” indicates, that we do not have
instances with these parameters in our data set.
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Figure 2.11: Number of instances where the difference of numerical lower bound and exact lower
bound lies in the given interval; note that the exact bound sometimes is better.

bolical lower bound does not diverge far from the numerical bound. The detailed distribution is
shown in Figure 2.11. Most notably, in 30 instances, the exact lower bound is even better than the
numerical bound. In 81.9% of the instances, the exact bound differs by at most 0.001 from the
numerical value. Only in 256 instances the difference lies above 1. Thus, in the clear majority of
examples, the lower bound in exact arithmetic does not differ much from the numerical bound.
Also, among the instances with large difference, it can also be that the numerical solution actually
lies far away from an exact solution. So it is unclear, whether a large difference is due to bad be-
havior of the numerical solution, or a large error in the rounding algorithm.

Rounding time versus solving time In nearly every case the rounding procedure takes longer
than the numerical solving. Only in 8 instances, the rounding took less time. The ratio of the
rounding time to the total time ranges from 21.6% to 96.8%, with an average of 88.6%. However,
one can implement the rounding procedure much closer to the hardware level, instead of working
in Python. Thus, we expect that these ratio can be significantly improved.
Comparison between SONC and SAGE In their qualitative behavior, optsonc and optsage are
similar. However, optsonc runs faster and has smaller certificates than optsage, as shown in Ta-
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t bit size SONC bit size SAGE time SONC time SAGE
6 432 1005 0.06 0.26
9 806 2696 0.19 0.66

12 1261 5568 0.37 1.29
20 2592 19203 0.64 4.00
24 3826 32543 0.97 6.66
30 5029 53160 1.34 10.58
50 10622 167971 3.95 32.78

Table 2.12: Comparison of running time and bit size of the certificates between optsonc and
optsage; optsonc runs faster and has significantly smaller certificates than optsage.

ble 2.12. But one should note that optsonc only computes some lower bound (not necessarily the
optimal SONC bound), whereas optsage computes the best bound, that can be obtained via this
approach. Still it shows, that for very large instances, SONC is the method of choice, when other
approaches fail due to the problem size.
Comparison with SOS For polynomials lying in the interior of the SOS cone from Table 2.7, we
performed preliminary experiments with optsage and optsage, which are currently unable to
provide nonnegativity certificates. For benchmarks from our database with n ≥ 8 and d ≥ 10,
RealCertify often fails to provide SOS certificates.
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Contents
3.1 Correlative sparsity in polynomial optimization . . . . . . . . . . . . . . . . . . . . . . 102
3.2 Application to roundoff errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.3 Application to noncommutative polynomials . . . . . . . . . . . . . . . . . . . . . . . . 111
3.4 Term sparsity in polynomial optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 126
3.5 Combining correlative and term sparsity . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

As mentioned in the last section of Chapter 2, for optimization problems involving n-variate
polynomials of degree less than d, the size of the matrices involved at step r ≥ d of Lasserre’s
hierarchy of SDP relaxations is proportional to (n+r

n ). Overall, the size of the SDP problems arising
from the hierarchy grows rapidly. Section 2.4 proposed a partial remedy to handle polynomial
with sparse support without relying on SDP. In this chapter, we outline several other techniques
based on SDP to exploit sparsity.

A scientific challenge with important computational implications is to develop alternative positivity
certificates that scale well in terms of computational complexity, at least in some identified class of problems.

For unconstrained problems involving a large number of variables n, a remedy consists of
reducing the size of the SDP matrices by discarding the monomials which never appear in the
support of the SOS decompositions. This technique, based on a result by Reznick [16], consists of
computing the Newton polytope of the input polynomial that we already saw in Section 2.4 (that
is, the convex hull of the support of this polynomial) and selecting only monomials with support
lying in half of this polytope. For constrained optimization, existing workarounds are based on
exploiting a potential symmetry [251] pattern arising in the input polynomials, or bounded degree
LP/SDP relaxations [302]. In [179] (see also [300] and the related SparsePOP solver [299]), the au-
thor derives a sparse version of Putinar’s representation [245] for polynomials positive on compact
semialgebraic sets. See also [106] for a simpler proof. This variant can be used for cases where the
objective function can be written as a sum of polynomials, each of them involving a small number
of variables. Sparse polynomial optimization techniques enable us to successfully handle various
concrete applications. In energy networks, it is now possible to compute the solution of large-scale
power flow problems with up to thousand variables [148]. In [283], the authors derive the sparse
analogue of [130] to obtain a hierarchy of upper bounds for the volume of large-scale semialgebraic
sets. Specific extensions are given in [C4, R1] to bound the Lipschitz constants of ReLU networks.
This latter problem has been investigated in the context of the supervision of T. Chen, one of my
PhD students, co-advised with E. Pauwels (assistant Professor, UPS Toulouse) and J.-B. Lasserre.
I am also supervising the PhD of N. A. H. Mai on the related topic of sparse decompositions of
positive definite forms [R9] .

• After presenting background on correlative sparsity in Section 3.1, I present some new ap-
plications in the context of computer arithmetics. First, I outline in Section 3.2 a framework
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relying on correlative sparsity to produce a hierarchy of upper bounds converging to the ab-
solute roundoff error of a numerical program involving polynomial operations. These results
have been published in [J14, J13], and come together with the Real2Float software library.
I have also investigated in [J11, C11] the use of concurrent techniques, based on Bernstein
expansions and sparse Krivine-Stengle representations, during the (unofficial) supervision
of the PhD thesis of A. Rocca with T. Dang (senior researcher, CNRS VERIMAG).

• Section 3.3 focuses on optimization of polynomials in noncommuting variables, while taking
into account sparsity in the input data. A converging hierarchy of semidefinite relaxations
for eigenvalue and trace optimization is provided. This hierarchy is a noncommutative ana-
logue of results due to Lasserre [179] and Waki et al. [300]. The GNS construction is applied
to extract optimizers if flatness and irreducibility conditions are satisfied. Among the main
techniques used are amalgamation results from operator algebra. The theoretical results are
utilized to compute lower bounds on minimal eigenvalue and trace of noncommutative poly-
nomials from the literature. This work was done in collaboration with experts in noncom-
mutative optimization: I. Klep and J. Povh, both professors at the University of Ljubljana.

• Next we show in Section 3.4 how to exploit term (or monomial) sparsity of the input poly-
nomials to obtain a new converging hierarchy of SDP relaxations. The novelty of such relax-
ations is to involve block-diagonal matrices obtained in an iterative procedure performing
completion of the connected components of certain adjacency graphs. The graphs are related
to the terms arising in the original data and not to the links between variables. Eventually
we show in Section 3.5 how to combine correlative and term sparsity, and successfully apply
this combined strategy to solve large-scale optimal power flow instances. This latter part
also relates with the ongoing PhD of N. A. H. Mai, currently under my supervision. Contri-
butions on term sparsity, initiated when I started to supervise the postdoc of J. Wang, have
led to several academic and industrial collaborations. The first academic collaboration was
with experts in control from LTH: Martina Maggio, her PhD student Nils Vreman and Paolo
Pazzaglia (postdoc, Saarland University), which allowed us to analyze the stability of control
systems under deadline constraints [C13, R12]. The second one is an ongoing collaboration
with quantum information physicists from the group of A. Acín at IFCO Barcelona. Last but
not least, we are currently investigating more applications to energy networks with indus-
trial colleagues from RTE, Paris.

3.1 Correlative sparsity in polynomial optimization

Chordal graphs and sparse matrices

We briefly recall some basic notions from graph theory. An (undirected) graph G(V, E) or simply
G consists of a set of nodes V and a set of edges E ⊆ {{vi, vj} | (vi, vj) ∈ V × V}. Note that we
admit self-loops (i.e. edges that connect the same node) in the edge set E. If G is a graph, we will
use V(G) and E(G) to indicate the set of nodes of G and the set of edges of G, respectively. For
two graphs G, H, we say that G is a subgraph of H if V(G) ⊆ V(H) and E(G) ⊆ E(H), denoted
by G ⊆ H. For a graph G(V, E), a cycle of length k is a set of nodes {v1, v2, . . . , vk} ⊆ V with
{vk, v1} ∈ E and {vi, vi+1} ∈ E, for i ∈ [k− 1]. A chord in a cycle {v1, v2, . . . , vk} is an edge {vi, vj}
that joins two nonconsecutive nodes in the cycle. A clique C ⊆ V of G is a subset of nodes where
{vi, vj} ∈ E for any vi, vj ∈ C. If a clique C is not a subset of any other clique, then it is called a
maximal clique.

A graph is called a chordal graph if all its cycles of length at least four have a chord. Note that
any non-chordal graph G(V, E) can always be extended to a chordal graph G(V, E) by adding
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appropriate edges to E, which is called a chordal extension of G(V, E). The chordal extension of G is
usually not unique. We use G to indicate any specific chordal extension of G. For graphs G ⊆ H,
we assume that G ⊆ H always holds in the sequel. It is known that maximal cliques of a chordal
graph can be enumerated efficiently in linear time in the number of nodes and edges of the graph.
See, e.g., [42, 94, 98] for the details.

Suppose G(V, E) is a graph with the node set V ⊆Nn. We define the support of G by

supp(G) := {β + γ | {β, γ} ∈ E}.

For a positive k ∈ N, recall that Sk is the set of real symmetric matrices of size k, and let S+
k be

its subset of PSD matrices. Given a graph G(V, E), a symmetric matrix Q with row and column
indices labeled by V is said to have sparsity pattern G if Qβγ = Qγβ = 0 whenever {β, γ} /∈ E. Let
S(G) be the set of real symmetric matrices with sparsity pattern G. The PSD matrices with sparsity
pattern G form a convex cone

S+
|V| ∩ S(G) = {Q ∈ SG | Q � 0}. (3.1)

A matrix in S(G) exhibits a quasi block-diagonal structure (after an appropriate permutation of
rows and columns) as illustrated in Figure 3.1. Each block corresponds to a maximal clique of G.
The maximal block size is the maximal size of maximal cliques of G, namely, the clique number
of G. Note that there might be overlaps between blocks because different maximal cliques may
share nodes. For a graph G, among all chordal extensions of G, there is a maximal one G: making
every connected component of G to be a complete subgraph. Accordingly, the matrix with sparsity
pattern G is block diagonal (up to permutation). We hereafter refer to this chordal extension as the
maximal chordal extension. In this chapter, we consider chordal extensions that are subgraphs of
the maximal chordal extension.

Figure 3.1: The quasi block-diagonal structure of matrices in SG. The blue area indicates the posi-
tions of possible nonzero entries.

Given a maximal clique C of G(V, E), we define a matrix RC ∈ R|C|×|V| as

(RC)iβ =

{
1, if C(i) = β,
0, otherwise.

(3.2)

where C(i) denotes the i-th node in C, sorted with respect to an ordering compatible with V. Note
that QC = RCQRT

C ∈ S|C| extracts a principal submatrix QC defined by the indices in the clique C
from a symmetry matrix Q, and Q = RT

CQCRC inflates a |C| × |C|matrix QC into a sparse |V| × |V|
matrix Q.

When the sparsity pattern graph G is chordal, the cone S+
|V| ∩ S(G) can be decomposed as a

sum of simple convex cones, as stated in the following theorem.



104 Chapter 3. Efficient polynomial optimization

Theorem 3.1.1 ([293], Theorem 9.2) Let G(V, E) be a chordal graph and assume that C1, . . . , Ct are all
of the maximal cliques of G(V, E). Then a matrix Q ∈ S+

|V| ∩ S(G) if and only if there exist Qk ∈ S+
|Ck |

for

k ∈ [t] := {1, . . . , t} such that Q = ∑t
k=1 RT

Ck
QkRCk .

Given a graph G(V, E), let ΠG be the projection from S|V| to the subspace S(G), i.e., for Q ∈ S|V|,

ΠG(Q)βγ =

{
Qβγ, if {β, γ} ∈ E,
0, otherwise.

(3.3)

We denote by ΠG(S
+
|V|) the set of matrices in S(G) that have a PSD completion, i.e.,

ΠG(S
+
|V|) = {ΠG(Q) | Q ∈ S+

|V|}. (3.4)

One can check that the PSD completable cone ΠG(S
+
|V|) and the PSD cone S+

|V| ∩ S(G) form a
pair of dual cones in S(G). Moreover, for a chordal graph G, the decomposition result for the cone
S+
|V| ∩ S(G) in Theorem 3.1.1 leads to the following characterization of the PSD completable cone

ΠG(S
+
|V|).

Theorem 3.1.2 ([293], Theorem 10.1) Let G(V, E) be a chordal graph and assume that C1, . . . , Ct are all
of the maximal cliques of G(V, E). Then a matrix Q ∈ ΠG(S

+
|V|) if and only if Qk = RCk QRT

Ck
� 0 for

k ∈ [t].

For more details about sparse matrices and chordal graphs, the reader may refer to [293].

Correlative sparsity

To exploit correlative sparsity (CS) in the moment-SOS hierarchy for POP, one proceeds in two
steps: 1) partition the set of variables into cliques according to the links between variables emerg-
ing in the input polynomial system, and 2) construct a quasi block moment-SOS hierarchy with
respect to the former partition of variables [300]. Let us recall the general formulation (2.1) of POP:

P : fmin = min
x∈Rn

{ f (x) : x ∈ X }, (3.5)

where X = {x ∈ Rn : g1(x) ≥ 0, . . . , gm(x) ≥ 0}, is defined as in (1.1). Concretely, we define the
correlative sparsity pattern (csp) graph associated to POP (3.5) to be the graph Gcsp with nodes
V = [n] := {1, 2, . . . , n} and edges E satisfying {i, j} ∈ E if one of followings holds:

(i) there exists α ∈ supp( f ) s.t. αi > 0, αj > 0;

(ii) there exists k, with 1 ≤ k ≤ m, s.t. xi, xj ∈ var(gk), where var(gk) is the set of variables
involved in gk.

Let Gcsp be a chordal extension of Gcsp and Il , l ∈ [p] be the maximal cliques of Gcsp with cardinal
denoted by nl . Let R[x, Il ] denote the ring of polynomials in the nl variables x, Il = {xi | i ∈ Il}. By
construction, one can decompose the objective function as f = f1 + · · ·+ fp, with fl ∈ R[x, Il ], for
all l ∈ [p]. Let Σ[x, Il ] ⊂ R[x, Il ] be the corresponding cone of SOS polynomials. We then partition
the polynomials g1, . . . , gm involved in the constraints, into groups {gj | j ∈ Jl}, l ∈ [p] which
satisfy:

(i) J1, . . . , Jp ⊆ [m] := {1, 2, . . . , m} are pairwise disjoint and ∪p
l=1 Jl = [m];

(ii) for any l ∈ [p] and j ∈ Jl , var(gj) ⊆ Il .
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Possibly after some reordering of the cliques, the above subsets {I1, . . . , Ip} satisfy the so-called
running intersection property (RIP), i.e., for all l ∈ [p− 1], one has

Il+1 ∩
⋃
j≤l

Ij ⊆ Ik for some k ≤ l . (3.6)

Note also that (3.6) always holds when p = 2. For the applications presented in this chapter, we
will not necessarily have to rely on the chordal extension of the csp graph. One sufficient way to
ensure the convergence of the CS-based hierarchies of SDP relaxations is to check that (3.6) holds.
In addition, all variables involved in POP (3.5) will be bounded. More specifically, we will rely on
the following assumption:

Assumption 3.1.3 Let X be a basic compact semialgebraic set as in (1.1) and {I1, . . . , Ip} be a partition of
[n]. For all l ∈ [p], there exists a real Nl > 0 such that one of the polynomials describing X is Nl −∑i∈Il

x2
i .

Next, with l ∈ [p] fixed, r a positive integer and g ∈ R[x, Il ], let Mr(y, Il) (resp. Mr(gy, Il)) be
the moment (resp. localizing) submatrix obtained from Mr(y) (resp. Mr(gy)) by retaining only
those rows (and columns) β = (βi) ∈ Nn

r of Mr(y) (resp. Mr(gy)) with supp(β) ⊆ Il , where
supp(β) = {i | βi 6= 0}.

Then with r ≥ rmin := max{ddeg( f )/2e, r1, . . . , rm}, the moment-SOS hierarchy based on CS
for (3.5), is defined as:

Pr
cs :


inf Ly( f )
s.t. Mr(y, Il) � 0, l ∈ [p],

Mr−rj(gjy, Il) � 0, j ∈ Jl , l ∈ [p],
y0 = 1,

(3.7)

with optimal value denoted by f r
min,cs or sometimes by f r

min, when it is clear from the context that
this bound is obtained thanks to an SDP after exploiting CS. The dual of (3.7) is

sup
b,σj

b

s.t. f − b = ∑
p
l=1(σl + ∑j∈Jl

σjl gj) ,
b ∈ R , σl , σjl ∈ Σ[x, Il ] , j ∈ Jl , l ∈ [p],
deg(σl), deg(σjl gj) ≤ 2r , j ∈ Jl , l ∈ [p] .

(3.8)

In the following, we refer to (3.7)-(3.8) as the CS primal-dual (moment-SOS) hierarchy for the POP
(3.5), also abbreviated as CSSOS hierarchy. To prove that the sequence ( f r

cs)r converges to the
global optimum fmin of the original POP. (3.5), we rely on the following theorem, which is a
sparse version of Putinar’s Positivstellensatz.

Theorem 3.1.4 ([179], Corollary 3.9) Let f ∈ R[x] be positive on a basic compact semialgebraic set X as
in Assumption 3.1.3. Assume that both index sets [n] and [m] are partitioned into p disjoint sets I1, . . . , Ip
and J1, . . . , Jp, respectively. Assume that the two partitions satisfy:

(i) For all l ∈ [p] and j ∈ Jl , gj ∈ R[x, Il ];

(ii) The function f can be decomposed as f = f1 + · · ·+ fp, with fl ∈ R[x, Il ], for all l ∈ [p];

(iii) RIP (3.6) holds.

Then

f =
p

∑
l=1

(σl + ∑
j∈Jl

σjl gj) ,

for some polynomials σl , σjl ∈ Σ[x, Il ], j ∈ Jl , l ∈ [p].
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Figure 3.2: csp graph for the variables of f from Example 3.1.1.

Example 3.1.1 Consider an instance of POP (3.5) with f (x) = x2x5 + x3x6 − x2x3 − x5x6 + x1(−x1 +
x2 + x3 − x4 + x5 + x6) and X = [4, 6.36]6, which can be written as:

X = { x ∈ Rn : g1(x) ≥ 0, . . . , g7(x) ≥ 0 } ,

with gi(x) = (6.36− xi)(xi − 4) for each i ∈ [6] and g7(x) := 243− ∑6
i=0 x2

i . Here one can choose a
constant M = 243 so that M ≥ 6× 6.362 and Assumption 1.1.1 is fulfilled. Here, n = 6 and the number of
optimization constraints is 7. For r = 1, the dense SDP relaxation involves (n+2r

2r ) = (6+2
2 ) = 28 variables

and provides a lower bound of 20.755 for fmin. The dense SDP relaxation at r = 2 involves (6+4
4 ) = 210

variables and provides a tighter lower bound of 20.8608. The 6× 6 CS matrix associated to the csp graph
Gcsp, depicted in Figure 3.2 is 

1 1 1 1 1 1
1 1 1 0 1 0
1 1 1 0 0 1
1 0 0 1 0 0
1 1 0 0 1 1
1 0 1 0 1 1

 .

The graph Gcsp is chordal with maximal cliques I1 = {1, 4}, I2 = {1, 2, 3}, I3 = {1, 2, 5}, I4 = {1, 5, 6}
and I5 = {1, 3, 6}. For r = 2, the dense SDP relaxation involves (6+4

4 ) = 210 variables against (2+4
4 ) +

4(3+4
4 ) = 155 for the sparse variant (3.8). The dense SDP relaxation at r = 3 involves 924 variables

against 364 for the sparse variant (3.8). This difference becomes significant while considering that the time
complexity of SDP is polynomial w.r.t. the number of SDP variables with an exponent greater than 3
(see [35, Chapter 4] for more details).

3.2 Application to roundoff errors

In this section, we describe an optimization framework to provide upper bounds on absolute
roundoff errors of floating-point nonlinear programs, involving polynomials. The efficiency of
this framework is based on the CSSOS hierarchy which exploits CS of the input polynomial data,
as described in Section 3.1.

Classical approaches

Constructing numerical programs which perform accurate computation turns out to be difficult,
due to finite numerical precision of implementations such as floating-point or fixed-point repre-
sentations. Finite-precision numbers induce roundoff errors, and knowledge of the range of these
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roundoff errors is required to fulfill safety criteria of critical programs, as typically arising in mod-
ern embedded systems such as aircraft controllers. Such a knowledge can be used in general for
developing accurate numerical software, but is also particularly relevant when considering migra-
tion of algorithms onto hardware (e.g. FPGAs). The advantage of architectures based on FPGAs
is that they allow more flexible choices in number representations, rather than limiting the choice
between IEEE standard single or double precision. Indeed, in this case, we benefit from a more
flexible number representation while still ensuring guaranteed bounds on the program output.

To obtain lower bounds on roundoff errors, one can rely on testing approaches, such as meta-
heuristic search [45] or under-approximation tools (e.g. s3fp [62]). Here, we are interested in ef-
ficiently handling the complementary over-approximation problem, namely to obtain precise up-
per bounds on the error. This problem boils down to finding tight abstractions of linearities or
non-linearities while being able to bound the resulting approximations in an efficient way. For
computer programs consisting of linear operations, automatic error analysis can be obtained with
well-studied optimization techniques based on SAT/SMT solvers [118] and affine arithmetic [77].
However, non-linear operations are key to many interesting computational problems arising in
physics, biology, controller implementations and global optimization. Two promising frameworks
have been designed to provide upper bounds for roundoff errors of nonlinear programs. The cor-
responding algorithms rely on Taylor-interval methods [273], implemented in the FPTaylor tool,
and on combining SMT with interval arithmetic [72], implemented in the ROSA real compiler.

Our method to bound the error is a decision procedure based on a specialized variant of the
Lasserre hierarchy [179], outlined in Section 3.1. The procedure relies on SDP to provide sparse
SOS decompositions of nonnegative polynomials. Our framework handles polynomial program
analysis (involving the operations +,×,−) as well as extensions to the more general class of semi-
algebraic and transcendental programs (involving √,/, min, max, arctan, exp), following the ap-
proximation scheme described in [J18]. For the sake of conciseness, we focus in this manuscript on
polynomial programs only. The interested reader can find more details in the related publication
[J14].

Polynomial programs

Here we consider a given program that implements a polynomial expression f with input variables
x satisfying a set of constraints X. We assume that X is included in a box (i.e. a product of closed
intervals) and that X is encoded as in (1.1):

X := { x ∈ Rn : g1(x) ≥ 0, . . . , gk(x) ≥ 0 } ,

for polynomial functions g1, . . . , gk.
The type of numerical constants is denoted by C. In our current implementation, the user

can choose either 64 bit floating-point or arbitrary-size rational numbers. The inductive type of
polynomial expressions f , g1, . . . , gk with coefficients in C is pExprC defined as follows:

type pexprC =
Pc of C

| Px of positive
| Psub of pexprC ∗ pexprC | Pneg of pexprC
| Padd of pexprC ∗ pexprC
| Pmul of pexprC ∗ pexprC

The constructor Px takes a positive integer as argument to represent either an input or local
variable. One obtains rounded expressions using a recursive procedure round. We adopt the stan-
dard practice [139] to approximate a real number x with its closest floating-point representation
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Require: input variables x, input constraints X, nonlinear expression f , rounded expression f̂ ,
error variables e, error constraints E, relaxation order r

Ensure: interval enclosure of the error f̂ − f over K := X× E
1: Define the absolute error ∆(x, e) := f̂ (x, e)− f (x)
2: Compute `(x, e) := ∆(x, 0) + ∑m

j=1
∂∆(x,e)

∂ej
(x, 0) ej

3: Define h := ∆− `
4: [h, h] := ia_bound(h, K) . Compute bounds for h
5: [`r

min, `r
max] := cs_sdp(`, K, r) . Compute bounds for `

6: return [`r
min + h, `r

max + h]

Figure 3.3: bound: our algorithm to compute roundoff errors bounds of nonlinear programs.

x̂ = x(1 + e), with |e| is less than the machine precision ε. In the sequel, we neglect both overflow
and denormal range values. The operator ·̂ is called the rounding operator and can be selected
among rounding to nearest, rounding toward zero (resp. ±∞). In the sequel, we assume rounding
to nearest. The scientific notation of a binary (resp. decimal) floating-point number x̂ is a triple
(s, sig, exp) consisting of a sign bit s, a significand sig ∈ [1, 2) (resp. [1, 10)) and an exponent exp,
yielding numerical evaluation (−1)s sig 2exp (resp. (−1)s sig 10exp).

The upper bound on the relative floating-point error is given by ε = 2−prec, where prec is called
the precision, referring to the number of significand bits used. For single precision floating-point,
one has prec = 24. For double (resp. quadruple) precision, one has prec = 53 (resp. prec = 113).
Let F be the set of binary floating-point numbers.

For each real-valued operation bopR ∈ {+,−,×}, the result of the corresponding floating-
point operation bopF ∈ {⊕,	,⊗} satisfies the following when complying with IEEE 754 standard
arithmetic [143] (without overflow, underflow and denormal occurrences):

bopF (x̂, ŷ) = bopR (x̂, ŷ) (1 + e) , | e |≤ ε = 2−prec . (3.9)

Then, we denote by f̂ (x, e) the rounded expression of f after applying the round procedure,
introducing additional error variables e.

Upper bounds on roundoff errors

The algorithm bound, depicted in Figure 3.3, takes as input x, X, f , f̂ , e as well as the set E of
bound constraints over e. For a given machine ε, one has E := [−ε, ε]m, with m being the number
of error variables. This algorithm actually relies on the CS-based SDP hierarchy (3.8) from Section
3.1, thus bound also takes as input a relaxation order r ∈ N. The algorithm provides as output an
interval enclosure of the error f̂ (x, e)− f (x) over K := X× E. From this interval [ f r

min, f r
max], one

can compute | f |rmax := max{− f r
min, f r

max}, which is a sound upper bound of the maximal absolute
error |∆|max := max(x,e)∈K | f̂ (x, e)− f (x) |.

After defining the absolute roundoff error ∆ := f̂ − f (Step 1), one decomposes ∆ as the sum of
an expression ` which is affine w.r.t. the error variable e and a remainder h. One way to obtain ` is to
compute the vector of partial derivatives of ∆ w.r.t. e evaluated at (x, 0) and finally to take the inner
product of this vector and e (Step 2). Then, the idea is to compute a precise bound of ` and a coarse
bound of h. The underlying reason is that h involves error term products of degree greater than 2
(e.g. e1e2), yielding an interval enclosure of a priori much smaller width, compared to the interval
enclosure of `. One obtains the interval enclosure of h using the procedure ia_bound implementing
basic interval arithmetic (Step 4) to bound the remainder of the multivariate Taylor expansion of
∆ w.r.t. e, expressed as a combination of the second-error derivatives (similar as in [273]). The
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main algorithm presented in Figure 3.3 is very similar to the algorithm of FPTaylor [273], except
that SDP based techniques are used instead of the global optimization procedure from [273]. Note
that overflow and denormal are neglected here but one could handle them, as in [273], by adding
additional error variables and discarding the related terms using naive interval arithmetic.

The bound of ` is provided through the cs_sdp procedure, which solves two CS-based SDP
instances of (3.8), at relaxation order r. We now give more explanation about this procedure. We
can map each input variable xi to the integer i, for all i ∈ [n], as well as each error variable ej to
n + j, for all j ∈ [m]. Then, define the sets I1 := [n] ∪ {n + 1}, . . . , Im := [n] ∪ {n + m}. Here, we
take advantage of the csp of ` by using m distinct sets of cardinality n + 1 rather than a single one
of cardinality n + m, i.e., the total number of variables. Note that these subsets satisfy (3.6) and one
can write `(x, e) = ∆(x, 0) + ∑m

j=1
∂∆(x,e)

∂ej
(x, 0) ej. After noticing that ∆(x, 0) = f̂ (x, 0)− f (x) = 0,

one can scale the optimization problems by writing

`(x, e) =
m

∑
j=1

sj(x)ej = ε
m

∑
j=1

sj(x)
ej

ε
, (3.10)

with sj(x) := ∂∆(x,e)
∂ej

(x, 0), for all j ∈ [m]. Replacing e by e/ε leads to computing an interval

enclosure of `/ε over K′ := X× [−1, 1]m. As usual from Assumption 1.1.1, there exists an integer
N > 0 such that N−∑n

i=1 x2
i ≥ 0, as the input variables satisfy box constraints. Moreover, to fulfill

Assumption 3.1.3, one encodes K′ as follows:

K′ := { (x, e) ∈ Rn+m : g1(x) ≥ 0, . . . , gk(x) ≥ 0 ,

gk+1(x, e1) ≥ 0, . . . , gk+m(x, em) ≥ 0 } ,

with gk+j(x, ej) := N + 1−∑n
i=1 x2

i − e2
j , for all j ∈ [m]. The index set of variables involved in gj is

[n] for all j ∈ [k]. The index set of variables involved in gk+j is Ij for all j ∈ [m].
Then, one can compute a lower bound of the minimum of `′(x, e) := `(x, e)/ε = ∑m

j=1 sj(x)ej

over K′ by solving the following CS-based SDP problem:

`
′r
min := sup

b,σj

b

s.t. `′ − b = σ0 + ∑k+m
j=1 σjgj ,

b ∈ R , σ0 ∈ ∑m
j=1 Σ[(x, e), Ij] ,

σj ∈ Σ[(x, e), Jj] , j ∈ [k + m] ,
deg(σjgj) ≤ 2r , j = 0, . . . , k + m .

(3.11)

A feasible solution of Problem (3.11) ensures the existence of σ1 ∈ Σ[(x, e1)], . . . , σm ∈ Σ[(x, em)]
such that σ0 = ∑m

j=0 σj, allowing the following reformulation:

`
′r
min = sup

b,σj ,σj

b

s.t. `′ − b = ∑m
j=1 σj + ∑k+m

j=1 σjgj ,
b ∈ R , σj ∈ Σ[x] , j ∈ [m] ,
σj ∈ Σ[(x, ej)] , deg(σj) ≤ 2r , j ∈ [m] ,

deg(σjgj) ≤ 2r , j ∈ [k + m] .

(3.12)

An upper bound `
′r
max can be obtained by replacing sup with inf and `′ − b by b − `′ in Prob-

lem (3.12). Our optimization procedure cs_sdp computes the lower bound `
′r
min as well as an

upper bound `
′r
max of `′ over K′ then returns the interval [ε `

′r
min, ε `

′r
max], which is a sound enclosure

of the values of ` over K.
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We emphasize two advantages of the decomposition ∆ = `+ h and more precisely of the linear
dependency of ` w.r.t. e: scalability and robustness to SDP numerical issues. First, no computa-
tion is required to determine the correlation sparsity pattern of `, by comparison to the general
case. Thus, it becomes much easier to handle the optimization of ` with the sparse SDP Prob-
lem (3.12) rather than with the corresponding instance of the dense relaxation (Pr), given in (2.6).
While the latter involves (n+m+2r

2r ) SDP variables, the former involves only m (n+1+2r
2r ) variables,

ensuring the scalability of our framework. In addition, the linear dependency of ` w.r.t. e allows
us to scale the error variables and optimize over a set of variables lying in K′ := X× [−1, 1]m. It
ensures that the range of input variables does not significantly differ from the range of error vari-
ables. This condition is mandatory while considering SDP relaxations because most SDP solvers
(e.g. MOSEK [7]) are implemented using double precision floating-point. It is impossible to opti-
mize ` over K (rather than `′ over K′) when the maximal value ε of error variables is less than 2−53,
due to the fact that SDP solvers would treat each error variable term as 0, and consequently ` as
the zero polynomial. Thus, this decomposition insures our framework against numerical issues
related to finite-precision implementation of SDP solvers.

Let us consider the interval enclosure [`min, `max], with `min := inf(x,e)∈K `(x, e) and `max :=
sup(x,e)∈K `(x, e). The next lemma states that one can approximate this interval as closely as de-
sired using the cs_sdp procedure.

Lemma 3.2.1 (Convergence of the cs_sdp procedure) Let [`r
min, `r

max] be the interval enclosure re-
turned by the procedure cs_sdp(`, K, r). The sequence ([`r

min, `r
max])r∈N converges to [`min, `max] when r

goes to infinity.

The proof of Lemma 3.2.1 is based on the fact that the assumptions of Theorem 3.1.4 are ful-
filled for our specific roundoff error problem. This result guarantees asymptotic convergence to
the exact enclosure of ` when the relaxation order r tends to infinity. However, it is more rea-
sonable in practice to keep this order as small as possible to obtain tractable SDP relaxations.
Hence, we generically solve each instance of Problem (3.12) at the minimal relaxation order, that is
rmin = max{ddeg `/2e), max1≤j≤k+m{ddeg(gj)/2e)}}. Afterwards, we rely on the COQ computer
assistant to obtain formally certified upper bounds for the roundoff error; see [J14, § 2.3] for more
details.

Overview of numerical experiments

We present an overview of our method and of the capabilities of related techniques, using an
example. Consider a program implementing the following polynomial expression f :

f (x) := x2 × x5 + x3 × x6 − x2 × x3 − x5 × x6

+x1 × (−x1 + x2 + x3 − x4 + x5 + x6) ,

where the six-variable vector x := (x1, x2, x3, x4, x5, x6) is the input of the program. Here the set X
of possible input values is a product of closed intervals: X = [4.00, 6.36]6. This function f together
with the set X appear in many inequalities arising from the the proof of the Kepler Conjecture [116],
yielding challenging global optimization problems.

The polynomial expression f is obtained by performing 15 basic operations (1 negation, 3 sub-
tractions, 6 additions and 5 multiplications). When executing this program with a set of floating-
point numbers x̂ := (x̂1, x̂2, x̂3, x̂4, x̂5, x̂6) ∈ X, one actually computes a floating-point result f̂ ,
where all operations +,−,× are replaced by the respectively associated floating-point operations
⊕,	,⊗. The results of these operations comply with IEEE 754 standard arithmetic [143]. Here,
for the sake of clarity, we do not consider real input variables. For instance, (in the absence of
underflow) one can write x̂2⊗ x̂5 = (x2× x5)(1+ e1), by introducing an error variable e1 such that
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−ε ≤ e1 ≤ ε, where the bound ε is the machine precision (e.g. ε = 2−24 for single precision). One
would like to bound the absolute roundoff error |∆(x, e)| := | f̂ (x, e)− f (x)| over all possible input
variables x ∈ X and error variable e1, . . . , e15 ∈ [−ε, ε]. Let us define E := [−ε, ε]15 and K := X× E.
Then our bound problem can be cast as finding the maximum |∆|max of |∆| over K, yielding the
following nonlinear optimization problem:

|∆|max := max
(x,e)∈K

|∆(x, e)|

= max{− min
(x,e)∈K

∆(x, e), max
(x,e)∈K

∆(x, e)} ,
(3.13)

One can directly try to solve these two POP using classical SDP relaxations [180]. As in [273], one
can also decompose the error term ∆ as the sum of a term `(x, e), which is affine w.r.t. e, and a
nonlinear term h(x, e) := ∆(x, e)− `(x, e). Then the triangular inequality yields:

|∆|max ≤ max
(x,e)∈K

|`(x, e)|+ max
(x,e)∈K

|h(x, e)| . (3.14)

It follows for this example that `(x, e) = x2x5e1 + x3x6e2 + (x2x5 + x3x6)e3 + · · · + f (x)e15 =

∑15
i=1 si(x)ei, with s1(x) := x2x5, s2(x) := x3x6, . . . , s15(x) := f (x). The Symbolic Taylor Expansions

method [273] consists of using a simple branch and bound algorithm based on interval arithmetic
to compute a rigorous interval enclosure of each polynomial si, i ∈ [15], over X and finally obtain
an upper bound of |`|+ |h| over K. In contrast, our method uses sparse semidefinite relaxations for
polynomial optimization (derived from [179]) to bound ` and basic interval arithmetic as in [273]
to bound |h| (i.e. we use interval arithmetic to bound second-order error terms in the multivariate
Taylor expansion of ∆ w.r.t. e).

• A direct attempt to solve the two polynomial problems occurring in Equation (3.13) fails as
the SDP solver (in our case SDPA [310]) runs out of memory.

• Using our method implemented in the Real2Float tool1, one obtains an upper bound of 760ε
for |`|+ |h| over K in 0.15 seconds. This bound is provided together with a certificate which
can be formally checked inside the COQ proof assistant in 0.20 seconds.

• After normalizing the polynomial expression and using basic interval arithmetic, one obtains
8 times more quickly a coarser bound of 922ε.

• Symbolic Taylor expansions implemented in FPTaylor [273] provide a more precise bound
of 721ε, but the analysis time is 28 times slower than with our implementation. Formal ver-
ification of this bound inside the HOL-LIGHT proof assistant takes 27.7 seconds, which is
139 times slower than proof checking with Real2Float inside COQ. One can obtain an even
more precise bound of 528ε (but 37 times slower than with our implementation) by turning
on the improved rounding model of FPTaylor and limiting the number of branch and bound
iterations to 10000. The drawback of this bound is that it cannot be formally verified.

• Finally, a slightly coarser bound of 762ε is obtained with the ROSA real compiler [72], but the
analysis is 19 times slower than with our implementation and we cannot get formal verifica-
tion of this bound.

We refer the interested reader to [J14, § 4] for more details on the extensive experimental evaluation
that we performed.

3.3 Application to noncommutative polynomials

Here, we handle a specific class of sparse POP with noncommuting variables. This section outlines
the main results published in [J3]. In this context, a given noncommutative polynomial in n vari-
ables and degree d is positive semidefinite if and only if it decomposes as an SOHS [123, 212]. In

1https://forge.ocamlcore.org/projects/nl-certify/

https://forge.ocamlcore.org/projects/nl-certify/
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practice, an SOHS decomposition can be computed by solving an SDP of size O(nd), which is even
larger than the size of the matrices involved in the commutative case. SOHS decompositions are
also used for constrained optimization, either to minimize eigenvalues or traces of noncommuta-
tive polynomial objective functions, under noncommutative polynomial (in)equality constraints.
The optimal value of such constrained problems can be approximated, as closely as desired, while
relying on the noncommutative analogue of Lasserre’s hierarchy [238, 57, 54]. The NCSOStools [58,
53] library can compute such approximations for optimization problems involving polynomials in
noncommuting variables. By comparison with the commutative case, the size O(nr) of the SDP
matrices at a given step r of the noncommutative hierarchy becomes intractable even faster, typi-
cally for r, n ' 6 on a standard laptop.

Existing approaches

A remedy for unconstrained problems is to rely on the adequate noncommutative analogue of the
standard Newton polytope method, which is called the Newton chip method (see, e.g., [53, §2.3]) and
can be further improved with the augmented Newton chip method (see, e.g., [53, §2.4]), by removing
certain terms which can never appear in an SOHS decomposition of a given input. As in the com-
mutative case, the Newton polytope method cannot be applied for constrained problems. When
one cannot go from step r to step r + 1 in the hierarchy because of the computational burden, one
can always consider matrices indexed by all terms of degree r plus a fixed percentage of terms of
degree r + 1. This is used for instance to compute tighter upper bounds for maximum violation
levels of Bell inequalities [232]. Another trick, implemented in the NCPOL2SDPA library [306], con-
sists of exploiting simple equality constraints, such as “x2 = 1”, to derive substitution rules for
variables involved in the SDP relaxations. Similar substitutions are performed in the commutative
case by GLOPTIPOLY [132].

Apart from such heuristic procedures, there is, to the best of our knowledge, no general method
to exploit additional structure, such as sparsity, of (un)constrained noncommutative POP.

Noncommutative polynomials

We use similar notation to Section 1.5, where we consider a finite alphabet x1, . . . , xn and generate
all possible words of finite length in these letters. The degree of a noncommutative (nc) polynomial
f ∈ R〈x〉 is the length of the longest word involved in f . For r ∈ N, 〈x〉r is the set of all words of
degree at most r. Let us denote by Wr the vector of all words of 〈x〉r w.r.t. to the lexicographic order.
Note that the dimension of R〈x〉r is the length of Wr, which is σ(n, r) := ∑r

i=0 ni = nr+1−1
n−1 . The set

of all symmetric elements is defined as Sym R〈x〉 := { f ∈ R〈x〉 : f = f ?}. An nc polynomial of the
form g?g is called a hermitian square. A given f ∈ R〈x〉 is an SOHS if there exist nc polynomials
h1, . . . , ht ∈ R〈x〉, with t ∈N, such that f = h?1h1 + · · ·+ h?t ht. Let Σ〈x〉 stands for the set of SOHS.
We denote by Σ〈x〉r ⊆ Σ〈x〉 the set of SOHS polynomials of degree at most 2r. We now recall how
to check whether a given f ∈ Sym R〈x〉 is an SOHS. The existing procedure, known as the Gram
matrix method, relies on the following proposition (see, e.g., [123, §2.2]):

Proposition 3.3.1 Assume that f ∈ Sym R〈x〉2d. Then f ∈ Σ〈x〉 if and only if there exists G f � 0
satisfying

f = W?
d G f Wd . (3.15)

Conversely, given such G � 0 with rank t, one can construct g1, . . . , gt ∈ R〈x〉d such that f = ∑t
i=1 g?i gi.

Any symmetric matrix G (not necessarily positive semidefinite) satisfying (3.15) is called a Gram
matrix of f .
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Given a positive integer m and S = {g1, . . . , gm} ⊆ Sym R〈x〉, the semialgebraic set DS associ-
ated to S is defined as follows:

DS :=
⋃

k∈N

{A = (A1, . . . , An) ∈ Sn
k : gj(A) � 0 , j ∈ [m]} . (3.16)

When considering only tuples of N × N symmetric matrices, we use the notation DN
S := DS ∩ Sn

N .
The operator semialgebraic set D∞

S is the set of all bounded self-adjoint operators A on a Hilbert
space H endowed with a scalar product 〈· | ·〉, making g(A) a positive semidefinite operator for
all g ∈ S, i.e., 〈g(A)v | v〉 ≥ 0, for all v ∈ H. We say that a noncommutative polynomial f is
positive (denoted by f � 0) on D∞

S if for all A ∈ D∞
S the operator f (A) is positive definite, i.e.,

〈 f (A)v | v〉 > 0, for all nonzero v ∈ H. The quadratic moduleM(S), generated by S, is defined
by

M(S) :=

{
K

∑
i=1

a?i giai : K ∈N , ai ∈ R〈x〉 , gi ∈ S ∪ {1}
}

. (3.17)

Given r ∈N, the truncated quadratic moduleM(S)r of order r, generated by S, is

M(S)r :=

{
K

∑
i=1

a?i giai : K ∈N , ai ∈ R〈x〉 , gj ∈ S ∪ {1} , deg(a?i giai) ≤ 2r

}
. (3.18)

Let 1 stands for the unit polynomial. A quadratic module M is called archimedean if for each
a ∈ R〈x〉, there exists N ∈ R≥0 such that N · 1− a?a ∈ M. One can show that this is equivalent to
the existence of an N ∈ R≥0 such that N · 1−∑n

i=1 x2
i ∈ M.

The noncommutative analog of Putinar’s Positivstellensatz [245] describing noncommutative
polynomials positive on D∞

S with archimedeanM(S) is due to Helton and McCullough:

Theorem 3.3.2 ([126, Theorem 1.2]) Let S ∪ { f } ⊆ Sym R〈x〉 and assume thatM(S) is archimedean.
If f (A) � 0 for all A ∈ D∞

S , then f ∈ M(S).

Sparsity patterns

We adapt the concepts of CS from Section 3.1 in the nc setting. With [n] := {1, . . . , n} and p ∈ N

consider I1, . . . , Ip ⊆ [n] satisfying
⋃p

l=1 Il = [n]. Let nl be the size of Il , for each l ∈ [p]. We
denote by 〈x(Il)〉 (resp. R〈x, Il〉) the set of words (resp. nc polynomials) in the nl variables x(Il) =

{xi : i ∈ Il}. The dimension of R〈x, Il〉r is σ(nl , r) =
nr+1

l −1
nl−1 . Note that R〈x, [n]〉 = R〈x〉. We

also define Sym R〈x, Il〉 := Sym R〈x〉 ∩R〈x, Il〉, let Σ〈x, Il〉 stands for the set of SOHS in R〈x, Il〉
and we denote by Σ〈x, Il〉r the restriction of Σ〈x, Il〉 to nc polynomials of degree at most 2r. In the
sequel, we will rely on two specific assumptions. The first one is as follows:

Assumption 3.3.3 (Boundedness) LetDS be as in (3.16). There is N ∈ R>0 such that ∑n
i=1 x2

i � N · 1,
for all x ∈ D∞

S .

Then, Assumption 3.3.3 implies that ∑j∈Il
x2

j � N · 1, for all l ∈ [p]. Thus we define

gm+k := N · 1− ∑
j∈Il

X2
j , l ∈ [p] , (3.19)

and set m′ = m + p in order to describe the same set DS again as:

DS :=
⋃

k∈N

{A ∈ Sn
k : gj(A) � 0, j ∈ [m′]} , (3.20)

as well as the operator semialgebraic set D∞
S .

The second assumption is as follows:
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Assumption 3.3.4 (RIP) Let DS be as in (3.20) and let f ∈ R〈x〉. The index set J := {1, . . . , m′} is
partitioned into p disjoint sets J1, . . . , Jp and the two collections {I1, . . . , Ip} and {J1, . . . , Jp} satisfy:

(i) For all j ∈ Jl , gj ∈ Sym R〈x, Il〉;

(ii) The objective function can be decomposed as f = f1 + · · ·+ fp, with fl ∈ R〈x, Il〉, for all l ∈ [p];

(iii) The running intersection property (RIP) (3.6) holds.

Even though we assume that I1, . . . , Ip are explicitly given, one can compute such subsets using
the procedure in [300]. Roughly speaking, this procedure consists of two steps. The first step
provides the csp graph of the variables involved in the input polynomial data. The second step
computes the maximal cliques of a chordal extension of this csp graph. Even if the computation of
all maximal cliques of a graph is an NP hard problem in general, it turns out that this procedure is
efficient in practice, due to the properties of chordal graphs (see, e.g., [42] for more details on the
properties of chordal graphs).

Hankel and localizing matrices

To g ∈ Sym R〈x〉 and a linear functional L : R〈x〉2r → R, one associates the following two matri-
ces:

(1) the noncommutative Hankel matrix Mr(L) is the matrix indexed by words u, v ∈ 〈x〉r, with
(Md(L))u,v = L(u?v);

(2) the localizing matrix Mr−ddeg g/2e(gL) is the matrix indexed by words u, v ∈ 〈X〉r−ddeg g/2e,
with (Mr−ddeg g/2e(gL))u,v = L(u?gv).

The functional L is called unital if L(1) = 1 and is called symmetric if L( f ?) = L( f ), for all f
belonging to the domain of L. We also recall the following useful facts.

Lemma 3.3.5 ([53, Lemma 1.44]) Let g ∈ Sym R〈x〉 and let L : R〈x〉2r → R be a symmetric linear
functional. Then, one has:

(1) L(h?h) ≥ 0 for all h ∈ R〈x〉r, if and only if, Md(L) � 0;

(2) L(h?gh) ≥ 0 for all h ∈ R〈x〉r−ddeg g/2e, if and only if, Mr−ddeg g/2e(gL) � 0.

Definition 3.3.6 Suppose L : R〈x〉2r+2δ → R is a linear functional with restriction L̃ : R〈x〉2r → R. We
associate to L and L̃ the Hankel matrices Mr+δ(L) and Mr(L̃) respectively, and get the block form

Mr+δ(L) =

[
Mr(L̃) B

BT C

]
.

We say that L is δ-flat or that L is a flat extension of L̃, if Mr+δ(L) is flat over Mr(L̃), i.e., if
rank Mr+δ(L) = rank Mr(L̃).

For a subset I ⊆ [p], let us define Mr(L, I) to be the Hankel submatrix obtained from Mr(L) after
retaining only those rows and columns indexed by w ∈ 〈X(I)〉r. When I ⊆ Il and g ∈ R〈x, Il〉, for
l ∈ [p] , we define the localizing submatrix Mr−ddeg g/2e(gL, I) in a similar fashion. In particular,
Mr(L, Il) and Mr−ddeg g/2e(gL, Il) can be seen as Hankel and localizing matrices with rows and
columns indexed by a basis of R〈x, Il〉r and R〈x, Il〉r−ddeg g/2e, respectively.
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Figure 3.4: Illustration of Theorem 3.3.7 in the case I = {1, 2}.

Sparse representations of nc positive polynomials

Here, we state our main theoretical result, which is a sparse version of the Helton-McCullough
archimedean Positivstellensatz (Theorem 3.3.2). For this, we rely on amalgamation theory for C?-
algebras, see, e.g., [41, 295].

Given a Hilbert spaceH, we denote by B(H) the set of bounded operators onH. A C?-algebra
is a complex Banach algebra A thus also a Banach space), endowed with a norm ‖ · ‖, and with an
involution ? satisfying ‖xx?‖ = ‖x‖2 for all x ∈ A. Equivalently, it is a norm closed subalgebra
with involution of B(H) for some Hilbert spaceH. Given a C?-algebraA, a state ϕ is defined to be
a positive linear functional of unit norm on A, and we write often (A, ϕ) when A comes together
with the state ϕ. Given two C?-algebras (A1, ϕ1) and (A2, ϕ2), a homomorphism ι : A1 → A2 is
called state-preserving if ϕ2 ◦ ι = ϕ1. Given a C?-algebra A, a unitary representation of A in H is a ∗-
homomorphism π : A → B(H) which is strongly continuous, i.e., the mapping A → H, g 7→ π(g)ξ
is continuous for every ξ ∈ H.

Theorem 3.3.7 ([41] or [295, Section 5]) Let (A, ϕ0) and {(Bk, ϕk) : k ∈ I} be C?-algebras with states,
and let ιk be a state-preserving embedding of A into Bk, for each k ∈ I. Then there exists a C?-algebra
C amalgamating the (Bk, ϕk) over (A, ϕ0). That is, there is a state ϕ on C, and state-preserving homo-
morphisms jk : Bk → C, such that jk ◦ ιk = ji ◦ ιi, for all k, i ∈ I, and such that

⋃
k∈I jk(Bk) generates

C.

Theorem 3.3.7 is illustrated in Figure 3.4 in the case I = {1, 2}. We also recall the GNS construc-
tion establishing a correspondence between ?-representations of a C?-algebra and positive linear
functionals on it. In our context, the next result [53, Theorem 1.27] restricts to linear functionals on
R〈x〉 which are positive on an archimedean quadratic module.

Theorem 3.3.8 Let S ⊆ Sym R〈x〉 be given such that its quadratic module M(S) is archimedean. Let
L : R〈x〉 → R be a nontrivial linear functional with L(M(S)) ⊆ R≥0. Then there exists a tuple A =
(A1, . . . , An) ∈ D∞

S and a vector v such that L( f ) = 〈 f (A)v, v〉, for all f ∈ R〈x〉.

For l ∈ [p], let us define

M(S)l :=

{
K

∑
i=1

a?i giai : K ∈N , ai ∈ R〈x, Il〉, gi ∈ (S ∩ Sym R〈x, Il〉) ∪ {1}
}

,

and

M(S)cs :=M(S)1 + · · ·+M(S)p . (3.21)
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Next, we state the main foundational result of this section.

Theorem 3.3.1 Let S ∪ { f } ⊆ Sym R〈x〉 and let DS be as in (3.20) with the additional quadratic
constraints (3.19). Suppose Assumption 3.3.4 holds. If f (A) � 0 for all A ∈ D∞

S , then f ∈ M(S)cs.

We provide an example demonstrating that sparsity without a RIP-type condition is not suffi-
cient to deduce sparsity in SOHS decompositions.

Example 3.3.1 Consider the case of three variables x = (x1, x2, x3) and the polynomial

f = (x1 + x2 + x3)
2 = x2

1 + x2
2 + x2

3 + x1x2 + x2x1 + x1x3 + x3x1 + x2x3 + x3x2 ∈ Σ〈x〉.

Then f = f1 + f2 + f3, with

f1 =
1
2

x2
1 +

1
2

x2
2 + x1x2 + x2x1 ∈ R〈x1, x2〉,

f2 =
1
2

x2
2 +

1
2

x2
3 + x2x3 + x3x2 ∈ R〈x2, x3〉,

f3 =
1
2

x2
1 +

1
2

x2
3 + x1x3 + x3x1 ∈ R〈x1, x3〉.

However, the sets I1 = {1, 2}, I2 = {2, 3} and I3 = {1, 3} do not satisfy the RIP condition (3.6) and
f 6∈ Σ〈x〉cs := Σ〈x1, x2〉+ Σ〈x2, x3〉+ Σ〈x1, x3〉 since it has a unique Gram matrix by homogeneity.

Now consider S = {1− x2
1, 1− x2

2, 1− x2
3}. Then DS is as in (3.20),M(S)cs is as in (3.21) and

f |D∞
S
� 0. However, we claim that f − b ∈ M(S)cs iff b ≤ −3. Clearly,

f + 3 = (x1 + x2)
2 + (x1 + x3)

2 + (x2 + x3)
2 + (1− x2

1) + (1− x2
2) + (1− x2

3) ∈ M(S)cs.

So one has −3 ≤ sup{b : f − b ∈ M(S)cs}, and the dual of this latter problem is given by

inf
Ll

3

∑
l=1

Ll( fl)

s.t. Ll(1) = 1 , l = 1, 2, 3 ,

Ll(h?h) � 0 ∀h ∈ R〈x, Il〉 , l = 1, 2, 3 ,

Ll(h?(1− x2
l )h) � 0 ∀h ∈ R〈x, Il〉 , l = 1, 2, 3 ,

Lj|R〈X(Ij∩Il)〉 = Ll |R〈X(Ij∩Il)〉 , j, l = 1, 2, 3 .

(3.22)

Hence, by weak duality, it suffices to show that there exist linear functionals Ll : R〈x, Il〉 → R

satisfying the constraints of problem (3.22) and such that ∑l Ll( fl) = −3. Define

A =

[
0 1
1 0

]
, B = −A

and let
Ll(g) = tr(g(A, B)) for g ∈ R〈x, Il〉.

Since Ll( fl) = −1, the three first constraints of problem (3.22) are easily verified and ∑l Ll( fl) =
−3. For the last one, given, say h ∈ R〈x, I1〉 ∩R〈x, I2〉 = R〈x2〉, we have

L1(h) = tr(h(B)),

L2(h) = tr(h(A)),
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since L1 (resp. L2) is defined on R〈x1, x2〉 (resp. R〈x2, x3〉) and h depends only on the second
(resp. first) variable x2 corresponding to B (resp. A).

But matrices A and B are orthogonally equivalent as UAUT = B for

U =

[
0 1
−1 0

]
,

whence h(B) = h(UAUT) = Uh(A)UT and h(A) have the same trace.

Sparse GNS construction

Next, we provide the main theoretical tools to extract solutions of sparse noncommutative opti-
mization problems. For this purpose, we first present sparse noncommutative versions of theo-
rems by Curto and Fialkow, derived in the context of commutative polynomials [71], eigenvalue
optimization of noncommutative polynomials [212, Lemma 2.2] (see also [238], [9, Chapter 21]
and [53, Theorem 1.69]), and trace optimization of noncommutative polynomials [54] We recall
this theorem, which relies on a finite-dimensional GNS construction.

Theorem 3.3.9 Let S ⊆ Sym R〈x〉 and set δ := max{ddeg(g)/2e : g ∈ S ∪ {1}}. For r ∈ N, let
L : R〈x〉2r+2δ → R be a unital linear functional satisfying L(M(S)r+δ) ⊆ R≥0. If L is δ-flat, then there
exist Â ∈ Dr

S for some t ≤ σ(n, r) and a unit vector v such that

L(g) = 〈g(Â)v, v〉 , (3.23)

for all g ∈ Sym R〈x〉2r.

We now give the sparse version of Theorem 3.3.9.

Theorem 3.3.2 Let S ⊆ Sym R〈x〉2r, and assume DS is as in (3.20) with the additional quadratic
constraints (3.19). Suppose Assumption 3.3.4(i) holds. Set δ := max{ddeg(g)/2e : g ∈ S ∪ {1}}.
Let L : R〈x〉2r+2δ → R be a unital linear functional satisfying L(M(S)cs

r ) ⊆ R≥0. Assume that the
following holds:

(H1) Mr+δ(L, Il) and Mr+δ(L, Il ∩ Ij) are δ-flat, for all j, l ∈ [p].

Then, there exist finite-dimensional Hilbert spaces H(Il) with dimension tl , for all l ∈ [p], Hilbert
spaces H(Ij ∩ Il) ⊆ H(Ij),H(Il) for all pairs (j, l) with Ij ∩ Il 6= 0, and operators Âl , Âjl , acting on
them, respectively. Further, there are unit vectors vj ∈ H(Ij) and vjl ∈ H(Ij ∩ Il) such that

L( f ) = 〈 f (Âj)vj, vj〉 for all f ∈ R〈x, Ij〉2r,

L(g) = 〈g(Âjl)vjl , vjl〉 for all g ∈ R〈X(Ij ∩ Il)〉2r.
(3.24)

Assuming that for all pairs (j, l) with Ij ∩ Il 6= ∅, one has

(H2) the matrices (Âjl
i )i∈Ij∩Il have no common complex invariant subspaces,

then there exist A ∈ Dt
S, with t := t1 · · · tp, and a unit vector v such that

L( f ) = 〈 f (A)v, v〉 , (3.25)

for all f ∈ ∑l R〈x, Il〉2r.
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A

A(I1) A(I2)

A(I1 ∩ I2)

j1 j2

ι2ι1

Figure 3.5: Amalgamation of finite-dimensional C?-algebras

Example 3.3.2 (Non-amalgamation in the category of finite-dimensional algebras) Given I1 and
I2, suppose A(I1 ∩ I2) is generated by the 2× 2 diagonal matrix

A12 =

(
1

2

)
,

and assume A(I1) = A(I2) = M3(R). (Observe that A(I1 ∩ I2) is the algebra of all diagonal matrices.)
For each l ∈ {1, 2}, let us define ιl(A) := A⊕ l, for all A ∈ A(I1 ∩ I2). We claim that there is no finite-
dimensional C?-algebra A amalgamating the above Figure 3.5. Indeed, by the Skolem-Noether theorem,
every homomorphism Mn(R) → Mm(R) is of the form x 7→ P−1(x ⊗ Im/n)P for some invertible P; in
particular, n divides m. If a desired A existed, then the matrices (A12 ⊕ 1)⊗ Il and (A12 ⊕ 2)⊗ Il would
be similar. But they are not as is easily seen from eigenvalue multiplicities.

Remark 3.3.1 Theorem 3.3.2 can be seen as a noncommutative variant of the result by Lasserre stated
in [179, Theorem 3.7], related to the minimizers extraction in the context of sparse polynomial optimization.
In the sparse commutative case, Lasserre assumes flatness of each moment matrix indexed in the canonical
basis of R[X, Il ]r, for each l ∈ [p], which is similar to our flatness condition (H1). The difference is that
this technical flatness condition on each Il adapts to the degree of the constraints polynomials on variables
in Il , resulting in an adapted parameter δl instead of global δ. We could assume the same in Theorem 3.3.2
but for the sake of simplicity, we assume that these parameters are all equal. In addition, Lasserre assumes
that each moment matrix indexed in the canonical basis of R[x, Ij ∩ Il)]r is rank one, for all pairs (j, l) with
Ij ∩ Il 6= ∅, which is the commutative analog of our irreducibility condition (H2).

As in the dense case, we can summarize the sparse GNS construction procedure described in the
proof of Theorem 3.3.2 into an algorithm, called SparseGNS, stated in [J3, Algorithm 4.6], for the
case p = 2 (the general case is similar).

Eigenvalue optimization of nc sparse polynomials

We provide SDP relaxations allowing one to under-approximate the smallest eigenvalue that a
given nc polynomial can attain on a tuple of symmetric matrices from a given semialgebraic set.
We first recall the celebrated Helton-McCullough SOS theorem [123, 212] stating the equivalence
between SOHS and positive semidefinite nc polynomials.

Theorem 3.3.10 Given f ∈ R〈x〉, we have f (A) � 0, for all A ∈ Sn, if and only if f ∈ Σ〈x〉.

In contrast with the constrained case where we obtain the analog of Putinar’s Positivstellensatz in
Theorem 3.3.1, there is no sparse analog of Theorem 3.3.10, as shown in the following example.
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Lemma 3.3.11 There exist polynomials which are sparse sums of hermitian squares but are not sums of
sparse hermitian squares.

PROOF Let v =
[
x1 x1x2 x2 x3 x3x2

]
,

G f =


1 −1 −1 0 α
−1 2 0 −α 0
−1 0 3 −1 9

0 −α −1 6 −27
α 0 9 −27 142

 , α ∈ R, (3.26)

and consider

f = vG f v?

= x2
1 − x1x2 − x2x1 + 3x2

2 − 2x1x2x1 + 2x1x2
2x1

− x2x3 − x3x2 + 6x2
3 + 9x2

2x3 + 9x3x2
2 − 54x3x2x3 + 142x3x2

2x3.

(3.27)

The polynomial f is clearly sparse w.r.t. I1 = {x1, x2} and I2 = {x2, x3}. Note that the matrix G is
positive semidefinite if and only if 0.270615 . α . 1.1075, whence f is a sparse polynomial that is
an SOHS.

We claim that f 6∈ Σ〈x, I1〉 + Σ〈x, I2〉, i.e., f is not a sum of sparse hermitian squares. By
the Newton chip method [53, Section 2.3] only monomials in v can appear in a sum of squares
decomposition of f . Further, every Gram matrix of f (with border vector v) is of the form (3.26).
However, the matrix G f with α = 0 is not positive semidefinite, hence f 6∈ Σ〈x, I1〉+ Σ〈x, I2〉.

Unconstrained eigenvalue optimization with correlative sparsity

Let I stands for the identity matrix. Given f ∈ Sym R〈x〉 of degree 2d, the smallest eigenvalue of f
is obtained by solving the following optimization problem

λmin( f ) := inf{〈 f (A)v, v〉 : A ∈ Sn, ‖v‖ = 1} . (3.28)

The optimal value λmin( f ) of Problem (3.28) is the greatest lower bound on the eigenvalues of
f (A) over all n-tuples A of real symmetric matrices. Problem (3.28) can be rewritten as follows:

λmin( f ) = sup
b

b

s.t. f (A)− b I � 0 , ∀A ∈ Sn ,
(3.29)

which is in turn equivalent to

λd
min( f ) = sup

b
b

s.t. f (x)− b ∈ Σ〈x〉d ,
(3.30)

as a consequence of Theorem 3.3.10.
The dual of SDP (3.30) is

Ld
sohs( f ) = inf

L
〈Md(L), G f 〉

s.t. L(1) = 1 , Md(L) � 0 ,

L : R〈x〉2d → R linear ,

(3.31)
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where G f is a Gram matrix for f (see Proposition 3.3.1).
One can compute λmin( f ) by solving a single SDP, either SDP (3.31) or SDP (3.30), since there is no
duality gap between these two programs (see, e.g., [53, Theorem 4.1]), that is, one has Ld

sohs( f ) =
λd

min( f ) = λmin( f ).
Now, we address eigenvalue optimization for a given sparse nc polynomial f = f1 + · · ·+ fp

of degree 2d, with fl ∈ Sym R〈x, Il〉2d, for all l ∈ [p]. For all l ∈ [p], let G fl
be a Gram matrix

associated to fl . The sparse variant of SDP (3.31) is

Ld
cs( f ) = inf

L

p

∑
l=1
〈Md(L, Il), G fl

〉

s.t. L(1) = 1 , Md(L, Il) � 0 , l ∈ [p] ,

L : R〈x, I1〉2d + · · ·+ R〈x, Ip〉2d → R linear ,

(3.32)

whose dual is the sparse variant of SDP (3.30):

λd
cs( f ) = sup

b
b

s.t. f − b ∈ Σ〈x, I1〉2d + · · ·+ Σ〈x, Ip〉2d ,
(3.33)

To prove that there is no duality gap between SDP (3.32) and SDP (3.33), we need a sparse variant
of [213, Proposition 3.4], which says that Σ〈x〉d is closed in R〈x〉2d:

Proposition 3.3.12 The set Σ〈x〉cs
d is a closed convex subset of R〈x, I1〉2d + · · ·+ R〈x, Ip〉2d.

From Proposition 3.3.12, we obtain the following theorem which does not require Assump-
tion 3.3.4.

Theorem 3.3.3 Let f ∈ Sym R〈x〉 of degree 2d, with f = f1 + · · ·+ fp, fk ∈ Sym R〈x, Ik〉2d, for
all k ∈ [p]. Then, one has λd

cs( f ) = Ld
cs( f ), i.e., there is no duality gap between SDP (3.32) and

SDP (3.33).

Remark 3.3.2 By contrast with the dense case, it is not enough to compute the solution of SDP (3.32)
to obtain the optimal value λmin( f ) of the unconstrained optimization problem (3.28). However, one can
still compute a certified lower bound λd

cs( f ) by solving a single SDP, either in the primal form (3.32)
or in the dual form (3.33). Note that the related computational cost is potentially much less expensive.
Indeed, SDP (3.33) involves ∑

p
l=1 σ(nl , 2d) equality constraints and ∑

p
l=1 σ(nl , d) + 1 variables. This is

in contrast with the dense version (3.30), which involves σ(n, 2d) equality constraints and 1 + σ(n, d)
variables.

Constrained eigenvalue optimization with correlative sparsity

Here, we focus on providing lower bounds for the constrained eigenvalue optimization of nc poly-
nomials. Given f ∈ Sym R〈x〉 and S := {g1, . . . , gm} ⊂ Sym R〈x〉 as in (3.16), let us define
λmin( f , S) as follows:

λmin( f , S) := inf{〈 f (A)v, v〉 : A ∈ D∞
S , ‖v‖ = 1} , (3.34)

which is, as for the unconstrained case, equivalent to

λmin( f , S) = sup
b

b

s.t. f (A)− b I � 0 , ∀A ∈ D∞
S .

(3.35)
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As usual, let rj := ddeg gj/2e, for each j ∈ [m] and rmin := max{ddeg f /2e, r1, . . . , rm}. As shown
in [238, 57] (see also [126]), one can approximate λmin( f , S) from below via the following hierarchy
of SDP programs, indexed by r ≥ rmin:

λr( f , S) := sup
b

b

s.t. f − b ∈ M(S)r .
(3.36)

The dual of SDP (3.36) is

Lr( f , S) := inf
L
〈Mr(L), G f 〉

s.t. L(1) = 1 ,

Mr(L) � 0 , Mr−rj(gjL) � 0 , j ∈ [m] ,

L : R〈x〉2r → R linear ,

(3.37)

Under additional assumptions, this hierarchy of primal-dual SDP (3.36)-(3.37) converges to the
value of the constrained eigenvalue problem.

Corollary 3.3.13 Assume that DS is as in (3.20) with the additional quadratic constraints (3.19) and that
the quadratic module MS is archimedean. Then the following holds for each f ∈ Sym R〈x〉:

lim
r→∞

Lr( f , S) = lim
r→∞

λr( f , S) = λmin( f , S) . (3.38)

The main ingredient of the proof (see, e.g., [53, Corollary 4.11]) is the nc analog of Putinar’s Posi-
tivstellensatz, stated in Theorem 3.3.2.
Let S ∪ { f } ⊆ Sym R〈x〉 and let DS be as in (3.20) with the additional quadratic constraints (3.19).
Let M(S)cs be as in (3.21) and let us define M(S)cs

r in the same way as the truncated quadratic
moduleM(S)r in (3.18). Now, let us state the sparse variant of the primal-dual hierarchy (3.36)-
(3.37) of lower bounds for λmin( f , S).

For all r ≥ rmin, the sparse variant of SDP (3.37) is

Lr
cs( f , S) := inf

L

p

∑
l=1
〈Mr(L, Il), G fl

〉

s.t. L(1) = 1 ,

Mr(L, Il) � 0 , l ∈ [p] ,

Mr−rj(gjL, Il) � 0 , j ∈ Jl , l ∈ [p] ,

L : R〈x, I1〉2r + · · ·+ R〈x, Ip〉2r → R linear ,

(3.39)

whose dual is the sparse variant of SDP (3.36):

λr
cs( f , S) := sup

b
b

s.t. f − b ∈ M(S)r .
(3.40)

Recall that an ε-neighborhood of 0 is the set Nε defined for a given ε > 0 by:

Nε :=
⋃

k∈N

{
A := (A1, . . . , An) ∈ Sn

k : ε2 −
n

∑
i=1

A2
i � 0

}
.

Lemma 3.3.14 If h ∈ R〈x〉 vanishes on an ε-neighborhood of 0, then h = 0.
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Proposition 3.3.15 Let S ∪ { f } ⊆ Sym R〈x〉, assume that DS contains an ε-neighborhood of 0 and that
DS is as in (3.20) with the additional quadratic constraints (3.19). Then SDP (3.39) admits strictly feasible
solutions.

Corollary 3.3.16 Let S ∪ { f } ⊆ Sym R〈x〉, assume that DS is as in (3.20) with the additional quadratic
constraints (3.19). Let Assumption 3.3.4 hold. Then, one has

lim
r→∞

Lr
cs( f , S) = lim

r→∞
λr

cs( f , S) = λmin( f , S) . (3.41)

As for the unconstrained case, there is no sparse variant of the “perfect” Positivstellensatz stated
in [53, §4.4] or [125], for constrained eigenvalue optimization over convex nc semialgebraic sets,
such as those associated either to the sparse nc ball Bcs := {1−∑i∈I1

x2
i , . . . , 1−∑i∈Ip x2

i } or the nc
polydisc D := {1− x2

1, . . . , 1− x2
n}. Namely, for an nc polynomial f of degree 2d + 1, computing

only SDP (3.32) with optimal value λd+1
cs ( f , S) when S = Bcs or S = Dcs does not suffice to obtain

the value of λmin( f , S). This is explained in Example 3.3.3 below, which implies that there is no
sparse variant of [53, Corollary 4.18] when S = Bcs.

Example 3.3.3 Let us consider a randomly generated cubic polynomial f = f1 + f2 with

f1 = 4− x1 + 3x2 − 3x3 − 3x2
1 − 7x1x2 + 6x1x3 − x2x1 − 5x3x1 + 5x3x2

− 5x3
1 − 3x2

1x3 + 4x1x2x1 − 6x1x2x3 + 7x1x3x1 + 2x1x3x2 − x1x2
3

− x2x2
1 + 3x2x1x2 − x2x1x3 − 2x3

2 − 5x2
2x3 − 4x2x2

3 − 5x3x2
1

+ 7x3x1x2 + 6x3x2x1 − 4x3x2x2 − x2
3x1 − 2x2

3x2 + 7x3
3 ,

f2 = − 1 + 6x2 + 5x3 + 3x4 − 5x2
2 + 2x2x3 + 4x2x4 − 4x3x2 + x2

3 − x3x4

+ x4x2 − x4x3 + 2x2
4 − 7x3

2 + 4x2x2
3 + 5x2x3x4 − 7x2x4x3 − 7x2x2

4

+ x3x2
2 + 6x3x2x3 − 6x3x2x4 − 3x2

3x2 − 7x2
3x4 + 6x3x4x2

− 3x3x4x3 − 7x3x2
4 + 3x4x2

2 − 7x4x2x3 − x4x2x4 − 5x4x2
3

+ 7x4x3x4 + 6x2
4x2 − 4x3

4 ,

and the nc polyball S = Bcs = {1− x2
1 − x2

2 − x2
3, 1− x2

2 − x2
3 − x2

4} corresponding to I1 = {1, 2, 3} and
I2 = {2, 3, 4}. Then, one has λ2

cs( f , S) ' −27.536 < λ3
cs( f , S) ' −27.467 ' λ2

min( f , S) = λmin( f , S).

Extracting Optimizers

Here, we explain how to extract a pair of optimizers (A, v) for the eigenvalue optimization
problems when the flatness and irreducibility conditions of Theorem 3.3.2 hold. We apply the
SparseGNS procedure described earlier (and explicitly stated in [J3, Algorithm 4.6]) on the opti-
mal solution of SDP (3.32) in the unconstrained case or SDP (3.39) in the constrained case. In the
unconstrained case, we have the following sparse variant of [53, Proposition 4.4].

Proposition 3.3.17 Given f as in Theorem 3.3.3, let us assume that SDP (3.32) yields an optimal solution
Md+1(L) associated to Ld+1

cs ( f ). If the linear functional L underlying Md+1(L) satisfies the flatness (H1)
and irreducibility (H2) conditions stated in Theorem 3.3.2, then one has

λmin( f ) = Ld+1
cs ( f ) =

p

∑
l=1
〈Md+1(L, Il), G fl

〉 .

We can extract optimizers for the unconstrained minimal eigenvalue problem (3.28) thanks to the
following algorithm.

In the constrained case, the next result is the sparse variant of [53, Theorem 4.12] and is a direct
corollary of Theorem 3.3.2.
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Require: f ∈ Sym R〈x〉2d satisfying Assumption 3.3.4.
1: Compute Ld+1

cs ( f ) by solving SDP (3.32)
2: if SDP (3.32) is unbounded or its optimum is not attained then
3: Stop
4: end if
5: Let Md+1(L) be an optimizer of SDP (3.32). Compute A, v := SparseGNS (Md+1(L)).

Ensure: A and v.
SparseEigGNS

Corollary 3.3.18 Let S ∪ { f } ⊆ Sym R〈x〉, assume that DS is as in (3.20) with the additional quadratic
constraints (3.19). Suppose Assumptions 3.3.4(i)-(ii) hold. Let Mr(L) be an optimal solution of SDP (3.39)
with value Lr( f , S), for r ≥ rmin + δ, such that L satisfies the assumptions of Theorem 3.3.2. Then, there
exist t ∈N, A ∈ Dt

S and a unit vector v such that

λmin( f , S) = 〈 f (A)v, v〉 = Lr( f , S) .

Remark 3.3.3 As in the dense case [53, Algorithm 4.2], one can provide a randomized algorithm
to look for flat optimal solutions for the constrained eigenvalue problem (3.34). The underlying
reason which motivates this randomized approach is work by Nie, who derives in [227] a hierarchy
of SDP programs, with a random objective function, that converges to a flat solution (under mild
assumptions).

Example 3.3.4 Consider the sparse polynomial f = f1 + f2 from Example 3.3.3. The Hankel matrix
M3(L) obtained when computing λ3

cs by solving (3.39) for r = 3 satisfies the flatness (H1) and irreducibility
(H2) conditions of Theorem 3.3.2. We can thus apply the SparseGNS algorithm yielding

A1 =


0.0059 0.0481 0.1638 0.4570
0.0481 −0.2583 0.5629 −0.2624
0.1638 0.5629 0.3265 −0.3734
0.4570 −0.2624 −0.3734 −0.2337



A2 =


−0.3502 0.0080 0.1411 0.0865

0.0080 −0.4053 0.2404 −0.1649
0.1411 0.2404 −0.0959 0.3652
0.0865 −0.1649 0.3652 0.4117



A3 =


−0.7669 −0.0074 −0.1313 −0.0805
−0.0074 −0.4715 −0.2238 0.1535
−0.1313 −0.2238 0.0848 −0.3400
−0.0805 0.1535 −0.3400 −0.2126



A4 =


0.3302 −0.1839 0.1811 −0.0404
−0.1839 −0.1069 0.5114 −0.0570

0.1811 0.5114 0.1311 −0.3664
−0.0404 −0.0570 −0.3664 0.4440


where

f (A) =


−10.3144 3.9233 −5.0836 −7.7828

3.9233 1.8363 4.5078 −7.5905
−5.0836 4.5078 −19.5827 13.9157
−7.7828 −7.5905 13.9157 8.3381


has minimal eigenvalue −27.4665 with unit eigenvector

v =
[
0.1546 −0.2507 0.8840 −0.3631

]T .



124 Chapter 3. Efficient polynomial optimization

In this case all the ranks involved were equal to four. So A2 and A3 were computed already from
M3(L, I1 ∩ I2), after an appropriate basis change A1 (and the same A2, A3) was obtained from M3(L, I1),
and finally A4 was computed from M3(L, I2).

In [J3, § 6], the interested reader can find more details about SDP relaxations allowing one to
under-approximate the smallest trace of an nc polynomial on a semialgebraic set.

Numerical experiments

The aim of this section is to provide experimental comparison between the bounds given by
the dense relaxations (using NCeigMin under NCSOStools) and the ones produced by our sparse
variants. The resulting algorithm, denoted by NCeigMinSparse, is currently implemented in
NCSOStools [58]. This software library is available within MATLAB and interfaced with the SDP
solver MOSEK [7], which turned out to yield better performance than SeDuMi 1.3 [279]. All nu-
merical results were obtained using a cluster available at the Faculty of mechanical engineering,
University of Ljubljana, which has 30 TFlops computing performance. For our computations we
used only one computing node which consisted of 2 Intel Xeon X5670 2,93GHz processors, each
with 6 computing cores; 48 GB DDR3 memory; 500 GB hard drive. We ran MATLAB in a plain
(sequential) mode, without imposing any paralelization.

In Table 3.1, we report results obtained for minimizing the eigenvalue of the nc variants of the
following functions:

• The chained singular function [68]:

fcsf := ∑
i∈J

((xi + 10xi+1)
2 + 5(xi+2 − xi+3)

2 + (xi+1 − 2xi+2)
4 + 10(xi − 10xi+3)

4) ,

where J = [n− 3] and n is a multiple of 4. In this case, one can choose Il = {l, l + 1, l + 2, l +
3} for all l ∈ [n− 3] so that the associated sparsity pattern satisfies (3.6).

• The generalized Rosenbrock function [222]:

fgRf := 1 +
n−1

∑
i=1

(
100(xi+1 − x2

i )
2 + (1− xi+1)

2
)

.

In this case, one can choose Il = {l, l + 1} for all l ∈ [n− 1] so that the associated sparsity
pattern satisfies (3.6).

We compute bounds on the minimal eigenvalues of f = fcsf for each n ∈ {4, . . . , 24} being a multi-
ple of 4, and fgRf for even values of n ∈ {2, . . . , 20}. For both functions, the minimal eigenvalue is
0. We indicate in Table 3.1 the data related to the SDP solved by MOSEK. For each value of n, msdp
stands for the total number of constraints and nsdp stands for the total number of variables either
of the SDP program (3.31) solved to compute λmin( f ) or the SDP program (3.32) solved to compute
λ2

cs( f ). As emphasized in the columns corresponding to msdp, the size of the SDP programs can
be significantly reduced after exploiting sparsity, which is consistent with Remark 3.3.2. While the
procedure NCeigMin does not take sparsity into account, it relies on the Newton chip method [53,
§2.3] to reduce the number of variables involved in the Hankel matrix from SDP (3.31). This ex-
plains why nsdp is smaller for some values of n (e.g. n = 8 for fcsf) when running NCeigMin. How-
ever, the sparse procedure NCeigMinSparse turns out to be very often more efficient to compute
the minimal eigenvalue. So far, our NCeigMinSparse procedure is limited by the computational
abilities of current SDP solvers (such as MOSEK) to handle matrices with more constraints and
variables than the ones obtained, e.g., for the chained singular function at n = 24 (see the related
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Table 3.1: NCeigMin vs NCeigMinSparse for unconstrained minimal eigenvalues of the chained
singular and generalized Rosenbrock functions.

f n
NCeigMin NCeigMinSparse

msdp nsdp λ2
min( f ) time (s) msdp nsdp λ2

cs( f ) time (s)

fcsf

4 78 169 0 0.42 78 169 0 0.37
8 398 841 0 1.33 165 1323 0 3.69

12 974 2025 0 4.35 298 2205 0 6.28
16 1806 3721 0 14.29 413 3087 0 9.18
20 2894 5929 0 52.47 537 3969 0 12.78
24 4238 8649 0 152.17 661 4851 0 17.65

fgRf

10 200 400 0 0.56 95 441 0 1.39
12 288 576 0 0.81 117 539 0 1.78
14 392 784 0 1.12 139 637 0 2.20
16 512 1024 0 1.46 161 735 0 2.67
18 648 1296 0 2.15 183 833 0 3.26
20 800 1600 0 2.92 205 931 0 4.10

Table 3.2: NCeigMin vs NCeigMinSparse for minimal eigenvalue of the chained singular function
on the nc polydisc Scsf.

n
NCeigMin NCeigMinSparse

msdp nsdp λ2( fcsf, Scsf) time (s) msdp nsdp λ2
cs( fcsf, Scsf) time (s)

4 161 641 315.21 3.25 161 641 315.21 2.95
8 1009 6625 965.48 146.99 525 1923 965.48 4.66

12 3121 28705 1615.7 7891.6 889 3205 1615.7 7.43
16 − 1253 4487 2266.05 13.20
20 − 1617 5769 2916.32 18.50
24 − 1981 7051 3566.56 26.38

values of msdp and nsdp in the corresponding column). It turns out that exploiting the sparsity pat-
tern yields SDP programs with significantly fewer variables than the ones obtained after running
the Newton chip method.
In the column reporting timings, we indicate the time needed to prepare and solve the SDP relax-
ation. For values of n, d & 8, our current implementation in (interpreted) MATLAB happens to be
rather inefficient to construct the SDP problem itself, mainly because we rely on a naive nc polyno-
mial arithmetic. To overcome this computational burden, we plan to interface NCSOStools with a C

library implementing a more sophisticated monomial arithmetic. We also emphasize that for these
unconstrained problems, each function is a sum of sparse hermitian squares, thus the sparse proce-
dure NCeigMinSparse always retrieves the same optimal value as the dense procedure NCeigMin.
However, the bound computed via the sparse procedure can be a strict lower bound of the minimal
eigenvalue, as shown in Lemma 3.3.11.

In Table 3.2, we report results obtained for minimizing the eigenvalue of the nc chained sin-
gular function on the semialgebraic set Scsf := {1 − x2

1, . . . , 1 − x2
n, x1 − 1/3, . . . , xn − 1/3} for

n ∈ {4, 8, 12, 16, 20, 24}. Since f has degree 4, it follows from [53, Corollary 4.18] that it is enough
to solve SDP (3.32) with optimal value λ2( f , Scsf) to compute the minimal eigenvalue λmin( f , Scs).
For the experiments described in Table 3.2, we cannot rely on the Newton chip method as in the
unconstrained case. Thus the dense procedure NCeigMin suffers from a severe computational bur-
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Table 3.3: NCeigMin vs NCeigMinSparse for minimal eigenvalue of random cubic polynomials on
the nc polyball S = Bcs.

n
NCeigMin NCeigMinSparse

msdp nsdp λ2( frand, S) time (s) r msdp nsdp λr
cs( frand, S) time (s)

4 71 491 -53.64 3.31
2 79 370 -53.72 1.18
3 729 3538 -53.64 12.64

6 239 2045 -142.52 26.79
2 179 740 -142.62 2.33
3 1535 7076 -142.52 29.52

8 559 5815 -165.89 171.30
2 279 1110 -166.32 3.73
3 2341 10614 -165.91 62.70

10 1079 13289 -199.62 857.95
2 379 1480 -200.51 5.43
3 3147 14152 -199.66 139.22

11 1429 18985 -180.39 2111.26
2 429 1665 -180.93 6.58
3 3550 15921 -180.40 209.73

12 - - - -
2 479 1850 -385.89 7.82
3 3953 17690 -384.87 289.12

16 - - - -
2 679 2590 -344.31 15.46
3 5565 24766 -342.15 975.43

20 - - - -
2 879 3330 -504.36 31.41
3 7177 31842 -503.02 2587.61

den for n > 10; the symbol “−” in a column entry indicates that the calculation did not finish in
a couple of hours. As already observed before for the unconstrained case, the sparse procedure
NCeigMinSparse performs much better than NCeigMin. Surprisingly, NCeigMinSparse yields the
same bounds as NCeigMin at the minimal relaxation order s = 2, for all values of n ≤ 10.

As shown in Example 3.3.3, there is no guarantee to obtain the above mentioned convergence
behavior in a systematic way. We consider randomly generated cubic n-variate polynomials frand
satisfying Assumption 3.3.4 with Il = {l, l + 1, l + 2}, for all l ∈ [n− 2]. The corresponding nc poly-
ball is given by Bcs := {1− x2

1 − x2
2 − x2

3, . . . , 1− x2
n−2 − x2

n−1 − x2
n}. In Table 3.3, we report results

obtained for minimizing the eigenvalue of frand on Bcs, for each value of n ∈ {4, . . . , 10}. Here
again, the sparse procedure NCeigMinSparse yields better performance than NCeigMin. Moreover,
the sparse bound obtained for each n ≤ 10 at minimal relaxation order r = 2 already gives an accu-
rate approximation of the optimal bound provided by the dense procedure. We emphasize that the
value of the third order relaxation obtained with the sparse procedure is almost equal to the opti-
mal bound. In addition, the dense procedure cannot handle to solve the minimal order relaxation
for n > 10, while we can always obtain a lower bound of the eigenvalue with NCeigMinSparse.

3.4 Term sparsity in polynomial optimization

As emphasized earlier for distinct applications, exploiting CS arising from POP may allow to sig-
nificantly reduce the computational cost of the related hierarchy of SDP relaxations. Nevertheless
many POP can be fairly sparse, but they do not exhibit a non-trivial csp (i.e. the corresponding
csp graph is complete). For instance, if f has a term involving all variables or some constraint,
e.g., 1− ‖x‖2 ≥ 0, involves all variables, then the csp is trivial. Besides, even if a POP admits a
non-trivial csp, some maximal cliques of the csp graph (after a chordal extension) may still have a
large size (say over 20), which makes the resulting SDP problem still hard to solve.

However, instead of exploiting sparsity from the perspective of variables, one can also exploit
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sparsity from the perspective of terms. The results of this section have been published in [J22, J21].
Roughly speaking, the considered sparsity can be also represented by a graph, which is called

a correlative sparsity pattern (tsp) graph. But unlike the csp graph, the nodes of a tsp graph corre-
spond to monomials (not necessarily variables) and the edges of the graph grasp the links between
monomials in the SOS representation of positive polynomials. We can design an iterative proce-
dure to enlarge the tsp graph in order to iteratively exploit term sparsity (TS) in the initial POP.
Each iteration consists of two steps: (i) a support-extension operation and (ii) a block-closure op-
eration on adjacency matrices or a chordal-extension.

In doing so we obtain a sequence

G1 ⊆ G2 ⊆ · · · ⊆ Gk

of graphs where “Gi ⊆ Gi+1” means that Gi is a subgraph of Gi+1. Step (ii) consists of either
performing completion of the connected components for each graph or performing an approxi-
mately minimum chordal extension. Then combining this iterative procedure with the standard
moment-SOS hierarchy results in a two-level moment-SOS hierarchy with quasi block-diagonal
SDP matrices. When the sizes of blocks are small, then the associated SDP relaxations can be dras-
tically much cheaper to solve.

To some extent, TS (focusing on monomials) is finer than the CS (focusing on variables). If a
POP is sparse in the sense of CS (i.e. the csp graph is not complete), then it must be sparse in the
sense of TS (i.e. the tsp graph is not complete), while the converse is not necessarily true. So the
basic idea for solving large-scale POP is as follows: first exploit CS to obtain a coarse decomposi-
tion in terms of variables with cliques, and second exploit TS for subsystems involving each clique
of variables. This idea has been successfully carried out in [R14] and will be presented later on.

The TSSOS hierarchy for unconstrained POP

In this section, we describe an iterative procedure to exploit TS for the primal-dual moment-SOS
relaxations of unconstrained POP. Let f (x) = ∑α∈A fαxα ∈ R[x] with supp( f ) = A (assuming
0 ∈ A) and B be a monomial basis with t = |B |. Assume that f ∈ R[x] is a polynomial of degree
2d. We can for instance choose the standard monomial basis B = xNn

d or the integer points in half
of the Newton polytope of f , i.e., by

B =
1
2
C( f ) ∩Nn ⊆Nn

d . (3.42)

Recall the formulation of unconstrained POP:

P : fmin := inf
x
{ f (x) : x ∈ Rn}. (3.43)

For convenience, we abuse notation in the sequel and denote by B (resp. β) instead of xB (resp. xβ)
a monomial basis (resp. a monomial). In the following, we will consider graphs with V = B as
the set of nodes. Suppose that G(V, E) is such a graph. We define two operations on G: support-
extension and chordal-extension. The support-extension of G, denoted by SE(G), is the graph with
nodes B and with edges

E(SE(G)) := {{β, γ} | (β, γ) ∈ V ×V, β 6= γ, β + γ ∈ supp(G)}.

Example 3.4.1 Consider the following graph G(V, E) with

V = {1, x1, x2, x3, x2x3, x1x3, x1x2} and E = {{1, x2x3}, {x2, x1x3}}.

Then E(SE(G)) = {{1, x2x3}, {x2, x1x3}, {x2, x3}, {x1, x2x3}, {x3, x1x2}}. See Figure 3.6 for the
support-extension SE(G) of G.
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Figure 3.6: The support-extension SE(G) of G. The dashed edges are added in the process of
support-extension.

1 x1 x2 x3

x2 x3 x1 x3 x1 x2

Figure 3.7: The chordal-extension G of G. The dashed edges are added in the process of chordal-
extension.

x1

x2

x3

x4

x5

x6

Any specific chordal-extension of G is denoted by G.

Example 3.4.2 Consider the following graph G(V, E) with V = {x1, x2, x3, x4, x5, x6} and E =
{{x1, x2}, {x2, x3}, {x3, x4}, {x4, x5}, {x5, x6}, {x6, x1}}. See Figure 3.7 for the chordal-extension G of
G.

Remark 3.4.1 For a graph G(V, E), the chordal-extension of G is usually not unique. A chordal-extension
with the least number of edges is called a minimum chordal-extension. Finding a minimum chordal-
extension of a graph is an NP-hard problem in general. Fortunately, several heuristic algorithms, such as
the minimum degree ordering, are known to efficiently produce a good approximation [5, 122].

In the sequel, we assume that for graphs G, H with the same set of nodes, if E(G) ⊆ E(H),
then E(G) ⊆ E(H). This assumption is reasonable since any chordal-extension of H must be also
a chordal-extension of G.

We define Gtsp = G0(V, E0) to be the graph with V = B and

E0 = {{β, γ} | (β, γ) ∈ V ×V, β 6= γ, β + γ ∈ A ∪ (2 B)}, (3.44)

where 2 B = {2β | β ∈ B}. We call Gtsp = G0 the tsp graph associated with f .
For k ≥ 1, we recursively define a sequence of graphs (Gk(V, Ek))k≥1 by

Gk := SE(Gk−1). (3.45)
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Given a monomial basis B, the moment matrix MB(y) associated with B and y is the matrix
with rows and columns indexed by B. Then the moment SDP relaxation of P is

f d
min := inf Ly( f )

s.t. MB(y) � 0,
y0 = 1.

(3.46)

If f is sparse, by replacing MB(y) � 0 with the weaker condition MB(y) ∈ ΠGk (S
+
t ) in (3.46),

we obtain a sparse moment SDP relaxation of (3.43) for each k ≥ 1:

Pk
ts :

inf Ly( f )
s.t. MB(y) ∈ ΠGk (S

r
+),

y0 = 1,
(3.47)

with optimal value denoted by f k
ts. We call k the sparse order. By construction, one has Gk ⊆ Gk+1

for all k ≥ 1 and therefore the sequence of graphs (Gk(V, Ek))k≥1 stabilizes after a finite number of
steps. The intuition behind the support-extension operation is that once one position related to yα

in the moment matrix MB(y) is “activated” in the sparsity pattern, then all positions related to yα

in MB(y) should be “activated”. Theorem 3.1.1 and Theorem 3.1.2 provide the rationale behind
the mechanism of the chordal-extension operation.

Theorem 3.4.1 The sequence ( f k
ts)k≥1 is monotone nondecreasing and f k

ts ≤ f d
min for all k.

As a consequence of Theorem 3.4.1, we obtain the following hierarchy of lower bounds for the
optimum of the original problem P:

f 1
ts ≤ f 2

ts ≤ · · · ≤ f d
min ≤ fmin. (3.48)

When we use an approximately minimum chordal-extension, we say that (3.47) (and its asso-
ciated sequence (3.48)) is the chordal-TSSOS hierarchy for P. The maximal chordal-extension of a
graph is the one that completes every connected component of the graph. If we use the maximal
chordal-extension in (3.45), then we say that (3.47) is the block-TSSOS hierarchy.

We can show (see [J22] for more details) that the sequence of optima of the block-TSSOS hier-
archy always converges to the optimum of the dense moment-SOS relaxation. Unlike the block-
TSSOS hierarchy, there is no guarantee that the chordal-TSSOS hierarchy of lower bounds ( f k

ts)k≥1
converges to the value f d

min. The following is an example.

Example 3.4.3 Consider the commutative version of the polynomial from (3.27):

f = x2
1 − 2x1x2 + 3x2

2 − 2x2
1x2 + 2x2

1x2
2 − 2x2x3 + 6x2

3 + 18x2
2x3 − 54x2x2

3 + 142x2
2x2

3.

The monomial basis computed from the Newton polytope is {1, x1, x2, x3, x1x2, x2x3}. We have E0 =
{{1, x1x2}, {1, x2x3}, {x1, x1x2}, {x1, x2}, {x2, x3}, {x2, x2x3}, {x3, x2x3}}. Figure 3.8 shows the tsp
graph G0 (without dashed edges) and its chordal-extension G1 (with dashed edges) for f . The graph sequence
(Gk)k≥1 stabilizes at k = 1. Solving the SDP problem P1

ts associated with G1, we obtain f 1
ts ≈ −0.00355

while we have f 2
min = fmin = 0.

Even though there is no theoretical convergence guarantees for the chordal-TSSOS hierarchy,
the convergence often occurs in practice (see [J21, § 6]).

For each k ≥ 1, the dual SDP problem of (3.47) is

sup b
s.t. 〈G, Bα〉 = fα − b1α=0, ∀α ∈ supp(Gk) ∪ (2 B),

G ∈ S+
t ∩ S(Gk),

(3.49)

where t = |B | and Bα has been defined after (2.7).

Proposition 3.4.2 For each k ≥ 1, there is no duality gap between Pk
ts and its dual (3.49).
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Figure 3.8: The tsp graph G0 and its chordal-extension G1 for Example 3.4.3.

x1 x2 x3

x1 x2 1 x2 x3

Comparison with SDSOS [3]

The following definition of SDSOS polynomials has been introduced and studied in [3]. A sym-
metric matrix G ∈ St is diagonally dominant if Gii ≥ ∑j 6=i |Gij| for i ∈ [t] and is scaled diagonally
dominant if there exists a positive definite t × t diagonal matrix D such that DGD is diagonally
dominant. We say that a polynomial f (x) ∈ R[x] is a scaled diagonally dominant sum of squares (SD-
SOS) polynomial if it admits a Gram matrix representation as in (3.49) (with b = 0) with a scaled
diagonally dominant Gram matrix G. We denote the set of SDSOS polynomials by SDSOS.

Following [3], by replacing the nonnegativity condition in P with the SDSOS condition, one
obtains the SDSOS relaxation of P and Pd:

(SDSOS) : fsdsos := sup
b
{b : f (x)− b ∈ SDSOS}.

The first TSSOS relaxation is always better than the SDSOS relaxation:

Theorem 3.4.3 With the above notation, one has f 1
ts ≥ fsdsos.

In addition, the first TSSOS relaxation is always equivalent to the first (classical dense) moment
relaxation in the quadratic case.

Theorem 3.4.1 Suppose that f ∈ R[x] in P is a quadratic polynomial. Then f 1
ts = f 1

min.

The TSSOS hierarchy for constrained POP

In this section, we describe an iterative procedure to exploit TS for the primal-dual moment-SOS
hierarchy of a constrained POP:

P : fmin = min
x∈Rn

{ f (x) : x ∈ X }. (3.50)

where X = {x ∈ Rn : g1(x) ≥ 0, . . . , gm(x) ≥ 0}, is defined as in (1.1). Let

A = supp( f ) ∪
m⋃

j=1

supp(gj). (3.51)

As usual rj := ddeg(gj)/2e, j ∈ [m] and rmin = max{ddeg( f )/2e, r1, . . . , rm}. Fix a relaxation
order r ≥ rmin in Lasserre’s hierarchy. Let g0 = 1, r0 = 0 and B j,r = Nn

r−rj
be the standard

monomial basis for j = 0, . . . , m. We define a graph G(0)
0,r (V0,r, E(0)

0,r ) with V0,r = B0,r and

E(0)
0,r = {{β, γ} | (β, γ) ∈ V0,r ×V0,r, β 6= γ, β + γ ∈ A ∪ (2 B0,r)}. (3.52)
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We call G0 the tsp graph associated with (Q0).

For k ≥ 1, we recursively define a sequence of graphs (G(k)
j,r (Vj,r, E(k)

j,r ))k≥1 with Vj,r = B j,r for
j = 0, . . . , m by

G(k)
0,r := SE(G(k−1)

0,r ) and G(k)
j,r := F(k)

j,r , j ∈ [m], (3.53)

where F(k)
j,r is the graph with V(F(k)

j,r ) = B j,r and

E(F(k)
j,r ) ={{β, γ} | (β, γ) ∈ B j,r ×B j,r, β 6= γ, (3.54)

(supp(gj) + β + γ) ∩ supp(G(k−1)
0,r ) 6= ∅}, j ∈ [m].

Let tj := (n+r−rj
r−rj

) = |B j,r | and consider the dense moment relaxation of P:

Pr : inf
y
{ Ly( f ) : y0 = 1; Mr−rj(gj y) � 0, j = 0, . . . , m } , (3.55)

Therefore by replacing Mr−rj(gjy) � 0 with the weaker condition Mr−rj(gjy) ∈ Π
G(k)

j,r
(S+

tj
) for

j = 0, . . . , m in (3.55), we obtain the following sparse SDP relaxation of Pr and P for each k ≥ 1:

Pr,k
ts :

f r,k
ts := inf Ly( f )

s.t. Mr(y) ∈ Π
G(k)

0,r
(S+

t0
),

Mr−rj(gjy) ∈ Π
G(k)

j,r
(S+

tj
), j ∈ [m],

y0 = 1.

(3.56)

We call k the sparse order. By construction, one has G(k)
j,r ⊆ G(k+1)

j,r for all j, k. Therefore, for every j,

the sequence of graphs (G(k)
j,r )k≥1 stabilizes after a finite number of steps.

Theorem 3.4.2 Fixing a relaxation order r ≥ rmin, the sequence ( f r,k
ts )k≥1 is monotone nondecreasing

and f r,k
ts ≤ f r

min for all k ≥ 1. When using the block-TSSOS hierarchy, the sequence converges to f r
min

in finitely many steps.

Theorem 3.4.3 Fixing a sparse order k ≥ 1, the sequence ( f r,k
ts )r≥rmin is monotone nondecreasing.

Combining Theorem 3.4.2 with Theorem 3.4.3, we have the following two-level hierarchy of
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lower bounds for the optimum of (Q0):

f rmin,1
ts ≤ f rmin,2

ts ≤ · · · ≤ f rmin
min

≥ ≥ ≥

f rmin+1,1
ts ≤ f rmin+1,2

ts ≤ · · · ≤ f rmin+1
min

≥ ≥ ≥

...
...

...
...

≥ ≥ ≥

f r,1
ts ≤ f r,2

ts ≤ · · · ≤ f r
min

≥ ≥ ≥

...
...

...
...

(3.57)

The array of lower bounds (3.57) (and its associated SDP relaxations (3.56)) is what we call the
TSSOS moment-SOS hierarchy associated with P.

For each k ≥ 1, the dual of Pr,k
ts reads as

sup b
s.t. ∑m

j=0〈C
j
α, Gj〉 = fα − b1α=0, ∀α ∈ ∪m

j=0(supp(gj) + supp(G(k)
j,r )) ∪ (2 B0,r),

Gj ∈ S+
tj
∩ S(G(k)

j,r ), j = 0, . . . , m,
(3.58)

where Cj
α is defined after (2.7).

Proposition 3.4.4 Assume that X has a nonempty interior. Then there is no duality gap between Pr,k
ts and

its dual (3.58) for any r ≥ rmin and k ≥ 1.

As in the unconstrained case, there is no theoretical guarantee that the chordal-TSSOS hierarchy
converges to the optimal value f r

min of the dense moment-SOS relaxation but it occurs very often in
practice. As in Theorem 3.4.1, for quadratically constrained quadratic programs, we always have
f 1,1
ts = f 1

min.
Dedicated algorithms allow one to obtain a possibly smaller monomial basis B; see [J21, § 4]

for more details.

Sign-symmetries and a sparse representation theorem for positive polynomials

Here, we consider the block-TSSOS hierarchy. As mentioned earlier, the sequence of graphs
(G(k)

j,r )k≥1 stabilizes after a finite number of steps to a graph, denoted by G(∗)
j,r . Let B(∗)

j,r be the

{0, 1}-binary adjacency matrix associated to G(∗)
j,r . If B(∗)

0,r is not an all-one matrix, then it induces a
partition of the monomial basis Nn

r : two vectors β, γ ∈ Nn
r belong to the same block if and only

if the rows and columns indexed by β, γ belong to the same block in B(∗)
0,r . We next provide an

interpretation of this partition in terms of sign-symmetries, a tool introduced in [199] to characterize
block-diagonal SOS decompositions of positive polynomials.

Definition 3.4.5 Given a finite set A ⊆ Nn, the sign-symmetries of A are defined by all vectors r ∈ Zn
2

such that rTα ≡ 0 (mod 2) for all α ∈ A.

For any α ∈ Nn, we define (α)2 := (α1(mod 2), . . . , αn(mod 2)) ∈ Zn
2 . We also use the same

notation for any subset A ⊆Nn, i.e., (A)2 := {(α)2 | α ∈ A } ⊆ Zn
2 .

For a subset S ⊆ Zn
2 , the subspace spanned by S in Zn

2 , denoted by S, is the set {(∑i si)2 | si ∈
S} and the orthogonal complement space of S in Zn

2 , denoted by S⊥, is the set {α ∈ Zn
2 | αTs ≡

0 (mod 2) , ∀s ∈ S}.
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Remark 3.4.2 By definition, the set of sign-symmetries of A is just the orthogonal complement space (A)⊥2
in Zn

2 . Hence the sign-symmetries of A can be essentially represented by a basis of the subspace (A)⊥2 in
Zn

2 .

Lemma 3.4.6 Let S ⊆ Zn
2 . Then (S⊥)⊥ = S.

Lemma 3.4.7 Suppose B is a {0, 1}-binary matrix with rows and columns indexed by B ⊆ Nn and that
G is its adjacency graph. Let G be the adjacency graph of B. Then (supp(G))2 ⊆ (supp(G))2.

Theorem 3.4.4 For a positive integer r, let A ⊆Nn
2r be defined as in (3.51) and assume that the sign-

symmetries of A are given by the columns of a binary matrix denoted by R. Then β, γ belong to the
same block in the partition of Nn

r induced by B(∗)
0,r if and only if RT(β + γ) ≡ 0 (mod 2).

Example 3.4.4 Theorem 3.4.4 is applied for the standard monomial basis Nn
r . If a smaller monomial basis

is chosen, then we only have the “only if" part of the conclusion in Theorem 3.4.4. Let f = 1 + x2y4 +
x4y2 + x4y4 − xy2 − 3x2y2 and A = supp( f ). The monomial basis given by the Newton polytope is B =
{1, xy, xy2, x2y, x2y2}. The sign-symmetries of A consist of two elements: (0, 0) and (0, 1). According to
the sign-symmetries, B is partitioned into {1, xy2, x2y2} and {xy, x2y} (recall that β, γ belong to the same
block in the partition induced by the sign-symmetries R if and only if RT(β + γ) ≡ 0 (mod 2)). On the
other hand, we have

B(∗)
A = B(1)

A =


1 0 1 0 1
0 1 0 0 0
1 0 1 0 1
0 0 0 1 0
1 0 1 0 1

 .

Thus the partition of B induced by B(∗)
A is {1, xy2, x2y2}, {xy} and {x2y}, which is a refinement of the

partition determined by the sign-symmetries.

By virtue of Theorem 3.4.4, the partition of the monomial basis Nn
r−rj

induced by B(∗)
j,r , j ∈ [m],

can also be characterized using sign-symmetries.

Corollary 3.4.8 Notations are as in Theorem 3.4.4 and assume A = supp( f )∪⋃m
j=1 supp(gj). Then β, γ

belong to the same block in the partition of Nn
r−rj

induced by B(∗)
j,r if and only if RT(β + γ) ≡ 0 (mod 2),

j ∈ [m].

Theorem 3.4.4 together with Corollary 3.4.8 implies that the block structure of the TSSOS hier-
archy at each relaxation order converges to the block structure determined by the sign-symmetries
related to the support of the input data, under the assumption that the standard monomial bases
are used.

Remark 3.4.3 Though it is guaranteed that at the final step of the block-TSSOS hierarchy, an equivalent
SDP (with block structure determined by sign-symmetries if the standard monomial bases are used) is re-
trieved, in practice it frequently happens that the same optimal value as the dense moment-SOS relaxation
is achieved at an earlier step, even at the first step, but with a much cheaper computational cost.

As a corollary of Theorem 3.4.4 and Corollary 3.4.8, we obtain the following sparse representa-
tion theorem for positive polynomials over basic compact semialgebraic sets.
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Theorem 3.4.5 Assume that the quadratic module M(X) is Archimedean and that f is positive on
X. Let A = supp( f ) ∪ ⋃m

j=1 supp(gj) and let the sign-symmetries of A be given as the columns of a
binary matrix denoted by R. Then f can be decomposed as

f = σ0 +
m

∑
j=1

σjgj,

for some SOS polynomials σ0, σ1, . . . , σm satisfying RTα ≡ 0 (mod 2) for any α ∈ supp(σj), j =
0, . . . , m.

Numerical experiments

Next, we present numerical results of the proposed TSSOS hierarchies of block SDP relaxations.
Our related algorithm, named TSSOS2, is implemented in Julia for constructing instances of the
SDP problems (3.47) and (3.56), then relies on MOSEK [7] to solve them. TSSOS utilizes the Julia
packages LIGHTGRAPHS [50] to handle graphs and JUMP [84] to model SDP. In the following
subsections, we compare the performance of TSSOS with that of GLOPTIPOLY [132] and YALMIP

[200]. As for TSSOS, GLOPTIPOLY and YALMIP also rely on MOSEK to solve SDP problems.
We first consider Lyapunov functions emerging from some networked systems. In [119], the

authors propose a structured SOS decomposition for those systems, which allows them to handle
structured Lyapunov function candidates up to 50 variables.

The following polynomial is from Example 2 in [119]:

f =
n

∑
i=1

ai(x2
i + x4

i )−
n

∑
i=1

n

∑
s=1

bisx2
i x2

k ,

where ai are randomly chosen from [1, 2] and bis are randomly chosen from [ 0.5
n , 1.5

n ]. Here, n is the
number of nodes in the network. The task is to determine whether f is globally nonnegative.

The initial tsp graph G0 (see Figure 3.9) has 1 maximal clique of size n + 1 (involving the
nodes 1, x2

1, . . . , x2
n), n(n−1)

2 maximal cliques of size 3 (involving the nodes x2
i , x2

j , xixj for each pair
{i, j}, i 6= j) and n maximal cliques of size 1 (involving the node xi for each i). Note that G0 is
already a chordal graph. So we have G1 = G0.

The computational cost for the TSSOS (with sparse order k = 1) and dense SDP relaxations is
displayed in Table 3.4. In the column “#SDP blocks”, i× j means j SDP blocks of size i.

Table 3.4: Computational cost comparison for the sparse and dense SDP relaxations

#SDP blocks #equality constraints
TSSOS 3× n(n−1)

2 , 1× n, (n + 1)× 1 3n(n−1)
2 + 2n + 1

Dense (n+2
2 )× 1 (n+4

4 )

We solve SDP (3.47) at k = 1 with TSSOS for n = 10, 20, 30, 40, 50, 60, 70, 80. The results are
listed in Table 3.5. Note that “mb” stands for the maximal size of blocks of SDP matrices.

For this example, the size of systems that can be handled in [119] is up to n = 50 nodes while
our approach can easily handle systems with up to n = 80 nodes.

2https://github.com/wangjie212/TSSOS

https://github.com/wangjie212/TSSOS


3.4. Term sparsity in polynomial optimization 135

Figure 3.9: The tsp graph G0 of f . This is a subgraph of G0. The whole graph G0 is obtained by
putting all such subgraphs together.

x2
jx2

k

x2
i

1

xi xjxi xk

xj xk

x1 x2 xn· · ·

Table 3.5: Results for the first network problem

n 10 20 30 40 50 60 70 80
mb 11 31 31 41 51 61 71 81

time 0.006 0.03 0.10 0.34 0.92 1.9 4.7 12

The following polynomial is from Example 3 in [119]:

V =
n

∑
i=1

ai(
1
2

x2
i −

1
4

x4
i ) +

1
2

n

∑
i=1

n

∑
s=1

bis
1
4
(xi − xk)

4, (3.59)

where ai are randomly chosen from [0.5, 1.5] and bis are randomly chosen from [ 0.5
n , 1.5

n ]. The task
is to analyze the domain on which the Hamiltonian function V for a network of Duffing oscillators
is positive definite. We use the following condition to establish an inner approximation of the
domain on which V is positive definite:

f = V −
n

∑
i=1

λix2
i (g− x2

i ) ≥ 0 , (3.60)

where λi > 0 are scalar decision variables and g is a fixed positive scalar. Clearly, the condition
(3.60) ensures that V is positive definite when x2

i < g. Here we solve SDP (3.47) at k = 1 with
TSSOS for n = 10, 20, 30, 40, 50. For this example, graphs arising in the TSSOS hierarchy are nat-
urally chordal, so we simply exploit chordal decompositions. This example was also examined
in [209] to demonstrate the advantage of SDSOS programming compared to dense SOS program-
ming. The method based on SDSOS programming was executed in SPOT [214] with MOSEK as a
second-order cone programming solver. The results are listed in Table 3.6.

For this example, TSSOS uses much less decision variables than SDSOS programming, and
hence spends less time compared to SDSOS programming. On the other hand, TSSOS computes
a positive definite form V after selecting a value for g up to 2 (which is the same as the maximal
value obtained by the dense SOS) while the method in [119] can select g up to 1.8 and the one
based on SDSOS programming only works out for a maximal value of g up to around 1.5.
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Table 3.6: Results for the second network problem

n 10 20 30 40 50

#SDP blocks
TSSOS

3× 45, 3× 190, 3× 435, 3× 780, 3× 1225,
1× 10, 1× 20, 1× 30, 1× 40, 1× 50,
11× 1 21× 1 31× 1 41× 1 51× 1

SDSOS 2× 2145 2× 26565 2× 122760 2× 370230 2× 878475

#SDP vars
TSSOS 346 1391 3136 5581 8726
SDSOS 6435 79695 368280 1110690 2635425

time
TSSOS 0.01 0.06 0.17 0.50 0.89
SDSOS 0.47 1.14 5.47 20 70

3.5 Combining correlative and term sparsity

For large-scale POP, it is natural to ask whether one can combine CS and TS to further exploit both
sparsity features possessed by the problem. As we shall see next, the answer is affirmative. The
material from this section is issued from [R14].

A first natural idea to combine CS and TS would be to apply the TSSOS hierarchy for each
clique separately, once the cliques of variables have been obtained from the csp graph of (3.50).
However, with this naive approach convergence may be lost and below we describe the extra care
needed to avoid this annoying consequence.

The CS-TSSOS hierarchy

Let Gcsp be the csp graph associated to (3.50), Gcsp a chordal extension of Gcsp and Il , l ∈ [p] be
the maximal cliques of Gcsp with cardinal denoted by nl . As in Section 3.1, the set of variables x is
partitioned into x(I1), x(I2), . . . , x(Ip). Let J1, . . . , Jp be defined as in Section 3.1.

Now we apply TS to each subsystem involving variables x(Ii), l ∈ [p] respectively as follows.
Let

A := supp( f ) ∪
m⋃

j=1

supp(gj) and Al := {α ∈ A | supp(α) ⊆ Il} (3.61)

for l ∈ [p]. As before, rmin := max{ddeg( f )/2e, r1, . . . , rm}, r0 := 0 and g0 := 1. Fix a relaxation
order r ≥ rmin and let N

nl
r−rj

be the standard monomial basis for j ∈ {0} ∪ Jl , l ∈ [p]. Let Gtsp
r,l be the

tsp graph with nodes N
nl
r−rj

associated to Al defined as in Section 3.4. Note that we embed N
nl
r−rj

into Nn
r−rj

via the map α = (αi) ∈N
nl
r−rj
7→ α′ = (α′i) ∈Nn

r−rj
which satisfies

α′i =

{
αi, if i ∈ Il ,
0, otherwise.

Assume that G(0)
r,l,0 = Gtsp

r,l and G(0)
r,l,j, j ∈ Jl , l ∈ [p] are empty graphs. Letting

C(k−1)
r := ∪p

l=1 ∪j∈{0}∪Jl
(supp(gj) + supp(G(k−1)

r,l,j )), k ≥ 1, (3.62)

we recursively define a sequence of graphs (G(k)
r,l,j(Vr,l,j, E(k)

r,l,j))k≥1 with Vr,l,j = N
nl
r−rj

for j ∈ {0} ∪
Jl , l ∈ [p] by

G(k)
r,l,j := F(k)

r,l,j, (3.63)
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Figure 3.10: The tsp graphs of Example 3.5.1. Each node has a self-loop which is not displayed for
simplicity. The dashed edge is added after the maximal chordal extension.

1

x1x2

1

x2x3

where F(k)
r,l,j is the graph with V(F(k)

r,l,j) = N
nl
r−rj

and

E(F(k)
r,l,j) = {{β, γ} | (supp(gj) + β + γ) ∩ C(k−1)

r 6= ∅}. (3.64)

Example 3.5.1 Let f = 1 + x2
1 + x2

2 + x2
3 + x1x2 + x2x3 + x3 and consider the unconstrained POP:

min{ f (x) : x ∈ Rn}. The variables is then partitioned into two cliques: {x1, x2} and {x2, x3}. The tsp
graphs for these two cliques are illustrated in Figure 3.10 (the left (resp. right) graph corresponds to the first
(resp. second) clique). If we apply the TSSOS hierarchy (using the maximal chordal extension in (3.63))
separately for each clique, then the graph sequences (G(k)

1,l )k≥1, l = 1, 2 (the subscript j is omitted since there
are no constraints) stabilize at k = 1. However, the added (dashed) edge in the right graph corresponds to
the monomial x2, which only involves the variable x2 belonging to the first clique. Hence we need to add the
edge connecting 1 and x2 to the left graph in order to get convergence guarantees. Consequently, the graph
sequences (G(k)

1,l )k≥1, l = 1, 2 stabilize at k = 2.

Let tl,j := (nl+r−rj
r−rj

) for all l, j. Then for each k ≥ 1, the SDP hierarchy based on combined

correlative and term sparsities, abbreviated as CS-TSSOS hierarchy, for (3.50) is defined as:

Pr,k
cs-ts :



inf Ly( f )
s.t. Mr(y, Il) ∈ Π

G(k)
r,l,0

(S+
tl,0
), l ∈ [p],

Mr−rj(gjy, Il) ∈ Π
G(k)

r,l,j
(S+

tl,j
), j ∈ Jl , l ∈ [p],

y0 = 1,

(3.65)

with optimal value denoted by f r,k
cs-ts.

Convergence guarantees

Theorem 3.5.1 For any r ≥ rmin, the sequence ( f r,k
cs-ts)k≥1 is monotone non-decreasing and f r,k

cs-ts ≤
f r
min for all k. For any k ≥ 1, the sequence ( f r,k

cs-ts)r≥rmin is monotone non-decreasing. If we use the
maximal chordal extension in (3.63), then for any r ≥ rmin, the sequence ( f r,k

cs-ts)k≥1 converges to f r
min

in finitely many steps.

As in Section 3.4, we obtain a two-level hierarchy of lower bounds for the optimum of P (3.50).



138 Chapter 3. Efficient polynomial optimization

Figure 3.11: The csp graph of Example 3.5.2
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Figure 3.12: The tsp graph for the first clique of Example 3.5.2. Each node has a self-loop which is
not displayed for simplicity.
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Example 3.5.2 Let f = 1 + ∑6
i=1 x4

i + x1x2x3 + x3x4x5 + x3x4x6 + x3x5x6 + x4x5x6, and consider the
unconstrained POP: min{ f (x) : x ∈ Rn}. Apply the CS-TSSOS hierarchy (using the maximal chordal
extension in (3.53)) to this problem. First, using the csp graph (see Figure 3.11), partition variables into the
two cliques {x1, x2, x3} and {x3, x4, x5, x6}. Figure 3.12 and Figure 3.13 illustrate the tsp graphs for the
first clique and the second clique respectively. For the first clique one obtains four blocks of SDP matrices
with respective sizes 4, 2, 2, 2. For the second clique one obtains two blocks of SDP matrices with respective
sizes 5, 10. Thus the original size 28 of the SDP matrix has been reduced to a maximal size of 10.

If one applies the TSSOS hierarchy (using the maximal chordal extension in (3.53)) directly to the prob-
lem (i.e. without partitioning variables), then the tsp graph is illustrated in Figure 3.14. One obtains five
blocks of SDP matrices with respective size 7, 2, 2, 2, 10. Compared to the CS-TSSOS case, the two blocks of
SDP matrices with respective sizes 4, 5 are replaced by a single block SDP matrix with size 7.

The CS-TSSOS hierarchy entails a trade-off. One has the freedom to choose a specific chordal
extension for any graph involved in (3.50). This choice affects the resulting size of (submatrix)
blocks and the quality of optimal values of the corresponding CS-TSSOS hierarchy. Intuitively,
chordal extensions with less edges should lead to (submatrix) blocks of smaller size and optimal
values of (possibly) lower quality while chordal extensions with more edges should lead to (sub-
matrix) blocks with larger size and optimal values of (possibly) higher quality.

As in Section 3.4, we obtain a sparse representation for polynomials positive on a basic compact
semialgebraic set.

Theorem 3.5.2 Let f ∈ R[x] and X be as in Assumption (3.1.3), with Il , Jl be defined as in Section 3.1
and A = supp( f ) ∪ ⋃m

j=1 supp(gj). Assume that the sign-symmetries of A are represented by the
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Figure 3.13: The tsp graph for the second clique of Example 3.5.2
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Figure 3.14: The tsp graph without partitioning variables of Example 3.5.2
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columns of the binary matrix R. If f is positive on X, then

f =
p

∑
l=1

(σl,0 + ∑
j∈Jl

σl,jgj), (3.66)

for some polynomials σl,j ∈ Σ[x(Il)], j ∈ {0} ∪ Jl , l ∈ [p], satisfying RTα ≡ 0 (mod 2) for any
α ∈ supp(σl,j), i.e., supp(σl,j)2 ⊆ R⊥.

Extracting a solution

In the case of dense moment-SOS relaxations, there is a standard procedure described in [131]
to extract globally optimal solutions when the so-called flatness condition is satisfied and this
procedure is also generalized to the correlative sparse setting in [179, § 3.3]. However, in our
combined sparsity setting, the corresponding procedure cannot be directly applied because the
moment matrix associated to each clique does not involve enough moment variables. In order to
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extract a solution, we may add an order-one (dense) moment matrix for each clique in (3.54):

inf Ly( f )
s.t. Mr(y, Il) ∈ Π

G(k)
r,l,0

(S+
tl,0
), l ∈ [p],

M1(y, Il) � 0, l ∈ [p],
Mr−rj(gjy, Il) ∈ Π

G(k)
r,l,j

(S+
tl,j
), j ∈ Jl , l ∈ [p],

y0 = 1.

(3.67)

Let yopt be an optimal solution of (3.67). Typically, M1(yopt, Il) (after identifying sufficiently
small entries with zero) is a block diagonal matrix (up to permutation). If for all l, every block of
M1(yopt, Il)) (see [179, Theorem 3.7]) has rank one, then a globally optimal solution xopt to P (3.50)
can be extracted. At the same time, the global optimality is certified. Otherwise, the relaxation
might be not exact or yield multiple global solutions. In the latter case, adding a small perturbation
to the objective function, as in [300], may yield a unique global solution.

Remark 3.5.1 Note that (3.67) is a stronger relaxation of P than Pr,k
cs-ts. Therefore, even if the globally opti-

mal value is not achieved, (3.67) still provides a better lower bound for P than Pr,k
cs-ts. If P is a quadratically

constrained quadratic problem, then (3.67) is always stronger than the first-order dense relaxation of P.

Applications to AC-OPF problems

The AC optimal power flow (AC-OPF) is a central problem in power systems. It can be formulated
as the following POP:

inf
Vi ,S

g
s ,Sij

∑s∈G(c2s(<(S
g
s ))

2 + c1s<(S
g
s ) + c0s)

s.t. ∠Vref = 0,

Sgl
s ≤ Sg

s ≤ Sgu
s , ∀s ∈ G,

υl
i ≤ |Vi| ≤ υu

i , ∀i ∈ N,

∑s∈Gi
Sg

s − Sd
i − Ys

i |Vi|2 = ∑(i,j)∈Ei∪ER
i

Sij, ∀i ∈ N,

Sij = (Y∗ij − i
bc

ij
2 ) |Vi |2
|Tij |2

− Y∗ij
ViV∗j
Tij

, ∀(i, j) ∈ E,

Sji = (Y∗ij − i
bc

ij
2 )|Vj|2 − Y∗ij

V∗i Vj
T∗ij

, ∀(i, j) ∈ E,

|Sij| ≤ su
ij, ∀(i, j) ∈ E ∪ ER,

θ∆l
ij ≤ ∠(ViV∗j ) ≤ θ∆u

ij , ∀(i, j) ∈ E,

(3.68)

where Vi is the voltage, Sg
s is the power generation, Sij is the power flow (all are complex variables;

<(·) and∠· stand for the real part and the angle of a complex number, respectively) and all symbols
in boldface are constants. For a full description on AC-OPF problems, the reader may refer to [18].
By introducing real variables for both real and imaginary part of each complex variable, we can
convert an AC-OPF problem to a POP involving only real variables.

To tackle an AC-OPF problem, we first compute a locally optimal solution with a local solver
and then rely on an SDP relaxation to certify the global optimality. Suppose that the optimal value
reported by the local solver is AC and the optimal value of the SDP relaxation is opt. The optimality
gap between the locally optimal solution and the SDP relaxation is defined by

gap :=
AC− opt

AC
.
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Table 3.7: The data for AC-OPF problems

case name var cons mc AC
Shor

opt gap
3_lmbd_api 12 28 6 1.1242e4 1.0417e4 7.34%

5_pjm 20 55 6 1.7552e4 1.6634e4 5.22%
24_ieee_rts_api 114 315 10 1.3495e5 1.3216e5 2.06%
24_ieee_rts_sad 114 315 14 7.6943e4 7.3592e4 4.36%

30_as_api 72 297 8 4.9962e3 4.9256e3 1.41%
73_ieee_rts_api 344 971 16 4.2273e5 4.1041e5 2.91%
73_ieee_rts_sad 344 971 16 2.2775e5 2.2148e5 2.75%

118_ieee_api 344 1325 21 2.4205e5 2.1504e5 11.16%
118_ieee_sad 344 1325 21 1.0522e5 1.0181e5 3.24%
162_ieee_dtc 348 1809 21 1.0808e5 1.0616e5 1.78%

162_ieee_dtc_api 348 1809 21 1.2100e5 1.1928e5 1.42%
240_pserc 766 3322 16 3.3297e6 3.2818e6 1.44%

500_tamu_api 1112 4613 20 4.2776e4 4.2286e4 1.14%
500_tamu 1112 4613 30 7.2578e4 7.1034e4 2.12%
1888_rte 4356 18257 26 1.4025e6 1.3748e6 1.97%

If the optimality gap is less than 1.00%, then we accept the locally optimal solution as globally
optimal. For many AC-OPF problems, the first-order moment-SOS relaxation (Shor relaxation)
is already able to certify the global optimality (with an optimality gap less than 1.00%). We fo-
cus on more challenging AC-OPF problems, for which the gap is greater than 1.00%. We se-
lect such benchmarks from the AC-OPF library pglib [18]. Since we shall go to the second-order
moment-SOS relaxation, we can replace the variables Sij and Sji by their right-hand side values
in (3.68) and then convert the resulting problem to a real POP. The data for these selected AC-
OPF benchmarks are displayed in Table 3.7, where the AC values are from pglib. Note that “cons”
stands for the number of polynomial constraints and “mc” stands for the maximal size of maximal
cliques in the csp graph from (3.68).

We execute the (sparse) Shor’s relaxation, the second-order CSSOS hierarchy and the second-
order CS-TSSOS hierarchy of sparse order k = 1. The result for these AC-OPF benchmarks is
displayed in Table 3.8. For each instance, the CS-TSSOS hierarchy succeeds to reduce the optimal-
ity gap to less than 1.00%. Again, one can still reduce the optimality gap further by increasing the
sparse order k. We also observe that even if the bound obtained by CSSOS should be theoretically
better than the one obtained by CS-TSSOS, CS-TSSOS practically provides slightly more accurate
bounds than CSSOS for the tested instances (when CSSOS can be executed), due to numerical
uncertainties arising when solving the SDP relaxations related to CSSOS.

https://github.com/power-grid-lib/pglib-opf
https://github.com/power-grid-lib/pglib-opf
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Table 3.8: The results for AC-OPF problems

case name
CSSOS (2nd) CS-TSSOS (2nd)

mb opt time gap mb opt time gap CE
3_lmbd_api 28 1.1242e4 0.21 0.00% 22 1.1242e4 0.09 0.00% max

5_pjm 28 1.7437e4 0.46 0.66% 22 1.7543e4 0.30 0.05% max
24_ieee_rts_api 66 1.3339e5 4.75 1.16% 31 1.3396e5 2.01 0.73% max
24_ieee_rts_sad 120 7.5108e4 98.3 2.38% 39 7.6942e4 14.8 0.00% max

30_as_api 45 4.9485e3 3.40 0.95% 22 4.9833e3 2.66 0.26% max
73_ieee_rts_api 153 4.1523e5 502 1.77% 44 4.1942e5 72.8 0.78% max
73_ieee_rts_sad 153 2.2383e5 445 1.72% 44 2.2755e5 79.1 0.09% max

118_ieee_api 253 − − − 31 2.4180e5 82.7 0.11% min
118_ieee_sad 253 − − − 73 1.0470e5 169 0.50% max
162_ieee_dtc 253 − − − 34 1.0802e5 278 0.05% min

162_ieee_dtc_api 253 − − − 34 1.2096e5 201 0.03% min
240_pserc 153 3.2883e6 300 1.24% 44 3.3042e6 33.9 0.77% max

500_tamu_api 231 4.2321e4 893 1.06% 43 4.2412e4 50.3 0.85% max
500_tamu 496 − − − 31 7.2396e4 410 0.25% min
1888_rte 378 − − − 27 1.3953e6 934 0.51% min



CHAPTER 4

Research perspectives

My long-term research goal is to embed polynomial optimization techniques in certain academic
and industrial frameworks, in particular the fields of quantum information theory and free prob-
ability, energy networks (optimal power flow) and deep learning, where several hard, but highly
promising real-world challenges remain to be tackled.

To reach this ultimate aim, I will consider the three main challenging goals:

(G1) Applications to quantum information and free probability;

(G2) Applications to optimal power flow;

(G3) Applications to deep learning.

G1: quantum information and free probabilities

The directions mentioned here relate to my bilateral French-Slovenian research project QUANT-
POP (acronym standing for “quantum information with noncommutative polynomial optimiza-
tion”), funded by the PHC Proteus (Partenariat Hubert Curien). We intend to conduct this re-
search, jointly with experts from real algebraic geometry from University of Ljubljana and physics
researchers from ICFO Barcelona.

The starting point of this project has been the collaboration outlined in Section 3.3 to design
appropriate schemes to take into account sparsity involved in noncommutative optimization prob-
lems. Apart from sparsity, we intend to pursue research to take into account other properties of
structured noncommutative problems, such as symmetry. The underlying motivation is to tackle
important applications, including the computation of quantum graph parameters or maximum
violation bounds of Bell inequalities in quantum information theory. Here is a non-exhaustive
list of potential problems involving sparse and symmetric noncommutative functions in quantum
information:

• Quantum games, in particular the problem of finding the number of mutually unbiased
bases in dimension 6, open for several decades [2] (symmetric)

• Lower bounding the ground state energy of many body Hamiltonians, which is a fun-
damental problem with potential applications to chemistry and quantum simulators [26]
(sparse, some are symmetric)

• Inflation for quantum correlations in networks [241] (sparse and symmetric)

• Device independent quantum key distribution [285] (symmetric)

Trace polynomials. So far, prior research in quantum information theory focused intensively on
reformulating problems as eigenvalue optimization of noncommutative polynomials. One famous
application is to characterize the set of quantum correlations. Our goal is to derive approximation
schemes for other problems of interest arising in quantum information problems. An important
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one is to investigate asymptotic limits of output states of tensor products of random quantum
channels. A random quantum channel is a communication channel which can transmit quantum
information, as well as classical information (an example of quantum information is the state of a
qubit). In [93], the authors consider output state limits by computing bounds of generalized traces
of tensors. Another recent work [241], focuses on the set of quantum correlations in networks,
and formulate the problem in the framework of constrained trace optimization. They obtain a
hierarchy of convex relaxations of then incorporate the initial constraints into the semidefinite
matrix defined in the Navascués, Pironio and Acín (NPA) hierarchy. The resulting extended NPA
hierarchy allows to successfully identify correlations not attainable in the entanglement-swapping
scenario. Other applications include optimal entanglement witness for multi-partite Werner states
[142]. With the framework considered in Section 1.5 one can optimize over trace polynomials
when the objective cost only involves sums of trace products (pure trace polynomials). A topic of
future research is to derive a hierarchy of primal-dual SDP programs converging to the minimal
eigenvalue of a trace polynomial under trace polynomial inequality constraints. Another practical
goal relates to the implementation of the optimization algorithms from Section 1.5 in a modeling
toolbox and incorporate it within the NCTSSOS software, dedicated to the modeling of sparse
noncommutative polynomial optimization problems.

Exploiting the structure of noncommutative optimization problems. Sharing the same draw-
backs as the classical moment-SOS hierarchy, our tracial framework will be limited to optimization
problems involving a modest number of variables. To overcome this scalability issue, we intend to
focus on exploiting structural properties of the input data. One possibility is to extend both frame-
works exploiting correlative sparsity [J3] and term sparsity from [R13] to optimization problems
involving sparse trace polynomials, which could lead to save even more computational cost as the
number of involved terms happens to be larger than in the commutative setting. An alternative re-
laxation scheme allows us to compute lower bounds of nonnegative polynomials, which are sums
of nonnegative circuits (SONC), as seen in Section 2.4. In the context of J. Wang’s postdoctoral
supervision, we have recently proved that finding lower bounds of nonnegative polynomials via
SONC boils down to solving second-order conic programs [C14, R7], a special type of convex opti-
mization problem. This approach allow significantly faster computation of lower bounds than via
semidefinite relaxations. One promising track of research would be to define an analogous notion
of SONC polynomials in the noncommutative setting and to find a way to check their positivity
via efficient relaxation schemes, such as second-order conic programming. Another way to reduce
the size limitation is to exploit symmetries when present in the problem definition [251]. Classical
invariant theory studies polynomials that are preserved under linear group actions. In the con-
text of polynomial optimization, if one assumes that that all input polynomial data are invariant
under a linear group action, then [251] shows that one can obtain a block diagonalization of the
related SDP. Assuming invariance under the full symmetric group, the so-called degree principle
can be used to transform the initial problem into a set of lower dimensional problems such that the
resulting relaxations have finite convergence. Recent work [156] focused on the noncommutative
analogue of this invariant theory in the context of rational functions, yielding positivity certificates
for invariant rational functions in terms of SOS of invariants. One of the goals of this task is to
benefit from these results to derive the noncommutative analogue of [251] for invariant POP. The
subtle difference with the commutative case is that it shall be required to rely on rational functions
to index the block diagonal semidefinite matrices involved in the resulting relaxations.

Noncommutative Christoffel-Darboux kernels. Algorithms similar to the one from [131] allow
one to extract optimizers of eigenvalue or trace minimization problems; see, e.g., [238], [9, Chap-
ter 21], [53, Theorem 1.69] and Section 1.5. A framework based on noncommutative Christoffel-

https://github.com/wangjie212/NCTSSOS
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Darboux kernels could be an alternative to approximate minimizers by relying on the levelsets of
such kernels. This shall lead us to study the noncommutative analog of Christoffel-Darboux ker-
nel associated to a certain class of distributions occurring in free probability, and to investigate the
related asymptotic properties. One of the equivalent definitions of the Christoffel-Darboux kernel
is via a sum of orthonormal polynomials, which has been done in [69] in the noncommutative
context. Further explorations of systems of multivariate orthogonal and orthonormal noncommu-
tative polynomials have been undertaken by several authors, for instance [12, 11, 10, 281]. We wish
to bring as novelty to this study the structure of operator spaces [234] and the application of the
classical analysis of plurisubharmonic functions [107], which we believe has never been considered
before in the noncommutative context.

Upper bounds hierarchies. A second SOS-based hierarchy proposed in [175] yields a monotone
sequence of upper bounds which converges to the minimum and therefore can be seen as com-
plementary to the first moment-SOS hierarchy of lower bounds. In addition, and in contrast to
the hierarchy of lower bounds, the function to be minimized may not be either a polynomial or
a semialgebraic function. At each step of the hierarchy, an upper bound on the minimum of a
given polynomial is computed by solving a so-called generalized eigenvalue problem. Several ef-
forts have been made to provide convergence rates for the hierarchy of upper bounds. In [158],
the authors obtain convergence rates which are no worse than O(1/

√
r) and often match practical

experiments. On some specific sets this convergence rate has been improved. For instance, for the
box [−1, 1]n and the sphere, an O(1/r2) rate of convergence has been obtained in [73] and [157]
respectively. For some other cases, in particular convex bodies, an O(log2 r/r2) rate of conver-
gence rates has been recently obtained in [271] and in [190]. All these research efforts show that
the asymptotic behavior of the upper bounds hierarchy is better understood than for the lower
bounds hierarchy. As for the lower bounds hierarchy, the size of the resulting matrices is critical
and restricts its application to small size problems. In practice, there exist very efficient algorithms
based on first-order methods to obtain upper bounds for the minimum of polynomials or rational
functions. So far the main interest of the upper bound hierarchy has been its theoretical rate of
convergence to the global minimum as such guarantees are rather rare. A first attempt to break the
curse of dimensionality in the upper bounds hierarchy for polynomial optimization has been done
in [178]. The idea is to use the pushforward measure of the Lebesgue measure by the polynomial
to minimize. In doing so one reduces the initial problem to a related univariate problem and as
a result one obtains a hierarchy of upper bounds (again generalized eigenvalue problems) which
involves univariate SOS polynomials of increasing degree. In [R4], we extended this framework
to the case of sums of rational functions. By contrast with commutative optimization problems,
it is even more challenging to obtain upper bounds for problems in noncommutative variables,
such as the ones arising in quantum information. Existing methods include the density matrix
renormalization group (DMRG) [304], which is a numerical variational technique devised to ob-
tain the low-energy physics of quantum many-body systems, or quantum variants of Monte-Carlo
methods [228]. Our goal here is to propose an alternative of these two families of methods with
applications in quantum information. A first attempt has been done in [250] to compute minimal
eigenvalues of pure quartic oscillators, but without any convergence guarantees and lack of scal-
ability. We intend to rely on free probabilities to derive a converging hierarchy of upper bounds
for eigenvalue and trace optimization problems and apply it to the above-mentioned quantum in-
formation problems. Challenges to tackle include the choice of the linear functional (with a priori
available moments) in relation with the target application, the noncommutative extension of the
framework based on pushforward measures, as well as the analysis of the convergence rate.
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G2: energy networks

Some aforementioned topics of investigation are related to my project FastOPF (acronym standing
for “Fast polynomial optimization techniques for optimal power flow”), jointly funded by AMIES
(French Agency for mathematics in interaction with industry and society) and the industrial com-
pany RTE (France’s energy transmission system operator).

Optimal power flow. As seen in Section 3.5, alternative current-optimal power flow (AC-OPF)
problems can be modeled with polynomial optimization. Several convex relaxations have been re-
cently provided with the goal of solving AC-OPF instances to global optimality. These efforts led
to efficient solution algorithms that can solve many instances found in the literature, which model
real-world networks. The concurrent methods usually perform costly domain partitioning and
spatial branching on continuous variables. Our framework shall overcome these issues by provid-
ing fast yet accurate bounds. In the case of OPF, equality constraints involve the voltage, power
generation and power flow variables. For many AC-OPF problems, the first-order moment-SOS
relaxation (Shor relaxation) is already able to certify global optimality with an optimality gap less
than 1.00%. In the recent contribution [R14], outlined in Section 3.5, we have developed a new CS-
TSSOS hierarchy to solve large-scale OPF with sparse data. We focused on challenging AC-OPF
problems, for which the gap is greater than 1.00%, from the AC-OPF library pglib [18]. We simul-
taneously exploit the few correlations between variables and between terms to solve OPF instances
with up to 1 888 buses, yielding POP with more than 4 000 variables and 18 000 constraints. They
are solved with a 0.5% optimality gap. On the other hand, we have shown in [R10, R11] that the
SDP relaxations in the moment-SOS hierarchy have a nice constant trace property, which can be
exploited to avoid solving the relaxations via interior point methods and rather use ad-hoc spectral
methods that minimize the largest eigenvalue of a matrix pencil. As a result we obtain a hierarchy
of “spectral relaxations”. The resulting algorithm is much more efficient than the usual interior-
point methods and can handle matrices of size up to 2 000 with more than 1.5 million constraints in
less than a hour on a standard laptop. Further perspectives include combining both frameworks to
solve AC-OPF instances with up to tens of thousand buses with optimality gap close to 0. We will
exploit the sparsity of the input data of POP and the sparsity of the associated spectral relaxations.
For this, we will combine the two associated solvers recently developed at LAAS together with J.
Wang during his postdoc and N. H. A. Mai during his PhD, namely TSSOS and SpectralPOP, and
execute the resulting software library on large-scale instances [86] with the “pfcalcul” LAAS HPC
cluster.

FIR filters and certified complex polynomial optimization. Finite impulse response (FIR) filters
are now widely used for implementation of smart grid abilities after noise reduction/distortion,
in order to obtain improved power quality along with power transfer capability of grid connected
energy systems, e.g., solar photovoltaic systems [268]. Such filters can be designed by encoding
certain positivity constraints of trigonometric polynomials [83] with linear matrix inequalities, and
solving them numerically with semidefinite programming. However, small numerical errors may
compromise the input specifications of the implemented filter. To overcome these issues, we intend
to extend our current certification framework, presented in Section 2.2 for univariate polynomials
and Section 2.3 for multivariate polynomials, to the case of complex polynomials with coefficients
having rational real and imaginary parts. We plan to investigate these research directions during
the PhD of V. T. Hieu in the context of the POEMA project.

Stability of large-scale power systems. One usual way to model power networks is to rely on
an interconnection of weakly coupled nodes, while the systems dynamic is driven by generators,

https://github.com/power-grid-lib/pglib-opf
https://github.com/wangjie212/TSSOS
https://github.com/maihoanganh/SpectralPOP
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which are modeled by closed-loop controlled ordinary differential equations. One way to ensure
the stability of large-scale power systems is to approximate from outside backward reachable sets
of polynomial ordinary differential equations, with sparse dynamics. Such outer approximations
contain the set of all initial conditions ensuring that the system can operate in a safe way. Most
of the technical literature on stability analysis for power networks focuses relies on Lyapunov
functions computed by nonconvex optimization, e.g., a bilinear variant of polynomial SOS opti-
mization as in [8]. Recent advances have been done in the MAC team to derive SDP hierarchies,
including [137] but without convergence guarantees, and [262] with rather strong assumptions
on the dynamics. One challenging perspective of research is to broaden the range of analyzable
dynamical problems, including large-scale power systems, while maintaining satisfactory conver-
gence guarantees. To reach this goal, we have recently started to develop a tool, called SparseDy-
namicSystem, to compute forward/backward reachable sets, maximum positively invariant sets,
global attractors for polynomial dynamic systems based on the term sparsity adapted moment-SOS
hierarchies outlined in Section 3.4 and Section 3.5. Benchmarks of interest include multi-mode di-
mensional models obtained by projecting the Burgers equation with ordinary diffusion (see [311])
as well as high dimensional powergrid problems from [167].

Time delay systems. An additional challenge is that time delays can deteriorate both stabil-
ity and performance of controllers used for networked power systems [19]. To analyze systems
governed by delay differential equation, existing approaches consider Lyapunov-Krasovskii cer-
tificates [92], and conversion into transport partial differential equations with an additional time
variable, see [91, § 1.4.1]. However, such methods can suffer either from conservatism and lack of
convergence guarantees, or numerical issues arising from the underlying discretization schemes.
Our idea is to propose an occupation-measure based method, as seen previously in Section 1.2 for
analysis and control of continuous-time systems with time delays, by extending the framework
dedicated either to polynomial optimal control [189] or to partial differential equations [J15, 211].

G3: deep learning

Most research tracks mentioned below are related to my participation as a junior member of the
ANITI (Artificial and Natural Intelligence Toulouse Institute) chaire “Polynomial optimization for
Machine Learning”, led by J.-B. Lasserre.

Lipschitz Constants of ReLU Networks. In the context of the PhD of T. Chen [C4, R1], we have
introduced a sublevel moment-SOS hierarchy where each SDP relaxation can be viewed as an
intermediate between the r-th and (r + 1)-th order SDP relaxations of the moment-SOS hierarchy
(dense or sparse version). With the flexible choice of determining the size (level) and number
(depth) of subsets in the SDP relaxation, one is able to obtain different improvements compared
to the r-th order relaxation, based on the machine memory capacity. In particular, we obtained
promising results for r = 1 and various types of problems in deep learning, including robustness
certification and Lipschitz constant of neural networks, where the standard moment-SOS hierarchy
(or its sparse variant) is computationally intractable. Our sublevel strategy has been designed
for quadratically constrained quadratic problems modeling single hidden layer networks. As the
number of layers increases, the degree of the objective function also increases and the approach
must be combined with lifting in order to deal with higher-degree objective polynomials. Efficient
derivation of approximate sparse certificates for high degree polynomials should allow to enlarge
the spectrum of applicability of such techniques to larger size networks and broader classes of
activation functions.

https://github.com/wangjie212/SparseDynamicSystem
https://github.com/wangjie212/SparseDynamicSystem


148 Chapter 4. Research perspectives

Data-driven techniques. Recent research [187] investigated the ability of Christoffel-Darboux
kernels to capture information about the support of an unknown probability measure. A distin-
guishing feature of this approach is to allow one to infer support characteristics, based on the
knowledge of finitely many moments of the underlying measure. In Section 1.3, we relied on
such kernels to approximate the support of singular continuous invariant measures. A major open
question remains whether this approach can be used in a data-driven setting, where the underlying
model is unknown and only observed data are available. We will investigate this direction, build-
ing on the recent work [163]. Progress in this direction would be an enabling factor in bringing the
elegant and powerful tools of the moment-SOS hierarchy to the realm of the present-day big-data
applications, which are currently typically tackled using ad-hoc heuristic techniques with limited
mathematical foundation. We will develop new methods furnished with a theoretical analysis,
including convergence rate and non-asymptotic out-of-sample error. One first possible investiga-
tion track will consist of studying Christoffel-Darboux kernels to extend the approach from [235]
for measures supported on specific classes of mathematical varieties. We intend to apply this
framework to deep learning network models, for which latent representation correspond to such
low-dimensional varieties, including MNIST, CIFAR10 or fashion MNIST. Other main steps will
include the investigation of adaptive sampling techniques and basis choice for the approach de-
veloped in [163] as well as extension of the proposed methodology beyond the considered class of
problems, e.g., to data-driven optimal control.

Stability Analysis of Recurrent Neural Networks. To prove the stability of recurrent neural net-
works with ReLU activation functions, we started to focus in [C5] on the positive `2 induced norm
of discrete-time linear time-invariant systems, where the input signals are restricted to be nonneg-
ative. We have provided tractable methods based on copositive programming to get enclosure
bounds of this norm. However, the treatment was primitive and hence conservative. In this re-
spect, [183] has already shown how to construct a hierarchy of SDP to solve copositive programs in
an asymptotically exact fashion. Nevertheless, this approach does not allow us to handle practical
size problems since the size of SDP grows very rapidly. We need further effort to reduce computa-
tional burden for instance by finding out sparsity structure. We plan to rely on efficient first-order
methods to solve the specific conic relaxations arising from POP with sphere constraints [R10].
The used small-gain type treatment for the stability analysis of RNN might be too shallow in view
of advanced integral quadratic constraint (IQC) theory [215]. Namely, for the stability analysis
of feedback systems constructed from a linear time invariant system and nonlinear elements (i.e.,
Lurye systems), the effectiveness of the IQC approach with Zames-Falb multipliers [312] is widely
recognized, see, e.g., [88, 89]. Therefore it would be strongly preferable to build a new copositive
programming-based approach relying on the powerful IQC framework. To this end, we need to
explore sound ways to capture the properties of nonlinear elements exhibiting positivity, such as
ReLU, by introducing copositive multipliers and incorporate them into existing IQC conditions. It
is also important to seek for possible ways to introduce copositive multipliers to deal with satu-
rated systems on the basis of the techniques developed for their analysis and synthesis [286].

Computer-assisted stability proofs. Another important certification goal is to provide computer-
assisted proofs for the stability of systems whose controllers have been designed with deep neural
networks. A classical way to show stability of a given continuous/discrete-time polynomial sys-
tem is by proving that a given function is a Lyapunov function. We intend to obtain formal proofs
of polynomial nonnegativity, which shall be handled with SOS certificates. Since proof assistants
have computational limitation, we can rely on external tools that produce certificates, as seen in
Chapter 2, whose checking is reasonably easier from a computational point of view. In [R2], we
have provided such certificates with the RealCertify [C9] tool available outside of the proof assis-
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tant MinLog [36] and verified inside. An interesting track of further research is to derive formally
certified outer/inner approximations of sets of interest arising in the context of dynamical systems,
such as backward/forward reachable sets or maximal invariants.

Robust and stochastic polynomial optimization for deep learning. Deep learning algorithms
are now embedded in automatic procedures for smart sensing and networks (grids). Robust poly-
nomial optimization and stochastic optimization can be used for air quality monitoring where the
optimization problems have uncertainties due to grid parametrization, model physics and bound-
ary conditions. With some loss of precision in the optimizer, one could in principle reduce the
NP-hard POP into a stochastic algorithm that computes in polynomial time. Robust polynomial
optimization [173, 171, 216] and stochastic optimization shall be used to improve the efficiency
of multi-energy smart grids and mass rapid transit (MRT). Two types of optimizations could be
solved: (1) the optimal integration of microgrids, energy hubs, and decentralized energy resources
into the core grid, (2) the optimal coordination among renewable energy technologies such as
wind, solar and hydropower. In MRT systems, the components to be optimized are rolling stock,
power management, signaling, and stations. The optimization algorithms will also serve to coor-
dinate the power grid and MRT system for robust planning of power supply to MRT.
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[56] C. Muńoz and A. Narkawicz. Formalization of Bernstein Polynomials and Applications to
Global Optimization. J. Aut. Reasoning 51.2 (2013), pp. 151–196.



158 Bibliography

[57] K. Cafuta, I. Klep, and J. Povh. Constrained polynomial optimization problems with non-
commuting variables. SIAM J. Optim. 22.2 (2012), pp. 363–383.

[58] K. Cafuta, I. Klep, and J. Povh. NCSOStools: a computer algebra system for symbolic
and numerical computation with noncommutative polynomials. Optim. Methods Softw. 26.3
(2011), pp. 363–380.

[59] J. Canny. The complexity of robot motion planning. MIT press, 1988.

[60] G. Chesi. Domain of attraction: analysis and control via SOS programming. Vol. 415. Springer
Science & Business Media, 2011.

[61] S. Chevillard et al. Efficient and accurate computation of upper bounds of approximation
errors. Theoretical Computer Science 412.16 (2011). https://hal.archives-ouvertes.fr/
ensl-00445343v2, pp. 1523–1543.

[62] W.-F. Chiang et al. “Efficient Search for Inputs Causing High Floating-point Errors”. Pro-
ceedings of the 19th ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming. PPoPP ’14. Orlando, Florida, USA: ACM, 2014, pp. 43–52.

[63] E. B. Chin, J.-B. Lasserre, and N. Sukumar. Numerical integration of homogeneous func-
tions on convex and nonconvex polygons and polyhedra. Comput. Mech. 56 (2015), pp. 967–
981.

[64] M.-D. Choi, T. Y. Lam, and B. Reznick. “Sums of squares of real polynomials”. Proceedings
of Symposia in Pure mathematics. Vol. 58. American Mathematical Society. 1995, pp. 103–126.

[65] J. F. Clauser et al. Proposed experiment to test local hidden-variable theories. Phys. rev. lett.
23.15 (1969), p. 880.

[66] J. Cohen and T. Hickey. Two algorithms for determining volumes of convex polyhedra.
Journal of the ACM (JACM) 26.3 (1979), pp. 401–414.

[67] G. E. Collins. “Quantifier elimination for real closed fields by cylindrical algebraic decom-
postion”. Automata Theory and Formal Languages 2nd GI Conference Kaiserslautern, May 20–23,
1975. Springer. 1975, pp. 134–183.

[68] A. R. Conn, N. I. M. Gould, and P. L. Toint. Testing a class of methods for solving minimiza-
tion problems with simple bounds on the variables. Math. Comp. 50.182 (1988), pp. 399–430.

[69] T. Constantinescu. Orthogonal polynomials in several variables. I. arXiv:math/0205333v1
[math.FA] (2002).

[70] R. Cools. Constructing cubature formulae: the science behind the art. Acta numerica 6 (1997),
pp. 1–54.

[71] R. E. Curto and L. A. Fialkow. Flat extensions of positive moment matrices: recursively
generated relations. Mem. Amer. Math. Soc. 136.648 (1998), pp. x+56.

[72] E. Darulova and V. Kuncak. “Sound Compilation of Reals”. Proceedings of the 41st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL ’14. San Diego,
California, USA: ACM, 2014, pp. 235–248.

[73] E. De Klerk, R. Hess, and M. Laurent. Improved convergence rates for Lasserre-type hi-
erarchies of upper bounds for box-constrained polynomial optimization. SIAM Journal on
Optimization 27.1 (2017), pp. 347–367.

[74] M. Dellnitz, G. Froyland, and O. Junge. “The algorithms behind GAIO—Set oriented nu-
merical methods for dynamical systems”. Ergodic theory, analysis, and efficient simulation of
dynamical systems. Springer, 2001, pp. 145–174.

https://hal.archives-ouvertes.fr/ensl-00445343v2
https://hal.archives-ouvertes.fr/ensl-00445343v2


Bibliography 159

[75] M. Dellnitz, S. Klus, and A. Ziessler. A Set-Oriented Numerical Approach for Dynami-
cal Systems with Parameter Uncertainty. SIAM Journal on Applied Dynamical Systems 16.1
(2017), pp. 120–138.

[76] M. Dellnitz et al. Exploring invariant sets and invariant measures. CHAOS: An Interdisci-
plinary Journal of Nonlinear Science 7.2 (1997), pp. 221–228.

[77] D. Delmas et al. “Towards an Industrial Use of FLUCTUAT on Safety-Critical Avionics Soft-
ware”. English. Formal Methods for Industrial Critical Systems. Ed. by M. Alpuente, B. Cook,
and C. Joubert. Vol. 5825. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2009, pp. 53–69.

[78] J. Demmel. On floating point errors in Cholesky. University of Tennessee. Computer Science
Department, 1989.

[79] S. Diamond and S. Boyd. CVXPY: A Python-Embedded Modeling Language for Convex
Optimization. Journal of Machine Learning Research (2016).

[80] P. J. di Dio. The multidimensional truncated Moment Problem: Shape and Gaussian Mix-
ture Reconstruction from Derivatives of Moments. arXiv preprint arXiv:1907.00790 (2019).

[81] A. C. Doherty et al. “The quantum moment problem and bounds on entangled multi-
prover games”. 2008 23rd Annual IEEE Conference on Computational Complexity. IEEE. 2008,
pp. 199–210.

[82] A. Domahidi, E. Chu, and S. Boyd. “ECOS: An SOCP solver for embedded systems”. Euro-
pean Control Conference (ECC). 2013, pp. 3071–3076.

[83] B. Dumitrescu. Positive trigonometric polynomials and signal processing applications. Vol. 103.
Springer, 2007.

[84] I. Dunning, J. Huchette, and M. Lubin. JuMP: A modeling language for mathematical opti-
mization. SIAM review 59.2 (2017), pp. 295–320.

[85] K. J. Dykema. Factoriality and Connes’ invariant T(M) for free products of von Neumann
algebras. J. Reine Angew. Math. 450 (1994), pp. 159–180.

[86] A. Eltved, J. Dahl, and M. S. Andersen. On the robustness and scalability of semidefi-
nite relaxation for optimal power flow problems. Optimization and Engineering 21.2 (2020),
pp. 375–392.

[87] H. Everett et al. The Voronoi diagram of three lines. Discrete & Computational Geometry 42.1
(2009), pp. 94–130.

[88] M. Fetzer and C. W. Scherer. Absolute Stability Analysis of Discrete Time Feedback Inter-
connections. IFAC PapersOnline 50.1 (2017), pp. 8447–8453.

[89] M. Fetzer and C. W. Scherer. Full-block Multipliers for Repeated, Slope-Restricted Scalar
Nonlinearities. International Journal of Robust and Nonlinear Control 27.17 (2017), pp. 3376–
3411.

[90] R. FitzHugh. Impulses and physiological states in theoretical models of nerve membrane.
j-BIOPHYS-J 1 (1961), pp. 445–466.

[91] E. Fridman. Introduction to time-delay systems: Analysis and control. Springer, 2014.

[92] E. Fridman. New Lyapunov–Krasovskii functionals for stability of linear retarded and neu-
tral type systems. Systems & control letters 43.4 (2001), pp. 309–319.

[93] M. Fukuda and I. Nechita. Asymptotically well-behaved input states do not violate addi-
tivity for conjugate pairs of random quantum channels. Comm. Math. Phys. 328.3 (2014),
pp. 995–1021.



160 Bibliography

[94] D. Fulkerson and O. Gross. Incidence matrices and interval graphs. Pacific journal of mathe-
matics 15.3 (1965), pp. 835–855.

[95] S. Gao, S. Kong, and E. Clarke. “dReal: An SMT Solver for Nonlinear Theories over the
Reals”. English. Automated Deduction – CADE-24. Ed. by M. Bonacina. Vol. 7898. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2013, pp. 208–214.

[96] L. E. Ghaoui, F. Oustry, and H. Lebert. Robust Solutions to uncertain semidefinite pro-
grams. SIAM J. Opt 9.1 (1998), pp. 33–52.

[97] G. H. Golub and C. F. V. Loan. Matrix Computations (3rd Ed.) Baltimore, MD, USA: Johns
Hopkins University Press, 1996.

[98] M. C. Golumbic. Algorithmic graph theory and perfect graphs. Elsevier, 2004.

[99] N. Gravin et al. The inverse moment problem for convex polytopes. Discrete & Computa-
tional Geometry 48.3 (2012), pp. 596–621.

[100] A. Greuet and M. Safey El Din. Probabilistic Algorithm for Polynomial Optimization over
a Real Algebraic Set. SIAM Journal on Optimization 24.3 (2014), pp. 1313–1343.

[101] A. Greuet and M. Safey El Din. Probabilistic Algorithm for Polynomial Optimization over
a Real Algebraic Set. SIAM Journal on Optimization 24.3 (2014), pp. 1313–1343.

[102] A. Greuet et al. Global optimization of polynomials restricted to a smooth variety using
sums of squares. Journal of Symbolic Computation 47.5 (2012), pp. 503–518.

[103] S. Gribling, D. De Laat, and M. Laurent. Lower bounds on matrix factorization ranks via
noncommutative polynomial optimization. Foundations of Computational Mathematics 19.5
(2019), pp. 1013–1070.

[104] S. Gribling, D. de Laat, and M. Laurent. Bounds on entanglement dimensions and quantum
graph parameters via noncommutative polynomial optimization. Math. Program. 170.1, Ser.
B (2018), pp. 5–42.

[105] D. Grigoriev and N. Vorobjov. Solving systems of polynomials inequalities in subexponen-
tial time. Journal of Symbolic Computation 5 (1988), pp. 37–64.

[106] D. Grimm, T. Netzer, and M. Schweighofer. A note on the representation of positive poly-
nomials with structured sparsity. Archiv der Mathematik 89.5 (2007), pp. 399–403.

[107] V. Guedj and A. Zeriahi. Degenerate Complex Monge-Ampère Equations. Tracts in Mathematics
26. European Mathematical Society, 2017.

[108] F. Guo, E. L. Kaltofen, and L. Zhi. “Certificates of Impossibility of Hilbert-Artin Represen-
tations of a Given Degree for Definite Polynomials and Functions”. Proceedings of the 37th
International Symposium on Symbolic and Algebraic Computation. ISSAC ’12. Grenoble, France:
ACM, 2012, pp. 195–202.

[109] F. Guo, M. Safey El Din, and L. Zhi. “Global optimization of polynomials using general-
ized critical values and sums of squares”. Proceedings of the 2010 International Symposium on
Symbolic and Algebraic Computation. ISSAC ’10. Munich, Germany: ACM, 2010, pp. 107–114.

[110] Q. Guo, M. Safey El Din, and L. Zhi. “Computing Rational Solutions of Linear Matrix In-
equalities”. Proceedings of the 38th International Symposium on Symbolic and Algebraic Compu-
tation. ISSAC ’13. Boston, Maine, USA: ACM, 2013, pp. 197–204.

[111] Q. Guo, M. Safey El Din, and L. Zhi. “Computing rational solutions of linear matrix in-
equalities”. Proceedings of the 38th International Symposium on Symbolic and Algebraic Compu-
tation. ISSAC ’13. ACM. New York, NY, USA, 2013, pp. 197–204.

[112] N. Gvozdenovic, M. Laurent, and F. Vallentin. Block-diagonal semidefinite programming
hierarchies for 0/1 programming. Oper. Res. Lett. 37 (2009), pp. 27–31.



Bibliography 161

[113] D. Hadwin. A noncommutative moment problem. Proc. Amer. Math. Soc. 129.6 (2001),
pp. 1785–1791.

[114] J. Haglund, K. Ono, and D. G. Wagner. “Theorems and conjectures involving rook polyno-
mials with only real zeros”. Topics in number theory. Springer, 1999, pp. 207–221.

[115] L. Hajdu and R. Tijdeman. Algebraic aspects of discrete tomography. Journal fur die Reine
und Angewandte Mathematik 534 (2001), pp. 119–128.

[116] T. C. Hales. “Introduction to the Flyspeck Project”. Mathematics, Algorithms, Proofs. Ed. by
T. Coquand, H. Lombardi, and M.-F. Roy. Dagstuhl Seminar Proceedings 05021. Dagstuhl,
Germany, 2006.

[117] T. C. Hales. The Flyspeck Project. 2013.

[118] L. Haller et al. “Deciding Floating-Point Logic with Systematic Abstraction”. Formal Meth-
ods in Computer-Aided Design (FMCAD). 2012, pp. 131–140.

[119] E. J. Hancock and A. Papachristodoulou. “Structured sum of squares for networked sys-
tems analysis”. 2011 50th IEEE Conference on Decision and Control and European Control Con-
ference. IEEE. 2011, pp. 7236–7241.

[120] J. Harrison. “HOL Light: A Tutorial Introduction”. FMCAD. Ed. by M. K. Srivas and A. J.
Camilleri. Vol. 1166. Lecture Notes in Computer Science. Springer, 1996, pp. 265–269.

[121] S. M. Harwood and P. I. Barton. Efficient polyhedral enclosures for the reachable set of
nonlinear control systems. Mathematics of Control, Signals, and Systems 28.1 (2016), pp. 1–33.

[122] P. Heggernes. Minimal triangulations of graphs: A survey. Discrete Mathematics 306.3 (2006),
pp. 297–317.

[123] J. W. Helton. “Positive” noncommutative polynomials are sums of squares. Ann. of Math.
(2) 156.2 (2002), pp. 675–694.

[124] J. W. Helton, I. Klep, and S. McCullough. Proper analytic free maps. J. Funct. Anal. 260.5
(2011), pp. 1476–1490.

[125] J. W. Helton, I. Klep, and S. McCullough. The convex Positivstellensatz in a free algebra.
Adv. Math. 231.1 (2012), pp. 516–534.

[126] J. W. Helton and S. A. McCullough. A Positivstellensatz for non-commutative polynomials.
Trans. Amer. Math. Soc. 356.9 (2004), pp. 3721–3737.

[127] M. Hénon. A two-dimensional mapping with a strange attractor. Communications in Math-
ematical Physics 50.1 (1976), pp. 69–77.

[128] D. Henrion. Semidefinite characterisation of invariant measures for one-dimensional dis-
crete dynamical systems. eng. Kybernetika 48.6 (2012), pp. 1089–1099.

[129] D. Henrion and M. Korda. Convex Computation of the Region of Attraction of Polynomial
Control Systems. Automatic Control, IEEE Transactions on 59.2 (2014), pp. 297–312.

[130] D. Henrion, J. Lasserre, and C. Savorgnan. Approximate Volume and Integration for Basic
Semialgebraic Sets. SIAM Review 51.4 (2009), pp. 722–743.

[131] D. Henrion and J.-B. Lasserre. Detecting Global Optimality and Extracting Solutions in
GloptiPoly. Positive Polynomials in Control. Berlin, Heidelberg: Springer Berlin Heidelberg,
2005, pp. 293–310.

[132] D. Henrion, J.-B. Lasserre, and J. Löfberg. GloptiPoly 3: moments, optimization and
semidefinite programming. Anglais. Optimization Methods and Software 24.4-5 (Aug. 2009),
pp. 761–779.



162 Bibliography

[133] D. Henrion, J.-B. Lasserre, and M. Mevissen. Mean Squared Error Minimization for Inverse
Moment Problems. Applied Mathematics & Optimization 70.1 (2014), pp. 83–110.

[134] D. Henrion, S. Naldi, and M. Safey El Din. Exact Algorithms for Linear Matrix Inequalities.
SIAM Journal on Optimization 26.4 (2016), pp. 2512–2539.

[135] D. Henrion and J.-B. Lasserre. Inner approximations for polynomial matrix inequalities and
robust stability regions. IEEE Transactions on Automatic Control 57.6 (2011), pp. 1456–1467.

[136] D. Henrion, S. Naldi, and M. Safey El Din. SPECTRA–a Maple library for solving linear ma-
trix inequalities in exact arithmetic. Optimization Methods and Software 34.1 (2019), pp. 62–
78.

[137] D. Henrion et al. Approximating regions of attraction of a sparse polynomial differential
system. arXiv preprint arXiv:1911.09500 (2019).

[138] F. Hiai, R. König, and M. Tomamichel. Generalized log-majorization and multivariate trace
inequalities. Ann. Henri Poincaré 18.7 (2017), pp. 2499–2521.

[139] N. Higham. Accuracy and Stability of Numerical Algorithms: Second Edition. Society for Indus-
trial and Applied Mathematics, 2002.

[140] C. Hillar. Sums of squares over totally real fields are rational sums of squares. Proceedings
of the American Mathematical Society 137.3 (2009), pp. 921–930.

[141] H. Hong and M. Safey El Din. Variant quantifier elimination. Journal of Symbolic Computa-
tion 47.7 (2012), pp. 883–901.

[142] F. Huber. Positive Maps and Matrix Contractions from the Symmetric Group. arXiv preprint
arXiv:2002.12887 (2020).

[143] IEEE. IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008 (2008), pp. 1–70.

[144] J. Harrison. “Verifying Nonlinear Real Formulas via Sums of Squares”. Proceedings of the
20th International Conference on Theorem Proving in Higher Order Logics. TPHOLs’07. Kaiser-
slautern, Germany: Springer-Verlag, 2007, pp. 102–118.

[145] J. Oxley. Matroid theory. Second. Vol. 21. Oxford Graduate Texts in Mathematics. Oxford
University Press, Oxford, 2011.
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Software developments

• ctpPOP: A Julia library to exploiting constant trace property in large-scale polynomial opti-
mization.

• TSSOS: A Julia library for sparse polynomial optimization tool based on block moment-SOS
hierarchies. See also the noncommutative module NCTSSOS.

• SparseJSR: A julia library to compute joint spetral radii based on sparse SOS decompositions.

• SONCSOCP: A Julia library unconstrained sparse polynomial optimization tool based on
SONC decompositions.

• RealCertify: a Maple package for certifying non-negativity.

• NLCertify: a tool for formal nonlinear optimization.

• Real2Float: a tool for certified roundoff error bounds using SDP, built in top of NLCertify.

• FPBern: a tool for certified roundoff error bounds using Bernstein expansions.

• FPKriSten: a tool for certified roundoff error bounds using sparse Krivine-Stengle represen-
tations.

https://github.com/maihoanganh/ctpPOP
https://github.com/wangjie212/TSSOS
https://github.com/wangjie212/NCTSSOS
https://github.com/wangjie212/
https://github.com/wangjie212/SONCSOCP
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https://forge.ocamlcore.org/projects/nl-certify/
http://nl-certify.forge.ocamlcore.org/paramreal2float.html
https://github.com/roccaa/FPBern
https://github.com/roccaa/FPKriSten


The quest of modeling, certification and efficiency in polynomial optimization

Abstract: Certified optimization techniques have successfully tackled challenging verifica-
tion problems in various fundamental and industrial applications. The formal verification of thou-
sands of nonlinear inequalities arising in the famous proof of Kepler conjecture was achieved in
August 2014. In energy networks, it is now possible to compute the solution of large-scale power
flow problems with up to thousand variables. This success follows from growing research ef-
forts in polynomial optimization, an emerging field extensively developed in the last two decades.
One key advantage of these techniques is the ability to model a wide range of problems us-
ing optimization formulations, which can be in turn solved with efficient numerical tools. My
methodology heavily relies on such methods, including the moment-sums of squares (moment-
SOS) hierarchy by Lasserre which provides numerical certificates for positive polynomials as well
as recently developed alternative methods. However, such optimization methods still encom-
pass many major issues on both practical and theoretical sides: scalability, unknown complexity
bounds, ill-conditioning of numerical solvers, lack of exact certification, convergence guarantees.
This manuscript presents results along these research tracks with the long-term perspective of ob-
taining scientific breakthroughs to handle certification of nonlinear systems arising in real-world
applications.

In the first part, I focus on modeling aspects. One relies on the moment-SOS hierarchy to
analyze dynamical polynomial systems, either in the discrete-time or continuous-time setting,
and problems involving noncommuting variables, for example matrices of finite or infinite size,
to model quantum physics operators. In the second part, I describe how to design and analyze
algorithms which output exact positivity certificates for either unconstrained or constrained
optimization problems. In the last part, I explain how to improve the scalability of the hierar-
chy by exploiting the specific sparsity structure of the polynomial data coming from real-world
problems. Important applications arise from various fields, including computer arithmetic (round-
off error bounds), quantum information (noncommutative optimization), and optimal power-flow.

Keywords: Polynomial optimization, moments, sums of squares, eigenvalue & trace opti-
mization, hybrid numeric-symbolic algorithms, certified optimization, sparsity pattern
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