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Abstract

This thesis deals with approximating sets using Lasserre's moment-SOS hierarchy.
The motivation is the increasing need for e�cient methods to approximate sets
of secure operating conditions for electrical power systems. Indeed, recent and
ongoing changes in the European power network, such as the increase in renewable
energy sources interfaced by power electronic devices, are bringing up new challenges
in terms of power grid security assessment. The aim of the present thesis is to
investigate the suitability of the moment-SOS hierarchy as a tool for large scale
stability assessment.

In this regard, the very scheme of moment-SOS hierarchies is analysed in-depth,
and general results regarding the convergence and accuracy of the framework are
stated, along with speci�c computational methods inspired from di�erential geo-
metry and partial di�erential equations theory, in order to improve the convergence
of the numerical scheme.

From the computational viewpoint, the core of this thesis is the exploitation
of problem structure to alleviate the computational burden of high dimensional,
large scale industrial problems. The structure of power grids leads us to consider
general sparsity patterns and design methods which distribute our computations
accordingly, drastically reducing computational costs in implementation.

In addition to stability analysis, a special interest is put on the theoretical prob-
lem of volume computation, whose applications rather concern the �eld of integral
calculus and probability evaluation, as understanding this problem turns out to be
a prerequisite for approximating stability regions of di�erential systems, such as
regions of attraction or positively invariant sets, with the moment-SOS hierarchy.
Indeed, the moment-SOS approach to volume computation is the core of moment-
SOS stability analysis.

Keywords: Power systems transient stability � in�nite dimensional optimization
� moments � polynomial sums of squares � set approximation � direct methods for
stability analysis � sparsity � semide�nite relaxations.
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Résumé

Cette thèse a pour objet l'approximation d'ensembles au moyen de la hiérarchie
moment-sommes-de-carrés (abrégée moment-SOS) de Lasserre. Elle est motivée par
le besoin croissant de méthodes e�caces pour approcher des ensembles de points
de fonctionnement stables dans le domaine des réseaux électriques. En e�et, les ré-
cents développements et les changements en cours au sein du système électrique
européen, comme l'augmentation de la part des énergies renouvelables dans la géné-
ration d'électricité, et leur raccordement au réseau par des interfaces d'électronique
de puissance, soulèvent de nouveaux dé�s en termes d'évaluation de la sécurité des
réseaux électriques. L'objectif de cette thèse est d'étudier la pertinence de la hiérar-
chie moment-SOS dans les études de stabilité à grande échelle.

Dans cette optique, le schéma numérique que constituent les hiérarchies moment-
SOS est étudié en détails, et des résultats généraux sur la convergence et la précision
de cet outil sont formulés, et accompagnés de méthodes de calcul spéci�ques, inspi-
rées de notions de géométrie di�érentielle et de théorie des équations aux dérivées
partielles, visant à améliorer la convergence du schéma numérique.

Du point de vue purement calculatoire, l'élément central de cette thèse est l'ex-
ploitation de la structure des problèmes, en vue d'alléger le coût des calculs liés
aux problèmes industriels à grande échelle, modellisés en très grande dimension.
La structure en réseau des systèmes électriques nous conduit à nous intéresser aux
con�gurations dites parcimonieuses, et à concevoir des méthodes distribuant les cal-
culs suivant ces con�gurations, permettant ainsi de réduire drastiquement le coût
en calcul de nos implémentations.

En�n, en plus de l'analyse de stabilité, un intérêt particulier est accordé au pro-
blème théorique du calcul de volumes, dont les applications se situent plutôt dans
le domaine du calcul intégral et de l'évaluation probabiliste, la compréhension de ce
problème étant un prérequis pour l'approximation de régions de stabilité pour les
systèmes di�érentiels, comme par exemple les régions d'attractions ou les ensembles
positivement invariants, au moyen des hiérarchies moment-SOS. En e�et, l'approche
du calcul de volumes par les hiérarchies moment-SOS est à l'origine de l'analyse de
stabilité par ces mêmes hiérarchies.

Titre en français : Hiérarchie moments-SOS pour approximation ensembliste à
grande échelle. Application à l'analyse de stabilité transitoire des systèmes élec-
triques.

Mots clés: Analyse de la stabilité transitoire des systèmes électriques � optimi-
sation en dimension in�nie � moments � polynômes sommes de carrés � approxi-
mations ensemblistes � méthodes directes pour l'analyse de stabilité � parcimonie �
relaxations semidé�nie.
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Notation

This section provides the notations used all along the thesis.

Usual sets

� N: set of natural integers,

� N? := N n f 0g: set of positive integers,

� N?
N := f 1; : : : ; Ng: set of N �rst consecutive positive integers,

� R: set of real numbers,

� R+ := f x 2 R : x � 0g: set of nonnegative real numbers,

� R++ := f x 2 R : x > 0g: set of positive real numbers,

� I := [ x � ; x+ ]; x � < x + 2 R: a real interval.

Linear algebra

� Rn� m : space of matrices withn rows andm columns with coe�cients in R,

� mi;j : for M 2 Rn� m , refers to the coe�cient on the i th row and j th column,

� In 2 Rn� n : identity matrix, I := I 2, J :=
�

0 � 1

1 0

�

2 R2� 2,

� Tr M :=
P

1� i � n mi;i : trace of a square matrixM,

� M> : transposition of a matrix M,

� Sn : space of real symmetric matrices withn rows (M> = M ),

� Sn
+ : cone of symmetric positive semi-de�nite matrices,M 2 Sn

+ , M � 0,

� Sn
++ : open cone of symmetric positive de�nite matrices,M 2 Sn

++ , M � 0,

� M � 0 , � M � 0, M � 0 , � M � 0 and M � N , N � M � 0.

Euclidean geometry

� x := ( x1; : : : ; xn )> 2 Rn : a real vector with n rows,

� 0: zero �nite dimensional vector,x � 0 , x i � 0; i 2 N?
n ,

� x � y := x> y: inner product of two �nite dimensional real vectors,

� j x j := kxk2 =
p

x � x: euclidean norm of a real vectorx 2 Rn ,

� B n := f x 2 Rn : jx j � 1g: the unit ball of Rn ,
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xxiv Notations

� Sn� 1 := f x 2 Rn : jx j = 1g: the unit sphere ofRn ,

� B R := R B n and SR := R Sn� 1: the ball and sphere of radiusR > 0,

� � X : Rn ! X : orthogonal projection on the vector subspaceX � Rn ,

� X ? := ker � X = f y 2 Rn : 8x 2 X; x � y = 0g: vector space orthogonal toX.

Di�erential analysis

Let 
 � Rn be an open or compact set,k 2 N?.

� _x := dx
dt : derivative of the vector function t 7! x(t),

� @x : partial di�erentiation operator with respect to the variable x,

� @k
x i 1 ;:::;x i k

:= @x i 1
� � � @x i k

: kth partial di�erentiation operator w.r.t. x i 1 ; : : : ; xi k ,

� @f := ( @x j f i )(i;j )2 N?
m � N?

n
: jacobian matrix of function f : Rn ! Rm ,

� grad f := ( @ f)> = ( @x1 f; : : : ; @xn f )> : gradient of function f : Rn ! R,

� div f := Tr( @f ): divergence of functionf : Rn ! Rn ,

� @2f := @(grad f ) = ( @2
x i ;x j

f ) i;j 2 N?
n
: hessian matrix of functionf : Rn ! R,

� � f := Tr( @2f ) = div( grad f ): laplacian of function f : Rn ! R,

� C 0(
 ) = C(
 ): space of continuous functions on
 ,

� C k(
 ) :=
n
f 2 C(
 ) : grad f 2 Ck� 1(
 )n

o
, C1 (
 ) :=

T

l2 N
Cl (
 ).

Integration

Let A � 
 be a Borel set (countable intersection& union of closed& open sets).

�
Z

A
f (x) dx: Riemann integral off 2 C(
 ) on A .

� Cc(
 ): space of continuous functions on
 vanishing outside a compact.

� M (
 ): space of signed measures,i.e. continuous linear forms onCc(
 ).

�
Z

f d� := hf; � i : duality or Lebesgue integral off 2 Cc(
 ) w.r.t. � 2 M (
 ).

�
Z

A
f d� :=

Z
1A f d� : integral of f 2 Cc(
 ) w.r.t. � 2 M (
 ) on A .

� � : Lebesgue measure s.t.8f 2 Cc(
 ),
Z

f d� =
Z



f (x) dx.

� � A := 1A � : restriction of � to A s.t. 8f 2 Cc(
 ),
Z

f d� A =
Z

A
f d� .



Notations xxv

Algebraic geometry

� k := ( k1; : : : ; kn ) 2 Nn : a multi-index made ofn integers,

� 1i := (0 ; : : : ; 0; 1; 0; : : : ; 0): multi-index with i th coordinate equal to1, all
others being0,

� j k j := kkk1 = k1 + : : : + kn : range ofk 2 Nn ,

� Nn
d := f k 2 Nn : jk j � dg: index set with bounded range,

� x k := xk1
1 � � � xkn

n : k th power of a vectorx = ( x1; : : : ; xn )> 2 Rn ,

� f k := x 7! f (x)k : k th power of a vector functionf = ( f 1; : : : ; f n )> : Rm ! Rn ,

� R[x] := f p(x) =
P

jk j� d ak x k : d 2 N ^ ak 2 Rg: space of polynomials inx,

� d� p := maxfj k j : ak 6= 0g: degree ofp 2 R[x],

� �[ x ] := f s = p2
1 + � � � + p2

k : k 2 N? ^ p1; : : : ; pk 2 R[x]g: cone of sums of
squares of polynomials,

� Rd[x ] := f p 2 R[x] : d� p � dg: space of polynomials of degree at mostd,

� � d[x ] := �[ x ] \ R2d[x ]: cone of SOS polynomials of degree at most2d.
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Introduction

In this introductory chapter, we provide an overview of the concepts and problems
that we will study in this thesis. Section 1.1 presents the general context of the
thesis, namely the need for new tools to assess the stability of industrial power
systems. Section 1.2 brie�y reviews some of the di�erent existing approaches to
power systems stability analysis. In Section 1.3 we discuss in more details the
moment-SOS hierarchical approach, which is the method of interest in this thesis.
The chapter ends with Section 1.4, listing the contributions of the thesis and outlines
the structure of this manuscript.
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1.1 Context and motivation of the thesis

In the wake of the energy transition, large scale electrical power systems are evolving
faster and faster, with increasing complexity and stochastic behaviors, mostly due
to the massive introduction of partially uncontrollable renewable energy sources
as well as corresponding new technologies, especially in power electronics. Among
such devices, one can cite High Voltage Direct Current (HVDC) lines [18] as well as
power converters [38]. In order to guarantee the functioning of these sophisticated

1
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systems, it is necessary to consider new methods for analysing them, see e.g. [49].
In particular, the stability analysis of nonlinear systems subject to large perturba-
tions has always been an extremely di�cult problem, and it is going to complexify
even more with the upcoming evolutions. Estimating the largest perturbation that
the system can endure without impacting consumers and industrial loads remains
a key strategy for large scale electrical power systems management. To that end,
the �bruteforce� method would consist of running a large number of simulations
of the system's behavior, corresponding to a sample of all possible perturbations,
and determining which ones would present a serious threat for system security, and
which ones would automatically be subsided by the system controls. Of course,
such an approach is not compatible with large scale systems, for which the number
of variables and possible perturbations is way too large to be tractable on a com-
puter. Then, new approaches are needed, which should satisfy a certain number of
requirements listed below:

Be compatible with nonlinearities: Electrical power systems include nonlin-
earities brought upon by the presence of alternative current modelled with trigo-
nometric functions, as well as power controls involving bilinearities, and eventually
more sophisticated technologies, such as saturations. Since the aim is to assess the
system's behavior subject tolarge perturbations, linearization around equilibrium,
which is the classical method forsmall signal stability, is not an option here, hence
the need fornonlinear computational methods.

Avoid false negatives: Given a scenario, we want to decide whether it will lead
to an instability or, on the contrary, if it will pose no threat to the grid security. In
that case, supposing that only approximate solutions can be given, so that an error
is possible, it is crucial to control such error: misclassifying a scenario as �secure�
while it actually endangers the power network (i.e. a false negative) is forbidden
here, as it could have catastrophic consequences. On the contrary, any scenario
classi�ed as �unstable� would be subject to further analysis, which would reveal the
eventual false positives. In other words, somecerti�cations should be given along
with the stability analysis.

Provide accuracy guarantees: Although false positives can be allowed, it is im-
portant to control their occurrences. Indeed, a false positive would require additional
work to be detected, potentially increasing too much the computational burden of
the analysis. For this reason, any guarantees that the probability of false posit-
ive ultimately vanishes, would be highly appreciated. Most often such requirement
translates into convergenceof the analysing algorithm.

Be (at least potentially) scalable: For low-dimensional systems such as local
grids, some methods already exist that will be presented in more details in Section
1.2. The central challenge of this thesis is to pave the way for large scale stability
analysis, which supposes that we �nd a way to tackle hundreds (ideally tens of
thousands) of variables in a reasonable amout of time. As we will expose in Section
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1.3, the network structure has the potential to allow fordistributed computations,
which would drastically reduce the computational burden of our task.

Be perturbation-independent: Another factor that would increase the compu-
tational burden of a stability assessment method is the dependence to the analysed
perturbation. Indeed, as the number of possible perturbations increases, the num-
ber of required computations would also grow very quickly, eventually leading to
an intractability. Consequently, a method free from such a dependence, such as
geometricstability characterizations, would be much more e�cient and suitable.

In this thesis, we will focus on set approximation schemes, mostly based on
Lasserre's moments-sums-of-squares (moment-SOS) hierarchy as well as semide�nite
programming (SDP). However, several other approaches to power systems stability
analysis have been proposed in the past, that we are now going to review.

1.2 Power system stability analysis

1.2.1 De�nition on a classical example

For the purpose of illustration let us �rst focus on the simplest representation of a
synchronous machine electromechanical dynamic: the rotating mass or swing equa-
tion, see e.g. [90, 21, 6].

Consider a power system composed ofN synchronous generators with respective
voltagesv1; : : : ; vN . We assume, as it is common in the literature, that the voltage
magnitudesjv1j; : : : ; jvN j are �xed after the fault is cleared, while the phase angles
vector � := ( � 1; : : : ; � N ) is variable (expressed in a rotating frame) with respective
angular speed! := ( ! 1; : : : ; ! N ). In addition, the loads in the network are con-
sidered to be constant and passive impedances. In normal operation conditions, the
phases will satisfy the following set of di�erential equations (with physical variables
expressed in SI units here):

_� = ! ; (1.1a)

M k _! k = � Dk ! k +
�
Pmec

k � Pelec
k (� )

�
; k 2 N?

N (1.1b)

wherePmec
k is the (�xed) mechanical power input at busk and Pelec

k (� ) is the elec-
trical power output of each generatork with value given by

Pelec
k (� ) = Gkk jvk j2 +

X

l6= k

jvk j j v l j f Bkl sin(� k � � l ) + Gkl cos(� k � � l )g : (1.2)

The quantities Bkl and Gkl denote the line susceptances and conductances, and
M k refers to the generator inertia constantHk (M k = 2Hk). The constant Dk

denotes the damping coe�cient of each generator. Equation (1.1) is called the
swing equationand models the electromechanical conversion characteristic of the
synchronous machine.

We assume that there exists an equilibrium� := ( � 1; : : : ; � N ) to these equations,
that satis�es
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Pmec
k = Pelec

k (� ); k 2 N?
N : (1.3)

In other words, � corresponds to a steady-state operating point of an AC trans-
mission system. As phases are de�ned up to a reference value, we choose one bus,
denoted by subscript �ref�, to serve as the reference bus, with� ref = � ref = 0 (often
referred to as slack bus). Indeed, the equations are invariant up to a phase shift.

We �rst introduce working notations that we will use all along the thesis. Con-
sider a vector �eld f 2 C1(Rn )n with equilibrium point x 2 Rn such that f (x) = 0,
along with the di�erential system

_x = f (x): (1.4)

According to the Cauchy-Lipschitz theorem [105, 77], (1.4) admits a continuously
di�erentiable solution map

8
><

>:

R � Rn �! Rn

(t; x0) 7�! x(tjx0)

such that x(0jx0) = x0 (initial condition) and @tx(tjx0) = f (x(tjx0)) (dynamics).
Moreover, if x(tjx0) = x holds for one value oft, then it holds for all t 2 R (in
particular, x0 = x).

Then, transients are de�ned as follows:

De�nition 1.1: Transients

Consider a power system(P) described by di�erential equation (1.4). Suppose
that at t = tp a perturbation occurs that drastically modi�es the di�erential
equation, into _x = bf (x), bf 2 C1(Rn )n . Its trajectory is bx(t � tpjx0), t � tp.
At t = tcl > t p, the perturbation is cleared and(P) goes back to nominal
equation (1.4). We de�ne the clearing statexcl := bx(tcl � tpjx) and post-
perturbation trajectory x(t � tcl jxcl). The behaviour of(P) for t � tp is called
transient.

In particular, we want to assess the system's transient stability, which is de�ned
as follows:

De�nition 1.2: Transient stability

In this thesis, we calltransient stability of a power system(P) its ability to go
back to an operating equilibrium pointx from a post-disturbance statexcl far
from x, with the state variables staying in a secure zone of the state space.

This general de�nition rules out any linearization-based local stability analysis:
we are bound to carry out a sharp, nonlineartransient stability analysis(TSA).

Remark 1.1 (Power system transient stability)
In terms of power systems, transient stability more speci�cally denotes a fea-

ture of the so-called rotor angle stability, based on the functioning of synchronous
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machines described by(1.1) (see �gure 1.1). However, from the mathematical meth-
odological viewpoint, the speci�city of transient stability boils down to the notion of
large disturbances and the impossibility of linearization. Thus, the works presented
in this thesis apply to all stability analyses related to large disturbances, for example
in voltage stability. As a result, we included all such stability properties in our
de�nition of transient stability.

Figure 1.1 � Power systems stability classi�cation.

Image source � [41]; this classi�cation is an upgrade of the one found in [65].

When a perturbation occurs, the dynamics of the system are modi�ed, so that
the state leaves its former equilibrium pointx and goes into large excursion. For a
given perturbation, the longer the perturbation, the further fromx the clearing state
xcl. Then, after a certain time, the system state will be too far from equilibrium to
be able to go back to equilibrium, even if the perturbation is cleared, and the rotor
angles will quickly go to in�nity. We call such time the critical clearing time tcc.

De�nition 1.3: Critical Clearing Time (CCT)

tcc := max
� t

� t

s:t : xcl := bx(� tjx) is stable in the sense of De�nition 1.2.

Critical clearing time is a very useful metric to assess transient stability of a
power system under a given perturbation. The CCT depends on the studied per-
turbation and initial state x0, so that what we are interested in is the whole function
(perturbation, x0) 7! CCT.

De�nition 1.4: Critical Clearing State (CCS)

CCT is accompanied with the notion ofcritical clearing state (CCS), which
will also be of interest:

xcc := bx(tccjx):
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In the context of time-invariant systems (1.4), CCS has the advantage to be
independent from the perturbation and the on-fault behavior. It only de�nes a limit
which, if it is passed, compromises the transient stability of the system.

1.2.2 Overview of some existing TSA approaches

In this section we present some of the considered methods for transient stability
analysis, based on [90, 117].

Currently used methods

Figure 1.2 � Power-angle characteristic of a synchronous machine.

Corresponding to system (1.1) (N = 1) subject to a short-circuit. The plotted
curve is the electrical power that the machine should inject into the grid in normal
functioning conditions.

Image source � https://www.electrical4u.com/equal-area-criterion/

A �rst basic method for TSA, called the Equal Area Criterion, consists of plotting
the graph ofPelec(� ), denotedPc(� ) in Figure 1.2. Then, one can identify thecritical
clearing angle� c, such that areasA1 and A2 are equal, andtcc is the time at which
� c is attained. Indeed, on the �gure� 0 represents normal functioning conditions (i.e.
equilibrium), in which the machine injects exactly as much electrical power in the
grid as it receives mechanical power:Pc(� 0) = P m so that the system (1.1) is at
steady-state. However, during the fault (here a short-circuit), the electrical power
delivered by the machine to the grid vanishes, so that all mechanical power input
Pm is stored in the rotor as kinetic energy (represented by areaA1 on the �gure),
making � sharply increase. Then, it can be returned only after fault clearing, under
the form of electrical energy, resulting in at most areaA2. Thus, if A1 � A2 all
stored mechanical power can be returned to the grid before synchronism is lost,i.e.
before� exceeds� , after which � decreases back to� 0. On the contrary, if A1 > A2,
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then the machine will lose synchronism before all stored energy is returned, resulting
in transient instability.

In addition to the intuition that this criterion gives of transient behaviours, it
has been extended and studied deeply by power engineers in the past decades, under
the name ofExtended Equal Area Criterion(EEAC, see [140]), although the present
thesis does not focus on this TSA method.

As stated before, the general method used to assess transient stability of general
power systems consists of numerical time-domain simulations: if one knowsa priori
what the perturbation will be and how long it will last, then one only has to simulate
the trajectory of the system for t � tp and see whether or not it goes back to
equilibrium after tcl. To that end, equation (1.1) or more generally (1.4) is discretized
over time, after which the discretized system is numerically integrated to compute
the trajectory of the system. Then, one can directly observe transient stability or
instability by checking the result of the time-domain simulation.

However, transmission system operators (TSO) are actually interested not only in
deciding the stability of a system but also in assessing stability margins. Indeed, the
actual clearing timetcl is �xed, determined by the speed of the involved protection
devices. Thus, studying the transient stability of a system boils down to computing
tcc and comparing it to the �xed tcl. Then, tcc < t cl means by de�nition that the
system will be unstable. However, uncertainties on the model and behaviour of the
actual system leads TSOs to look for some kind of robustness propeties for stable
situations, under the form of stability margins, i.e. lower bounds on the value of
tcc � tcl. For this reason, TSOs are interested in computing the actual CCT for
a given perturbation, and not only assessing stability through a single simulation
of the whole transients. However, such computation is very costly, as the most
straightforward method consists of a bisection that would involve a time-domain
simulation at each step.

In order to lighten this computational burden, one can look for randomized solu-
tions, such as the classical Monte-Carlo methods, which consist of sampling the
possible scenarios according to their probability, and only computing CCTs associ-
ated with the chosen sample. Then, instead of obtaining CCTs for all perturbations,
one only has access to an estimation of the probability that the CCT is within a
given interval (see [5, 66]). While such a method would surely decrease the computa-
tional cost of the TSA, it poses the problem of forecasting rare transient events with
severe consequences. Indeed, especially in power grids that have been functioning
24/7, for decades, even very unlikely events have already occurred, and the possibil-
ity for randomized approaches to ignore a part of the potential perturbations poses
an issue for conservative transient stability analyses. However, such methods have
been studied for a long time and paved the way to data-analysis related methods
[102].

AI methods

The current times have seen arti�cial intelligence progressively gain momentum, up
to a point where it competes with most of the existing state-of-the art methods.
Here we brie�y mention di�erent AI-related approaches that have been proposed to
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carry out transient stability analyses.

� Clustering: A possibility is to train an algorithm to identify classes of per-
turbations which will lead to similar behaviors, after which one can study
the details of a small number of representing events and deduce the various
outcomes of a large number of perturbations. Compared to classical random-
ization, this allows for taking outliers into account as speci�c clusters. Several
contributions were made in this domain, including [37, 19, 98, 55]. Depend-
ing on authors, di�erent classi�cation methods were used, such ask-nearest
neighbours, bayesian classi�cation or hierarchical clustering (see [40, 146] for
details on these classi�cation methods).

� Arti�cial Neural Networks (ANN): Bio-inspired by the functioning of
human brain, ANNs consist of automatically splitting a complex task into
simpler ones that are ditributed along a pre-determined network of �neurones�
(basically boolean classi�ers), whose historical ancestor was the Perceptron
algorithm. The de�nition of the subtask is called �training� the ANN and
consists of tuning the neurones in a way that minimizes the error rate of the
whole, when analysing a �training set� of known perturbations. Such methods
were applied in [31, 59, 144, 97].

� Support Vector Machine (SVM): Generalizing linear classi�cation, SVM
belongs to the category oflift-and-project methods; the idea consists of em-
bedding the space in which the TSA problem is considered into a vector space
in which discriminating between stable and unstable scenarios is reduced to
checking the sign of a linear form one has to determine. Such a method can
be combined with classical clustering as was done in [94, 142] or with various
optimization methods such as [133, 141].

While AI-based method bear a great potential for power systems TSA, in this
thesis we decided to study methods capable of both competing with machine learning
approaches and giving a deeper understanding of the physics involved in the transient
phenomena. Such methods, calleddirect methodsas they do not require any time-
domain simulation at all, have been around for a long time and are based on the
physical notion of energy.

1.2.3 Our approach: Direct methods for stability regions

Direct methods can be seen as dual to time-domain simulations, in the sense that
instead of computing the successive states of the system, one looks for an observable
that takes the state as input, and outputs a real value on which the stability analysis
is based. This duality will be explained more in details in Chapters 2 and 3. Such
direct methods are based on general di�erential system stability theory [81, 67] and
were speci�cally applied to power systems stability analysis in [6, 21, 22, 53, 99].
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Transient stability regions

A promising alternative to the previously reviewed methods consists in determining
a priori an approximation of a transient stability region for system (1.4),i.e. a
region A of the state space for which one can guarantee that if the clearing state
xcl 2 A then the system will go back to equilbrium within a given time horizon.
We now de�ne a natural candidate for a transient stability region. Indeed, we are
looking for a geometric criterion for convergence of the post-perturbation system,
which leads us to de�ne the region of attraction of a set.

De�nition 1.5: Region of Attraction (ROA)

Let M � X � Rn , T 2 (0; + 1 ]. We de�ne the time T region of attraction
(ROA) of M (with state constraint X ) as:

A X
T (M ) :=

8
><

>:
x0 2 Rn :

8t 2 [0; T); x(tjx0) 2 X

dist(x(tjx0); M ) �!
t ! T

0

9
>=

>;
: (1.5)

where dist(x; Y ) := inf y 2 Y jx � y j is the euclidean distance between a point
x 2 Rn and a setY � Rn . If X = Rn then we only write A T (M ) := A Rn

T (M ).

This de�nition allows us to state a transient stability analysis problem:

Problem 1: Direct transient stability analysis

Compute an approximating subsetcA of some well-chosen ROAA X
T (M ), so

that xcl 2 cA =) xcl can be attained without compromising stability.

Remark 1.2 (False negatives and conservativeness)
In Problem 1, we already allow ourselves to compute anapproximation of

some ROA. Indeed, in most of the general cases, the exactA X
T (M ) is out of reach

for standard computational methods, hence the resort to approximation.
However, we stated at the beginning of this Chapter that a good TSA should avoid

false negatives. In terms of ROA approximation, this means that we want to compute
inner ROA approximations, so that we can miss stable scenarios (A X

T (M ) ncA 6= ?
is allowed), but we cannot miss instability issues (cA n A X

T (M ) 6= ? is forbidden).

Remark 1.3 (Access to CCT)
Given a solution to Problem 1, one only has access to potential critical clearing

states . Relating such result to critical clearingtimes requires some kind of time-
domain simulation of the faulted system. In other words, direct methods mostly
allow their user to get rid of thepost-fault trajectory simulations. For this reason,
ideally, the boundary of the computed transient stability region should be close to a
set of critical clearing states. Other ways to access CCT are not reviewed in the
present thesis.
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Stability oracle functions

What we call stability oracle functions is a most general class of functions whose
value at state xcl gives insight on the stability of the trajectory x(tjxcl). Such
information can in turn be used to assess the transient stability of the studied
system. Here we only give the most general de�nition, as several more speci�c
stability oracles will be studied in the rest of the thesis.

De�nition 1.6: Stability Oracle Functions (SOFs)

Let D � Rn . A stability oracle function (SOF)is av : Rn ! R non-increasing
along trajectoriesx(tjx0) in D , which is characterized by

8x 2 D ; f (x) � grad v(x) � 0: (1.6)

Remark 1.4 (Positively invariant sublevel sets)
A direct consequence of equation(1.6) is that any sublevel set


 := f x 2 Rn : v(x) � lg

with l 2 R such that
 � D , is positively invariant for system(1.4).

Example 1.5

� Lyapunov functions, whose de�nition will be recalled in Section 3.2, are an
instance of SOF, related toin�nite time ROA.

� Energy functions [22] are an instance of SOF, related toin�nite time ROA.

� Dual decision variables of [42] are an instance of SOF that we will study in
Section 3.1, related to�nite time ROA.

� Control barrier functions [4] are an instance of SOF, related topositively
invariant sets .

Lyapunov arguments are based on the fact that a stable equilibrium point of a
physical system (such as a power network) is characterized as a local minimum of its
energy. As transient stability requires that the system converges to an equilibrium
after the perturbation is cleared, TSA then reduces to deciding whether the energy
of a system in post-fault statexcl will decrease to a minimum or not. As it is
well known, set
 from Remark 1.4, when considering a speci�c kind of Lyapunov
function, is a subset of the Lyapunov ROAA 1 (f xg) of De�nition 1.5. Of course,
depending on the considered SOF, set
 will have di�erent properties. Finding
relevant SOF for power systems TSA is part of this work, more speci�cally addressed
in Chapters 3 and 6.

Then, the crucial question remains: how does one compute such functions? Due
to the physical inspiration of direct methods, the �rst studied oracles were energy
functions, followed by Lyapunov functions, and most of the time they were de-
termined out of physical reasonings or after some analytical computations [22, 131].
However, starting in the early 2000s, some algorithmic methods were developped to:
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� Systematize the computation of SOFs,

� Optimize over SOFs to obtain the �best� transient stability region estimates.

We now introduce some mathematical concepts that will be instrumental in our
computations of transient stability region estimates.

1.3 The moment-SOS approach

1.3.1 Introduction to measures

This section is addressed to a reader unfamiliar with the mathematical notion of
measure. It is an intent to give an intuition on the concept of measure, without
introducing the sophisticated set theory elements that are necessary for a rigorous
de�nition. In contrast, here we build only on the knowledge of normed vector spaces,
linear forms and continuity. Given a real vector spaceX equipped with a normk �k,
we recall that:

� A linear form on X is a function � : X ! R s.t. 8 ;  0 2 X , s 2 R,
� ( + s  0) = � ( ) + s � ( 0); we denoteh ; � i := � ( ).

� A continuous function onX is a function f : X ! R s.t.

k �  kk �!
k!1

0 =) j f ( ) � f ( k)j �!
k!1

0:

� X 0 is the set of continuous linear forms onX , also calleddual space1.

Consider the setCc(Rn ) of continuous functions onRn that vanish outside a ball.
This is an in�nite dimensional real vector space, equipped with the uniform norm

kf k1 := sup
x 2 Rn

jf (x)j:

We de�ne the dual spaceM (Rn ) := Cc(Rn )0, and call it the space ofsigned measures.
For � 2 M (Rn ) and f 2 Cc(Rn ) we de�ne the integral of f w.r.t. � as

Z
f d� := hf; � i :

Then, we de�ne the set of nonnegative functions

Cc(Rn )+ := f f 2 Cc(Rn ) : 8x 2 Rn ; f (x) � 0g

as well as its dualM (Rn )+ := f � 2 M (Rn ) : 8f 2 Cc(Rn )+ ;
R

f d� � 0g. Those
are cones in the sense that they are invariant through multiplication by a positive

1If X has �nite dimension, then all linear forms are continuous, and the Riesz representation
theorem states that X 0 can be identi�ed with X ; however, it is not the case for in�nite dimensional
vector spaces.
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Figure 1.3 � Representation of classical measures.

number. M (Rn )+ is the cone ofmeasureson Rn . Eventually, for X � Rn , we de�ne
the sets

M (X ) :=
�

� 2 M (Rn ) : if f 2 C(Rn ) vanishes onX then
Z

f d� = 0
�

;

M (X )+ :=
�

� 2 M (Rn )+ : if f 2 C(Rn ) vanishes onX then
Z

f d� = 0
�

;

which correspond to measures supported onX .
From a physical viewpoint, measures represent mass distributions, or superpos-

itions of points. As a result, they can encode many things, from probability laws
(taking a random variable X of law � ,

R
f d� = E[f (X)] ) to superpositions of

trajectories of a dynamical system, including distributions of solutions to a given
optimization problem.

Example 1.6

� The Dirac distribution � x represents a unitary mass concentrated inx 2 Rn ,
so that

R
f d� x = f (x) (Fig. 1.3a).

� The Lebesgue measure� [a;b] represents a uniform mass distribution on the seg-
ment [a; b] � R, so that

R
f d� [a;b] =

Rb
a f (x) dx (Fig. 1.3b).

� The Gaussian measure with meanm and standard deviations represents a
normal probability distribution � such that (see Fig. 1.3c)

Z
f d� =

1
s
p

2�

Z + 1

�1
e� ( x � m ) 2

2s2 f (x) dx:

Some measures, such as the Gaussian measure, are absolutely continuous w.r.t.
the Lebesgue measure, meaning that they correspond to actual functions onRn : they
represent densities of mass. Others are not absolutely continuous: for example, the
Dirac measure does not represent a density of mass, but rather a singularity with
mass1.

In short, measures have two major characteristics:
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� They are the mathematical formalization of point distributions, and hence
appear in a large variety of domains, from probability theory to �uid mechanics
and statistical physics; in particular, trajectories of a di�erential system can
be encoded under the form of a measure [143, 111, 112, 130, 76];

� They are in duality with functions (such as polynomials as well as stability
oracle functions) through Lebesgue's integration theory: indeed, the integral
of a function is always computedwith respect to a measure(in the case of the
standard integral, the involved measure is the Lebesgue measure).

Remark 1.7 (Link between measures and stability analysis)
In particular, measures are the mathematical concept that explains the relation-

ship between time-domain simulations and direct methods for stability analysis. In-
deed, on the one hand, as a formalization of point distributions, measures can be
used to represent trajectories, that are nothing more than time-state point distribu-
tions. On the other hand, Lebesgue integration theory allows for integrating SOFs
with respect to such trajectory representing measures, introducing a duality between
trajectories and SOFs.

As polynomials are continuous functions,
R

p d� represents a particular duality
betweenp 2 R[x] and � 2 M (Rn ). Such a duality is instrumental for implementing
the moment-SOS hierarchy. Indeed, historically, moment-SOS hierarchies were made
possible by new theorems on polynomials, that exploited their duality with measures.

1.3.2 A brief history

The moment-SOS or Lasserre hierarchies are the fundamental tools that we will be
studying and using all along this thesis (except in Section 3.2). They are an elegant
framework that brings together real algebraic geometry as well as functional analysis,
to de�ne a plug-and-play scheme for solving a very large variety of problems.

The famous17th Hilbert problem [46] (solved by Emil Artin in [8]) is at the root
of the moment-SOS approach:

�Can a nonnegative rational function be written as a sum of squares of rational
functions?�

More precisely, Hilbert had proved that the statement is false if one considers
polynomials instead of rational functions [45], which Motzkin complemented with a
counterexample [93], nonnegative but not sum of squares:

pM (x; y) := x4y2 + x2y4 � 3x2y2 + 1:

However, the question of identifying polynomials asked to be positive only on
a subset ofRn still remained to be studied, and motivated numerous works in real
algebraic geometry, leading to the so-called Positivstellensätze [60, 119, 115, 107].
A P-satz reduces the question of positivity of a polynomial over a given subset of
Rn to �nding P-satz certi�cates, involving sums of squares of polynomials (SOS,
see Chapter 2 for details). In parallel, equivalence between SOS characterization
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and spectral analysis of symmetric matrices was also established [70], allowing for
numerical characterization of positivity over subsets ofRn .

These results were put together, along with fundamental functional analysis argu-
ments, in 2001 to solve thepolynomial optimization problem (POP)using Putinar's
P-satz [68]: Lasserre's moment-SOS hierarchy was born. The moment-SOS hier-
archy is presented in depth in Chapter 2, along with some original contributions of
this thesis.

Brie�y, it consists in modelling a di�cult problem using Borel measures such
that, if the analysis is carried out properly, the initial di�cult problem is rephrased
as a linear problem on measures. Then, a series of arguments (which we detail in
Chapter 2) based on Putinar's P-satz, makes possible to approximate this in�nite
dimensional linear problem with a sequence of �nite dimensional relaxed problems,
that can individually be solved numerically by a computer.

Remark 1.8 (Moment-SOS hierarchies and AI)
It is possible to categorize the moment-SOS hierarchy as a lift-and-project method

(similar to previously discussed SVM). The lift part consists of the in�nite dimen-
sional modelling with Borel measures, and the project part is the formulation and
solution of the �nite dimensional relaxed problems.

For now, the crucial point is that the high level of abstraction at which the
moment-SOS hierarchy is formulated allowed to apply it in a large number of very
di�erent domains:

� After contributing to the POP, the moment-SOS hierarchy was used to solve
the optimal control problem in [72] in 2008. Indeed, from optimizing over a
static point of Rn , a natural extension was optimization over trajectories of a
control system with values inRn . This work was a combination of measure
modelling of trajectories with moment-SOS hierarchies, and a duality was
proved between the involved measures and solutions to the Hamilton-Jacobi-
Bellman equation [95].

� After that, the problem of computing the volume of a semialgebraic setK
was addressed in [44]. This time, the formulation as an optimization problem
was only a heuristic to get the volume as optimal solution. An interesting
byproduct of this framework was its duality with functions whose unit sub-
level set approximatedK ; we call this feature the set approximation property.
Due to this property, the present thesis also focused on this seminal set ap-
proximation problem.

� Eventually, combining trajectory-measure modelling from [72] with the set ap-
proximation property stated in [44] allowed to make a decisive contribution
in the �eld of direct methods for stability analysis of polynomial control sys-
tems, with references [42, 58, 57], in which inner and outer approximations are
computed for various instances of the constrained region of attraction.

Comprehensive details on the polynomial optimization problem, as well as the three
aforementioned problems, will be given throughout this thesis.
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1.3.3 Moment-SOS hierarchies and power systems

In this section we highlight the very general applicability of the moment-SOS hier-
archies to power systems, through a fundamental example. The �rst application of
moment-SOS hierarchies to the study of power systems was not related to transient
stability considerations, but to the so-called Optimal Power Flow (OPF) problem.

Consider a power network with several power sources as well as loads, mod-
elled as an AC power system. The AC-OPF problem consists of matching power
consumption and production while minimizing the energy loss in the process.

The optimal power �ow can be written as

OPF? = min
v d ;v q

f (vd; vq)

s:t : pmin � p(vd; vq) � pmax

qmin � q(vd; vq) � qmax

vmin
mag � vmag(vd; vq) � vmax

mag

smag(vd; vq) � smax
mag

where f is a convex quadratic cost function, the decision variablesvd and vq rep-
resent the direct and quadratic coordinates of the voltage at each node of the grid,
p, q and vmag are vectors of nonconvex, degree2 polynomial functions representing
respectively active power, reactive power and voltage magnitude at each node of
the power grid, andsmag is a vector of nonconvex, degree2 polynomial functions
representing apparent-power line-�ows through each line of the power grid (see e.g.
[92] and the comprehensive monography [91]).

This is a particular instance of the polynomial optimization problem, with convex
polynomial objective f and nonconvex feasible set, making the OPF problem hard
to solve in general. Within the literature, one can cite a variety of works that are
referenced in surveys [48, 101, 35, 148]. Most recent contributions consist of relaxing
the problem to make it more tractable in practice, see e.g. [75, 79, 80]. Among those
works, we highlight the use of the moment-SOS hierarchy to formulate a hierarchy of
convex semide�nite relaxations of the AC-OPF problem, that are studied in [92, 39].
In these papers, the authors study in depth the potential that the moment-SOS
hierarchy bears for solvingexactly the AC-OPF problem.

Also, building upon [69, 132], the sparse structure of large scale power systems
was related to mathematical sparsity patterns such as correlative sparsity, allowing
for approximate numerical solution of AC-OPF instances with� 10000variables in
[52]. In a similar direction, it is worth mentioning [1, Chapter 5] for the use of graph
decomposition for Lyapunov stability analysis.

The aim of this thesis is to contribute to the application of moment-SOS hier-
archies to real-life power system transient stability analysis problems. It has been
an opportunity for several contributions in various domains, from generic, theoret-
ical questions on the convergence of the moment-SOS schemes, to pratical stability
analysis of di�erential systems, and including considerations on the problem of com-
puting the volume of a semialgebraic set.
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1.4 Publications and outline

1.4.1 Thesis organization

The thesis is organized as follows:

� We conclude this introductory chapter with a list of submitted, accepted and
published contributions.

� Chapter 2 progressively introduces the concept of moment-SOS hierarchy in
more detail. We �rst focus on the general method of in�nite dimensional,
measure-based modelling in Section 2.1, with two introductory examples (POP,
K -moment problem) followed by a general formulation of the problem and
some general contributions on the structure of such problems. Then, we in-
troduce the actual moment-SOS hierarchy, which consists of two dual approx-
imating hierarchies (moment relaxations and sum-of-squares strengthenings),
and we state all the results that we will build upon in the rest of the thesis.
Most of the contributions in this chapter were only formulated in particu-
lar cases such as polynomial optimization or volume approximation, but for
the �rst time we give systematic proofs of the classical theorems concerning
the general moment-SOS hierarchy. The contributions of this chapter were
accepted for publication in [122].

� Chapter 3 then proceeds to the problem of interest here, namely the problem
of hierarchical power systems transient stability analysis. While both hier-
archical stability analysis and power system TSA have been studied for years,
contributions that bring together both �elds are scarce. Actually, apart from
the contributions in the present thesis, it seems that [6] was the �rst attempt in
such direction, drawing upon SOS programming for Lyapunov stability ana-
lysis of power system (1.1). In Section 3.1 (based on publication [53]), we
introduce the moment-SOS based method that was developed in [42] and ad-
apt it to the study of the non-polynomial system (1.1) in a similar fashion as
in [6], after what Section 3.2 (published in [125]) pushes the method of [6] to
its computational limits, by enhancing the considered model with voltage and
mechanical power regulations.

� In Chapter 4, we switch to a more theoretical question, namely the volume
approximation problem. The link between this problem and hierarchical TSA
lies in what we call the �set approximation property�, a feature of the hierarch-
ical volume approximation method hilghlighted in [44], and which inspired the
works of [42]. More precisely, this chapter is dedicated to enhancing the conver-
gence properties of the moment-SOS hierarchy by improving it with additional
constraints deduced from di�erential geometry arguments. Interestingly, the
demonstration of the convergence improvement involves basic results on par-
tial di�erential equations. The contributions of this chapter were submitted
for publication as [124].

� Then, Chapter 5 introduces the notion of sparsity, again in the particular con-
text of volume approximation, which is simpler than stability analysis. A new
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scheme is designed to exploit correlative sparsity patterns in the description
of the set whose volume we intend to approximate. This scheme allows us to
partially parallelize the computations and organize them along a tree, with
a transfer of information from the leaves to the root of the tree, at which a
solution to the original problem is computed. A �rst, very simple path de-
composition structure is studied with examples in dimension up to100, after
which we formulate a global scheme for generic correlative sparsity patterns,
illustrated on some relevant examples. The corresponding paper [126] was
recently accepted for publication.

� Eventually, most contributions of the previous chapters are used as an in-
spiration for Chapter 6. Section 6.1 focuses on the inner approximation of
Maximal Positively Invariant sets that was published in [100], and the prop-
erties of the corresponding moment-SOS hierarchy are directly deduced from
results of Chapter 2. Then, Section 6.2 (published as [123]) consists of a �rst
intent to generalize the results of Chapter 5 on sparsity-exploiting volume com-
putation, to the problem of transient stability region approximation. In this
�rst attempt the sparsity pattern of interest is again a path decomposition
structure that paves the way for general correlative sparsity structures.

1.4.2 List of publications

Published in peer-reviewed international journals

[100] A. Oustry, M. Tacchi and D. Henrion. Inner approximations of the
maximal positively invariant set for polynomial dynamical systems. IEEE
Control System Letters, 3(3):733�738, 2019.

[126] M. Tacchi , T. Weisser, J. B. Lasserre and D. Henrion. Exploiting
sparsity in semi-algebraic set volume computation.Journal of Foundations of
Computational Mathematics. Published online in Feb. 2021. arXiv: 1902.02976.

[122]M. Tacchi . Convergence of Lasserre's hierarchy: the general case.Op-
timization Letters. Published online in June 2021. arXiv: 2011.08139

Published in peer-reviewed international conferences

[125]M. Tacchi , B. Marinescu, M. Anghel, S. Kundu, S. Benahmed. Power
system transient stability analysis using sum-of-squares programming. InPro-
ceedings of the Power Systems Computation Conference. IEEE, 2018.

[53] C. Josz, D. K. Molzahn,M. Tacchi and S. Sojoudi. Transient stability
analysis of power systems via occupation measures. InProceedings of the 10th

Annual Innovative Smart Grid Technologies Conference. IEEE, 2019.

[123]M. Tacchi , C. Cardozo, D. Henrion and J. B. Lasserre. Approximating
regions of attraction of a sparse polynomial di�erential system. InProceedings
of the 21st IFAC World Congress, 2020.
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[124] M. Tacchi , J. B. Lasserre and D. Henrion. Stokes, Gibbs and volume
computation of semialgebraic sets. Submitted in Sept. 2020. arXiv: 2009.12139



2
Numerical analysis of moment problems

This preliminary chapter is an intent to summarize the mathematical tools that
will be used all along this thesis. Brie�y, most of the present work is based on the
following methodology:

1) Formulating mathematical questions that correspond to the engineering chal-
lenge we want to address,

2) Modelling these mathematical questions under the particular form of the gen-
eralized moment problem (GMP),

3) Deploying the moment-SOS technology to design schemes that will give ap-
proximate solutions to the GMP.

Step 3) in this methodology does not depend on the engineering and mathematical
questions that arise in the process (these questions will be the subject of the next
chapters). For this reason, we give in the present chapter all the theoretical tools
that will be needed to implement this last step in practice: Section 2.1 introduces
the generic problem that our numerical schemes will approximate, along with two
illustrating examples (polynomial optimization andK -moment problem), while Sec-
tion 2.2 details the hierarchical approximation method that we use. Each section
ends with a technical subsection, marked with a?.

The original results contained in this chapter were submitted for publication in
[122].
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Figure 2.1 � An example of global polynomial optimization problem.

Heren = 1 and K = [ xL; xU ] corresponds tom = 1 and g(x) = ( xU � x)(x � xL). As
a continuous function on the compactK , f is bounded and attains its bounds.
Image source � Freiburg university, lecture on real optimization, from the computational economics program.

2.1 The generalized moment problem

This section intends to introduce step by step the concept ofgeneralized moment
problem(GMP). We �rst present two particular instances of GMP: �rst the polyno-
mial optimization problem (POP), which is related to pratical computations involved
in engineering and decision making, and then theK -moment problem, being at the
root of moment-based numerical analysis. We then proceed to give a most general
formulation of the GMP, and we end this section with a synthetic theorem that will
be a fundamental tool for all the numerical analyses presented in this thesis. Most
of the notions and results presented in this section can be found in a detailed fashion
in [70].

2.1.1 Global polynomial optimization

A very common instance of the GMP is the global polynomial optimization problem,
which consists in looking for a system con�guration (represented by a vector ofRn )
that minimizes a given (polynomial) cost function under some given (polynomial)
state constraints.

Problem 2: Global polynomial optimization (POP)

Let f 2 R[x] and g 2 R[x]m such that K := f x 2 Rn : g(x) � 0g is compact
and nonempty. We consider the problem of minimizingf over K :

f ? := inf
x

f (x) (2.1)

s:t : x 2 K :

This problem is known as theglobal polynomial optimization problem(POP).
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Problem 2 has many practical applications among which one can cite the Optimal
Power Flow (OPF) problem (see [48, 101, 35, 148, 39] and references therein), but
is di�cult to solve in practice since neither f nor K are assumed to be convex (for a
detailed overview of the approaches to the particular OPF problem, see [91]). This
makes it challenging in the �eld of optimization.

A classical approach to global POP consists in using the de�nition of the in�mum
f ? as the greatest lower bound off on K to reformulate problem (2.1) as:

f ? = d ?
f := max

`
` (2.2)

s:t : 8x 2 K ; f (x) � `

` 2 R:

Note that problem (2.2) is thede�nition of the inf operation, so it is litteraly equi-
valent to (2.1). We end up faced to a question that is known to be di�cult: deciding
whether a polynomial is nonnegative on a whole set. However, compared to (2.1),
(2.2) has the advantage to be linear iǹ and always admit a unique minimizer
`? = f ?.

Another approach to problem 2 relies on randomization: given a random variable
X 2 K with probability law P 2 M (K )+ , one intends to minimize the expected value
E[f (X)] of f (X) , where the decision variable is the probability distributionP of X.
Such a problem is formulated as follows:

f ? = p ?
f := min

P
E[f (X)] (2.3)

s:t : X � P

P 2 P (K );

whereP(K ) := f P 2 M (K )+ : P(K ) = 1 g is the set of probability measures onK .
The obvious optimal solution to (2.3) would be a deterministicX constantly

equal to a minimizer of f on K : noting argminK f := f x 2 K : f (x) = f ?g,
if x? 2 argminK f , then the Dirac probability distribution P = � x ? yields X = x?

almost surely, so thatE[f (X)] = f (x?) = f ?: More generally, anyP? 2 P (argminK f )
is a minimizer for problem (2.3).

The striking fact about formulations (2.2) and (2.3) of problem 2, is that they
are two sides of the same coin. Indeed, both of them can be rewritten under the
form of semi-in�nite linear programming problems that are dual to one another:

p?
f = min

�

Z
f d� (2.4a)

s:t : � 2 M (K )+

� (K ) = 1

d?
f = max

`
` (2.4b)

s:t : f � ` 2 C(K )+

` 2 R

where we recall thatM (K )+ is the cone of nonnegative measures onK and
C(K )+ is the cone of nonnegative continuous functions onK .

Here the decision variablè is the Lagrange multiplier corresponding to the
(scalar) linear constraint that � is a probability measure, and conversely the decision
variable � is the Lagrange multiplier corresponding to the (in�nite dimensional)
conic constraint that f � ` is a nonnegative continuous function onK .
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Remark 2.1 (Retrieving minimizers)
Both of these problem formulations not only give access to the optimal value

f ?, but also to the minimizers. Indeed, if� ? and `? are minimizers for problems
(2.4a) and (2.4b) respectively, thenargminK f is exactly the set of roots off �
`? and contains the support of� ?. In particular, the uniform probability measure
on argminK f is an optimal solution for (2.4a) that gives access to the whole set
argminK f as its support.

In this section we have shown thatp?
f = f ? = d ?

f , which means that there is no
duality gap between problems (2.4a) and (2.4b).

Historically, POP was the motivation for the design of the Lasserre, moment-
sum-of-squares hierarchy that we will present in details later on. The duality prop-
erties mentioned in the above are a recurrent, fundamental feature of moment-SOS
hierarchies, as we will show. For now, we proceed to our second illustrating example
of the GMP.

2.1.2 The K -moment problem

We consider a more theoretical problem that is a key for measure-based numerical
analysis, namely theK -moment problem. It is formulated as follows:

Problem 3: K -moment problem

Given nonempty setsK � Rn , � � Nn and a real sequencez := ( zk )k 2 � 2 R� ,
is there a measure� 2 M (K )+ satisfying

8k 2 � ;
Z

K
x k d� (x) = zk ; (2.5)

wherex k := xk1
1 � � � xkn

n .

This problem has found a variety of solutions during the latest century, including
two interesting theorems that we will present here. We �rst need to introduce the
concept of Riesz functional.

De�nition 2.1: Riesz functional

Let z := ( zk )k 2 Nn 2 RNn
be a real sequence. Forp(x) :=

P
pk x k 2 R[x], we

de�ne
Lz(p) :=

X
pk zk :

The linear form Lz : p 7! Lz(p) is called theRiesz functionalof z. Note that
the map z 7! Lz is itself linear.

Example 2.2 Let us focus on univariate polynomials (n = 1): z = ( zk)k2 N.
Let p(x) := x2, q(x) := 1 � x, g(x) := 1 � x2. Then,

� Lz(p) = z2 ; Lz(q) = z0 � z1 ; Lz(g) = z0 � z2,

� Lz(p q) = L z(x2 � x3) = z2 � z3,
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� Lz(g p q) = L z(x2 � x3 � x4 + x5) = z2 � z3 � z4 + z5.

If n = 2, z = ( zij ) i;j 2 N and p(x; y) = ( x � y)2 = x2 � 2xy + y2 for instance, then
Lz(p) = z20 � 2z11 + z02.

Remark 2.3 (Link between L z and integrals)
If � 2 M (K )+ is a solution to Problem 3 with� = Nn , then by de�nition for all

p 2 R[x] Z
p d� = L z(p):

Note that Problem 3 only asks forexistenceof a suitable measure� here. The
question of itsuniquenessis a distinct problem, to which a major contribution was
given in the case whereK is compact, � = Nn and � is asked to have �nite total
variation and be interior-regular (it is then called aRadon measure, see e.g. [110,
Section 21.3]): indeed, in this compactK setting, the Riesz-Markov theorem [110,
Section 21.4] ensures that a signed Radon measure� is uniquely represented by
the integrals

R
f d� of continuous functionsf 2 C(K ), and the Stone-Weierstraÿ

theorem [110, Section 12.3] states that any continuous functionf 2 C(K ) can be
approximated uniformly with polynomials (p� )�> 0, so that

Z
f d� = lim

� ! 0

Z
p� d� = lim

� ! 0
Lz(p� )

is uniquelydetermined by the datazk =
R

x k d� for all k 2 Nn .
The notion of Riesz functional is instrumental in the formulation of a funda-

mental theorem (see [70, Theorem 3.1]) for solving Problem 3:

Theorem 2.2: Riesz-Haviland

Suppose that the setK is closed and that� = Nn . Then, Problem 3 has a
solution i�

Lz(p) � 0

for all p 2 R[x] that is nonnegative onK .

Theorem 2.2 provides us with a �rst criterion to decide the feasibility of Problem
3. However, we are again faced with the di�cult problem of discriminating polyno-
mials with respect to their sign over a setK . With additional assumptions onK , it
is however possible to formulate a decisive feasibility theorem for Problem 3, at the
price of the notion of basic semi-algebraic set:

De�nition 2.3: Basic semialgebraic sets

K � Rn is said to bebasic semialgebraicif there exists m 2 N? as well as
g := ( g1; : : : ; gm ) 2 R[x]m s.t.

K = f x 2 Rn : g(x) � 0g;

where g(x) � 0 means that for all i 2 N?
m , gi (x) � 0. We call K a simple

semialgebraic setif m = 1, semialgebraic setif it is a �nite union of basic
semialgebraic sets.
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Example 2.4

� The half spaceH n := f x 2 Rn : xn � 0g is simple semialgebraic.

� The positive orthantRn
+ := f x 2 Rn : 8i 2 N?

n ; x i � 0g is basic semialgebraic.

� The unit ball of Rn , B n := f x 2 Rn : 1 � j x j2 � 0g is a compact, simple
semialgebraic set.

� The hypercube[� 1; 1]n = f x 2 Rn : 8i 2 N?
n ; 1 � x2

i � 0g is a compact, basic
semialgebraic set.

Such notions lead to the formulation of Putinar's P-satz [107, Lemma 3.2], that
is at the root of the moment-SOS hierarchy:

Theorem 2.4: Putinar's (primal) Positivstellensatz (P-satz)

Suppose that� = Nn and that there existsg 2 R[x]m , R > 0 such that

K = f x 2 Rn : g(x) � 0 ^ j x j2 � R2g:

Then, Problem 3 has a unique solution� 2 M (K )+ i� for all p 2 R[x]:

� Lz(p2) � 0,

� Lz((R2 � j x j2) p2) � 0,

� 8 i 2 N?
m ; Lz(gi p2) � 0.

Theorem 2.4 makes it possible to replace the di�cult positivity constraint onp of
Theorem 2.2 with much more easily checked constraints on squares of polynomials
and, by linearity, sums of squares of polynomials, which is at the origin of the name
moment-sum-of-squaresor moment-SOS: the hierarchy relies on the link drawn by
Putinar's P-satz between moments of measures and sums of squares of polynomials.

Remark 2.5 (Ball constraint)
Let g 2 R[x]m and K := f x 2 Rn : g(x) � 0g be a generic compact basic

semialgebraic set. ForR > 0, de�ne

K R := f x 2 Rn : g(x) � 0 ^ j x j2 � R2g = K \ B R ;

whereB R := f x 2 Rn : jx j � Rg is the euclidean ball of radiusR. In such setting, if
K is compact then it is bounded, so that there existsR0 > 0 s.t. 8R � R0, K � B R ,
and thusK = K R . This shows that ifK is compact, it is always possible to add a
redundant ball constraint so that Putinar's P-satz 2.4 holds forK R . For this reason,
we will omit the technical ball constraint in most of this thesis.
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2.1.3 Generalizations

Problems 2 and 3 are actually both particular instances of a more general problem
presented in details in [70, Chapter 1].

Let: � K � X � Rn ; � I; J be sets of indices;

� ' i 2 C(X ); i 2 I; �  j 2 C(K ); j 2 J;

� r i 2 R; i 2 I; � zj 2 R; j 2 J; � c 2 C(K ):

The generalized moment problem is the most general linear optimization problem
with measures as decision variables and generalized moment (i.e. integral) objective
function and constraints.

Problem 4: Original generalized moment problem (GMP)

p?
GM := sup

�

Z
c d� (2.6)

s:t : � 2 M (K )+
Z

' i d� � r i i 2 I
Z

 j d� = zj j 2 J:

Problems 2 and 3 are both instances of Problem 4. Indeed, on the one hand,
taking c = f , I = ? , J = f 0g,  0(x) = 1 , z0 = 1, and minimizing instead of
maximizing, one obtains exactly the formulation (2.3) of Problem 2.

On the other hand, taking c = 0, I = ? , J = � � Nn ,  j (x) = x j , one ends up
with a feasibility problem formulation that exactly matches Problem 3.

In addition to including both Problems 2 and 3 (as well as a variety of other
moment problems) as particular instances, Problem 4 allows for more general formu-
lations that include inequality constraints on some moments of the decision variable
� .

Example 2.6 The volume computation problem is an instance of the GMP(2.6):

p?
K := sup

�

Z
1 d�

s:t : � 2 M (K )+
Z

' d� �
Z

X
' (x) dx 8' 2 C(X )+

whereK � X � Rn , X being compact. We shall prove later on thatp?
K = vol K .

One can compute the dual of the GMP, simply by de�ning the Lagrange multi-
pliers wi 2 R+ , i 2 I (corresponding to the inequality constraints) andvj 2 R, j 2 J
(corresponding to the equality constraints) and performing the standard Lagrange
dualization process, leading to the following problem:



26 CHAPTER 2. NUMERICAL ANALYSIS OF MOMENT PROBLEMS

d?
GM := inf

(wi ) i 2 I
(vj ) j 2 J

X

i 2 I

wi r i +
X

j 2 J

vj zj

s:t :
X

i 2 I

wi ' i +
X

j 2 J

vj  j � c 2 C(K )+

wi 2 R+ i 2 I

vj 2 R j 2 J:

However, this dual formulation is somehow more di�cult to interpret, with sums
over possibly in�nite or even uncountable index setsI and J. Thus, we �rst work
on a rephrazing of Problem 4 allowing for more synthetic dualization: by linearity
of the integration operation, we can consider without loss of generality that the
elements of' := ( ' i ) i 2 I and  := (  j ) j 2 J are linearly independent. Thus, we de�ne:

� Y 0
I := span ' � C (X ) (resp. Y0

J := span  � C (K )) the vector space spanned
by the basis' (resp.  ),

� Y 0
I+ := span+ ' :=

nP K
k=1 wk ' i k : K 2 N? ^ 8 k 2 N?

K ; (wk � 0 ^ ik 2 I)
o

the
convex cone spanned by inequality constraints' ,

� Y I := ( Y0
I )

0 & YJ := ( Y0
J)0 where X 0 := f � 2 C(X ) : � is linearg denotes the

topological dual of the vector spaceX , and h�; � i X := � (� ) for � 2 X 0, � 2 X ,

� Y I+ := ( Y0
I+ )0 = f � 2 Y I : 8' 2 Y 0

I+ ; h'; � i YI � 0g the dual cone ofY0
I+ ,

� � :=

8
><

>:

M (K ) �! Y I

� 7�! [' i 7!
R

' i d� ]
the inequality constraint linear map,

� 	 :=

8
><

>:

M (K ) �! Y J

� 7�! [ j 7!
R

 j d� ]
the equality constraint linear map,

� � := [ ' i 7! r i ] 2 Y I & � := [  j 7! zj ] 2 Y J synthetic optimization paramet-
ers.

This allows us to give a synthetic formulation of (2.6) and its dual.

Problem 5: Synthetic GMP

p?
GM := sup

�

Z
c d� (2.7a)

s:t : � 2 M (K )+

� � � � 2 Y I+

� � 	 � = 0YJ

d?
GM := inf

v;w
hw; � i YI + hv; � i YJ (2.7b)

s:t : � 0w + 	 0v � c 2 C(K )+

w 2 Y 0
I+

v 2 Y 0
J

where� 0 (resp. 	 0) is the adjoint of � (resp. 	 ), de�ned by
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R
(� 0w) d� = hw; � � i YI (resp.

R
(	 0v) d� = hv; 	 � i YJ ).

Problems (2.6) and (2.7a) are equivalent, and so are their duals.
Indeed,

P
i wi ' i ; wi 2 R+ , and

P
j vj  j , vj 2 R, can be approximated withw 2 Y 0

I+
and v 2 Y 0

J respectively.

Example 2.7 The volume problem of Example 2.6 can be reformulated as an in-
stance of (2.7) with no equality constraints, which allows for easy dual formulation
(see [44]):

p?
K = sup

�

Z
1 d� (2.8a)

s:t : � 2 M (K )+

� � � 2 M (X )+

d?
K := inf

w

Z
w d� (2.8b)

s:t : w � 1 2 C(K )+

w 2 C(X )+

where� is the Lebesgue measure onX . Now we show thatp?
K = vol K = d ?

K :
On the primal side: � ? := � K := 1K � is clearly feasible (since1K � 1) and for

any feasible� 2 M (K )+ , � ? � � 2 M (K )+ , thus � ? is optimal and p?
K =

R
1 d� ? =

� (K ) = vol K .
On the dual side: constraints onw can be synthesized asw � 1K ; then, by

density ofC(X ) in the spaceL1(X ) of Lebesgue-integrable functions, any minimizing
sequence(w� )� is such that

R
w� d� �!

� !1

R
1K d� = � (K ) = vol K .

The volume problem will serve as an illustrative example in the rest of this
chapter. It will also be at the center of Chapters 4 and 5.

However, some already existing applications of the moment-SOS hierarchy to dy-
namical and control systems rely on GMP formulations involving multiple measures.
For this reason, we eventually propose the following generalization, where instead
of considering a single measure� 2 M (K )+ , one takes:

� � 1 2 M (X 1)+ , : : :, � N 2 M (X N )+ , whereX k � Y k � Rnk ,

� corresponding costs and parametersc1 2 C(X 1), : : :, cN 2 C(X N ),

� inequality constraint parameters' 1 2 C(Y 1)I; : : : ; ' N 2 C(Y N )I

� equality constraint parameters 1 2 C(X 1)J; : : :,  N 2 C(X N )J,

and de�ne the multi-measure integral

Z
c � d� :=

NX

k=1

Z
ck d� k ;

together with the standard operator notation:

� X := M (X 1) � : : : � M (X N ) , X+ := M (X 1)+ � : : : � M (X N )+

� X 0 := C(X 1) � : : : � C (X N ) 3 c , X 0
+ := C(X 1)+ � : : : � C (X N )+ ,

� Y := YI � Y J , Y+ := YI+ � f 0YJ g , b := ( � ; � ) 2 Y ,
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� Y 0 := Y0
I � Y 0

J , Y0
+ := Y0

I+ � Y 0
J , A � := (� � ; 	 � ) 2 Y ,

� 8 ` := ( w; v) 2 Y 0, h̀ ; bi Y := hw; � i YI + hv; � i YJ

� 8 ` := ( w; v) 2 Y 0, A 0̀ := � 0w + 	 0v so that

hw; � � i YI + hv; 	 � i YJ = h̀ ; A � i Y =
Z

(A 0` ) � d� =
Z

(� 0w + 	 0v) � d� ;

which allows us to write the following abstract rephrazing of the GMP and its dual:

Problem 6: Abstract multivariate GMP

p?
GM := sup

�

Z
c � d� (2.9a)

s:t : � 2 X +

b � A � 2 Y+

d?
GM := inf

`
h̀ ; bi Y (2.9b)

s:t : A 0` � c 2 X 0
+

` 2 Y 0
+

By construction, Problems 4 and 5 are particular instances of Problem 6. In
fact, all the in�nite dimensional optimization problems that we will consider in this
thesis are instances of this general Problem 6.

Example 2.8 The �nite time region of attraction (ROA) problem is another par-
ticular instance of the GMP (2.9), see [42]:

p?
ROA := sup

�;�;�

Z
1 d�

s:t : � 2 M (X )+

� 2 M (I � X )+

� 2 M (K )+

� � � 2 M (X )+

@t � + div( � f ) = � 0 � � � T �

d?
ROA := inf

v;w

Z
w d�

s:t : w � v(0; �) � 1 2 C(X )+

� @tv � f � grad v 2 C(I � X )+

v(T; �) 2 C(K )+

w 2 C(X )+

v 2 C1(I � X )

where I := [0; T], T > 0 and K � X � Rn , X being compact. Herec = (1 ; 0; 0),
�( �; �; � ) = � , 	( �; �; � ) = @t � + div( � f ) + � T � � � 0 � , � = ( �; 0; 0), � = (0 ; 0; 0).
Then, � 0w = ( w;0; 0) and 	 0v = ( � v(0; �); � @tv � f � grad v; v(T; �)) .

We will have the opportunity to give more detailed explanations on this problem
in Chapters 3 and 6.

2.1.4 In�nite dimensional duality ?

This section only aims at stating a technical theorem that we will use all along this
thesis to prove strong duality in our GMP instances.

Lagrangian duality is a rich notion that makes it possible to consider two view-
points when faced to an optimization problem. We �rst introduced it in Section
2.1.1 where we gave a primal probabilistic viewpoint (2.4a) as well as a dual ana-
lytic viewpoint (2.4b) to the POP (2.1). Then we introduced generic duality in the
GMP with formulations (2.7) and (2.9).
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Figure 2.2 � A possible aspect of Lagrangian for univariate optimization.

The primal problem maximizes the Lagrangian while staying on the concave curve,
and the dual problem minimizes the Lagrangian while staying on the convex curve.
Image source � �A saddle point�, Intro to optimization in deep learning: Gradient Descent, Ayoosh Kathuria.

Let us �rst go back to the dual formulation. Starting from (2.9a), the dual (2.9b)
is obtained by rephrazing the problem in terms of Lagrangian:

p?
GM = sup

� 2X +

inf
` 2Y 0

+

L (� ; ` ) (2.10a) �! d?
GM := inf

` 2Y 0
+

sup
� 2X +

L (� ; ` ) (2.10b)

where the Lagrangian functional is de�ned by

L (� ; ` ) :=
Z

c � d� + h̀ ; b � A � i Y =
Z

(c � A 0` ) � d� + h̀ ; bi Y ;

both expressions being equivalent by de�nition of the adjoint operatorA 0.
Indeed, by de�nition of the dual coneY0

+ , for any � 2 X + ,

inf
` 2Y 0

+

L (� ; ` ) =

8
><

>:

Z
c � d� if b � A � 2 Y+

�1 else.

Then, since�1 <
R

c � d� , (2.10a) is actually equivalent to (2.9a). Eventually,
to formulate the dual problem, one only needs to switch thesup and inf operators,
and do the reverse reasoning to show that (2.10b) is equivalent to (2.9b).

No matter the subject, considering several viewpoints for a given problem helps
understanding it, and each viewpoint has its special features that allow for elegant
proofs or convenient practical implementations. However, in order to be able to
freely switch between primal and dual formulations of a given problem, one needs
an essential property: the optimum should not depend on the viewpoint, meaning
that one has to ensure thatp?

GM = d ?
GM . This is the strong duality property.

In general, strong duality is not guaranteed, and one only has:

Proposition 2.5: Weak duality

It always holds that p?
GM � d?

GM .
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Proof : Let � 2 X + ; ` 2 Y 0
+ . It is clear that inf

m 2Y 0
+

L (� ; m) � L (� ; ` ).

Then, one can take the supremum over all� 2 X + to get that p?
GM � sup

� 2X +

L (� ; ` ).

Eventually, taking the in�mum over all ` 2 Y 0
+ yields p?

GM � d?
GM . }

For the GMP, one can prove an elegant theorem to easily guarantee strong duality
in practice.

Theorem 2.6: Strong duality in the GMP

Suppose that there existsC > 0 s.t. if � = ( � 1; : : : ; � N ) 2 X + is such that
b � A � 2 Y+ , then for all k 2 N?

N , � k(X k) � C . Suppose that there exists
such � . In that case,

p?
GM = d ?

GM :

Moreover, (2.9a) has an optimal solution� ? 2 X + s.t.

b � A � ? 2 Y+ &
Z

c � d� ? = p ?
GM :

Proof : We rely on [11, Theorem (7.2), Lemma (7.3)]. Consider the cone

K :=
��

A � ;
Z

c � d�
�

: � 2 X +

�

� Y � R:

According to [11, Theorem (7.2)] we only have to prove thatp?
GM < 1 and K is

closed. Clearly,
p?

GM � k ck1 k� kT V � k ck1 N C < 1 ;

where kck1 := max k supx k 2 X k
ck(xk) is �nite and k� kT V :=

P
k � k(X k) � N C.

Besides, [11, Lemma (7.3)] states that forK to be closed, it is su�cient to prove
that X+ has a weak-� compact, convex base, and that

8� 2 X + ;
�

A � ;
Z

c � d�
�

= ( 0Y ; 0) =) � = 0X : (� )

We �rst exhibit a weak-� compact convex base forX+ = M (X 1)+ � : : : � M (X N )+ .
Let

P :=
�

� 2 X + :
Z

1 � d� = 1
�

;

where 1 = ( x1 7! 1; : : : ; xN 7! 1) 2 C(X 1) � : : : C(X N ). P is a base ofX+ in the
sense thatX+ n f 0X g is isomorphic to R++ � P through the bijective application
� : (t; � ) 7! t � . Indeed, any� 2 X + n f 0X g has a unique antecedent by� , given
by

� = t � with: t :=
Z

1 � d� =
NX

k=1

� k(X k) > 0 & � :=
1
t
� :

P is convex sinceX+ is convex and for anyt 2 [0; 1], � 1; � 2 2 P , e� := t� 1+(1 � t)� 2,
Z

1 � de� = t
Z

1 � d� 1 + (1 � t)
Z

1 � d� 2 = t + 1 � t = 1:
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P is weak-� closed as the intersection between the level-1 set of the weak-� continuous
functional � 7!

R
1 � d� and the weak-� closed coneX+ .

Eventually, P � X � 1 := f � = ( � 1; : : : ; � N ) 2 X : 8k 2 N?
N ; k� kkT V � 1g, where

k� kT V := supf
R

' d� : j' j � 1g is the total variation norm. The Banach-Alaoglu
theorem [15, Theorem 3.16] ensures thatX� 1 is weak-� compact, yielding that P
is a weak-� closed subset of a weak-� compact set and thus a weak-� compact set
itself.

It remains to prove (� ). Let � ? 2 X + s.t. A � ? = 0Y and
R

c � d� ? = 0. We
want to prove that � ? = 0X so that (� ) holds.

Let � (0) 2 X + s.t. b � A � (0) 2 Y+ . De�ne for t � 0 � (t ) := � (0) + t � ? .
Let t � 0. Since X+ is a convex cone,� (t ) 2 X + ; in addition, by construction
b � A � (t ) = b � A � (0) is in Y+ , so that our assumption ensures that for any
k 2 N?

N , � (t )
k (X k) � C. However,� (t )

k (X k) = � (0)
k (X k) + t � ?

k (X k) � t � ?
k (X k).

This yields that for all t � 0, k 2 N?
N ,

0 � t � ?
k (X k) � C;

which is only possible if� ?
k (X k) = 0 8k 2 N?

N , i.e. if � ? = 0X . }

Example 2.9 Consider the global POP:

p?
f = min

�

Z
f d� (2.4a)

s:t : � 2 M (K )+

� (K ) = 1

d?
f = max

`
` (2.4b)

s:t : f � ` 2 C(K )+

` 2 R

We already know that optimal values are attained and thatp?
f = d ?

f = f ?. How-
ever, this fact can also be proved using Theorem 2.6: any� 2 M (K )+ s.t. � (K ) = 1
satis�es � (K ) � C as long asC � 1, and the set of probability measures over
nonemptyK is nonempty. Thus,p?

f is attained and strong duality holds:p?
f = d ?

f .

Example 2.10 Consider the volume problem:

p?
K = sup

�

Z
1 d�

s:t : � 2 M (K )+

� � � 2 M (X )+

d?
K := inf

w

Z
w d�

s:t : w � 1 2 C(K )+

w 2 C(X )+

We already know that primal optimum is attained and thatp?
K = d ?

K = vol K .
However, this fact can also be proved using Theorem 2.6: any� 2 M (K )+ s.t.
� � � 2 M (X )+ satis�es � (K ) � � (K ) =: C, and the set of such measures is
nonempty (for instance, it contains the null measure0). Thus, p?

K is attained and
strong duality holds:p?

K = d ?
K .

Example 2.11 In Chapter 3 we will use Theorem 2.6 to prove strong duality for
the �nite time region of attraction problem of Example 2.8.
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Remark 2.12 (Motivation for strong duality results)
As stated at the beginning of this section, strong duality �rst allows tapping into

both versions of the same problem, depending on which property one intends to use,
without changing the optimal value of the problem.

However, it is not the only interest for proving strong duality: as we will show
later on, strong duality in the GMP is a �rst sign that the derived �nite dimensional
approximation problems should be well behaved when numerically addressed through
optimization algorithms.
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2.2 The moment-SOS hierarchy

After giving an insight on the generalized moment problem and in�nite dimensional
linear programming in Section 2.1, we now proceed to detail a method to compute
approximate solutions of such problems, namely Lasserre's moment-SOS hierarchy.
We �rst introduce the primal, moment hierarchy, that directly exploits previously
introduced results to give a �nite dimensional counterpart to the moment problem
(2.9a). Then, we detail the dual, SOS hierarchy for problem (2.9b), manipulating
simpler objects such as functions and polynomials instead of measures and moments.
Eventually, as in the previous section, we state a strong duality theorem for the
moment-SOS hierarchy, as well as some useful additional results.

2.2.1 Moments

We �rst focus on the primal (2.9a) on measures, as the moment hierarchy is quickly
stated using theorem 2.4. For the sake of clarity and without loss of generality, we
work with the particular instance of the volume problem:

p?
K = sup

�

Z
1 d� (2.8a)

s:t : � 2 M (K )+

� � � 2 M (X )+ ;

with K � X � Rn compact sets. The moment hierarchy consists in replacing the
decision variable� 2 M (K )+ with the sequence of its momentszk =

R
x k d� .

To ensure that this does not change the problem, we invoke Putinar's P-satz 2.4 to
guarantee that we really work with moment sequences corresponding to actual meas-
ures, and not generic multi-index sequences. However, using Theorem 2.4 requires
an additional assumption onK and X .

Assumption 2.7: Compact basic semialgebraic sets

9 mK ; mX 2 N, RK ; RX 2 R++ , gK 2 R[x]mK , gX 2 R[x]mX s.t.

gK ;m K (x) = R2
K � j x j2; gX ;m X (x) = R2

X � j x j2;

K = f x 2 Rn : gK (x) � 0g; X = f x 2 Rn : gX (x) � 0g:

In words, K and X are basic semialgebraic sets with a ball constraint in their
description. According to Remark 2.5, up to adding a redundant ball constraint,
this is equivalent to assumingK and X to be compact basic semialgebraic sets.

Assumption 2.7 allows us to use Theorem 2.4 and reformulate the volume prob-
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lem (2.8a):

p?
K = sup

z
z0

s:t : z = ( zk )k 2 Nn 2 RNn

8p 2 R[x] 0 � Lz(p2) �
Z

X
p(x)2 dx

8p 2 R[x] Lz(gK ;i p2) � 0 i 2 N?
mK

8p 2 R[x] Lz(gX ;i p2) �
Z

X
gX ;i (x) p(x)2 dx i 2 N?

mX
:

Here, according to Putinar's P-satz 2.4, we ensure thatz is the moment sequence of
a measure� 2 M (K )+ by enforcingLz(p2) � 0 and Lz(gK ;i p2) � 0 for all p 2 R[x]
and i 2 N?

mK
. Similarly, the upper bounding constraints on the Riesz functionals

ensure that the measure� � � , whose moment sequence is(
R

X x k dx � zk )k 2 Nn , is
nonnegative onX .

Then, Lasserre's moment hierarchy only consists in relaxing the moment con-
straints by replacing the in�nite dimensional test spaceR[x] with the dimension
D d

n :=
�

n+ d
n

�
test spaceRd[x ] of degree at mostd polynomials, reducing the search

to �nite pseudo-momentsequences:

pd
K := sup

z
z0 (2.11)

s:t : z = ( zk ) jk j� 2d 2 RNn
2d

8p 2 Rd[x ] 0 � Lz(p2) �
Z

X
p(x)2 dx

8p 2 Rd� dK ;i [x ] Lz(gK ;i p2) � 0 i 2 N?
mK

8p 2 Rd� dX ;i [x ] Lz(gX ;i p2) �
Z

X
gX ;i (x) p(x)2 dx i 2 N?

mX
;

where jk j = k1 + � � � + kn , Nn
2d := f k 2 Nn : jk j � 2dg, dK ;i := dd� gK ;i =2e and

dX ;i := dd� gX ;i =2e so that the moment constraints only involve thezk for jk j � 2d.
The fundamental di�erence between problems (2.8a) and (2.11) is that the former

is an in�nite dimensional linear cone programming problem, while the latter is a
�nite dimensional semide�nite programming problem whose constraints can be re-
formulated as Linear Matrix Inequalities (LMI), through the following de�nition.

De�nition 2.8: Localizing & moment matrices

Let d; dg 2 N, g 2 Rdg [x ]. Let ed(x) := ( ei (x)) i � D d
n

be a basis ofRd[x ].
Let z = ( zk ) jk j� 2d+ dg 2 RNn

2d+ dg , where we recall thatjNn
d j = D d

n =
�

n+ d
n

�
.

� The degreed localizing matrix Md(g z) of z in g is de�ned as the sizeD d
n

matrix representation in basised(x) of the bilinear application

(p; q) 2 Rd[x ]2 7�! Lz(g p q):

� The degreed moment matrix of z is de�ned asMd(z) := M d(1 z).
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The localizing matrix is de�ned so that if p(x) = p � ed(x) and q(x) = q � ed(x),
p; q 2 RD d

n , then

Lz(g p q) = p> Md(g z) q & L z(g p2) = p> Md(g z) p:

Example 2.13 Let us focus on univariate polynomials (n = 1): z = ( zk)1� k� 2d+ dg .
Let d = 2, g(x) := 1 � x2, e2(x) := (1 ; x; x2). Then, z = ( z1; z2; z3; z4; z5; z6) and

� M2(z) =

0

B
B
B
@

z0 z1 z2

z1 z2 z3

z2 z3 z4

1

C
C
C
A

� M2(g z) =

0

B
B
B
@

z0 � z2 z1 � z3 z2 � z4

z1 � z3 z2 � z4 z3 � z5

z2 � z4 z3 � z5 z4 � z6

1

C
C
C
A

Now let n = 2, d = 1, g(x; y) = 1 + x � y, e1(x; y) := (1 ; x; y).
Then, z = ( z00; z10; z01; z20; z11; z02; z30; z21; z12; z03) and

� M1(z) =

 
z00 z10 z01

z10 z20 z11

z01 z11 z02

!

� M1(g z) =

 
z00 + z10 � z01 z10 + z20 � z11 z01 + z11 � z02

z10 + z20 � z11 z20 + z30 � z21 z11 + z21 � z12

z01 + z11 � z02 z11 + z21 � z12 z02 + z12 � z03

!

Remark 2.14 (Localizing matrix computation)
One can observe the general property that ifMd(z) = ( mij ) ij is represented by its

coe�cients, and ed(x) = ( x k i ) i is a basis of monomials, thenmij = mji = zk i + k j ,
so that the moment matrix computation is straightforward.

Also, always taking a basis of monomials(x k i ) i as ed(x), if g(x) =
P

k gk x k and
Sk 0 := ( zk )k 7! (zk + k 0 )k is the shift operator, thenMd(g z) =

P
k gk Md(Sk z), so

that the localizing matrix is quickly deduced from the moment matrix.
For this reason, we de�ne the shift mapz 7! g z :=

P
k gk Sk z.

Eventually, if zk =
R

x k d� for some nonnegative measure� , then one has the
following relation between� and Md(z):

Md(z) =
Z

ed(x) ed(x)> d� (x) � 0;

where for a symmetricM 2 Sn , M � 0 means thatM is positive semide�nite i.e.
M 2 Sn

+ .

In the rest of this thesis, we work with a basis of monomialsed(x) = ( x k i ) i . The
interest of De�nition 2.8 is that it characterizes nonnegativity of p 7! Lz(g p2) as
positive semide�niteness ofMd(g z), allowing us to reformulate problem (2.11) as:

Problem 7: Moment relaxation hierarchy

For d 2 N? large enough, compute

pd
K := sup

z
z0 (2.12)

s:t : z = ( zk ) jk j� 2d 2 RNn
2d

0 � Md(z) � Md(l )

Md� dK ;i (gK ;i z) � 0 i 2 N?
mK

Md� dX ;i (gX ;i (l � z)) � 0 i 2 N?
mX

;
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where l := (
R

X x k dx) jk j� 2d is the truncated moment sequence of the Lebesgue
measure onX and M � N means that N � M � 0. Here we are faced with a �nite
dimensional optimization problem whose constraints are written under the form of
size D d

n LMIs, so that it can be tackled by semide�nite programming solvers, at
least for small values ofD d

n .
In order to formulate the moment hierarchy, werelaxedthe in�nite dimensional

constraint that a sequence should represent a measure, intoless restrictive�nite di-
mensional semide�nite positivity constraints on localizing matrices. In other words,
the feasible set for (2.12) islarger than the feasible set for (2.8a), in the sense that
if z represents a feasible measure� for (2.8a), then it is feasible for the (2.12). For
these reasons, the moment hierarchy is said to be ahierarchy of relaxations, and
p?

K � pd
K .

The same reasoning allows us to de�nepd
GM � p?

GM as long asc and the ' k

and  k can be chosen as families of polynomials, which is the case ifY0 is dual
to a space ofCk functions with compact supports, allowing the use of the Stone-
Weierstraÿ theorem to reformulate all constraints into moment constraints.

We end this section with a quite useful result .

Lemma 2.9: Pseudo moment sequences boundedness

Let d 2 N?, R > 0, z 2 RNn
s.t. Md(z) � 0 & Md� 1((R2 � j � j 2) z) � 0. Then,

max
jk j� 2d

jzk j � z0 max(1; R2d):

In words, asking for the moment matrix and the ball-localizing matrix to
be positive semide�nite ensures uniform boundedness of the pseudo-moment
sequence.

Proof : Md(z) � 0 is equivalent to

8p 2 Rd[x ]; Lz(p2) � 0; (a)

while Md� 1((R2 � j � j 2) z) � 0 means that

8p 2 Rd� 1[x ]; Lz((R2 � j � j 2) p2) � 0: (b)

(a) with p(x) = x k , jk j � d yields z2k � 0.
(b) with p(x) = 1 yields R2z0 �

P
jk j=1 z2k , sincejx j2 =

P n
j =1 x2

j =
P

jk j=1 x2k .
Hence, since thez2k are nonnegative, one hasjk j = 1 ) z2k � R2z0.

Going forward, if jk j = 1, (b) with p(x) = x k yields R2z2k �
P

jk 0j=1 z2(k + k 0) with
z2(k + k 0) � 0 by (a), so that R4z0 � R2zk � z2(k + k 0) as long asjk j = jk0j = 1, and
thus, if jk j = 2, R4z0 � z2k . By induction, one has fork 2 Nn

d that

0 � z2k � R2jk jz0 � z0 max(1; R2d): (c)

Let k; k0 2 Nn
d . Then, (a) with p(x) = x k � x k 0

yields0 � Lz(p2) = z2k � 2zk + k 0+ z2k 0

so that

jzk + k 0j �
z2k + z2k 0

2
� max(z2k ; z2k 0)

(c)
� z0 max(1; R2d): (d)
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Eventually, any k 2 Nn
2d can be written k = k0 + k00with k0; k002 Nn

d , so that it
satis�es (d), and jzk j � z0 max(1; R2d).

}
This lemma proves several important things, among which any nonzero feasible
vector z for (2.11) satis�es z0 > 0, and if RX � 1 in Assumption 2.7 andz0 � C
is enforced, then for alld 2 N, z feasible for (2.11) satis�esjzk j � C 8k. These
features of pseudo-moment sequences will be useful to state important results in
Section 2.2.3.

2.2.2 Sums of squares

We then proceed with the dual (2.9b) on continuous functions, that are more com-
monly used than measures in the �eld of automatics. For the sake of clarity and
without loss of generality, we keep working with the particular instance of the volume
problem:

d?
K = inf

w

Z
w d� (2.8b)

s:t : w � 1 2 C(K )+

w 2 C(X )+ ;

with K � X � Rn compact sets. First, the Stone-Weierstraÿ theorem allows ap-
proximating the function w with polynomials without changing the value of the
problem, yielding:

d?
K = inf

w

Z
w d�

s:t : w � 1 2 R (K )+

w 2 R (X )+ ;

where R(X )+ := R[x] \ C (X )+ is the cone of polynomials that are nonnegative
on X . Here the problem of deciding whether a polynomial is nonnegative on a set
appears once again. However, we now give a theorem to tackle this di�culty when
X and K are compact basic semialgebraic sets.

To state our theorem, we introduce the notion of quadratic module:

De�nition 2.10: Quadratic module

Let m 2 N?, g 2 R[x]m . We de�ne:

� The cone �[ x] := f p2
1 + : : : + p2

K : K 2 N ^ p1; : : : ; pK 2 R[x]g of
polynomial sums of squares(SOS)

� The quadratic module(cone) �( g) := f s0 + s� g : s0 2 �[ x]^ s 2 �[ x]mg.

The notion of quadratic module is instrumental in the statement of a dual version
of Theorem 2.4, that is also called Putinar's Positivstellensatz.
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Theorem 2.11: Putinar's (dual) Positivstellensatz (P-satz)

Let g 2 R[x]m , R > 0, K := f x 2 Rn : g(x) � 0 ^ j x j2 � R2g. Then,

R(K )++ � �
�
g; R2 � j � j 2

�
;

whereR(X )++ := f p 2 R[x] : 8x 2 X ; p(x) > 0g.

In words, any polynomialq 2 R[x] that is positive on K can be written

q(x) = s0(x) + s(x) � g(x) + sR(x) (R2 � j x j2)

with (s0; s; sR) 2 �[ x ]m+2 .
Theorem 2.11 is the actual formulation [107, Theorem 1.3] Putinar presented as

the Positivstellensatz in his paper, while its primal formulation 2.4 is a lemma he
stated to prove it. In [107], Putinar proved that these two di�erent formulations are
equivalent. In terms of duality: positivity of q is dual to existence of the measure
� , s0 is dual to Lz(p2) � 0, s is dual to the Lz(gi p2) � 0, and sR is dual to
Lz((R2 � j x j2) p2) � 0.

Thus, under Assumption 2.7, Theorem 2.11 ensures that any nonnegative poly-
nomial p 2 R (K )+ (resp. R(X )+ ) can be approximated with positive polynomials
p + � 2 �( gK ) (resp. �( gX )), � > 0, so that (2.8b) can be reformulated as

d?
K = inf

w

Z

X
w(x) dx

s:t : w � 1 2 �( gK )

w 2 �( gX ):

Then, the Lasserre SOS hierarchy simply consists in restricting the feasible set
to given �nite degree d 2 N. To write such a rephrazing in a synthetic way, we
introduce a notion of �nite dimensional quadratic module.

De�nition 2.12: Bounded degree quadratic module

Let g 2 R[x]m , d 2 N. For i 2 N?
m , de�ne di := dd� gi =2e the half degree of

the i -th component ofg. We de�ne:

� The cone� d[x ] := �[ x ] \ R2d[x ] of SOS polynomials of degree2d or less

� The degree2d quadratic module

� d(g) := f s0 + s � g : s0 2 � d[x ] ^ 8 i 2 N?
m ; si 2 � d� di [x ]g � R2d[x ]:

This last de�nition allows us to formulate a new �nite degree optimization prob-
lem:
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Figure 2.3 � SOS hierarchy for the length of[� 0:5; 0:5].

The SOS hierarchy yields a polynomialwd represented in red, whose integral ap-
proximates by above the area below the blue curve.

Problem 8: Sums-of-squares strengthening hierarchy

For d 2 N? large enough, compute

dd
K := inf

w

Z

X
w(x) dx (2.13)

s:t : w � 1 2 � d(gK )

w 2 � d(gX ):

The fundamental di�erence between problems (2.8b) and (2.13) is that the former
is an in�nite dimensional linear cone programming problem, while the latter is a
�nite dimensional semide�nite programming problem. Indeed, the following result
holds (see [70, Proposition 2.1.]):

Proposition 2.13: SOS programming

Let s 2 R2d[x ] be a degree2d polynomial, d 2 N. Let ed(x) be a basis of
Rd[x ].
Then, s 2 � d[x ] i� there exists a positive semide�nite real matrixS 2 SD d

n
+

s.t.
s(x) = ed(x)> S ed(x):

In words, deciding whethers is SOS reduces to a sizeD d
n Linear Matrix Inequality

(LMI) feasibility problem, tractable on a computer for small values ofD d
n .

In order to formulate the SOS hierarchy, westrengthenedthe in�nite dimensional
nonnegativity constraints into more restrictive �nite dimensional SOS constraints.
In other words, the feasible set for (2.13) issmallerthan the feasible set for (2.8b), in
the sense that feasibility for the former is su�cient to ensure feasibility for the latter.
For these reasons, the SOS hierarchy is said to be ahierarchy of strengthenings, and
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d?
K � dd

K (see Figure 2.3).
The same reasoning allows us to de�nedd

GM � d?
GM as long asc and the ' k

and  k can be chosen as families of polynomials, which is the case ifY0 is dual
to a space ofCk functions with compact supports, allowing the use of the Stone-
Weierstraÿ theorem to reformulate all constraints into moment constraints.

The approximation power of the SOS hierarchy comes from the following the-
orem:

Theorem 2.14: Convergence of the SOS hierarchy

Under Assumption 2.7,(dd
GM )d converges monotonically towardsd?

GM :

dd
GM &

d!1
d?

GM :

Proof : Monotonicity of (dd
GM )d is a direct consequence of the fact that we are

dealing with a hierarchy of strengthenings: increasingd is equivalent to relaxing
constraints, making it possible to go further in the minimization problem, so that
dd+1

GM � dd
GM .

Convergence comes from the way we formulated the hierarchy, so that it is suf-
�cient to prove it for the volume problem (2.8b): let � > 0. Since

d?
K = inf

w

Z

X
w(x) dx

s:t : w � 1 2 �( gK )

w 2 �( gX );

there existsw� 2 �( gX ) such that w� � 1 2 �( gK ) and d?
K �

Z
w� (x) dx � d?

K + � .

Sincew� is a (�nite degree) polynomial, there existsd1; d2 2 N s.t. w� � 1 2 � d1 (gK )
and w� 2 � d2 (gX ). Thus, taking d = d0 := max( d1; d2), w� is feasible for problem
(2.13), which yields that

d?
K � d(d0 )

K �
Z

w� (x) dx � d?
K + �:

Monotonicity �nally ensures that for all d � d0, d?
K � dd

K � d?
K + � , which is the

de�nition of convergence of(dd
K )d to d?

K . }

2.2.3 Duality in the hierarchy ?

As in the in�nite dimensional case of section 2.1, we study the duality properties of
the moment-SOS hierarchy.

Skipping the details, duality between the P-satz formulations 2.4 and 2.11 as
well as the Lagrangian function

L (z; w) := z0 +
Z

X
w(x) dx � Lz(w);
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where z = ( zk ) jk j� 2d 2 RNn
2d has positive semide�nite moment andgK localization

matrices andw 2 � d(gX ), can be used to prove that the semide�nite programming
problems (2.12) and (2.13) are dual w.r.t. each other.

A direct consequence of this fact is that the weak duality property of Proposition
2.5 also holds for the moment-SOS hierarchy:pd

K � dd
K , and more generally

pd
GM � dd

GM ;

as the moment and SOS hierarchies are always dual w.r.t. each other.
The weak duality property allows us to prove convergence of the moment hier-

archy.

Theorem 2.15: Convergence of the moment hierarchy

Suppose that strong duality holds for the GMP:p?
GM = d ?

GM . Then, under
Assumption 2.7,(pd

GM )d converges monotonically towardsp?
GM :

pd
GM &

d!1
p?

GM :

Proof : Monotonicity of (pd
GM )d is a direct consequence of the fact that we

are dealing with a hierarchy of relaxations: decreasingd is equivalent to relaxing
constraints, making it possible to go further in the maximization problem, so that
pd� 1

GM � pd
GM .

Then, one has, ford 2 N,

d?
GM

strong duality
= p ?

GM

relaxation
� pd

GM

weak duality
� dd

GM ;

so that one easily concludes using Theorem 2.14 and the sandwich rule. }

Remark 2.15 (Application of strong duality in the GMP)
Theorem 2.16 is a good example of the relevance of Theorem 2.6. Indeed, for

Theorem 2.16 to hold, i.e. for the moment hierarchy to actually approximate the
GMP, one needs strong duality in the GMP. More generally, strong duality in the
GMP is a necessary condition for the moment-SOS hierarchy to work at its full
potential.

Of course, the strong duality Theorem 2.6 has a hierarchy counterpart that we
are now going to state. For the sake of simplicity, in the rest of this section we
suppose thatN = 1 in Problem 6. All the following results still hold with several
measures as decision variable, at the price of less readable proofs.

Theorem 2.16: Strong duality in the hierarchy

Suppose that there existsC > 0 s.t. if z 2 RNn
2d is feasible for the degreed

relaxation of (2.9a), thenz0 � C. Suppose that there exists suchz. In that
case, under Assumption 2.7,

pd
GM = d d

GM :

Moreover, the degreed relaxation of (2.9a) has an optimal solutionzd 2 RNn
2d .
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Proof : We illustrate the proof with the moment-SOS hierarchy associated to the
volume problem (2.8). The exact same proof can be generalized to the GMP (2.9)
at the price of introducing all the notations for the general moment-SOS hierarchy,
which does not bring any additional theoretical insight. The proof is similar in spirit
to the one of Theorem 2.6. The only change is that the coneK that we consider is
now di�erent, so we only detail the part on closedness of

Kd :=
n
(A d z; c � z) : z 2 RNn

2d feasible for the degreed relaxation
o

;

where in the case of (2.11)Ad z =
�
Md(z); (M d� dX ;i (gX ;i z)) i 2 N?

m X

�
is a localizing

matrix operator, and ck = 0 if k 6= 0, c0 = 1. In general, Ad : RD 2d
n ! V is a

generic linear map onto a �nite dimensional real vector spaceV, and c 2 RD 2d
n a

generic vector of coe�cients, so we will do the proof with abstractAd and c. As for
Theorem 2.6, we only need to exhibit a compact convex basePd of

Xd+ :=
n
z 2 RD 2d

n : Md(z) � 0 ^ 8 i 2 N?
mK

; Md� dK ;i (gK ;i z) � 0
o

to prove that Kd is closed. To that end, we de�ne

Pd := f z = ( zk )k 2 X d+ : z0 = 1g:

Pd is a base ofXd+ in the sense thatXd+ nf 0g is isomorphic toR++ �P d through
the bijective application � d : (t; p) 7! t p, with � � 1

d (z) = ( z0; z=z0) (using Lemma
2.9, for anyMd(z) and Md0((R2 � j x j2) z) to be simultaneously positive semi-de�nite
with z 6= 0, it is necessary thatz0 > 0).

Pd is convex. Indeed, letp1; p2 2 P d, t 2 [0; 1], ep := t p1 + (1 � t) p2. Then, by
linearity of the localizing matrix operator,

8g 2 R[x] Md(g ep) = t Md(g p1) + (1 � t) M d(g p2);

so that its semide�nite positiveness is preserved by convex combination, by convexity
of Sn

+ for any n 2 N. Thus, ep 2 X d+ . Besides,

ep0 = t p10 + (1 � t) p20 = t + 1 � t = 1

so that ep 2 P d, which proves convexity.
We now move on to showing compactness ofPd. According to Lemma 2.9,

the ball constraint in the description of K and the upper boundz0 � C yield
boundedness ofPd.

In addition, Pd is closed as the intersection between the level-1 set of the continu-
ous functionz 7! z0 and the closed coneXd+ . IndeedXd+ is closed as the pre-image
of the closed cone(SD 2d

n
+ )mK +1 by the (continuous) linear map

z 7!
�
Md(z); (M d� dK ;i (gK ;i z)) i 2 N?

m K

�
:

Since �nite dimensional closed bounded sets are compact, this proves thatPd is
compact.

Finally, Pd is indeed a compact convex base ofXd+ , and the rest of the proof is
identical to what we did for Theorem 2.6. }
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Remark 2.16 (Motivation for strong duality in the hierarchy)
Strong duality in the hierarchy has a special �avor as it has a direct in�uence

on numerical computation of approximate solutions to the GMP. Indeed, most SDP
solvers are primal-dual solvers that solve both the primal and dual instances of the
studied semide�nite programming problem.

Moreover, most often a duality gapdd
GM � pd

GM > 0 will lead to numerical issues
in the associated LMIs, which makes checking strong duality in the moment-SOS
hierarchy an important condition to assess the e�ciency of the numerical scheme.

Eventually, the existence of an optimal pseudo-moment sequence is also a very
important guarantee that the semide�nite solvers will converge.

We conclude this chapter with a strong theorem on the pointwise convergence of
the Lasserre hierarchy's pseudo-moment sequences.

Theorem 2.17: Convergence of the pseudo-moment sequences

Suppose that (2.9a) has a unique minimizer� ? with support K included in
the unit ball B . Then, under the hypotheses of Theorem 2.16, there exists
an optimal sequence(zd)d2 N of optimal feasible pseudo-moment sequences for
the hierarchy s.t. Lzd (c) = p d

GM and for all k 2 Nn ,

zd;k �!
d!1

Z
x k d� ?(x):

Moreover, this automatically yields strong dualitypd
GM = d d

GM & p?
GM = d ?

GM .

Proof : Existence of(zd)d follows from Theorem 2.16, so we focus on the proof
of convergence. Letd 2 N. For k 2 Nn , de�ne

ẑd;k :=

8
><

>:

zd;k if jk j � 2d;

0 else;

so that ẑd 2 RNn
with

kẑdk`1 (Nn ) := max
k 2 Nn

jẑd;k j = max
jk j� 2d

jzd;k j
Lemma 2.9

� zd;0 � C:

Then, (ẑd)d2 N is a uniformly bounded sequence of

`1 (Nn ) :=
�

u 2 RNn
: max

k 2 Nn
juk j < 1

�

= `1(Nn )0;

where `1(Nn ) :=
n
u 2 RNn

:
P

k 2 Nn juk j < 1
o

: Thus, the Banach-Alaoglu theorem
yields a weak-� converging subsequence(ẑdr )r 2 N: 9z1 2 `1 (Nn ); 8u 2 `1(Nn ),

X

k 2 Nn

uk zdr ;k �!
r !1

X

k 2 Nn

uk z1 ;k :

In particular, if k 2 Nn , zdr ;k �!
r !1

z1 ;k . Thus, what we want to show is that for

k 2 Nn , z1 ;k = z?
k :=

R
x k d� ?(x).
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Without loss of generality we focus on the relaxations of problem (2.8a).
Let l := (

R
X x k dx)k 2 Nn be the moment sequence of the Lebesgue measure onX .

Let p 2 R[x]. Then, for all r 2 N big enough, by feasibility ofzdr for the
relaxation of degreedr , one has

� [0; L l (p2)] 3 Lzdr
(p2) = L ẑdr

(p2) �!
r !1

Lz1 (p2)

� 0 � Lzdr
(gK ;i p2) = L ẑdr

(gX ;i p2) �!
r !1

Lz1 (gK ;i p2)

� 0 � L l � zdr
(gX ;i p2) = L l � ẑdr

(gX ;i p2) �!
r !1

L l � z1 (gX ;i p2)
so that according to Putinar's P-satz 2.4,z1 is the actual moment sequence of

a measure� 1 that is feasible for problem (2.8a). Then, one directly has

p?
K �

Z
1 d� 1 = z1 ;0 = lim

r !1
ẑdr ;0 = lim

r !1
pdr

K � p?
K

since for anyd 2 N pd
K � p?

K . Hence,
R

1 d� 1 = p ?
K , i.e. � 1 is optimal for problem

(2.8a). By our uniqueness assumption, this yields� 1 = � ?, i.e. z1 = z?. Thus,
(ẑd)d has a unique weak-� accumulation point z?, which means that for anyk 2 Nn ,

zd;k �!
d!1

z?
k =

Z
x k d� ?(x):

Eventually, Theorem 2.16 ensures strong dualitypd
GM = d d

GM , so that putting to-
gether weak GMP duality and the strenghtening property, one has

p?
GM

weak duality
� d?

GM

strenghtening
� dd

GM

strong duality
= p d

GM

convergence
�!
d!1

p?
GM

and the sandwich rule again yields strong GMP duality. }

Remark 2.17 (An �all inclusive� theorem)
Theorem 2.17 shows that the hypotheses of Theorem 2.16 for strong duality in the

hierarchy are almost su�cient for the pseudo-moment sequences of the relaxations
to converge pointwise to the moments of the optimal solution of the GMP(2.9a) and
for full strong duality to hold.

In practice we will design instances of the GMP such that Theorem 2.17 holds,
so that we automatically obtain strong duality in the GMP and the corresponding
hierarchy as well as pointwise convergence of the moment sequence.

In particular, up to rescaling, K � B can always be enforced.

Synthesis of sections 2.1 & 2.2

In this Chapter, the fundamental tools that will be used in this thesis were intro-
duced. Section 2.1 focused on in�nite dimensional optimization, introducing the
GMP and its strong modelling power, as well as a useful strong duality theorem for
the analysis of such problem. Then, Section 2.2 derived the Lasserre, moment-SOS
hierarchy that allows numerically approximating solutions of the GMP, along with a
variety of duality and convergence properties. Those two aspects (modelling in�nite
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dimension and approximate �nite dimension) of the moment-SOS hierarchy pave
the way for the smooth demonstration of approximating properties for the schemes
that will be presented in the rest of this thesis. As a result, they will be instrumental
in all the remaining chapters. We recall in Figure 2.4 the successive steps of the
moment-SOS hierarchy scheme.

Figure 2.4 � Illustration of the moment-SOS hierarchy.

The GMP is used to model a variety of di�cult, nonconvex problems, after what a
dual to the GMP is computed, and the moment and SOS hierarchies are formulated
in parallel, and solved as SDP problems with LMI constraints.





3
Transient stability of power systems

The aim of this thesis is to contribute to the application of semide�nite programming
(SDP) methods in power systems transient stability analysis (TSA). A natural �rst
step is thus to give original applications of existing SDP methods to low-dimensional
power systems. Currently, two schools have issued promising results in the �eld of
SDP-based direct stability analysis:

� the French school draws on the developments presented in Chapter 2 and
moment-SOS hierarchy-based schemes to approximate various stability regions
of di�erential systems [42, 58, 57] and its �rst contribution to power systems
rather focused on the static optimization AC-OPF problem [52]. Section 3.1
gives a �rst application of such methods to power systems stability analysis,
based on publication [53].

� the US school focuses on SOS programming for Lyapunov methods [51] and it
started contibuting to the particular problem of power systems in 2013 [6]. The
second section of this chapter is an intent to test the computational limits of
such methods on a more sophisticated system model, that was �rst published
in [125].
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3.1 A moment-SOS based approach

In this section, we show that the problem of TSA in power systems can be addressed
using the moment-SOS hierarchy that we presented in Chapter 2. TSA considers the
behavior of a power system following a major disturbance. Following considerations
from Chapter 1, we focus on direct methods, which consist in computing stability
oracle functions (SOF) parameterizing approximations of well-chosen regions of at-
traction (ROA). We recall that according to Remark 1.2,inner approximations are
preferred to outer ones, as they prevent false negatives; however, we allow ourselves
to also consider outer approximations, if it helps the simplicity of exposition. In
this section, we focus on uncontrolled dynamics as a �rst step towards certi�ed
estimations of the ROA around a given operating point.

From a theoretical viewpoint, the idea is to use the moment-SOS hierarchy to
compute approximated solutions of the �nite time ROA problem presented in Ex-
ample 2.8 (the interest of �nite time will be exposed below). This section is organized
as follows. Section 3.1.1 introduces the notion of occupation measure, which will
be instrumental to deriving the �nite time ROA problem in a way that will allow
for moment-SOS hierarchy implementation in Section 3.1.2. Section 3.1.3 describes
numerical experiments conducted to show the practical relevance of the proposed
method and gives future research directions regarding computational tractability.

3.1.1 Occupation measures

It turns out that there exist numerical tools inspired from Chapter 2 on the GMP,
which give some methods to compute approximations of constrained regions of at-
traction. While these numerical tools were initially designed only for polynomial
di�erential systems, the following sections will introduce their conceptual basis, and
how they can be applied to some nonpolynomial di�erential systems, without re-
sorting to polynomial approximations of the vector �elds.

As shown in [42, 58], the moment-SOS hierarchy makes it possible to numeric-
ally approximate A X

T (M ) for well-chosenT and M . We recall here how the method
works. The key idea of the authors is to elegantly combine the set approximating
property of the volume problem (see Example 2.6 and the corresponding reference
[44]) with the notion of occupation-measure-based moment-SOS hierarchy intro-
duced in [72]. More precisely, their method consists of grouping all the necessary
time-domain simulations into the resolution of a single, linear partial di�erential
equation (PDE). It can be compared to a Monte-Carlo algorithm, but o�ers the
advantage of giving strong inclusion guarantees on the approximation that the com-
putation yields.

Here we introduce the key element to design the ROA problem, following the
contributions in [72]. Suppose that instead of having one deterministic initial condi-
tion x0 for the system (1.4), one is given a random variablex0 with probability law
P0 2 P (Rn ). This means that for a given Borel setY � Rn , P(x0 2 Y ) = P0(Y ).
Instead of considering a sample for the lawP0 and running time-domain simulations
for its realizations, as a Monte-Carlo algorithm would do, we directly work on the
probability P0. Indeed, if x0 is a random variable that follows the probabilityP0,
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then for any t � 0, x(tjx0) is also a random variable, so that we callPt 2 P (Rn )
its probability law 1. It is actually pretty easy to deducePt from P0, through the
notion of transfer operator:

De�nition 3.1: Ruelle's transfer operator

Let E; F be �nite dimensional open or compact sets,' : E ! F continuous.
Ruelle'stransfer operator [113, 89]' # : M (E)+ ! M (F)+ maps a measure�
onto its pushforward through ' , denoted' # � and de�ned, for any Borel set
Y � F, by

' # � (Y ) := � (' � 1(Y )) = � f x 2 E : ' (x) 2 Y g:

Proposition 3.2: Probability transfer

For all t � 0, Pt is deduced fromP0 through the transfer operatorx(tj�)# as
follows: Pt = x(tj�)# P0, i.e. for any Borel setY � Rn ,

Pt (Y ) = P0

�
x(tj�)� 1(Y )

�
= P0f x0 2 Rn : x(tjx0) 2 Y g:

Remark 3.1 (Transfer and composition)
From a duality perspective, the adjoint to the Ruelle transfer operator� 7! ' # �

is the Koopman composition operatorv 7! v� ' . Indeed, besides the above de�nition,
for ' : Rm ! Rn , v 2 Cc(Rn ) and � 2 M (Rm )+ one has

Z
v d(' # � ) =

Z
(v � ' ) d�:

The Ruelle operator is also called Perron-Frobenius operator, after the Perron-
Frobenius theorem whose in�nite dimensional extension (named Krein-Rutman the-
orem) allows to prove that its eigenvectors are nonnegative measures. However, the
Perron-Frobenius theorem has many other applications.

Conversely, knowingP0 and Pt gives an information onx(tj�), without having
to perform any simulation. Moreover, the dataPt for all t � 0 de�nes a function

 :

8
><

>:

R+ �! P (Rn )

t 7�!  (t) := Pt :

Then, a theorem due to Joseph Liouville ensures that is subject to thecontinuity
equation[129, Theorem 5.34]:

1Such time-dependent measure is called a Young measure, after Laurence Chisholm Young, who
invented them to account for randomized control laws [143].
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Theorem 3.3: Liouville

If f is Lipschitz, then  is the unique solution with initial condition  (0) = P0

of the following in�nite dimensional, linear ODE:

_ = � div(  f ); (3.1)

where the derivative is de�ned w.r.t. the weak-� topology on P(Rn ).
In particular, if there exists a density function � : R+ � Rn ! R such that
Pt = � (t; �) � , then an integration by part yields the classical PDE form

@t � + div( � f ) = 0 : (3.10)

Remark 3.2 (Divergence of a vector measure)
In Theorem 3.3, we introduce the term� div(  f ), which is de�ned as follows:

� div(  f )( t) :=
�

v 2 C1
c (Rn ) 7!

Z
f � grad v d (t)

�

; (3.2)

whereC1
c (
 ) is the subset ofC1(
 ) of functions that vanish outside a compact set.

Notice that  is an univariate function (of t), with value in a functional
space (in x), so that equation(3.1) is indeed a linear ODE _ = A  while (3.10) is
a linear PDE in the multivariate unknown function � (of t and x).

Thus, Problem 1 can be rewritten in terms of Young measures, if one restricts
to a �nite time horizon T 2 (0; + 1 ):

Problem 9: Stable initial measure

Find the maximal support for P0 such that (3.1) holds and:

� For all t 2 I := [0; T],  (t) is supported inX ,

�  (T) is supported inM

so that spt P0
def= A X

T (M ).

Remark 3.3 (Finite VS in�nite time horizon)
Historically, stability analysis was �rst considered in astrophysics, with scientists

concerned about the long term stability of the planet orbits in the solar system. For
this reason, the most common notion of ROA is the unconstrained, in�nite time
ROA A 1 (M ).

However, in the context of power system TSA, all events occur within a �nite,
narrow time horizon, due to the speed of electro-mechanical dynamics. For this
reason, it is only natural that we consider �nite time ROAs here. Moreover, we will
see in this chapter that �nite time horizons are more convenient for computations
that in�nite time horizons.

Nevertheless, in�nite time horizons can also be considered, as we will show in
Sections 3.2 and 6.1.
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Now, instead of considering only probability measuresP0 2 P (Rn ) that repres-
ent a random initial condition x0, we propose to consider asuperpositionof initial
conditions, which is represented by a measure� 2 M (Rn )+ s:t : � (Rn ) < 1 . One
can easily switch from the probabilistic viewpoint to this statistical physics view-
point by the following operations: � = C P0 for a givenC > 0, or P0 = 1

� (Rn ) � . By
linearity of the continuity equation, Theorem 3.3 still holds for := t 7! x(tj�)# �
with initial condition  (0) = � in equation (3.1). It can even be extended to the
notion of occupation measure.

De�nition 3.4: Occupation measure

For a given initial measure� 2 M (Rn )+ and time horizon T > 0, we de�ne
the occupation measure� � 2 M (I � Rn )+ , for a < b 2 I and Y � Rn :

� � ([a; b] � Y ) :=
Z b

a

� Z

Rn
1Y (x(tjx0)) d� (x0)

�

dt =
Z b

a
 (t)(Y ) dt:

In particular, if � = P0 2 P (Rn ), then � � ([a; b] � Y ) =
Rb

a Pt (Y ) dt is the average
time that the random trajectory x(tjx0) spends inY between timesa and b.

Remark 3.4 (Alternative de�nition of occupation measures)
Using the Riesz-Markov theorem, one can de�ne the occupation measure� through

its action on C1 functions instead of its action on Borel sets: forv 2 C1
c (I � Rn ),

Z
v d� � :=

Z T

0

� Z

Rn
v(t; x(tjx0)) d� (x0)

�

dt =
Z T

0
hv(t; �);  (t)i dt:

Remark 3.5 (Relevance of occupation measures)
While Young measures such as (t) are measure-valued functions of time, occu-

pation measures are actually standard measures, and as such they can be represented
on compact sets by their moments, allowing for a GMP rephrazing and thus the im-
plementation of the Moment-SOS hierarchy, as we will show in the next section.

Liouville's theorem also holds for occupation measures, under a slightly di�erent
form.

Theorem 3.5: Transport of occupation measures

Let � 2 M (Rn )+ , T > 0, � � 2 M (I � Rn ) as in De�nition 3.4.
Let � � :=  (T) = x(Tj�)# � (if � = P0 2 P (Rn ) then � � = PT ).
If f is C1, then, (� � ; � � ) is the unique solution of the following linear PDE with
unknown (�; � ) 2 M (I � Rn ) � M (Rn ):

@t � + div( � f ) + � T � = � 0 �; (3.3)

with parameters f ; �; � 0; � T , where � t = [ Y 7! 1Y (t)] 2 P (R) is the Dirac
measure int 2 R.

Proof :

� (� � ; � � ) is solution to (3.3):
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Figure 3.1 � Illustration of occupation measures.

Here the red trajectory is initialized atx0r and the green one atx0g, so that one can
assign probabilities to both trajectories:

pr := P(red traj.) = P(x0 = x0r) = � (f x0rg);

pg := P(green traj.) = P(x0 = x0g) = � (f x0gg):

Then, the time spent by the red trajectory inY is Tr = d � c + b � a, and the time
spent by the green trajectory inY is Tg = f � e, so that

� � ([0; 1] � Y) def= � (f x0rg)(d � c + b � a) + � (f x0gg)(f � e) = pr Tr + pgTg

is the average of the times spent by the red and green trajectories inY.

Let v 2 C1
c (I � Rn ), � � := @t � � + div( � � f ) 2 C1(I � Rn )0. Then by de�nition one

has

hv; � � i = �
Z

(@tv(t; x) + f (x) � grad v(t; x)) d� � (t; x)

= �
Z T

0

Z

Rn
(@tv(t; x(tjx0)) + f (x(tjx0)) � grad v(t; x(tjx0))) d� (x0) dt

= �
Z T

0

Z

Rn

d
dt

h
v(t; x(tjx0))

i
d� (x0) dt

(� )
= �

Z

Rn

Z T

0

d
dt

h
v(t; x(tjx0))

i
dt d� (x0)



3.1. A MOMENT-SOS BASED APPROACH 53

= �
Z h

v(t; x(tjx0))
i T

0
d� (x0)

=
Z

v(0; x0) d� (x0) �
Z

v(T;x(Tjx0)) d� (x0)

= hv; � 0 � � � T � � i ;

where(� ) is obtained using Fubini's theorem [36, pages 243�249].
By our de�nition of measures, this proves that� � = � 0 � � � T � � , which is exactly

equation (3.3).

� Such solution is unique:

Let (�; � ) be a solution to (3.3) with � = 0. By linearity of equation (3.3), showing
(�; � ) = (0 ; 0) will prove uniqueness for the generic� 2 M (Rn )+ . Let v 2 C1

c (I � Rn )
and de�ne for (t; x0) 2 I � Rn

' (t; x0) := �
Z T

t
v(s;x(s � tjx0)) ds:

Then, sincef is C1, for all t 2 I one hasx(tj�) 2 C1(Rn ), and thus ' 2 C1
c (I � Rn )

and for any (t; x0) 2 I � Rn one has

@t ' (t; x(tjx0)) + f (x(tjx0)) � grad ' (t; x(tjx0)) = @t (' (t; x(tjx0)))

= @t

 

�
Z T

t
v(s;x(s � tjx(tjx0))) ds

!

= @t

 

�
Z T

t
v(s;x(sjx0)) ds

!

= v(t; x(tjx0))

so that taking x0 = x(� tjx1) for all x1 2 Rn one has

@t ' (t; x1) + f (x1) � grad ' (t; x1) = v(t; x1):

Moreover, it is clear that ' (T; �) � 0 so that one also has

0 =
Z

' (T; �) d�

(3.3)
= �h '; @t � + div( � f )i

=
Z

@t ' + f � grad ' d�

=
Z

v d�:

This last equality holding for all v 2 C1
c (I � Rn ), this proves that � = 0, after which

� = 0 is deduced from (3.3). }

Remark 3.6 (Regularity of f )
For the use of Theorem 3.5, so far we only askf to beC1 so that the �ow x(tj�)

of f exists at all t 2 I , is unique, and is aC1- di�eomorphism.
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3.1.2 Outer ROA approximation for polynomial systems

As stated in the introduction, this thesis aims at applying direct methods to assess
transient stability of a power system. Such method resorts to determining as ac-
curately as possible a transient stability region, by computing some stability oracle
function. In this section, we put the focus on solving Problem 9, which is associated
to a �nite time horizon. In contrast, Section 3.2 deals within�nite time horizons.

We now give the numerical scheme to approximate the �nite time ROA of a
polynomial di�erential system. Such scheme resorts to the aforementioned notion
of occupation measure, combined with the set approximation property.

The set approximation property

We consider again the volume problem from [44], which we described in Chapter 2:

p?
K = sup

�

Z
1 d� (2.8a)

s:t : � 2 M (K )+

� � � 2 M (X )+

d?
K := inf

w

Z
w d� (2.8b)

s:t : w � 1 2 C(K )+

w 2 C(X )+ ;

with compact setsK � X � Rn . Here one can see that the inequality constraints
of the dual problem (2.8b) can be rephrased into

w � 1K on X : (3.5)

Moreover, the convergence properties proved in Chapter 2 yield existence of a min-
imizing sequence(wd)d2 N such that

Z
(wd � 1K ) d� �!

d!1
0: (3.6)

Then, de�ning K̂ d := f x 2 X : wd(x) � 1g, (3.5) yields that K � K̂ d, and (3.6)
ensures a vanishing volume approximation error:

vol
�
K̂ d n K

�
�

Z
(wd � 1K ) d� �!

d!1
0:

In other words, sequentially solving the SOS hierarchy corresponding to the dual
volume problem (2.8b) yields aconverging outer approximation (K̂ d)d of K . In
the context of volume approximation, whereK is already known, such a byproduct
is useless. However, it paves the way for general set approximation, and one can
modify problem (2.8) to approximate unknown sets, including some speci�c regions
of attraction.

From the volume problem to the ROA problem

The ROA problem is then obtained by combining the notion of occupation measure
and Liouville equation (3.3) with the set approximation property, through adding
the Liouville equation to the volume problem (2.8a):
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Let M = K � X � Rn be a closed target set,X being compact, andT < 1 the
time horizon, and de�ne I := [0; T]. Then, consider the duality pair of problems

Problem 10: ROA approximating GMP

p?
ROA := sup

�;�;�

Z
1 d� (3.7a)

s:t : � 2 M (X )+

� 2 M (I � X )+

� 2 M (K )+

� � � 2 M (X )+

@t � + div( � f ) = � 0 � � � T �;

d?
ROA := inf

v;w

Z
w d� (3.7b)

s:t : w � v(0; �) � 1 2 C(X )+

� @tv � f � grad v 2 C(I � X )+

v(T; �) 2 C(K )+

w 2 C(X )+

v 2 C1(I � X ):

Here, taking f = 0 reduces (3.7a) to (2.8a). Then, imposingv = 0 in (3.7b) does
not change the optimal value, so that it is equivalent to (2.8b). For this reason, (3.7)
is a generalization of (2.8). Moreover, for a feasible pair(vd; wd) for (3.7b), consider

Â d := f x0 2 X : vd(0; x0) � 0g:

Then, the following �nite time ROA approximation theorem holds [42]:

Theorem 3.6: Outer �nite time constrained ROA approximation

One has
A X

T (K ) � Â d

and the SOS hierarchy provides aconvergingsequence(Â d)d2 N of outer ap-
proximations of A X

T (K ), in the sense that

vol
�
Â d n A X

T (K )
�

�!
d!1

0:

Proof : Let x0 2 A X
T (K ). By de�nition, for all t 2 I , x(tjx0) 2 X , and

x(Tjx0) 2 K . Thus, for any feasiblevd for (3.7b),

d
dt

vd(t; x(tjx0)) = @tv(t; x(tjx0)) + f (x(tjx0)) � grad v(t; x(tjx0)) � 0

and vd(T;x(Tjx0)) � 0, i.e. vd(x(�jx0)) decreases along the trajectories and is
nonnegative at �nal time T, so that vd(0; x0) � 0, yielding x0 2 Â d. We have just
proved that Â d is an outer approximation ofA X

T (K ). It remains to show that the
approximation error vanishes when we go through the moment-SOS hierarchy of
Chapter 2.

First, the inequality constraint linking wd and vd(0; �) ensures thatwd � 1Â d
, so

that

vol
�
Â d n A X

T (K )
�

=
Z �

1Â d
� 1A X

T (K )

�
d� �

Z
wd d� � vol A X

T (K ):
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Second, the choice of compact sets forK ; X ; I ensures that Assumption 2.7 holds,
up to Remark 2.5, allowing for the use of Theorem 2.14: the SOS hierarchy gives
access to minimizing sequences for problem (3.7b),i.e. 8d 2 N, 9vd 2 R2d[t; x ]; wd 2
R2d[x ] feasible for (3.7b) and such that

Z
wd d� �!

d!1
d?

ROA :

Then, we go back to Example 2.8, to prove strong duality:d?
ROA = p ?

ROA . Let us
show that Theorem 2.6 holds. The existence of feasible(�; �; � ) is trivial: (�; �; � ) =
(0; 0; 0) is feasible. It only remains to prove that all feasible occupation measures
are uniformly bounded in mass:

� As for the volume (2.8),� � � 2 M (X )+ yields that � (X ) � vol X =: C� < 1 .

� Testing (3.3) against(t; x) 7! 1 yields � (K ) = � (X ) � C� =: C� < 1 .

� Testing (3.3) against(t; x) 7! t yields

� (I � X ) = ht; @t � + div( � f )i = ht; � 0 � � � T � i = T � (K ) � T C� =: C� < 1 :

Then, Theorem 2.6 ensures that strong duality holds, and thus
Z

wd d� �!
d!1

p?
ROA :

Eventually, we show that p?
ROA = vol A X

T (K ). Theorem 3.5 together with the
de�nition of the pushforward ensure that � 2 M (K )+ ) � 2 M (A X

T (K ))+ , so
that � = 1A X

T (K ) � . Together with constraint � � � 2 M (X )+ , this yields that
1A X

T (K ) � � � 2 M (X )+ , and then p?
ROA �

R
1A X

T (K ) d� = vol A X
T (K ).

Moreover, � = 1A X
T (K ) � 2 M (X )+ is such that � = x(Tj�)# � 2 M (K )+ ,

so that Theorem 3.5 ensures that1A X
T (K ) � is a feasible value for� , for which

R
1 d� = vol A X

T (K ). Then, taking the supremum, one obtainsp?
ROA � vol A X

T (K ),
and by double inequality,p?

ROA = vol A X
T (K ); so that

Z
wd d� �!

d!1
vol A X

T (K ):

In conclusion, the approximation error indeed vanishes whend tends to in�nity:

vol
�
Â d n A X

T (K )
�

�
Z

wd d� � vol A X
T (K ) �!

d!1
0:

}

Remark 3.7 (Contribution with respect to [42])
Though Theorem 3.6 was already proved in [42], the systematic reduction of the

proof to checking boundedness of the feasible measures, using the original results
from Chapter 2, is new.
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Remark 3.8 (Extension of [42])
It is also possible to prove Theorem 3.6 using Theorem 2.17. In such a case, in

addition to the aforementioned results, one also obtains a convergence proof for the
pseudo-moment sequences of the moment hierarhy. This, combined with Christo�el-
Darboux kernel methods from [87], paves the way for completely new approaches for
moment-hierarchy-based set approximations.

Remark 3.9 (Relevance of the constrained �nite time ROA)
The proof of Theorem 3.6 heavily relies on the �nite time horizonT and state

constraint sets X and K . Indeed, this choice of parameters is required forI , K
and X to be compact, which is instrumental in the proof. In other words, state
constraints and a �nite time horizon are the price for the convergence of the ROA
approximation.

However, such constraints are quite relevant for TSA: as pointed in Remark 3.3,
a �nite time horizon is suitable in this context. Moreover, operational TSA does not
only expect that the system quickly converges to equilibrium, but also that the traject-
ory remains secure during all the transients; this involves additional state constraint
security speci�cations (e.g. current, voltage and power boundedness), which can be
encoded inX .

Thus, even though the notion of constrained �nite time ROA is less usual than
the notion of free in�nite time ROA, it is particularly relevant in the context of this
thesis. As a result, it will be the �rst TSA approach to which we will apply structure
decomposition to facilitate computations (see Section 6.2).

3.1.3 Finite time ROA estimation for a 3 machines model

Apart from rephrazing the proof for the ROA approximation, an important contri-
bution of this section is the extension of the framework to non-polynomial equations
of power systems, with numerical application to the three machine model. In terms
of numerical application, we are interested in analysing the transient behaviour of
system (1.1)�(1.3). More precisely, to numerically illustrate the TSA problem, we
use the three-bus numerical example from Chiang et al. [21], which is composed of
three synchronous machines connected in a meshed grid. The third bus is arbitrarily
chosen as the reference angle (i.e.,� 3 = 0), so that one only needs two phase angle
variables, � 1; � 2, and two rotor speed variables,! 1; ! 2, to describe the dynamics.
[21] neglected conductancesGkl and attributed numerical values toM k , Dk , Pmec

k ,
jvk j and Bkl , obtaining:

_� k = ! k ; k = 1; 2;

_! 1 = � sin(� 1) � 0:5 sin(� 1 � � 2) � 0:4 ! 2;

_! 2 = � 0:5 sin(� 2) � 0:5 sin(� 2 � � 1) � 0:5 ! 2 + 0:05;

where the! k are expressed in rad=s and the � k are in rad. A stable equilibrium is
given by � = (0 :02; 0:06).

This very basic example will serve as a numerical test case for our moment-SOS
TSA method.
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Figure 3.2 � The three machines cycle.

Tackling trigonometric dynamics

Following [6], the coordinates can be shifted so that(� 1; � 2) = (0 :00; 0:00) is a stable
equilibrium. This dynamical system can in turn be formulated as a polynomial
di�erential algebraic system, as suggested in [6]. To that end, we introduce auxiliary
variables

sk := sin( � k) and ck := 1 � cos(� k); k = 1; 2 (3.8)

and de�ne ! := ( ! 1; ! 2), s := ( s1; s2), c := ( c1; c2) as well asx := ( ! ; s; c) 2 R6.
One then obtains the following di�erential algebraic equation system (DAEs)

_! 1 = 0:4996s2 � 0:4! 1 � 1:4994s1 � 0:02c2 +0:02s1s2

+0:4996s1c2 � 0:4996c1s2 + 0:02c1c2;

_! 2 = 0:4996s1 + 0:02c1 � 09986s2 + 0:05c2 � 0:5! 2

� 0:02s1s2 � 0:4996s1c2 + 0:4996c1s2 � 0:02c1c2;

_sk = (1 � ck)! k k = 1; 2;

_ck = sk ! k k = 1; 2;

0 = s2
k + c2

k � 2ck k = 1; 2;

We will show later on that one can actually avoid increasing the number of variables
and immediately obtain a polynomial di�erential system of equations incomplex-
valued quantities.

A particularity of the occupation measure approach is that the state setX should
have an interior point such that the computed volumes are non-zero. Hence, con-
straints 0 = h(x) := ( s2

k + c2
k � 2ck)k=1 ;2 in the dynamics derived from our change
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of variable may be troublesome, since the manifoldM := f x 2 R6 : h(x) = 0 g is a
hyper-surface with no interior point. A simple method to address this issue consists
of ignoring the equality constraints when computing the ROA approximationÂ d,
and then considerÂ d \ M as the desired ROA estimation. Such an exact method
does not work with any arbitrary equality constraints. However, in the case of con-
straints derived from a change of variable, this approach is valid due to the fact that
the reformulated vector �eld f then satis�es (grad h ) � f � 0: Thus, the dynamics are
tangent to M , yielding that any trajectory starting in M will remain in M , which is
exactly the constraint h(x(tjx0)) = 0 ; 8 t 2 [0; T]. For equality constraints that are
not derived from changes of variables, this does not hold anymore; in such case, one
could think of replacing the classical Lebesgue measure� with a Hausdor� measure
supported onM , and computed using Stokes theorem ifM is the boundary of a
full-dimensional set [73].

To the best of our knowledge, this is the �rst time that algebraic equality con-
straints derived from a change of variable are addressed within the occupation meas-
ure approach. This facilitates the novel application of occupation measures theory
to non-polynomial systems. The general non-polynomial dynamics framework that
can be tackled with this method will be discussed in details in Section 3.2.3.

Case study

For our numerical experiments, we use MATLAB R2015b, YALMIP [78], SeDuMi 1.3
[120], and the �ROA� code of [42] to apply occupation measure theory to the three-
bus example from [21] that is described above.

We de�ne the �nite time ROA parameters as follows:

� X := [ � �; � ]2 � [� 1; 1]2 � [0; 2]2

= f x 2 R6 : (! 2
1;2 � � 2) ^ (s2

1;2 � 1) ^ (0 � c1;2 � 2)g

� K := B " = f x 2 R6 : jx j2 � "2g, " = 0:1, T = 8 s.

Following the developments in Chapter 2, problem (3.7b) admits a SOS strenght-
ening that can be expressed as follows:

dd
ROA := inf

w
w � l (3.9)

s:t : w(x) � v(0; x) � 1 2 � d(g(x))

� @tv(t; x) � f (x) � grad v(t; x) 2 � d(eg(t; x))

v(T;x) 2 � d(0:01� j x j2)

w(x) 2 � d(g(x))

v(t; x) 2 R2d[t; x ];

where:

� l is the vector of moments of the Lebesgue measure� on X in a moment basis,

� w is the vector of coe�cients of w in the corresponding monomial basis,

� g(x) = ( � 2 � ! 2
1;2; 1 � s2

1;2; (2 � c1;2)c1;2; 30� j x j2) describes the state setX ,
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� f (x) = ( _! ; _s; _c) describes the polynomial dynamics and

� eg(t; x) = (( T � t)t; � 2 � ! 2
1;2; 1 � s2

1;2; (2 � c1;2)c1;2; 100� t2 � j x j2).

Again, there is no duality gap between these truncated problems and the corres-
ponding moment relaxations of (3.7a), at every order of the hierarchy, thanks to
Theorem 2.16 (the proof is identical to the strong duality proof for Theorem 3.6).
Though we already have proved the convergence of the outer approximation, the
computational burden increases sharply as the orderd increases.

We complement this explanation by brie�y discussing the approach for comput-
ing inner approximations. The machinery for inner ROA approximations is very
similar to the outer approximation approach discussed above. The key distinction is
that the inner approximations consider an outer approximation to the complement
of the ROA, A X

T (K )c := X nA X
T (K ), inducing additional technicalities. See [58] for

further details.
We note that practical power system analyses require the ability to address

signi�cantly larger problems than the test case considered in this section. How-
ever, constructing certi�ed approximations for the ROA leads to di�cult computa-
tional challenges, see e.g. Section 3.2. Similar to the demonstrations of previous
algorithms [6],[50], this section focuses on a small system as an initial step towards
practical applications. Future work that exploits network sparsity and other prob-
lem structures will be crucial for scalability. Decomposition approaches may also
prove to be valuable [61, 62, 63].

With �nal time T = 8 and radius " = 0:1, we �nd the following polynomial,
v5(0; x), at �fth-order relaxation ( d = 5):

v5(0; x) = 1 :8707� 4:9538x1 + 0:0017x2

� 4:7856x3 + 0:0018x4 � 0:0037x5

� 4:8546x6 � 0:0131x2
1 + 10:9412x1x2

� 0:0356x1x3 + 13:9529x1x4 + 0:0208x1x5

+ 0:0142x1x6 + 16:4121x2
2 + 0:0609x2x3

� 0:2755x5
5x5

6 + 0:0017x4
5x6

6 + 0:0170x3
5x7

6

� 0:0002x2
5x8

6 � 0:0021x5x9
6 � 0:0003x10

6 :

The zero super-level set̂A 5 := f x 2 R6 : v5(0; x) � 0g provides an outer
approximation to the ROA. We illustrate the polynomial v5(0; �) in Fig. 3.3 as a
function of the original state variables(� 1; � 2). We consider(! 1; ! 2) = (0 ; 0) in
order to visualize the ROA, but this is not a necessary restriction. We illustrate the
outer approximation to the ROA in Fig. 3.4.

Likewise, with T = 8 and " = 0:1, we �nd at the third-order relaxation ( d = 3)
the inner approximation to the ROA presented in Fig. 3.5 (again with! = (0 ; 0)
used only for representation purposes).

We next show how one could use Hermitian SOS to obtain better numerical
results. For optimal power �ow problems, applying Hermitian SOS yields compu-
tational advantages while preserving convergence guarantees [54]. The idea is to
exploit the structure that comes from alternating current physics in order to reduce
the computational burden. We consider the transient dynamics of a system after
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Figure 3.3 � Plot of the graph of vd(0; �), d = 5.

The polynomial for the three-bus system whose zero super-level set, which is in-
dicated by the back region, provides an outer approximation to the ROA. The
projection shown is for! = (0 ; 0).

Figure 3.4 � Outer ROA approximation of degreed = 5.

An outer approximation of the ROA is indicated by the back region. The projection
shown is for(! 1; ! 2) = (0 ; 0).

the fault has disappeared and we assume that there is no voltage instability. In that
case, it is reasonable to assume that the magnitudesjvk j of the complex voltages
are �xed such that only the phase angles� k are variables. This allows us to de�ne
vk := exp(j � k) (up to proper rescaling), such that_vk = j _� k exp(j � k), wherej2 = � 1.
The dynamics can thus immediately be written as a polynomial di�erential system
of equations (with physical variables now expressed in perunits, s.t. the voltages
have magnitude 1):
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Figure 3.5 � Inner ROA approximation of degreed = 3.

An inner approximation of the ROA is indicated by the back region. The projection
shown is for(! 1; ! 2) = (0 ; 0).

_vk = j ! kvk ;

_! k = � D k
M k

! k + 1
M k

�
Pk � 1

2

P
l6= k � Gkl jvk j2 � Y kl vkvl � Ykl vlvk

�
;

0 = jvk j2 � 1;

(3.10)

whereYkl denotes the mutual admittance of the line connecting busesk and l.
It is straightforward to adapt the theory of occupation measures to complex

states by leveraging recent results in complex algebraic geometry [27]. A future
work would consist of implementing a complex version of the hierarchy proposed
in [42] in order to reduce the computational burden at a given relaxation order.

In conclusion, in the context of the transient stability analysis of power systems,
this section demonstrates the potential for using the theory of occupation measures
(along with convex optimization techniques) to compute inner and outer approxim-
ations to the region of attraction for a stable equilibrium point. To the best of our
knowledge, this is the �rst time that occupation measure theory has been applied
to analyze transient stability problems for electric power systems. The resulting
approximations have the potential to provide analytically rigorous guarantees that
can reduce the need for computationally expensive time-domain simulations. With
computational tractability remaining an important challenge, the next chapters will
investigate how to exploit sparsity for set approximation, in particular when using
occupation measures.
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3.2 An SOS, Lyapunov-based approach

In this section, we investigate an alternative SOS method for ROA approximation,
which is based on Lyapunov theory rather than occupation measures. We recall
here that, as our variablev in Section 3.1, Lyapunov functions are an instance of
SOF (historically, they even are the archetype of SOF, since the �rst direct methods
for stability analysis resorted to what we now call Lyapunov functions) as listed in
Example 1.5. The Lyapunov approach was used in [6] for transient stability analysis
of a power system. However, the generators were modeled only by their swing equa-
tions. As the voltage and frequency regulators have an important impact on stability
analysis, in the present section this approach is extended by considering a generator
with voltage dynamics and both voltage and frequency regulations. This also paves
the way to taking into account high penetration of power electronics elements in the
grid due to the integration of renewable energies and HVDC transmission lines, thus
having an important impact on the transient stability of the system. SOS method
gives an analytical solution for the construction of Lypunov functions in order to
estimate the in�nite time ROA for a locally asymptotically stable equilibrium point
of the system.

The section is organized as follows: the problem is formulated and modelled in
Section 3.2.1 for a Single Machine-In�nite Bus (SMIB) system. Section 3.2.2 sums
up the elements of Lyapunov theory that are at stake. SOS formalism and algorithms
are brie�y recalled in Section 3.2.3, along with a necessary change of variables (i.e.,
reformulating the model of the system with trigonometric non linearities into a
set of polynomial di�erential algebraic equations). The reformulating procedure is
proved to be a Lie-Bäcklund transformation, which means that the transformed
system has equivalent trajectories and stability properties [34]. Next, in Section
3.2.4 we relax Lyapunov's conditions for stability and model constraint equations
to suitable SOS conditions using theorems from real algebraic geometry in order to
formulate the problem as an optimization one. Hence, a Lyapunov function for the
asymptotically stable equilibrium point is constructed using theexpanding interior
algorithm developed in [51, 6]. An estimate of the ROA is given by a level set of
the Lyapunov function. We �nally test the ROA estimation error by numerically
computing the real one in all state directions via full nonlinear simulations. The
codes are implemented in MATLAB using SOSTOOLS [106] which is a free, third-
party MATLAB toolbox that models SOS problems.

3.2.1 The single machine - in�nite bus system

We consider a synchronous machine connected to a power grid through two trans-
mission lines in parallel (see Figure 3.6). The power grid is modelled as an in�nite
bus. The in�nite bus imposes a nominal voltage of amplitudeVg and frequency! g at
nodeB. Each transmission line is a series of two impedance matricesZt := Rt I+ X tJ
(or equivalently one synthetic impedance matrixZeq = 2Z t ), whereRt ; X t 2 R+ and

I =

 
1 0

0 1

!

; J =

 
0 � 1

1 0

!

:
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The synchronous machine has two rotating axesd (direct) and q (quadratic), which
support the currents i d and i q (we use the notationis := ( i d; iq)> ), generating a
voltage vs := ( vd; vq)> at the machine's terminal.

The synchronous machine is characterized by an internal resistanceRi and equi-
valent reactance matricesX i := J diag(xd; xq) and X0

i := J diag(x0
d; xq), with

xd; xq; x0
d 2 R+ . It receives a mechanical powerPm and rotates at frequency! ,

generating a �eld voltage with magnitudeE f orthogonal to the rotor axis, and thus
providing an e.m.fe 2 R2. Let � be the phase between the machine internal voltage
and the grid voltage andH the machine's mechanic inertia constant.

Synchronous Machine

AE M

S

B

Zt Zt

Zeq

RiX0
i is

u i u t

vm

e vs vg

1

Figure 3.6 � Synchronous machine connected to an in�nite bus (SMIB).

The equations describing the dynamics of this system are given in [114, p. 105].
In this section we give some details on how these equations can be derived as a
5th order model. First, we take as a starting point the swing equation that models
the synchronous machine, but we do not assume its voltage magnitudejvsj to be
constant anymore. Thus, we enrich the model with the dynamics of the e.m.f.e,
obtaining a 3rd order model. Then, we proceed to modelling the outer control loops
on the voltage magnitudejvsj and frequency! , that appear in the dynamics of the
�eld voltage E f and mechanical power inputPm respectively, leading to a5th order
model.

Synchronous machine dynamics

As stated above, we write the equations of the system in a rotating frame whose
direct axis is aligned with the rotor's axis, and whose quadratic axis is aligned with
the �eld voltage. In such system, the synchronous machine's dynamics write:

_� = 100� (! � ! g) (3.11a)

2H _! = Pm � (vm � is) (3.11b)

T0 _e = E f

 
0

1

!

� e � (X i � X0
i ) is; (3.11c)

where� is expressed in rad, and all other variables are expressed in p.u.
Notice that equation (3.11c), which models how the �eld voltageE f generates
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the e.m.f e, is given in vector form and can be decomposed as

T0 _ed = � ed

T0 _eq = E f � eq � (xd � x0
d) i d (3.11c0)

so that the direct componented of e is discarded by our choice of convention (taking
initial value ed(0) = 0 ).

Then, equation (3.11b) can be rephrased using Ohm's law

vm = e � X0
i is;

so that vm � is = eq i q � (x0
d � xq) i d i q = ( eq + ( xq � x0

d) i d) i q, allowing us to rewrite

2H _! = Pm + (( x0
d � xq) i d � eq) i q: (3.11b0)

Thus, at this point the synchronous machine's dynamics takes the general form of
a polynomial control system

_x = f (x; u)

with state variable x = ( �; !; e q)> and �control� input u = ( E f ; Pm ; id; iq)> . The
values ofi d and i q are determined through the transmission lines' equations (which
take the general algebraic formg(x; y) = 0, g 2 R[x; y]m wherey = ( i d; iq)> ), while
E f and Pm are themselves subject to a broader control loop.

Synchronous machine outer control loop

The machine is governed by two regulators. First, an Automatic Voltage Regulator
(AVR) is implemented as follows.E f is set to be proportional to the voltage mag-
nitude error Vref � Vt , whereVt := jvsj =

q
v2

d + v2
q is the voltage magnitude at the

machine terminal, andVref is the voltage reference:

E ?
f := K a(Vref � Vt ):

Then, we model the actuator response as a �rst order

Ta
_E f = E ?

f � E f ;

obtaining the control equation

Ta
_E f = � E f + K a(Vref � Vt ): (3.12)

When the �eld voltage E f is subject to such control law, the voltage magnitude at
the synchronous machine's terminal will automatically respond to any change in the
referenceVref .

Second, a turbine governor regulates the mechanical power injected into the
synchronous machine as follows.Pm is set to equate to a referencePref plus a
term that is proportional to the frequency error! ref � ! , where! ref is the reference
frequency value:

P?
m = Pref + K g(! ref � ! ):
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Again, we model the actuator response as a �rst order

Tg
_Pm = P?

m � Pm ;

obtaining the control equation

Tg
_Pm = Pref � Pm + K g(! ref � ! ): (3.13)

Now considering the system composed with equations (3.11a), (3.11b0), (3.11c0),
(3.12), (3.13), one is seemingly faced to a new polynomial control system_x = f (x; u)
with state x = ( �; !; e q; Ef ; Pm )> and input u = ( i d; iq; Vt ; Vref ; Pref ; ! ref )> . However,
i d, i q and Vt are not properly speaking �control inputs�, but rather algebraic vari-
ables: as stated before, they are determined by the transmission line equations, that
we will now derive. Thus, the actual control input isu = ( Vref ; Pref ; ! ref )> , and it is
supposed to be �xed in the rest of this section.

Transmission lines equations

The circuit represented in Figure 3.6 is equivalent to the much simpler one that we
display in Figure 3.7.

A Zt is B

u t

vs vg

1

Figure 3.7 � The equivalent simpli�ed SMIB model.

By construction of our state variable� as the angle from the grid to the machine,
by de�nition of the in�nite bus, and since phases are de�ned up to an additive
constant, one has

vg = Vg

 
cos(� 0 � � )

sin( � 0 � � )

!

So that choosing the phase reference as� 0 = �
2 yields

vg = Vg

 
sin �

cos�

!

:

On another hand, Ohm's laws yield that

vs � vg = u t = Z t is (Fig. 3.7) & e � vs = u i = ( Ri I + X 0
i ) is (Fig. 3.6)

so that vs = vg + Z t is and e � vg = (Z t + Ri I + X 0
i ) is, and the SMIB model is

now turned into a semi-explicit polynomial di�erential algebraic system of equations
(DAEs) 8

<

:
_x = f (x; y)

g(x; y) = 0
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T0 = 9:67 xd = 2:38 x0
d = 0:336 xq = 1:21

H = 3 Ri = 0:002 ! g = ! ref = 1 Rt = 0:01

X t = 1:185 Vg = 1 Ta = 1 K a = 70

Vref = 1 Tg = 0:4 K g = 0:5 Pref = 0:7

Table 3.1 � Parameter values for the SMIB model (p.u.).

with f ; g polynomial maps, state variablex = ( �; !; e q; Ef ; Pm )> and algebraic vari-
able y = ( i d; iq; Vt ). Eventually, this DAEs has index 1: for all x 2 R5, the map
y 7! g(x; y) is invertible, with

is = (Z t + Ri I + X 0
i )

� 1(e � vg) & Vt = jvg + Z t isj:

After some elementary computations and simpli�cations, one obtains the closed
formulae

i q =
(X t + x0

d)Vg sin� + ( Rt + Ri )(eq � Vg cos� )
(Rt + Ri )2 + ( X t + x0

d)(X t + xq)
(3.14a)

i d =
X t + xq

Rt + Ri
i q �

1
Rt + Ri

Vg sin� (3.14b)

vd = xqi q � Ri i d (3.14c)

vq = Rt i q + X t i d + Vg cos� (3.14d)

Introducing transients

We next introduce a temporary short-circuit at nodeS, according to the following
protocol:

� At a time tsc a short-circuit occurs and we switch from the nominal system
(Figure 3.6) to a new short-circuited system (Figure 3.8), and thus we are no
longer at an equilibrium point.

� During the short-circuit, the system leaves the equilibrium point of the nominal
model and follows the short-circuit equations for the duration� t, until the
short-circuit is eliminated.

� At a time tcl = tsc+� t, we switch back to the nominal topology and equations:
the problem is to know whether the system will converge to an equilibrium
point or not.

The short-circuit equations are computed as follows using the representation of
Figure 3.8: Kirchho� laws now yield that

vs = vg + u t & is = ia + ib;
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A is

SZt ib
Zt

2 Zt ia

B

u t

vs vg

1

Figure 3.8 � The short-circuited system.

and according to Ohm's laws

u t = 2 Z t ia & vs = Z t ib;

so that 3 vs = vg + 2 Z t ia
| {z }

v s

+ 2 Z t ib
| {z }

v s

= vg + 2 Z t is, and eventually

vs =
1
3

vg +
2
3

Zt is

that one can compare with the nominal equationvs = vg + Z t is. Since the
short-circuit only a�ects the transmission line equation, we conclude that the short-
circuited system's equations are the same as (3.11)�(3.14), but withRt (resp. X t )
replaced by 2

3Rt (resp. 2
3X t ) and Vg replaced by 1

3Vg. Thus, equations (3.11)�(3.13)
are not a�ected by the short-circuit.

In order to decide if, after the short-circuit is cleared at timetcl, the trajectory
of nominal system (3.11)�(3.14) will return to its stable operating point, we use
SOS programming tools and Lyapunov function arguments to compute a numerical
approximation of its region of attraction.

3.2.2 Lyapunov-based inner ROA approximation

The approach that we use in this section is based on Lyapunov stability theory, and
more precisely on a speci�c de�nition of stability. We again focus on the di�erential
system

_x = f (x); (1.4)

with equilibrium point x 2 Rn , i.e. f (x) = 0.
We are interested in the stability properties of (1.4). There exist several notions

of stability, so we now detail only the one that interests us in this section.
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De�nition 3.7: Local Asymptotic Stability

The equilibrium point x of ODE (1.4) is said to be:

� Lyapunov-stable(L-S) if

8 " > 0; 9 � > 0; jx0 � x j < � =) 8 t � 0; jx(tjx0) � x j < "

i.e. if trajectories initialized close enough tox do not go too far from it.

� locally asymptotically stable(LAS) if it is L-S and

9 R > 0;jx0 � x j < R =) x(tjx0) �!
t !1

x

i.e. if x attracts all trajectories initialized close enough to it.

Remark 3.10 (Alternative characterization of LAS points)

Using De�nition 1.5, the equilibrium point x is LAS i� A 1 (x) contains a ball
of positive radiusR > 0.

Several stability estimation theorems are due to Alexandr Mikhailovich Lya-
punov and his use of observable functions that are named after him [81]. In partic-
ular, the following result holds.

Theorem 3.8: Lyapunov-Persidsky

Suppose that the equilibrium of (1.4) isx = 0. Then 0 is L-S i� there exists
an open domainD � Rn and aC1 � Lyapunov function� V : D ! R such that:

(i) 0 2 D and V(0) = 0 ,

(ii) 8x 2 D n f 0g, V(x) > 0 (positive de�niteness),

(iii) 8x 2 D , _V(x) := f (x) � grad V(x) � 0 (negative semi-de�niteness).

The if part is due to Lyapunov in [81], while theonly if comes from Persidsky
[104].

At this point, it is worth recalling that the question we want to answer is the
following: after given transients, is our SMIB system (3.11)�(3.14) still able to
converge to stable operating point? One can prove that such stable operating point
is actually a LAS equilibrium, which means that if the post-fault state is close
enough to equilibrium, then it will indeed converge.

De�nition 1.5 allows us to mathematically formulate the transient stability prob-
lem that we presented in Section 3.2.1 for an in�nite time horizon.
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Problem 11: Convergence to operating point

Consider the system (3.11)�(3.14), along with a post-fault conditionxcl and
a LAS equilibrium point x. Determine whether

xcl 2 A 1 (x):

When T = + 1 , De�nition 1.5 is accompanied with the Krasovsky-LaSalle prin-
ciple, which was proved approximately at the same time by Nikolai Nikolaievich
Krasovsky [10] and Joseph Pierre LaSalle [67, Theorem 2].

Theorem 3.9: Krasovsky-LaSalle

Let V 2 C1(Rn ) and l 2 R such that 
 := f x 2 Rn : V (x) � lg is bounded
and 8 x 2 
 , _V(x) � 0. Let

M := f x0 2 
 : 8 t 2 R; _V(x(tjx0)) = 0 g:

Then, 
 is a positively invariant subset ofA 1 (M ).

From Theorems 3.8 and 3.9, one can elegantly deduce a characterization for local
asymptotic stability, due to Lyapunov [81] (if ) and Massera [88] (only if).

Theorem 3.10: Lyapunov-Massera

Suppose that the equilibrium of (1.4) isx = 0. Then 0 is LAS i� there exists
an open domainD � Rn and a C1 function V : D ! R such that:

� Conditions (i) and (ii) of Theorem 3.8 hold,

� 8 x 2 D n f 0g, _V(x) < 0:

Then, for any l 2 R such that 
 = f x 2 Rn : V (x) � lg � D , one has that

 is a positively invariant subset ofA 1 (0).

Proof : For the consideredV, M = f 0g in Theorem 3.9. The proof then directly
follows from application of Theorem 3.8. Note that the original proof of Lyapunov
and Massera is more sophisticated since they did not have access to Theorem 3.9,
which is actually posterior to Theorem 3.10 but facilitates its demonstration. }

This gives a �rst answer to Problem 11, up to translation on the state space such
that x = 0: if there exist D , V and l as in Theorem 3.10 such thatxcl 2 
 , then
xcl 2 A 1 (0). Thus, what remains to do is �nd suchD , V and l.

However, we want to be able to answer Problem 11 for all possible values ofxcl.
In other words, we are looking for the exact ROA, and not only a subset of it. Such
problem is a very di�cult open question in general, but it is still possible to look
for inner approximations of the ROA. For example, the Krasovsky-LaSalle principle
allows us to strenghten our problem into a more tractable question:
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Problem 12: Inner ROA approximation

Numerically approximate the solution to problem

q?
ROA = sup

D ;V;l
size(
 ) (3.15)

s:t : D � Rn ; V 2 C1(D ); l 2 R

0 2 D & V(0) = 0

8 x 2 D n f 0g; V(x) > 0 & _V(x) < 0


 = f x 2 Rn : V (x) � lg


 � D :

for an appropriate �size� function.

Remark 3.11 (Convergence of the inner approximation)
Strenghtening Problem 11 into 12 may introduce a strenghtening gap, i.e. one

might always only have
  A 1 (0). Up to this day, to the best of our knowledge, the
problem of knowing if, for a given maximizing sequenceD k ; Vk ; lk and corresponding

 k , one has


 k �!
k!1

A 1 (0)

for at least one Hausdor�2 topology on sets, is stil l an open question.

Remark 3.12 (Relevance of the approach)
While the in�nite time horizon is not a must, this approach has the advantage

to rely on Lyapunov's well-known stability theory, making it easy to understand.
Moreover, this approach natuarlly favorsinner approximations of the ROA, which
we identi�ed in Remark 1.2 as a crucial feature for TSA.

3.2.3 Computing an SOS Lyapunov function

In [103], an SOS programming based method was given for certifying whether a poly-
nomial map is a Lyapunov function or not. In this section, we display a numerical
scheme, based on this method, which was designed in [51] to compute approximate
solutions to Problem 12 for polynomial dynamicsf 2 R[x]n , and extended to an
instance of nonpolynomial dynamics in [6]. Our contribution here is to systematize
such extension to a class of dynamics that we namealgebraic dynamics(not to be
confused with di�erential algebraic systems).

From algebraic to polynomial dynamics

As highlighted in Chapter 2, reformulating an optimization problem under the form
of a SOS programming problem can only be done if all the data of the initial problem
are polynomial. However, in our case, equations (3.11)�(3.14) include trigonometric

2i.e. a topology that separates setsA and B when A 6= B .
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functions and non-squared euclidean norms. In addition, Lyapunov functions need
the considered equilibrium point to be0.

Those two di�culties lead us to perform a change of variables, as described in
[6, 53]. Let x := ( �; !; eq; E f ; Pm )> be the LAS equilibrium point for (3.11)�(3.14),
which we summarize under the form_x = f (x) with state x = ( �; !; e q; Ef ; Pm )> and
nonpolynomial vector �eld f 2 C1(R5)5, and let V t be the corresponding value for
Vt . We de�ne:

� 1(x) := sin( � � � )

� 2(x) := 1 � cos(� � � )

� 3(x) := ! � !

� 4(x) := eq � eq

� 5(x) := E f � E f

� 6(x) := Pm � Pm

� 7(x) := Vt � V t

� 8(x) :=
1
Vt

�
1

V t
:

along with the change of variable:

y := �( x)

and the equality constraints:
8
>>>>><

>>>>>:

0 = h1(y) := y2
1 + (1 � y2)2 � 1

0 = h2(y) := ( y7 + V t )2 � Vt (y)2

0 = h3(y) := ( y7 + V t )
�
y8 + 1

V t

�
� 1;

where equation (3.14) ensures thatVt (y)2 is a degree 2 polynomial iny. We then
de�ne X := R5 as well as the algebraic set:

Y :=
n
y 2 R8 : h(y) = 0

o
:

By construction of h, � : X �! Y is a di�eomorphism with smooth inverse	
de�ned by  1(y) = � +sign(y1) arccos(1� y2) and  i (y) = yi +1 + x i for i = 2; 3; 4; 5.

Remark 3.13 (Validity of the change of variables)
To prove that� : X ! Y is well de�ned, we also need8y 2 Y Vt (y) 6= 0. In fact,

the physics ensure that8t Vt 6= 0 because we do not consider short-circuits inside the
synchronous machine. So we already know that starting from any physically relevant
point, the system will not reach the setf x 2 X : Vt (x) = 0g, which is su�cient here.

According to [34], � is a particular case of endogenous transformation between
systems

_x = f (x); x 2 X (1.4)
_y = @�(	( y)) f (	( y)) ; y 2 Y : (1.40)

As such it preserves the stability properties as well as all trajectory properties of
system (3.11)�(3.14) summarized as (1.4), and thus studying the stability ofy is
equivalent to studying the stability of x.

Moreover, by construction of� it now holds that _y = @�(	( y)) f (	( y)) 2 R[y]
and 0 = �( x) is the LAS equilibrium point of interest in the reformulated system
(1.40), which corresponds to the general context in which the following scheme (as
well as the hierarchy presented in Section 3.1) can be applied. Before going to the
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next step of the method, we give the extended framework to which SOS programming
schemes can be applied.

De�nition 3.11: Algebraic dynamics

Let X := Rn . f 2 C1 (X )n is said to representalgebraic dynamics i�:

1. there existsh 2 R[y]q with y 2 Rm , that de�ne the basic semialgebraic
set

Y := f y 2 Rm : h(y) = 0g

2. there exists a smooth di�eomorphism� : X �! Y with smooth inverse
	 such that (@� � 	) ( f � 	) 2 R[y]m .

Remark 3.14 (Application to occupation measures)
Algebraic dynamics always have the property that(@� � 	) ( f � 	) is tangent to

Y , allowing for systematic use of the heuristic described in Section 3.1.3.

The algorithm that we present hereafter applies to any di�erential system with
LAS equilibrium point x 2 X and algebraic dynamics such that�( x) = 0.

Another Positivstellensatz

Similarly to Chapter 2, we are now faced with an optimization problem (3.15). How-
ever, this problem is much more complex than those we discussed earlier, and cannot
be directly tackled using the standard moment-SOS hierarchy. Indeed, Problem 12
not only includes semialgebraic set inequality constraints, but also non-nullity con-
straints, which require a generalization of the notion of semialgebraic set.

De�nition 3.12: General polynomially constrained set

Let g 2 R[x]p, h 2 R[x]q, ` 2 R[x]r , p; q; r 2 N?. Then, we de�ne

U (g; h; ` ) :=

8
>>>>><

>>>>>:

x 2 Rn

�
�
�
�
�
�
�
�
�
�
�

g1(x) � 0; : : : ; gp(x) � 0

h1(x) = 0 ; : : : ; hq(x) = 0

`1(x) 6= 0; : : : ; `r (x) 6= 0

9
>>>>>=

>>>>>;

:

Then, real algebraic geometry provides us with results that allow for more gen-
erality than Putinar's P-satz 2.11, at the price of new computational technicalities
that we are going to explain now.

We �rst introduce general algebraic structures that will be at the center of an-
other Positivstellensatz. Letg := ( g1; : : : ; gm ) 2 R[x]m , m 2 N?.

De�nition 3.13: Multiplicative monoid

We de�ne the multiplicative monoid generated byg as

(g)? :=
n
gk : k 2 Nm

o
:
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De�nition 3.14: SOS cone

We de�ne the SOS conegenerated byg as

�[ x][g] :=

( NX

i =1

si � i : N 2 N ^ 8 i 2 N?
N ; (� i 2 (g)? ^ si 2 �[ x])

)

:

De�nition 3.15: Ideal

We de�ne the ideal generated byg as

hgi := f p � g : p 2 R[x]mg:

With these de�nitions we can now state the following fundamental theorem [70,
Theorem 2.11].

Theorem 3.16: Krivine-Stengle weak Positivstellensatz (P-satz)

Let g 2 R[x]p, h 2 R[x]q, ` 2 R[x]r , p; q; r 2 N?. Then, the following are
equivalent:

1. U (g; h; ` ) = ? .

2. There existg 2 �[ x][g], h 2 hhi and ` 2 (` )? such that

g + h + `2 = 0; (3.16)

The LMI based tests for SOS polynomials provided by Proposition 2.13 can
be used to prove that the set emptiness condition from Theorem 3.16 holds, by
�nding speci�c g, h and k such that g+ h + `2 = 0: g, h and `2 are known as P-satz
certi�cates or P-satz refutations, since they certify emptiness ofU (g; h; ` ) and refute
its nonemptiness. The search for bounded degree P-satz certi�cates can be done
using semide�nite programming (SDP). If the degree bound is chosen large enough
the SDP will be feasible and give the refutation certi�cates. As for the moment-SOS
hierarchy, by putting an upper bound on the P-satz certi�cates degrees and checking
whether (3.16) has a solution within these bounds, one can create a series of tests
for the emptiness ofU (g; h; ` ). Each of these tests requires the construction of some
SOS and polynomial multipliers, resulting in a SOS program that can be modelled
as an SDP using SOSTOOLS.

The expanding interior algorithm

In the case of problem 12 with reformulatedpolynomial dynamics (1.40) and LAS
equilibrium point at 0, two algorithms making this research possible are discussed
in [51]: theexpandingD algorithm and the expanding interior (EI) algorithm. Since
the latter is more e�cient than the former in practice, we only implemented the EI
algorithm.

The EI algorithm consists of using a positive de�niteW 2 �[ y] and an expansion
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parameterb > 0 in order to de�ne a variable sized region,

Pb := f y 2 Y : W(y) � bg;

included in the sublevel set
 := f y 2 Y : V(y) � 1g of a yet unknown Lyapunov
function V, which we choose to be positive on the wholeY n f 0g, so that its domain
D satis�es

D = f 0g [ f y 2 Y : _V(y) < 0g:

The optimization problem is to expandb as long as we can �nd aV such that
Pb � 
 . The level set
 corresponding to the largestb is our best approximation
of the ROA. In order to enforce
 � D , we must have

f y 2 Y : V(y) � 1g n f0g � f y 2 Y : _V(y) < 0g:

Positive de�niteness ofV on Y n f 0g, Pb � 
 and 
 � D are then respectively
rephrased as

f y 2 Y n f 0g : V(x) � 0g = ? & Pb \ 
 c = ? & 
 \ D c = ? :

Consequently, the EI algorithm optimization problem can be formulated using set
emptiness constraints as:

Problem 13: Expanding interior optimization problem

b?
W := max

b;V
b (3.17)

s:t : b2 R; V 2 R[y]; V(0) = 0

? = f y 2 Rm : (V(y) � 0) ^ (h(y) = 0) ^ (y 6= 0) g

? = f y 2 Rm : (W(y) � b) ^ (h(y) = 0) ^ (V(y) > 1)g

? = f y 2 Rm : (V(y) � 1) ^ (h(y) = 0) ^ ( _V(y) � 0) ^ (y 6= 0) g:

It is worth noting that the particular choice of the EI algorithm is a way to
strenghten (3.15) into (3.17).

Then, taking positive de�nite `1; `2 2 �[ y] (e.g. ` i (y) = � i jy j2) to reformulate
the constraint y 6= 0 as a low dimensional polynomial constraint, we can rephraze
(3.17) in terms of emptiness of some well chosenU (g; h; ` ) sets:

b?
W = max

b;V
b (3.18)

s:t : b2 R; V 2 R[y]; V(0) = 0

? = U (� V;h; `1)

? = U ((b� W; V � 1); h; V � 1)

? = U ((1 � V; _V); h; `2):

By applying the P-satz Theorem 3.16, (3.18) can in turn be formulated as the
following SOS programming problem:
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b?
W = max

b;V;(gi ) i
(h i ) i ;(k i ) i

b

s:t : b2 R; V 2 R[y]; V(0) = 0

k1; k2; k3 2 N; h1; h2; h3 2 hhi

g1 2 �[ y][� V ]; 0 = g1 + h1 + `2k1
1

g2 2 �[ y][b� W; V � 1]; 0 = g2 + h2 + ( V � 1)2k2

g3 2 �[ y][1 � V; _V]; 0 = g3 + h3 + `2k3
2 :

At this stage, our problem could still include an in�nite number of SOS con-
straints, due to the structure of �[ y][g] that gives the possibility to multiply any
number of powers ofg with SOS coe�cients. Thus, a �rst strenghtening can be
implemented by replacing�[ y][g] in equation (3.16) with

b�[ y][g] :=

( NX

i =1

si gk i : N 2 N ^ 8 i 2 N?
N ; si 2 �[ y] ^ 8 j 2 N?

p; kij 2 f 0; 1g

)

which does not remove too much information when one is looking for small degree
certi�cates. Then, one obtains the following SOS programming problem:

bb?
W := max

b;V;(k i ) i
(p i ) i ;(sj ) j

b

s:t : b2 R; V 2 R[y]; V(0) = 0

k1; k2; k3 2 N; p1; p2; p3 2 R[x]q; s1; : : : ; s10 2 �[ y]

0 = s1 � s2V + p1 � h + `2k1
1

0 = s3 + s4(b� W) + s5(V � 1) + s6(b� W)(V � 1)

+ p2 � h + ( V � 1)2k2

0 = s7 + s8(1 � V) + s9
_V + s10(1 � V) _V + p3 � h + `2k3

2 :

In order to limit the size of the SOS problem that we will solve numerically,
we restrict ourselves tok1 = k2 = k3 = 1 and we simplify the �rst constraint by
enforcing s2 = `1 and factoring `1 out of s1 and p1. Since the second constraint
contains quadratic terms in the coe�cients ofV , we selects3 = s4 = 0, and factor
V � 1 out of all the terms. Finally, we selects10 = 0 in the third constraint in order
to eliminate the quadratic terms inV and factor `2 out. Thus, after renumbering the
remaining SOS polynomials and bounding their degree, we reduce the SOS problem
to:
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Problem 14: Expanding interior strenghtened problem

bd
W := max

b;V;(si ) i
(p i ) i

b (3.19)

s:t : b2 R; V 2 R[y]; V(0) = 0

s1 2 � d� dW [y]; s2 2 � d� dV [y]; s3 2 � d� d0
V

[y]

p1; p2; p3 2 Rd� d� h [y]q

� d[y] 3 s4 := V � p1 � h � `1

� d[y] 3 s5 := � ((b� W)s1 + p2 � h + ( V � 1))

� d[y] 3 s6 := � ((1 � V)s2 + _V s3 + p3 � h + `2);

wheredW := dd� W=2e, dV := dd� V=2e, d0
V := dd� _V =2e.

chooseb0 > 0 and V0

Lyapunov function on

 0 := f y 2 Y : V0(y) � 1g

such that
Pb0 := f W(y) � b0g � 
 0

search forp (k+1)
1;2;3 ; s(k+1)

1;2;3 2 �[ y] and a
maximal bk+1 > bk feasible for

(3.19) for �xed Vk+1 = Vk

search forp (k+2)
1;2;3 ; s(k+2)

1 2 �[ y],
Vk+2 2 R[y] and a

maximal bk+2 > bk+1 feasible for
(3.19) for �xed s(k+2)

2;3 = s(k+1)
2;3

test bk+2 � bk+1 < btol

The resulting

 ? := f y 2 Y : V ?(y) � 1g

is an estimate of
the ROA A 1 (0)

YES NO

linear search forb

Figure 3.9 � The expanding interior algorithm.

According to Proposition 2.13, problem (3.19) is reduced to an optimization
problem with matrix inequalities. However, those inequalities are no longer linear,
because of the presence of the termsb s1, V s2 and _V s3 that are bilinear in the
polynomial decision variables. As a consequence, Proposition 2.13 only allows refor-
mulating problem (3.19) as an optimization problem with bilinear matrix inequalities
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(BMI). Such an issue makes problem (3.19) nonconvex and thus more di�cult to
solve than the convex problems introduced in Chapter 2. Moreover, Lagrange dual-
ity theory does not apply anymore so our convergence proofs cannot be used in this
context. Nevertheless, problem (3.19) can still be numerically approximated within
an iterative algorithm that resorts to a bisection search and alternately optimizes
over the variablesb;p1; p2; p3; s1; s2; s3 on the one hand, andb;p1; p2; p3; s1; V on
the other hand (e.g., [120], [96]), see Figure 3.9.

Remark 3.15 (Dealing with bilinearities)
Fixing some polynomials while optimizing over the others helps dealing with poly-

nomial bilinearities V s2 and _V s3. On the other hand, the bilinearityb s1 cannot be
tackled this way, because �xingbwould �x the objective function and thus there would
be no optimization problem left. Instead, sinceb is a scalar decision variable, it is
possible to perform a bisection algorithm to optimize over bothb and s1 at the same
time.

Remark 3.16 (Outer iterations)
In [6], the authors improved the EI algorithm by adding an �outer iteration� loop.

The idea is as follows: once the EI algorithm has stopped and given an optimal pair
(b?; V ?), one can restart the whole process withV ? instead ofW in the description of
Pb := f y 2 Y : V ?(y) � bg. This makes the algorithm depend less on the arbitrary
initial choice of W.

Remark 3.17 (Convergence of the EI algorithm)
Contrary to the moment-SOS hierarchy, the EI algorithm solves a nonconvex

optimization problem, which makes any proof of convergence much more di�cult.
However, simultaneously to the �rst publication [125] of the present work, [50] pro-
posed an improved version of the EI algorithm with a proof of convergence to a local
optimum (V ?; b?).

Some features of SOSTOOLS include the setting of polynomial optimization
problems and the search for a polynomial Lyapunov function after expressing the
SOS problem as an SDP problem. In [6], SOSTOOLS is used to implement the
expanding interior algorithm for a dynamic model without regulation.

3.2.4 ROA estimation of the SMIB model

We �nally introduce the second contribution of this section, which is the application
of the EI algorithm to the SMIB model of Section 3.2.1. Brie�y, the improvement
that we bring with respect to [6] is that we tackle a much more complex di�erential
system, which is more computationally challenging than the 2nd order model that
was then used as a proof of concept. Then, since the additional control loops help
stabilizing the system, one expects to obtain larger inner ROA approximation than
in the case of [6].

In fact, the 8 dimensional problem one ends up with after reformulating the
SMIB dynamics already exceeds the computational power of a standard laptop. For
this reason, we could not directly solve problem (3.19) for system (1.40). Thus,
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we propose to slightly modify the AVR equation (3.12), and transform the voltage
droop into a quadratic droop, yielding

Ta
dE f

dt
= � E f + K a(V 2

ref � V 2
t ): (3.120)

This small change makes the AVR dynamicspolynomial, by getting rid of the square
root operator in the euclidean norm de�nition. Thus, we no longer need to introduce
y7 and y8 in the reformulated system which then consists of only the �rst 6 equations
of (1.40), with y2

1 + (1 � y2)2 = 1 as the only remaining polynomial constraint.
From a physical point of view, instead of comparing the magnitude (ormodu-

lus) of the voltage (phasor) over the synchronous machine to a reference, we are
comparing its squared magnitude to the square of the reference.

Then, using an expanding domainPb = f y 2 R6 : W(y) := jy j2 � bg, the
algorithm in Figure 3.9 builds an increasing sequence of inner approximations to
the ROA which, when the iterations stop forb? = 0:08544, returns the following
Lyapunov function,

V ?(y) = 2:010y2
1 + 0:07823y1y2 + 3:1961y1y3

� 2:244y1y4 � 0:02231y1y5 + 0:2172y1y6

+0:9483y2
2 + 3:422y2y3 � 2:246y2y4

� 0:003099y2y5 + 0:1913y2y6 + 22:92 y2
3 (3.20)

� 0:07196y3y4 � 0:07616y3y5 + 2:998y3y6

+4:058y2
4 � 0:0003899y4y5 � 0:1467y4y6

+0:004611y2
5 + 0:008518y5y6 + 0:2425y2

6 ;

whose1-sublevel set
 ? := f y 2 R6 : V ?(y) � 1g provides the largest estimation of
the ROA.

Two-dimensional projections of the resulting ROA in original coordinates are
plotted in Figures 3.10 and 3.11 in red lines. While these estimations are quite
large, a comparison to the exact (numerically estimated) ROA, thick blue lines in
Figure 3.11, shows that further improvements are possible, for example by increasing
the degrees of the polynomials in the SOS program, or by going through more outer
iteration loops.

We aim to validate the estimate of the ROA found by the SOS approach, by
testing, in simulation, the limits of stability of the system in all the state-space
directions. For this, the system is systematically initialized at a starting point far
from the considered equilibrium point, and we check by simulation if it goes back
to equilibrium or not.

Since the system has 5 state variables which means a huge number of combin-
ations and because� and ! are the most important state variables for transient
stability analysis, we decide to make the test in a projection of the state space on
the planes (�; ! ), (eq; Ef ), and (Pm ; ! ).

Figure 3.11 shows that the estimated ROA (red lines) is inside the real one
(thick blue line, computed numerically by simulation) and this validates the previous
results. The arrows in the plots show that the real ROA is larger in the direction of
the arrows.
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(a) (b)

(c)

Figure 3.10 � Projected graph of the Lyapunov function.

On the plots are displayed 2D projections of the estimated ROA (red line) and
expanding domainPb? (blue line), and 3D views of the LF in the coordinate pairs:
(a) (�; ! ), (b) (eq; Ef ), and (c) (Pm ; ! ).

The same �gure shows that the trajectories of the system initialized in several
points inside the numerically computed ROA converge asymptotically to the con-
sidered equilibrium point.

In conclusion, SOS approaches and tools have been successfully used to quantify
transient stability of a SMIB system for which the generator has been modeled in
more detail than in previous studies. Indeed, voltage dynamics and voltage and
frequency regulations were taken into account in this formalism. First, this provides
more accuracy in estimation of the stability margin in terms of the ROA. Indeed,
the estimated ROA is large enough compared to the exact ROA computed by simu-
lation. Next, the Lyapunov approach is well suited for the control synthesis and this
quanti�cation can be further exploited to build/tune regulators in order to maxim-
ize ROA. As a matter of fact, in the SOS optimization one can next include the
regulators' parameters as decision variables. Future work could focus on

� estimation with the full model (without the approximation (3.120)),

� inclusion of the non linearities of the machine related to saturations of the
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(a) (b)

(c)

Figure 3.11 � Comparison between ROA estimate and simulation built ROA.

We represented 2D projections of the real ROA (thick blue line), the SOS estimate
(thin red line), and expanding domainP� max (thin blue line) on the coordinate
subspaces: (a)(e0

q; Efd ). (b) (Pm ; ! ), and (c) (�; ! ). Trajectories of the system
initialized in several points (stars) inside the numerically computed ROA converge
asymptotically to the considered equilibrium point.

actuating variables,

� application to larger grids using structure-related model reductions,

� extension to the tuning of regulators' parameters.

Synthesis of sections 3.1 & 3.2

This Chapter has been dedicated to proposing new power-systems applications of
existing SOS methods for transient stability analysis. The2nd order model to which
occupation measures were applied in section 3.1 had already been studied in [6]
using the Lyapunov framework, in which the generality of theKrivine-StengleP-satz
allowed for direct integration of equality constraints; in this matter, our contribution
mainly consisted of adapting the more speci�cPutinar-based occupation measure
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method to variable-change equality constraints, making possible the study of non-
polynomial algebraic dynamics. Section 3.1 was also a �rst occasion to apply the
results of Chapter 2 to an instance of the moment-SOS hierarchy, highlighting the
systematic convergence proof allowed by these theoretical results. Section 3.2 then
took SOS methods to the next level of complexity, by considering a5th order model,
within the Lyapunov framework. This gives us an opportunity to compare Lyapunov
and occupation measure methods in terms of potential applications. We sum up our
comparisons in table 3.2.

Both approaches rely on the approximation of the system's ROA with level
sets of polynomials. A �rst important feature of such methods is that a degree
d polynomial in N variables is de�ned by D d

N :=
�

N + d
d

�
= (N + d)!

N !d! coe�cients, so
that the space of decision variables has dimensionD d

N . One can notice (using the
asymptotic equivalent notation f (x)�

x! a
g(x) $ f (x)=g(x) �!

x! a
1) that D d

N �
d!1

dN

N !

grows polynomially in d with exponent N . As a result, one wantsN to be as
small as possible when implementing those algorithms. For the Lyapunov method,
N = n is the number of state variables, while the occupation measure method
involves N = n + 1 variables, due to the inclusion of time as a variable for function
v. Thus, the Lyapunov method is slightly less costly than the occupation measure
method, even though both methods hardly scale whenn grows as one tackles more
realistic models. This highlights the crucial importance of using problem structure
to formulate problems with smallerN .

Then, the main di�erence between the two approaches is that the moment-SOS
hierarchy presented in Section 3.1 reduces to semide�nite programming, while the ex-
panding interior algorithm of Section 3.2 resorts to BMI constraints. Consequently,
the Lyapunov method loses all the convexity and duality properties that allowed
for the strong convergence proof of the occupation measures approach. On another
note, a weaker convergence was recently proved for the EI algorithm in [50], in the
sense that the EI algorithm terminates, yielding a local optimum for the optimiza-
tion criterion b. Whether such local optimum corresponds to a tight approximation
of the in�nite time ROA remains an open question to this day.

However, convergence of the moment-SOS hierarchy comes with a price to pay:
the global optimum strongly depends on the parametersX ; K and T. Depend-
ence onX is actually good, since it allows taking into account industrial security
state constraints in the stability analysis, ruling out stable trajectories that would
still damage the power system (such dependence can also be taken into account
in the Lyapunov approach, as a constraint in the Krivine-Stengle P-satz). On the
contrary, dependence on the target setK and time horizon should be considered
carefully: even though such dependence is also motivated by the TSA speci�cations
of De�nition 1.2, the sensitivity to such parameters makes it necessary to precisely
determine K and T in advance, using solid power engineering arguments. An in-
teresting perspective would be to use a Lyapunov-based in�nite time ROA inner
approximation 
 ? � A X

1 (x) as a target set for a �nite time ROA inner approxima-
tion hierarchy. One would then obtain a sequence of setŝA d;T � A X

T (
 ?) � A X
1 (x).

Then, intuitively, one would have
�

lim
d!1

vol
�
A X

1 (x) n Â d;T

� �

�!
T !1

0:
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Lyapunov Occupation measures

Nb of variables n (state) n + 1 (state & time)

Constraints BMI LMI

Convexity no yes

Scheme convergence local global

Parameters none X ; K ; T

Time horizon in�nite �nite

Target equilibrium eq. neighbourhood

Table 3.2 � Comparison between Lyapunov and occupation measures for TSA.





4
Volume computation and Stokes theorem

As suggested in Section 3.1.2, the hierarchy-based ROA approximation method re-
lies on the set approximation property that appears in the volume computation
problem (2.8). Then, one �only� has to include occupation measures constrained
by Liouville's PDE (3.3) to go from approximating a given semialgebraic set to es-
timating an unknown ROA. In other words, the volume computation problem is
the simplest set approximation problem one could think of. As a result, it can be
useful to look for ways to enhance the volume problem tractability, so that it can be
applied to other set approximation problems such as estimating the ROA of a power
system. The two following chapters introduce our contributions in this direction,
that one can �nd in [124, 126].
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Consider the problem of computing the Lebesgue volume of a compact basic semi-
algebraic setK � Rn . For simplicity of exposition we will restrict to the case where
K is a smooth, simple semialgebraic set,i.e. the super-level setf x : g(x) � 0g � Rn

of a single polynomialg.
Computing or even approximating the volume of aconvex bodyis already hard

theoretically and in practice as well. Even ifK is a convex polytope, exact com-
putation of its volume or integration overK is a di�cult challenge. Computational
complexity of these problems is discussed in, e.g. [14, 29, 32]. In particular, any
deterministic algorithm with polynomial-time complexity that would compute an
upper bound and a lower bound on the volume cannot yield an estimate on the
bound ratio better than polynomial in the dimensionn. For more detail, the inter-
ested reader is referred to the discussion in [44] and to [16] for a comparison. Even
approximating � (K ) by deterministic methods is still a hard problem as explained
in [25] and references therein.

If one accepts randomized algorithms that fail with small probability, then the
situation is more favorable. Indeed, the probabilistic approximation algorithm of [30]
computes the volume to �xed arbitrary relative precision" > 0 in time polynomial
in 1=". The algorithm uses approximation schemes based on rapidly mixing Markov
chains and isoperimetric inequalities; see also hit-and-run algorithms described in
e.g. [17, 116, 145]. So far, it seems that the recent works [24, 25] have provided the
best algorithm of this type.

In full generality with no speci�c assumption onK such as convexity, the only
general method available is Monte-Carlo, that is, one samplesN points according to
Lebesgue measure� normalized on a simple setX (e.g. a hypercube or an ellipsoid)
that contains K . If PN is the proportion of points that fall into K then the random
variable PN � (X ) provides a good estimator of� (K ) with convergence guarantees as
N increases. However this estimator is non deterministic and fails to provide lower
or upper bounds on� (K ).

When K and X are compact basic semi-algebraic sets, a deterministic numerical
scheme described in [44] provides a sequencef dd

K gd2 N � R of upper bounds that
converges to� (K ) as d increases. Brie�y, we recall as stated in Chapter 2

� (K ) = d ?
K = inf

w2 R[x ]

� Z
w d� : w � 1K on X

�

(4.1)

dd
K = inf

w2 R2d [x ]

� Z
w d� : w � 1K on X

�

: (4.2)

One can notice that minimizing sequences for (4.1) and (4.2) also minimize the
L1(X ; � )-norm kw � 1K kL 1 (X ) :=

R
jw � 1K j d� (with convergence to0 in the case

(4.1)). As the upper bounddd
K > � (K ) is obtained by restricting the search in

(4.2) to polynomials of degree at most2d, the in�mum is attained and an optimal
solution can be obtained by solving a semide�nite program. Of course, the size of
the resulting semide�nite program increases with the degreed; for more details the
interested reader is referred to [44].

Then clearly, a Gibbs phenomenon1 takes place as one tries to approximate, on

1The Gibbs phenomenon appears at a jump discontinuity when one numerically approximates a
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X and from above, the discontinuous function1K by a polynomial of degree at most
d. This makes the convergence of the upper boundsdd

K very slow (even for modest
dimension problems). A trick was used in [44] to accelerate this convergence but at
the price of loosing monotonicity of the resulting sequence.

In fact (4.1) is a dual of the following in�nite-dimensional Linear Program (LP)
on measures

p?
K = sup

� 2M (K )+

f � (K ) : � � � 2 M (K )+ g (4.3)

(where M (K )+ is the space of �nite Borel measures onK ). Its optimal value is
also � (K ) and is attained at the unique optimal solution� ? := � K = 1K � (the
restriction of � to K ).

A simple but key observation. As one knows the unique optimal solution
� ? = � K of (4.3), any constraint satis�ed by � ? (in particular, linear constraints)
can be included as a constraint on� in (4.3) without changing the optimal value
and the optimal solution. While these constraints provide additionalrestrictions in
(4.3), they translate into additional degrees of freedomin the dual (hence arelaxed
version of (4.1)), and therefore better approximations when passing to the �nite-
dimensional strengthened version of (4.2). A �rst set of such linear constraints,
experimented in [71] and later in [139, 73], resulted in drastic improvements but
with no clear rationale behind such improvements.

Contribution. This chapter is based on [124], whose main message and res-
ult is that there is an appropriate set of additional linear constraints on� in (4.3)
such that the resulting dual (a relaxed version of (4.1)) has an explicitcontinuous
optimal solution with value � (K ). These additional linear contraints (called Stokes
constraints) come from an appropriate modelling of Stokes' theorem for integration
over K , a re�ned version of that in [71]. Therefore the optimal continuous solu-
tion can be approximated e�ciently by polynomials with no Gibbs phenomenon,
by the hierarchy of semide�nite relaxations de�ned in [44] (adapted to these new
linear constraints). Interestingly, the technique of proof and the construction of the
optimal solution invoke classical results from the �eld of elliptic partial di�erential
equations (PDE), namely the Lax-Milgram and Poincaré-Wirtinger inequalities as
well as regularity theorems for solutions to elliptic PDEs.

Outline. In Section 4.1 we recall the primal-dual linear formulation of the
volume problem, explain why the dual value is not attained, resulting in a Gibbs
phenomenon, and present the existing Stokes-based heuristics to tackle this issue. In
Section 4.2 we revisit the acceleration strategy based on Stokes' theorem, with the
aim of introducing a more general acceleration strategy and a new primal-dual linear
formulation of the volume problem. Our main result, attainment of the dual value
in this new formulation, is stated and proved as Theorem 4.5 in Section 4.3. The
drastic improvement in the convergence to� (K ) is illustrated on a simple example
of the Euclidean ball in Section 4.4.

piecewiseC1 function with a polynomial function, e.g. by its Fourier series; see e.g. [128, Chapter
9].
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4.1 Existing Stokes-based heuristics

Consider a compact simple semi-algebraic set

K := f x 2 Rn : g(x) � 0g

with g 2 R[x]. We suppose thatK � X whereX is a compact basic semi-algebraic
set for which we know the moments

R
X x k dx of the Lebesgue measure� X , where

x k := xk1
1 xk2

2 � � � xkn
n denotes a multivariate monomial of degreek 2 Nn . We assume

that

 := f x 2 Rn : g(x) > 0g

is a nonempty open set with closure


 = K ;

and that its boundary
@
 = @K = K n 


is C1 in the sense that it is locally the graph of a continuously di�erentiable function.
We want to compute the Lebesgue volume ofK , i.e., the mass of the Lebesgue
measure� K :

� (K ) :=
Z

K
dx =

Z
1 d� K (x):

4.1.1 Linear reformulation of the volume problem

If X � Rn is a compact set, denote byM (X ) the space of signed Borel measures
on X , which identi�es with the topological dual of C(X ), the space of continuous
functions onX . Denote byM (X )+ the convex cone of non-negative Borel measures
on X , and by C(X )+ the convex cone of non-negative continuous functions onX .

In [44] a sequence of upper bounds converging to� (K ) is obtained by applying the
moment-SOS hierarchy to approximate, as closely as desired, the (primal) in�nite-
dimensional LP on measures:

p?
K = max

�

Z
1 d� (2.8a)

s:t : � 2 M (K )+

� � � 2 M (X )+

whose optimal value is� (K ), attained for � ? := � K (see Section 2.1.3). The LP
(2.8a) has an in�nite-dimensional LP dual on continuous functions, which reads:

d?
K = inf

w

Z
w d� (2.8b)

s:t : w � 1 2 C(K )+ :

w 2 C(X )+

Observe that (2.8b) consists in approximating the discontinuous indicator function
1K (equal to one onK and zero elsewhere) from above by continuous functionsw,
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Figure 4.1 � Illustration of the Gibbs phenomenon.

Gibbs e�ect occurs when approximating from above with a polynomial of degree 10
(left red curve) and 20 (right red curve) the indicator function of an interval (black
curve).

by minimizing the L1(X )-norm kw � 1K kL 1 (X ) . Clearly the in�mum � (K ) is not
attained.

SinceK is generated by a polynomialg, one may apply the moment-SOS hier-
archy for solving (2.8), as demonstrated in details in Chapter 2. The main drawback
of such numerical scheme is its typical slow convergence, observed already for very
simple univariate examples, see e.g. [44, Figs. 4.1 and 4.5]. The best available
theoretical convergence speed estimates are also pessimistic, with an asymptoptic
rate of log logd [42]. Slow convergence is mostly due to the so-called Gibbs phe-
nomenon which is well-known in numerical analysis [128, Chapter 9]. Indeed, as
already mentioned, solving (2.8b) numerically amounts to approximating the dis-
continuous function 1K from above with polynomials of increasing degree, which
generates oscillations and overshoots and slows down the convergence, see e.g. [44,
Figs. 4.2, 4.4, 4.6, 4.7, 4.10, 4.12].

Example 4.1 Let K := [0; 1=2] � X := [ � 1; 1]. The degree 10 and degree 20
polynomials w obtained by solving the SOS strengthenings of problem(2.8b) are
displayed in Figure 4.1. We can clearly see bumps, typical of a Gibbs phenomenon
at points of discontinuity.

An idea to bypass this limitation consists of adding certain linear constraints to
the �nite-dimensional semide�nite relaxations, to make their optimal values smaller
and so closer to the optimal value� (K ). Such linear constraints must be chosen
appropriately:

(i) they must be redundant for the in�nite-dimensional moment LP on measures
(2.8a), and

(ii) becomeactive for its �nite-dimensional relaxations.
This is the heuristic proposed in [71] to accelerate the Moment-SOS hierarchy for

evaluating transcendental integrals on semi-algebraic sets. These additional linear
constraints on the momentsz of � ? are obtained from an application of Stokes'
theorem for integration on K , a classical result in di�erential geometry. It has
been also observed experimentally that this heuristic accelerates signi�cantly the
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convergence of the hierarchy in other applied contexts, e.g. in chance-constrained
optimization problems [137].

4.1.2 Stokes' Theorem and its variants

We then explain the heuristic introduced in [44] to accelerate convergence of the
Moment-SOS hierarchy by adding linear constraints on the moments of� ?. These
linear constraints are obtained from a certain application of Stokes' theorem for
integration on K .

Theorem 4.1: Stokes

Let 
 � Rn be a piecewiseC1 open set. For any(n � 1)-di�erential form !
on 
 , one has Z

@

! =

Z



d!:

.

Corollary 4.2: Gauss formula

In particular, for u 2 C1(
 )n and ! (x) = u(x) � n(x) d� (x), where the dot is
the inner product, � is the surface or Hausdor� measure on@
 and n is the
outward pointing normal to @
 , we obtain the Gauss formula

Z

@

u � n d� =

Z



div u(x) dx: (4.4)

Corollary 4.3: Dual Gauss formula

With the choice u(x) := u(x) ei whereu 2 C1(
 ) and ei is the vector ofRn

with one at entry i and zeros elsewhere, fori = 1; : : : ; n, we obtain the dual
Gauss formula Z

@

u n d� =

Z



grad u(x) dx: (4.5)

Proof : These are all particular cases of [47, Theorem 6.10.2]. }

4.1.3 Original Stokes constraints

Associated to a sequencez = ( zk )k 2 Nn 2 RNn
of moments, introduce the Riesz linear

functional Lz : R[x] ! R as in De�nition 2.1. Thus, if z is the sequence of moments
of � K , i.e. if for all k 2 Nn , zk :=

R
K x k dx, then Lz(p) =

R
K p(x) dx and by (4.5)

with u(x) := x k g(x):

Lz(grad (x k g(x))) =
Z

K
grad (x k g(x)) dx

=
Z

@K
x k g(x) nK (x) d� (x) = 0;
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since by constructiong vanishes on@K . Thus while in the in�nite-dimensional LP
(2.8a) one may add the linear constraints

Z

K
grad (x k g(x)) d� (x) = 0 8k 2 Nn ;

without changing its optimal value p?
K = � (K ), on the other hand inclusion of the

linear moment constraints

Lz(grad (x k g(x))) = 0 ; jk j � 2d + 1 � deg(g) (4.6)

in the moment relaxation with pseudo-momentsz of degree at mostd, will decrease
the optimal value of the initial relaxation.

In practice, it was observed that adding constraints (4.6) dramatically speeds
up the convergence of the moment-SOS hierarchy, see e.g. [71, 137]. One main
goal of this section is to provide a qualitative mathematical rationale behind this
phenomenon.

4.2 Contribution to Stokes constraints heuristics

4.2.1 In�nite-dimensional Stokes constraints

In [126], we formulated Stokes constraints in the in�nite-dimensional setting, and a
dual formulation was obtained in the context of the volume problem. Using (4.4)
with u = g v (which vanishes on@K ) and v 2 C1(K )n arbitrary, yields:

Z

K
(grad g(x) � v(x) + g(x) div v(x)) dx =

Z

@K
g v � n d� = 0 ;

which can be written equivalently (in the sense of distributions) as

(grad g)� K � grad (g� K ) = 0 :

This allows us to rewrite problem (2.8a) as

p?
K = max

�

Z
1 d� (2.8a0)

s:t : � 2 M (K )+

� � � 2 M (X )+

(grad g)� � grad (g� ) = 0

without changing its optimal value p?
K = � (K ) attained at � ? = � K .

Using the in�nite-dimensional convex duality method described in Section 2.1.4,
the dual of LP (2.8a0) reads

d0
K := inf

v ;w

Z
w d� (2.8b0)

s:t : w � div(gv) � 1 2 C(K )+

w 2 C(X )+

v 2 C1(K )n :
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A direct application of Theorem 2.6 yields thatd0
K = p ?

K = d ?
K (we already veri�ed

that the theorem's working assumptions hold in such case, see Example 2.10).
Crucial observation. Notice that w in (2.8b0) is not required to approximate

1K from above anymore. Instead, it should approximate1 + div( gv) on K and 0
outside K . Hence, provided that1 + div( gv) = 0 on @K , w might be a continuous
function for some well-chosenv 2 C1(K )n , and therefore an optimal solution of
(2.8b0) (i.e., the in�mum is a minimum). As a result, the Gibbs phenomenon would
disappear and convergence would be faster.

The issue is then to determine whether the in�mum in (2.8b0) is attained or not.
And if not, are there other special features of problem (2.8b0) that can be exploited
to yield more e�cient semide�nite relaxations ?

4.2.2 New Stokes constraints and main result

In the previous paragraph, the Stokes constraint
Z

(v � grad g + g div v) d� = 0

or equivalently (in the sense of distributions)

(grad g)� � grad (g� ) = 0 (4.7)

(with � 2 M (K )+ being the Lebesgue measure onK ) was obtained as a particular
case of Stokes' theorem withu = g v in (4.4). Instead, we can use a more general
version with u not in factored form, and also use the fact that

8x 2 @K ; 0 6= grad g(x) = �j grad g(x)j nK (x);

to obtain Z
div u d� = �

Z
u � grad g d� ;

or equivalently (in the sense of distributions)

grad � = ( grad g)� ; (4.8)

with � 2 M (K )+ being the Lebesgue measure onK and � 2 M (@K )+ being
the measure having density1=jgrad g(x)j with respect to the (n � 1)-dimensional
Haussdor� measure� on @K . The same linear equation was used in [73] to compute
moments of the Hausdor� measure. In fact, equation (4.8) is a generalization of
equation (4.7) in the following sense.

Lemma 4.4: Stokes constraints generalization

If � 2 M (@K )+ is s.t. � 2 M (K )+ satis�es (4.8), then � also satis�es (4.7).

Proof : Equation (4.8) means that
Z

div u d� +
Z

u � grad g d� = 0
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for all u 2 C1(K )n . In particular if u = g v for somev 2 C1(K )n then (4.8) reads

Z
(v � grad g + g div v) d� = 0 ;

which is precisely (4.7). }

Hence we can incorporate linear constraints (4.8) on� and � , to rewrite problem
(2.8a) as

p?
K = max

�;�

Z
1 d� (2.8a00)

s:t : � 2 M (K )+

� 2 M (@K )+

� � � 2 M (X )+

(grad g)� � grad � = 0

without changing its optimal value p?
K = � (K ) attained at � ? = � K and � ? =

�= jgrad gj. Notice that LP (2.8a00) involves two measures� and � whereas LP
(2.8a0) involves only one measure� .

Next, by convex duality, the dual of (2.8a00) reads

Problem 15: Stokes dual GMP

Find a minimizer for

d00
K = inf

u;w

Z
w d� (2.8b00)

s:t : w � div u � 1 2 C(K )+

� (u � grad g) 2 C(@K )+

w 2 C(X )+

u 2 C1(K )n :

Our main result states that the optimal value of the dual (2.8b00) is attained at
some continuous function(w?; u?) 2 C(X )+ � C 1(K )n . Therefore, in contrast with
problem (2.8b), there is no Gibbs phenomenon at an optimal solution of the (�nite-
dimensional) semide�nite strengthening associated with (2.8b00). On the contrary,
existence of a regular optimum yields at least one sequence of polynomials that
converge uniformly to a global optimizer, due to the Stone-Weierÿtrass theorem.

Let 
 i , i = 1; : : : ; N denote the connected components of
 , and let

m
 i (g) :=
1

� (
 i )

Z


 i

g(x) dx

be the mean of g on 
 i .
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Theorem 4.5: Optimum for dual Stokes volume problem

In dual LP (2.8b00) the in�mum is a minimum, attained at

w?(x) := g(x)
NX

i =1

1
 i (x)
m
 i (g)

; x 2 X ;

and
u?(x) := grad u(x) ;

whereu solves the Poisson PDE
8
><

>:

� � u(x) = 1 � w?(x); x 2 


@n u(x) = 0 ; x 2 @
 :

Remark 4.2 (Computing lower bounds for the volume)
The moment-SOS hierarchy associated to LPs(2.8a00) and (2.8b00) yields upper

bounds for the volume. Theorem 4.5 is designed for these LPs but it has a straight-
forward counterpart for lower bound volume computation, obtained by replacingK
with X n 
 in the previous developments, i.e. computing upper bounds of� (X n 
 ).
However, two additional technicalities should then be considered:

� This work only deals with semi-algebraic sets de�ned by a single polynomial; ac-
tually, it immediately generalizes to �nite intersections of such semi-algebraic
sets, as long as their boundaries do not intersect (i.e. hereK should be in-
cluded in the interior of X ): the constraints on boundaries should just be
splitted between the boundaries of the intersected sets.

� This work heavily relies on the fact that the boundary of the considered set
should be smooth; for this reason, computing lower bounds of the volume im-
plies that one chooses a smooth bounding boxX (typically a euclidean ball,
ellipsoid or `p ball), which rules out simple sets like the hypercube[� 1; 1]n .

Upon taking into account these technicalities, Theorem 4.5 stil l holds, allowing
to deterministically compute upper and lower bounds for the volume, with arbitrary
precision. Of course in practice, one is limited by the performance of state-of-art
SDP solvers.

4.3 Solving a PDE to attain an optimum

Theorem 4.5 is proved in several steps as follows:

� we show that solutions to a Poisson PDE are optimal for (2.8b00);

� we study the Poisson PDE on a connected domain;

� we study the Poisson PDE on a union of connected domains;

� we construct an explicit optimum for problem (2.8b00).
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4.3.1 Equivalence to a Poisson PDE

Lemma 4.6: Optimality condition

Problem (2.8b00) has an optimal solutioni� there existu 2 C1(
 )n , ew 2 C(
 )+

solving

� div u = 1 � ew in 
 ; (4.9a)

u � n = 0 on @
 ; (4.9b)
ew = 0 on @
 : (4.9c)

Proof : Let (u; ew) solve (4.9). Using (4.9c), one can de�ne

w(x) =

8
><

>:

ew(x) if x 2 


0 if x 2 X n 
 :

Then (u; w) is feasible for (2.8b00) and one has
Z

w d� =
Z

ew d�

(4.9a)
=

Z



(1 + div u) d�

(4.4)
= � (
 ) +

Z

@

u � n d�

(4.9b)
= � (
 )

so that (u; w) is optimal.
Conversely, let(u; w) be an optimal solution of problem (2.8b00). We know that

(� ?; � ?) = ( � K ; �= jgrad gj) is optimal for problem (2.8a00). Then, duality theory
ensures complementarity:

Z
(w � div u � 1) d� K = 0; (4.10a)

Z
u �

grad g
jgrad gj

d� = 0: (4.10b)

Sincew � div u � 1 is nonnegative onK , (4.10a) yields (4.9a) with ew := wj 
 . Like-
wise, since� (u � grad g) is nonnegative on@
 , (4.10b) yields (4.9b) and thus, using
(4.4), one has

R

 div u d� = 0. Eventually, (4.10a) yields

R

 w d� = � (
 ) =

R
w d�

by optimality of w, so that
R

X n
 w d� = 0 and, sincew is nonnegative,wjX n
 � 0.
Continuity of w �nally allows us to conclude that w = 0 on @
 , which is exactly
(4.9c). }

From Lemma 4.6, existence of an optimum for (2.8b00) is then equivalent to
existence of a solution to (4.9), which we rephrase as follows, de�ningf := 1 � ew
and u = grad u with u 2 C2(
 ), and where� u := div grad u is the Laplacian of
u, and @n u := grad u � n.
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Lemma 4.7: Optimum as solution to Poisson's PDE

If there exist u 2 C2(
 )n and f 2 C(
 ) solving

� � u = f in 
 ; (4.11a)

@n u = 0 on @
 ; (4.11b)

f � 1 in 
 ; (4.11c)

f = 1 on @
 ; (4.11d)

then problem (2.8b00) has an optimal solution.

This rephrazing is a Poisson PDE (4.11a) with Neumann boundary condition
(4.11b), whose source termf is a parameter subject to constraints (4.11c) and
(4.11d).

Remark 4.3 (Loss of generality)
Looking for u under the formu = grad u makes us loose the equivalence. Indeed,

while (2.8b00) and (4.9) are equivalent, existence of a solution to(4.11) is only a
su�cient condition for existence of an optimum for (2.8b00), since (4.9) might have
only solutionsu that are not gradients.

Remark 4.4 (Invariant set for gradient �ow)
From a dynamical systems point of view, constraint(4.11b) means that we are

looking for a velocity �eld or control u in the form of the gradient of a potentialu
such that 
 is an invariant set for the solutionst 2 R 7! x(t) 2 Rn of the Cauchy
problem

_x(t) = � grad u(x(t)) ; x(0) 2 X

after what we just have to de�neew := 1 + � u on 
 and enforce constraints(4.11a),
(4.11c), (4.11d).

4.3.2 Poisson PDE on a connected domain

It remains to prove existence of solutions to problem (4.11). First, notice that
PDE (4.11a) together with its boundary condition (4.11b) enforces an important
constraint on the source termf , namely its mean must vanish:

Z



f d� = 0: (4.12)

Indeed, if (f; u ) solves (4.11), then
Z

f d�
(4.11a)

= �
Z

� u d�

(4.4)
= �

Z
grad u � n d�

= �
Z

@n u d�
(4.11b)

= 0 :

Moreover, the following holds.
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Lemma 4.8: Existence on a connected domain

Suppose that
 is connected. Let the source termf 2 L2(
 ) \ C 1 (
 ) have
zero mean on
 , where Lp(
 ) := f f 2 R
 :

R
jf jp d� < 1g . Then there

exists u 2 C1 (
 ) satisfying (4.11a) and (4.11b).

Proof : We �rst recall some basic de�nitions:

� for p 2 R++ and f 2 Lp(
 ) the Lp norm is de�ned by

kf kL p (
 ) :=
� Z



jf jp d�

� 1
p

:

� The L2 norm is a Hilbert norm with associated inner product

hujvi L 2 (
 ) :=
Z



u v d�;

such that kukL 2 (
 ) =
q

hujui L 2 (
 ) .

� The Sobolev Hilbert spaces are de�ned by

H 1(
 ) := f u 2 L2(
 ) : grad u 2 L2(
 )ng

and by induction on k > 1,

H k(
 ) := f u 2 L2(
 ) : grad u 2 H k� 1(
 )ng:

� The Sobolev inner product de�nes a Hilbert norm:

hujvi H 1 (
 ) := hujvi L 2 (
 )+ hgrad ujgrad vi L 2 (
 )n & kukH 1 (
 ) :=
q

hujui H 1 (
 ) :

Now, let us rephrase the Poisson PDE with Neumann boundary condition under a
variational form:

Problem 16: Variational form for (4.11a)-(4.11b)

Find u 2 H 1(
 ) such that for any v 2 H 1(
 ) one has
Z



grad u � grad v d� =

Z



f v d�: (4.13)

Then, for suchu, sincef 2 L2(
 ), the interior H 2-regularity theorem (see [33,
Theorem 1 in Section 6.3.1]) ensures thatu 2 H 2

loc(
 ) := \ Y b 
 H 2(Y ) (b standing
for compact inclusion), and Green's �integration by part� theorem writes, for all
v 2 H 1(
 ):

Z

@

v @n u d� =

Z



v� u d� +

Z



grad u � grad v d� =

Z



(� u + f ) v d�:

Especially, for v 2 C1
c (
 ) � H 1(
 ) the left hand side is zero, and by density of

C1
c (
 ) in L2(
 ), we deduce that� � u = f for the L2(
 ) Hilbert topology and thus
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almost everywhere in
 . The left hand side is then zero for anyv 2 H 1(
 ) and
especially for anyv 2 C1 (
 ) � H 1(
 ), so that, again by density ofC1 (@
 ) in
L2(
 ), one has@n u = 0 in L2(@
 ) and then almost everywhere on@
 .

Eventually, the interior C1 -regularity theorem (see [33, Theorem 3 in section
6.3.1]) ensures that sincef 2 C1 (
 ), u 2 C1 (
 ) and we obtain the announced
result: u is a smooth strong solution of the Poisson PDE.

Next we invoke Lax-Milgram's theorem which provides existence and uniqueness
of a solution to a given PDE (see e.g. [33, Section 6.2.1]). In our context the goal is
to solve (4.13) for which it is clear that ifu is a solution then anyû := u+ C, C 2 R
is also solution, which makes it impossible to obtain uniqueness of the solution in
H 1(
 ). We thus restrict ourselves to the hyperplane of zero-mean functions

H :=
�

u 2 H 1(
 ) :
Z



u d� = 0

�

which is closed by continuity of the Lebesgue integral, so thatH is a Hilbert space
for the scalar product

hujvi H := hujvi H 1 (
 ) =
Z



(uv + grad u � grad v) d�:

We then de�ne the applications

A :

8
><

>:

H �! R

v 7�!
Z



f v d�:

and

B :

8
><

>:

H � H �! R

(u; v) 7�!
Z



grad u � grad v d�

The Lax-Milgram theorem then states that ifA and B are continuous and ifB is
moreover coercive, then there is a uniqueu 2 H so that A = B (u; �), which is the
announced equality (4.13). Let us show that these hypotheses are met.

� Continuity of A . SinceA is a linear operator, it is su�cient to show that it
is bounded. Letv 2 H . Then, Hölder's inequality yields

jA (v)j =
�
�
�
�

Z



f v d�

�
�
�
�

� k f kL 2 (
 )kvkL 2 (
 )

� k f kL 2 (
 )kvkH

becausekvkH =
q

kvk2
L 2 (
 ) + kgrad vk2

L 2 (
 ) � k vkL 2 (
 ) . Thus, A is a bounded
operator and jjjA jjj = kf kL 2 (
 ) (equality is obtained by taking v = f 2 H ,
made possible by (4.12)).
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� Continuity of B . SinceB is a bilinear operator, it is su�cient to show that it
is bounded. Letu; v 2 H . Again, Hölder's inequality yields

jB (u; v)j =
�
�
�
�

Z



grad u � grad v d�

�
�
�
�

� k grad ukL 2 (
 )kgrad vkL 2 (
 )

� k grad ukH kgrad vkH

becausekvkH =
q

kvk2
L 2 (
 ) + kgrad vk2

L 2 (
 ) � k grad vkL 2 (
 ) . Then, B is a
bounded bilinear operator.

� Coercivity of B . First, let us recall the following classical result, proved e.g.
in [33, Theorem 1 in Section 5.8.1].

Lemma 4.9: Poincaré-Wirtinger inequality

Let 
 � Rn be a bounded, connected,C1 open set. There is a constant
C
 � 0 such that for any u 2 H 1(
 ):

ku � m
 (u)kL 2 (
 ) � C
 kgrad ukL 2 (
 )n

wherem
 (u) := 1
� (
 )

R

 u d� .

Now let us look for a coercivity constantC 2 R such that kukH � C B (u; u).
Let u 2 H . Then, since@
 is C1, we can use Lemma 4.9:

kgrad ukL 2 (
 )n + ku � m
 (u)kL 2 (
 ) � (1 + C
 )kgrad ukL 2 (
 )n

and thus

B (u; u) =
Z



jgrad uj2 d�

= kgrad uk2
L 2 (
 )n

�
kgrad uk2

L 2 (
 )n + ku � m
 (u)k2
L 2 (
 )

1 + C2



=
kuk2

H

1 + C2



sinceu 2 H implies that m
 (u) := 1
� (
 )

R

 u d� = 0.

Thus, the conditions of the Lax-Milgram theorem are satis�ed, which gives us a
unique u 2 H such that for all v 2 H , equation (4.13) holds. To conclude, we still
need to extend this property to functionsv that have nonzero mean. Letv 2 H 1(
 ),
not necessary inH . We de�ne v̂ := v � m
 (v), so that v̂ 2 H and grad v = grad v̂.
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Then,
Z



f v d� =

Z



f v̂ d� + m
 (v)

Z



f d�

(4.12)
=

Z



f v̂ d�

(4.13)
=

Z



grad u � grad v̂ d�

=
Z



grad u � grad v d�;

which concludes the solution of the variational formulation and the proof of Lemma
4.8. }

4.3.3 General Poisson PDE with boundary regularity

In Lemma 4.8, we assumed that
 is connected, so that we could apply the Poincaré-
Wirtinger inequality to use the Lax-Milgram theorem, obtaining both existence and
uniqueness of a solution in a well-chosen space. However, we are not interested in
the uniqueness property, and we would like to tackle non-connected sets. Since

is a semi-algebraic set, it has a �nite number of connected components
 1; : : : ; 
 N .

Corollary 4.10: Existence on a disconnected domain

Let the source termf 2 L2(
 ) \ C 1 (
 ) have zero mean on each connected
component of
 . Then there existsu 2 C1 (
 ) solving (4.11a) and(4.11b).

Proof : Let i = 1; : : : ; N . Since
R


 i
f d� = 0, we can apply the result of Lemma

4.8 replacing
 with 
 i to obtain ui 2 C1 (
 i ) such that � � ui = f in 
 i and
@n ui = 0 on @
 i .

Then, we notice that since@
 is C1, the 
 i cannot be mutually tangent, so that
@
 =

F N
i =1 @
 i . Thus, for any x 2 
 , the following sum has exactly one non-zero

term:

u :=
NX

i =1

1
 i
ui :

By de�nition of the 
 i as the connected components of
 , u 2 C1 (
 ).
Let x 2 
 . There is ani such that x 2 
 i , so that u = ui on a neighbourhood

of x. Thus, � � u(x) = � � ui (x) = f (x).
Let x 2 @
 . There is ani such that x 2 @
 i , so that u = ui on a neighbourhood

of x in 
 . Thus, @n u(x) = @n ui (x) = 0 . }

In the previous paragraph we have proved that under suitable conditions on the
source termf , equations (4.11a) and (4.11b) have a solutionu 2 C1 (
 ). However,
the existence of an optimum for problem (2.8b00) requiresu to be in C1(K ): we need
to establish regularity at the boundary. For this, an additional assumption on
 is
needed to state the following corollary to Lemma 4.8.
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Lemma 4.11: Regularity on the boundary

Let the source termf 2 C1 (
 ) have zero mean on each connected component
of 
 . Suppose that@
 is C1 . Then, there existsu 2 C1 (
 ) solving (4.11a)
and (4.11b).

Proof : First, since C1 (
 ) � L2(
 ) \ C 1 (
 ), we can use Lemma 4.10 to get a
suitable u 2 C1 (
 ). The only thing that remains to be proved is the regularity of
u on @
 . For this, we use the boundaryC1 -regularity theorem [33, Theorem 6 in
Section 6.3.2]: sincef 2 C1 (
 ) and @
 is C1 , we conclude thatu 2 C1 (
 ). }

Remark 4.5 (Regularity of 
 )
Assuming that@
 is C1 instead ofC1 is actually without loss of generality since


 is a semi-algebraic set: as soon as@
 is locally the graph of aC1 function, it is
smooth.

4.3.4 Explicit optimum for Stokes-enhanced hierarchy

Our optimization problem does not feature only the Poisson PDE with Neumann
condition: it also includes constraints (4.11c) and (4.11d) on the source term. Con-
sequently, a functionf 2 C1 (
 ) with zero integral over any connected component
of 
 and satisfying (4.11c) and (4.11d) remains to be constructed. We keep the
notations of Lemma 4.10 and suggest as candidate

x 7! f (x) := 1 � g(x)
NX

i =1

1
 i (x)
m
 i (g)

: (4.14)

By de�nition, g = 0 on @
 , so that (4.11d) automatically holds. Moreover, bothg
and 1
 i are nonnegative on
 , so that (4.11c) also holds.

In terms of regularity, f is polynomial on each connected component of
 and
sinceg smoothly vanishes on@
 , f 2 C1 (K ).

Eventually, let i 2 1; : : : ; N so that 
 i is a connected component of
 . Then,
by de�nition, @
 i � @
 , and one has

Z


 i

f d� =
Z


 i

0

@1 � g(x)
NX

j =1

1
 j (x)
m
 j (g)

1

A dx

= � (
 i ) �
1

m
 i (g)

Z


 i

g(x) dx = 0;

since by de�nition m
 i (g) = 1
� (
 i )

R

 i

g(x) dx.
We �nally obtain our couple (u; f ) solution to problem (4.11) with f de�ned in

(4.14) and u given by Lemma 4.11. Then we retrieve the couple(u; ew) solution to
problem (4.9) by de�ning u := grad u and for all x 2 
 :

ew(x) := 1 � f (x) = g(x)
NX

i =1

1
 i (x)
m
 i (g)

:
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Eventually, the optimization problem (2.8b00) has a (global) minimizer(u; w) with,
for all x 2 X ,

w(x) = g(x)
NX

i =1

1
 i (x)
m
 i (g)

:

Indeed, one can check that
Z

w d� =
NX

i =1

1
m
 i (g)

Z


 i

g d�

=
NX

i =1

� (
 i ) = � (
 ) = � (K ) ;

which concludes the proof of Theorem 4.5.

4.4 Numerical experiments and general heuristics

To illustrate how e�cient can be the introduction of Stokes constraints for volume
computation, we consider the simple setting whereK is a Euclidean ball included in
X = B the unit Euclidean ball. Indeed drastic improvements on the convergence are
observed. All numerical examples were processed on a standard laptop computer
under the Matlab environment with the SOS parser of YALMIP [78], the moment
parser GloptiPoly [43] and the semide�nite programming solver of MOSEK [26].

4.4.1 Practical implementation

Following the Moment-SOS hierarchy methodology for volume computation as de-
scribed in [44], in the (�nite-dimensional) degreed semide�nite strengthening of
dual problem (2.8b00):

� w 2 Rd[x ] and u 2 Rd[x ]n are polynomials of degree at mostd;

� the positivity constraint w 2 C0(B )+ is replaced with a Putinar certi�cate of
positivity on B , that is:

w(x) = s10(x) + s11(x)(1 � j xj2) ; 8x 2 Rn ;

wheres10 (resp. s11) is an SOS polynomial of degree at most2d (resp. 2d� 2);

� the positivity constraint w � divu � 1 2 C0(K )+ is replaced with a Putinar
certi�cate of positivity on K , that is:

w(x) � div u(x) � 1 = s20(x) + s21(x) g(x) ; 8x 2 Rn ;

wheres20 (resp. s21) is an SOS polynomial of degree at most2d (resp. 2d� d� g);

� the positivity constraint u � grad g 2 C0(@K )+ is replaced with a Putinar
certi�cate of positivity on @K , that is:

� u(x) � grad g(x) = s30(x) + s31(x) g(x) ; 8x 2 Rn ;

wheres30 (resp. s31) is an SOS polynomial of degree at most2d (resp. 2d� d� g);
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Figure 4.2 � Polynomials obtained with and without Stokes constraints.

Here are represented the degree 16 polynomial approximations obtained without
Stokes constraints (left) and with Stokes constraints (right).

� the linear criterion
R

B wd� translates into linear criterion on the vector of
coe�cients of w, as

R
B x � d� is available in closed-form.

The above identities de�ne linear constraints on the coe�cients of all the uknown
polynomials. Next, stating that some of these polynomials must be SOS translate
into semide�nite constraints on their respective unknown Gram matrices. The res-
ulting optimization problem is a semide�nite program; for more details the interested
reader is referred to e.g. [44].

4.4.2 Bivariate disk

Let us �rst illustrate Theorem 4.5 for computing the area of the diskK := f x 2
R2 : g(x) = 1 =4 � (x1 � 1=2)2 � x2

2 � 0g included in the unit disk B := f x 2 R2 :
1 � x2

1 � x2
2 � 0g.

The degreed = 16 polynomial approximation w obtained by solving the SOS
relaxation of linear problem (2.8b) is represented at the left of Figure 4.2. We
can see bumps and ripples typical of a Gibbs phenomenon, since the polynomial
should approximate from above the discontinuous indicator function1K as closely
as possible. A rather loose upper bound of 1.1626 is obtained on the volume� (K ) =
�
4 � 0:7854.

In comparison, the degreed = 16 polynomial approximation w obtained by
solving the SOS relaxation of linear problem (2.8b00) is represented at the right
of Figure 4.2. As expected from the proof of Theorem 4.5, the poynomial should
approximate from above the continuous functiong1K � (K )=(

R
g� K ). The resulting

polynomial approximation is smoother and yields a much improved upper bound of
0.7870.

4.4.3 Higher dimensions

In Table 4.1 we report on the dramatic acceleration brought by Stokes constraints
in the case of the Euclidean ballK := f x 2 R3 : g(x) = (3 =4)2 � j x j2 � 0g
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n d without Stokes with Stokes

3 4 88% (0.03s) 18% (0.04s)

3 8 57% (0.16s) 1.0% (0.44s)

3 12 47% (1.97s) 0.0% (4.63s)

3 16 43% (23.9s) 0.0% (30.1s)

3 20 41% (142s) 0.0% (206s)

Table 4.1 � Stokes constraints performances for increasing relaxation degrees.

Relative errors (%) and computational times (in brackets in seconds) for solving
moment relaxations of increasing degreesd approximating the volume of ball of
dimensionn = 3.

n d without Stokes with Stokes

1 10 17% (0.05s) 0.0% (0.03s)

2 10 35% (0.09s) 0.2% (0.25s)

3 10 56% (0.52s) 0.3% (1.19s)

4 10 72% (9.74s) 0.4% (22.8s)

5 10 79% (150s) 0.6% (669s)

n d without Stokes with Stokes

6 4 190% (0.25s) 45.1% (1.03s)

7 4 203% (0.32s) 60.0% (4.88s)

8 4 221% (0.42s) 78.6% (8.45s)

9 4 245% (1.15s) 102% (45.1s)

10 4 278% (3.10s) 131% (176s)

Table 4.2 � Stokes constraints performances for increasing problem dimensions.

Relative errors (%) and computational times (in brackets in seconds) for solving
the degreed = 10 (left) and d = 4 (right) moment relaxation approximating the
volume of a ball of increasing dimensionsn.

of dimension n = 3 included in the unit ball B . We specify the relative errors
on the bounds obtained by solving moment relaxations with and without Stokes
constraints, together with the computational times (in seconds), for a relaxation
degreed ranging from 4 to 20. We observe that tight bounds are obtained already
at low degrees with Stokes constraints, sharply contrasting with the loose bounds
obtained without Stokes constraints. However, we see also that the inclusion of
Stokes constraints has a computational price.

In Table 4.2 we report the relative errors on the bounds obtained with and
without Stokes constraints, together with the computational times (in seconds), for
a relaxation degree equal tod = 10 (left) resp. d = 4 (right) and for dimension n
ranging from 1 to 5 (left) resp. from 6 to 10 (right). Whend = 10 and n = 5 the
semide�nite relaxation features 6006 pseudo-moments without Stokes constraints,
and 12194 pseudo-moments with Stokes constraints. We see that introducing Stokes
constraints incurs a computational cost, to be compromised with the expected qual-
ity of the bounds.
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Higher dimensional problems can be addressed only if the problem description
has some sparsity structure, as explained in the next chapter. Also, depending on the
geometry of the problem, and for larger values of the relaxation degree, alternative
polynomial bases may be preferable numerically than the monomial basis which is
used by default in Moment and SOS parsers.

4.4.4 General heuristics

As stated in Section 4.2.2, Problem (2.8a00) is a generalization of (2.8a0) in the sense
of Lemma 4.4. However, such generalization is only valid whenK is a smooth simple
semialgebraic setK = f x 2 Rn : g(x) � 0g, such that � grad g=jgrad gj is well
de�ned on @K and coincides withnK . In this section we propose some heuristics
for the case of general compact basic semialgebraic sets:

K = f x 2 Rn : g(x) � 0g

with g 2 R[x]m , m > 1. In such case,@K is only piecewise smooth:

@K = K \

 m[

i =1

f x 2 Rn : gi (x) = 0 g

!

= K \ f x 2 Rn : h(x) = 0 g

whereh(x) := g1(x) � � � gm (x). In such case, it is straightforward to state a formu-
lation similar to (2.8a0)-(2.8b0):

p?
K = max

�

Z
1 d�

s:t : � 2 M (K )+

� � � 2 M (X )+

(grad h)� � grad (h� ) = 0 ;

d0
K := inf

v ;w

Z
w d� (4.15)

s:t : w � div(hv) � 1 2 C(K )+

w 2 C(X )+

v 2 C1(K )n ;

sinceh = 0 on @K , using the same reasoning as in Section 4.2.1. In practice,
this general formulation with h is the one that has always been used for compact
basic semialgebraic sets. Implementation of this problem drastically improved the
convergence of the corresponding moment-SOS hierarchies. However, Theorem 4.5
does not hold for this formulation. At this stage, two possibilities exist for future
work:

� Extending Theorem 4.5 to formulation (2.8b0),

� Extending formulation 2.8b00to general basic semialgebraic sets and extending
Theorem 4.5 to the obtained generalization.

If one focuses on the �rst possibility, then the problem can be seen as the looking
for ew 2 C(
 )+ , v 2 C1(
 )n such that:

� div(hv) = 1 � ew in 
 ;
ew = 0 on @
 ;
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i.e. studying a degenerate linear PDE. While this PDE seems quite simple, so far
we could not produce an analysis similar to the one presented in this chapter.

If one focuses on the second possibility, a key argument might be to keep the
separation of@K as a union of basic semialgebraic sets

@K =
m[

i =1

K i ; K i := K \ f x 2 Rn : gi (x) = 0 g

and to de�ne a boundary measure� i for each one of them:

p?
K = max

Z
1 d�

s:t : � 2 M (K )+

� i 2 M (K i )+ ; i 2 N?
m

� � � 2 M (X )+
mX

i =1

(grad gi )� i � grad � = 0;

d00
K = inf

Z
w d� (4.16)

s:t : w � div u � 1 2 C(K )+

� (u � grad gi ) 2 C(K i )+ ; i 2 N?
m

w 2 C(X )+

u 2 C1(K )n :

Then, extending Theorem 4.5 reduces to studying the Poisson PDE with Neumann
boundary conditions on a non-smooth domain.

Conclusions

In this chapter we proposed a new primal-dual in�nite-dimensional linear formula-
tion of the problem of computing the volume of a smooth semi-algebraic set gener-
ated by a single polynomial, generalizing the approach of [44] while still allowing for
the application of the moment-SOS hierarchy. The new dual formulation contains
redundant linear constraints arising from Stokes' Theorem, generalizing the heur-
istic of [71]. A striking property of this new formulation is that the dual value is
attained, contrary to the original formulation. As a consequence, the corresponding
dual SOS hierarchy does not su�er from the Gibbs phenomenon, thereby accelerating
the convergence.

Numerical experiments (not reported here) reveal that the values obtained with
the new Stokes constraints (with a general vector �eld) are closely matching the
values obtained with the original Stokes constraints of [71] (with the generating
polynomial factoring the vector �eld). It may be then expected that the original
and new Stokes constraints are equivalent, at least in some cases. However at
this stage we have not been able to prove such equivalence. The crucial di�erence
between Stokes formulations (2.8a0) and (4.7) is that the former, while allowing for
a proof that the dual inf is attained, restricts to simple semialgebraic sets (de�ned
by a single polynomialg 2 R[x]), while the latter can be applied to general basic
semialgebraic sets, but still lacks a proof of dual optimality attainment. Future
works could focus on the extension of our proof to standard Stokes constraints (4.7)
and (4.15), or to the most general Stokes constraints (4.16).

Eventually, the proof of dual attainment builds upon very classical tools from
linear PDE analysis, thereby building up a new bridge between in�nite-dimensional
convex duality and PDE theory, in the context of the moment-SOS hierarchy. We
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expect that these ideas can be exploited to prove regularity properties of linear
reformulations of other problems in data science, beyond volume approximation. For
example, it would be desirable to design Stokes constraints tailored to the in�nite-
dimensional linear reformulation of the region of attraction problem [42] or its sparse
version [123].





5
Exploiting sparsity for volume

computation

This chapter is based on contribution [126] which proposes a scheme to adapt
the volume approximating moment-SOS hierarchy to a class of problem structures
named sparsity patterns. Such sparsity patterns and their importance are presented
in detail in Section 5.1, with two examples that illustrate both the stake of sparsity
exploitation and the intuition that underlies our contribution. Then, Section 5.2 fo-
cuses on the simplest sparsity pattern we exploited to make the volume computation
moment-SOS hierarchy more tractable,i.e. the path decomposition, with a variety
of numerical examples, including high dimensional volume problems. This section
is followed by a generalization in Section 5.3, which gives a computation scheme for
general correlative sparsity patterns accompanied by another selection of numerical
examples.
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5.1 The importance of sparsity

5.1.1 Motivation

As stated in Section 3.1.2, the measure approach for the volume computation prob-
lem (2.8) is intimately linked to the use (3.7) of occupation measures, in dynamical
systems theory, for computing the ROA of a given target set. Indeed, in [42], the
problem of estimating the ROA is formulated as a GMP very similar to the volume
computation problem. The idea is to maximize the volume of a set of initial condi-
tions that yield trajectories ending in the target set after a given time.

This problem of estimating the ROA of a target set is crucial in power systems
safety assessment, since the power grids must have good stability properties. The
conservative, geometric characterization of the region of attraction as formulated in
[42] is a very promising approach for this domain of application, see Section 3.1 and
the results therein.

In both ROA estimation and volume computation, the main limitation of the
moment-SOS method is that only problems of modest dimension can be handled by
current solvers. Exploiting sparsity seems to be the best approach to allow scalability
both in volume computation and ROA estimation. Since volume estimation is a
simpler instance of the GMP than ROA estimation, we decided to address �rst the
former problem.

In addition, volume computation with respect to a measure satisfying some con-
ditions (e.g. compactly supported or Gaussian measure) also has applications in
the �elds of geometry and probability computation, which is the reason why many
algorithms were already proposed for volume computation of convex polytopes and
convex bodies in general.

5.1.2 Contribution

We design deterministic methods that provide approximations with strong asymp-
totic guarantees of convergence to the volume ofK . The methodology that we
propose is similar in spirit to the one initially developed in [44] as described above
and its extension to non-compact sets and Gaussian measures of [71]. However it
is not a straightforward or direct extension of [44] or [71], and it has the following
important distinguishing features:

(i) It can handle setsK � Rn of potentially large dimensionn provided that some
sparsity pattern (namely: correlative sparsity, see section 5.1.4 as well as [132, 23]
for details) is present in the description ofK . This is in sharp contrast with [44].

(ii) The computation of upper and lower bounds can be decomposed into smaller
independent problems of the same type, and depending on the sparsity pattern, some
of the computations can even be done in parallel. This fact alone is remarkable and
unexpected.

To the best of our knowledge, this is the �rst deterministic method for volume
computation that takes bene�t from a correlative sparsity pattern in the description
of K in the two directions of (a) decomposition into problems of smaller size and
(b) parallel computation. Of course this sharp improvement is performed at some



5.1. THE IMPORTANCE OF SPARSITY 111

price: our framework only works on semi-algebraic sets that present the appropriate
correlative sparsity pattern (see Assumption 5.12 as well as Section 5.3.4 for detailed
discussion on its applicability).

The key idea is to provide a new and very speci�csparse formulationof the
original problem in which one de�nes a set of marginal measures whose (small di-
mensional) support is in accordance with the correlative sparsity pattern present
in the description of the setK . However, those marginal measures are not similar
to the ones used in the sparse formulation [69] of polynomial optimization prob-
lems over the same setK . Indeed they are not expected to satisfy the consistency
condition of [69]1.

Finally, in principle, our �oating point volume computation in large dimension
n is faced with a crucial numerical issue. Indeed as in Monte-Carlo methods, up
to rescaling, one has to include the setK into a box X of unit volume. Therefore
the volume ofK is of the order"n for some" 2 (0; 1) and thus far beyond machine
precision as soon asn is large. To handle this critical issue we develop asparsity-
adapted rescalingwhich allows us to compute very small volumes in potentially very
high dimension with good precision.

5.1.3 A motivating example

Consider the following set

K := f x 2 [0; 1]100 : 8i 2 N?
99; x i x i +1 � 1=2g:

This is a high-dimensional non-convex sparse semi-algebraic set. The precise
de�nition of a sparse semi-algebraic set will be given later on, but so far notice that
in the description of K each constraint involves only2 variables out of 100. The
volume ofK is hard to compute, but thanks to the structured description of the set
we are able to prove numerically that its volume is smaller than2� 10� 5 in less than
2 minutes on a standard computer.

For this we have implemented a speci�c version of the moment-SOS hierarchy
of SDP relaxations to solve the GMP, in which we exploit the correlative sparsity
pattern of the set K . The basic idea is to replace the original GMP that involves
an unknown measure onR100 (whose SDP relaxations are hence untractable) with
a GMP involving 99 measures onR2 (hence tractable). In addition, this new GMP
can be solved either in one shot (with the99 unknown measures) or by solving
sequentially99 GMPs involving (i) one measure onR2 and (ii) some data obtained
from the GMP solved at previous step. Our approach can be sketched as follows.

First, we rescale the problem so that the setK is included in the unit box
X := [0; 1]n on which the moments of the Lebesgue measure are easily computed.

Next, we describe the volume problem onK as a chain of volume subproblems
on the subspaces Im(� i ) where� i (x1; : : : ; x100) = ( x i ; x i +1 ), with a link between the
i -th and (i + 1) -th sub-problems.

1If two measures share some variables then the consistency condition requires that their re-
spective marginals coincide.
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Finally, in this example, asn = 100 and K � X , the volume ofK is very small
and far below standard �oating point machine precision. To handle this numerical
issue, we have implemented a sparsity-adapted strategy which consists of rescaling
each subproblem de�ned on the projections ofK to obtain intermediate values all
with the same order of magnitude. Once all computations (involving quantities of
the same order of magnitude) have been performed, the correct value of the volume
is obtained by a reverse scaling.

The sparse formulation stems from considering some measure marginals appro-
priately de�ned according to the correlative sparsity pattern present in the descrip-
tion of K . It leads to a variety of algorithms to compute the volume of sparse
semi-algebraic sets.

In this section we describe the method in the prototype case of linear clique
trees. The more general case of branched clique trees is treated later on.

5.1.4 The correlative sparsity pattern and its graph repres-
entation

This work heavily relies on a speci�c notion of sparsity de�ned as follows.

Speci�c notation: Given a Euclidean spaceX and a subspaceY � X, the ortho-
gonal projection map fromX to Y is denoted by� Y . Let 1j denote thej -th vector
of the canonical basis ofRn such that if x = ( x1; : : : ; xn ) then x j = x � 1j . The
N -dimensional subspace spanned by vectors1i 1 ; : : : ; 1i N is denotedhx i 1 ; : : : ; xi N i or
hx i j i 1� j � N . Given a measure� 2 M (X), its marginal with respect to Y is denoted
by � Y 2 M (Y). It is equal to the image or push-forward measure of� through the
map � Y .

De�nition 5.1: Sparse polynomials

A scalar polynomialp 2 R[x] is said to besparsewhen its vector of coe�cients
p (such that p(x) = p�e(x) wheree(x) = ( x k ) jk j� d� p) is sparse. In other words,
p is a linear combination of a small number of monomials.

De�nition 5.2: Correlative sparsity

A family of polynomial vectors (g1; : : : ; gN ) is said to becorrelatively sparse
whenever its correlative sparsity pattern matrixR := ( Rij )1� i;j � n , de�ned by

Rij := � ij +
NX

k=1
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(where � ij = 1 if i = j and 0 otherwise, andk � k is any norm on polynomial
vectors), is sparse. In other words, for many pairs of indicesi 6= j , the variables
x i and x j do not appear simultaneously in any element off g1; : : : ; gN g.
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De�nition 5.3: Correlation graph

The correlation graphG = ( V ; E) of (g1; : : : ; gN ) is de�ned by verticesV = N?
n

and edgesE = f (i; j ) 2 V 2 : i 6= j ^ Rij 6= 0g.
The correlative sparsity CS of (g1; : : : ; gN ) is the treewidth of its correlation
grapha.

aIntuitively, the treewidth quanti�es how �far� a graph is from being a tree. A proper
de�nition is given in Section 5.3.4.

This chapter proposes a method to reduce the size of the degreed volume com-
putation SDP to

�
CS+ d+1

d

�
instead of

�
n+ d

d

�
, under appropriate assumptions. To give

an idea of the gain in computational complexity, we illustrate it on our motivating
example of section 5.1.3, wheren = 100 while CS = 1.

De�nition 5.4: Support of a polynomial

The support of gi is the setI(gi ) :=
n
j 2 N?

n : @
@xj

gi 6= 0
o
.

The support subspaceof gi is the set X i := hx j i j 2 I(g i ) , whose dimension is
smaller than n. Since by de�nition gi = gi � � X i , we use both notations
with the same meaning. ThenX :=

P N
i =1 X i is called thecoordinate subspace

decompositionassociated to(g1; : : : ; gN ).

Without loss of generality, we can suppose thatX = Rn (otherwise, there would
be variables that appear in none of thegi s).

De�nition 5.5: Sparse semialgebraic set

A sparse basic semi-algebraic sethas a description

K := f x 2 X : 8i 2 N?
N ; gi (� X i (x)) � 0g

where (gi )1� i � N is a correlatively sparse family of polynomial vectors (in-
equalities are meant entrywise) andX =

P N
i =1 X i is the coordinate subspace

decomposition associated to(gi )1� i � N (and, by extension, toK ).
A sparse semi-algebraic setis a �nite union of sparse basic semi-algebraic sets
that share the same coordinate subspace decomposition.

A simple example of a sparse basic semi-algebraic set is

K := f x 2 R4 : (g1(x1; x2) � 0) ^ (g2(x2; x3) � 0) ^ (g3(x3; x4) � 0)g (5.1)

for X = R4, X1 = hx1; x2i , X2 = hx2; x3i , X3 = hx3; x4i and the projection maps are
� X1 (x) = ( x1; x2), � X2 (x) = ( x2; x3), � X3 (x) = ( x3; x4).

Our methodology is based on the classical theory of clique trees. Up to a chordal
extension (which is equivalent to slightly weakening the correlative sparsity pattern),
we suppose that the correlation graphG = ( V ; E) is chordal (i.e. every cycle of
length greater than 3 has a chord, that is, an edge linking two nonconsecutive
vertices). Then we construct the maximalcliquesof the graph (a cliqueC is a subset
of V such that every vertex ofC is connected to all the other vertices ofC or, in
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other words, such thatC2 � E; a clique is maximal when its cardinal is maximal).
Most of the time, up to concatenation of some of thegi , the maximal cliques of a
chordal correlation graph are exactly the supports of thegi : C i = I(gi ), so in the
following we will consider only such case2. Figure 5.1 illustrates this constuction
for the sparse set (5.1), the vertices are denoted byx i and our maximal cliques are
denoted byC j .

x2x1 x3

C1

x4

C2 C3

Figure 5.1 � Graph associated to the sparse set (5.1).

Then, we construct aclique treewhich is instrumental to the computer imple-
mentation. It is proved in [13] that if the graph is chordal, then its maximal cliques
can be organized within a tree satisfying the clique intersection property: for two
maximal cliquesC and C0 the intersection C \ C0 is contained in every maximal
clique on the path fromC to C0. Figure 5.2 represents the clique tree associated to
the sparse set (5.1).

C1 C2 C3

Figure 5.2 � Linear clique tree associated to the sparse set (5.1).

For a slightly more sophisticated illustration, consider the sparse set

K := f x 2 R6 : g1(x1; x2); g2(x2; x3; x4); g3(x3; x5); g4(x4; x6) � 0g (5.2)

whose correlation graph is represented on Figure 5.3 and whose clique tree is rep-
resented on Figure 5.4. The clique tree of Figure 5.2 is calledlinear because all
maximal cliques form a single chain (i.e. they are in a sequence) with no branching.
In contrast, the clique tree of Figure 5.4 is calledbranched.

Our method consists of conveniently rooting the clique tree and splitting the
volume computation problem into lower-dimensional subproblems that are in cor-
respondence with the maximal cliques of the graph. The subproblem associated with
a maximal cliqueC takes as only input the solutions of the subproblems associated
with the children of C in the clique tree. This way, one can compute in parallel the
solutions of all the subproblems of a given generation, and then use their results to
solve the subproblems of the parent generation. This is the meaning of the arrows in
Figures 5.2 and 5.4. The volume ofK is the optimal value of the (last) sub-problem
associated with the rootC1 of the tree.

2The only exception would be cliques forming a triangle and is tackled in detail in section 5.3.4.
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x2

x3

x4

C2

x5

x6

C3

C4

x1

C1

Figure 5.3 � Graph associated to the sparse set (5.2).

C1

C3

C4

C2

Figure 5.4 � Branched clique tree associated to the sparse set (5.2).

5.1.5 An illustrative example: the bicylinder

A sparse moment-SOS hierarchy

Before describing the methodology in the general case, we brie�y explain the general
underlying idea on a simple illustrative example. Consider the sparse semi-algebraic
set

K :=

8
><

>:
x 2 R3 :

g1(x1; x2) := 1 � x2
1 � x2

2 � 0

g2(x2; x3) := 1 � x2
2 � x2

3 � 0

9
>=

>;
� X := [ � 1; 1]3 (5.3)

modelling the intersection of two cylindersU 1 := f x 2 R3 : x2
1 + x2

2 � 1g and
U 2 := f x 2 R3 : x2

2 + x2
3 � 1g, see Figure 5.5. The subspaces areX1 = hx1; x2i and

X2 = hx2; x3i and the projection maps are� X1 (x) = ( x1; x2) and � X2 (x) = ( x2; x3).
Let K i := � X i (U i ) and X i := � X i (X ) = [ � 1; 1]2 for i = 1; 2.

Following [44], computingvol K is equivalent to solving the in�nite-dimensional
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Figure 5.5 � A representation of the bicylinder.

Image source � Wikimedia commons, Steinmetz-solid.svg. Author's pseudonym: �Ag2gaeh�. License: Attribution-
Share Alike 4.0 International https://creativecommons.org/licenses/by-sa/4.0/legalcode

LP (2.8a). Next observe that in the description (5.3) ofK there is no direct interac-
tion between variablesx1 and x3, but this is neither exploited in the LP formulation
(2.8a) nor in the SDP relaxations (2.12) to solve (2.8a). To exploit this correlative
sparsity pattern we propose the following alternative formulation

vol K = p ?
spK := max

� 1 ;� 2

Z
1 d� 1 (5.4)

s.t. � i 2 M + (K i ) i = 1; 2

� 2 � � 
 �

� 1 � � 
 � hx2 i
2

where � hx2 i
2 denotes the marginal of� 2 in the variable x2, � � � means that � � �

is a nonnegative measure and
 denotes the tensor product between independent
measures. Notice that here (as well as in the rest of this chapter) for disambiguation
purposes we denote by� the one-dimensionalLebesgue measure on[� 1; 1] (whose
moments are well known). Then, we will use� n to denote the n-dimensional Le-
besgue measure on[� 1; 1]n . For the sake of readability, we only use this notation in
the present chapter, where it is necessary.

In the sparse case, the basic idea behind our reformulation of the volume problem
is as follows. We are interested invol K . However, as the marginal of a measure
has the same mass as the measure itself, instead of looking for the full measure� in
problem (2.8a), we only look for its marginal onX1.

This marginal � X1 is modeled by� 1 in (5.4). In order to compute it, we need
some additional information on� captured by the measure� 2 in (5.4). The unique
optimal solution � of (2.8a) is

� = � 3
K = 1U 1 1U 2 � 3
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and therefore its marginal� 1 := � X1 in (x1; x2) is given by

d� 1(x1; x2) =
Z 1

0
d� (x1; x2; x3)

= 1K 1 (x1; x2) dx1

� Z 1

0
1K 2 (x2; x3) dx3

�

dx2

| {z }
d� hx 2 i

2 (x2 )

(5.5)

where

� 2 = � 2
K 2

: (5.6)

What is the gain in solving (5.4) when compared to solving (2.8a) ? Observe
that in (5.4) we have two unknown measures� 1 and � 2 on R2, instead of a single
measure� on R3 in (2.8a). In the resulting SDP relaxations associated with (5.4)
this translates into SDP constraints of potentially much smaller size. For instance,
and to �x ideas, for the same relaxation degreed:

� The SDP relaxation pd
K corresponding to (2.8a) contains a moment matrix

(associated with� in (2.8a)) of size
�

3+ d
d

�
;

� The SDP relaxationpd
spK corresponding to (5.4) contains two moment matrices,

one associated with� 1 of size
�

2+ d
d

�
, and one associated with� 2 of size

�
2+ d

d

�
,

where� 1 and � 2 are as in (5.4).

As the size of those matrices is the crucial limiting parameter for all SDP solvers,
one can immediately appreciate the computational gain that can be expected from
the formulation (5.4) versus the formulation (2.8a) when the dimension is high or
the relaxation order increases. Next it is not di�cult to extrapolate that the gain
can be even more impressive in the case where the correlative sparsity pattern is of
the form

K = f (x0; : : : xN ) 2 X : 8i 2 N?
N ; gi (x i � 1; x i ) � 0g; (5.7)

with x i 2 Rn i and ni � n for i = 0; : : : ; N . In fact, it is straightforward to de�ne
examples of setsK of the form (5.7) where the �rst SDP relaxation associated with
the original dense LP formulation (2.8a) cannot be even implemented on state-of-
the-art computers, whereas the SDP relaxations associated with a generalization of
the sparse LP formulation (5.4) can be easily implemented, at least for reasonable
values ofd.

Sparse Stokes constraints: the bicylinder

In Section 4.4.4 we designed e�cient general Stokes constraints for the dense for-
mulation of problem (2.8a), at the price of introducing a polynomialh vanishing
on the boundary ofK to obtain problem (4.15). However, in the sparse case (5.4),
the polynomial h would destroy the sparsity structure, as it is the product of all
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polynomials de�ning K and as such it depends on all components ofx. Thus, we
must adapt our strategy to introduce sparse Stokes constraints3.

In this section, to keep the notations simple, we illustrate the ideas on our
introductive bicylinder example of Section 5.1.5. Considering the optimal measures
� 1 and � 2 de�ned in (5.5),(5.6), we can apply Stokes constraints derived from the
Gauss formula (4.4), in the directions in which they are Lebesgue: for� 1 in the x1

direction and for � 2 in the remaining directions. To see this, de�ne

h1(x1; x2) = g1(x1; x2) e1;

h2(x2; x3) = g2(x2; x3) e2;

h3(x2; x3) = g2(x2; x3) e3

wheregi (x i ; x i +1 ) = 1 � x2
i � x2

i +1 , such that h1 � nK 1 vanishes on the boundary ofK 1

and h2 � nK 2 and h3 � nK 2 vanish on the boundary ofK 2, wherenK i is the outward
point vector orthogonal to the boundary ofK i . For i; j; k 2 N, the Gauss formula
(4.4) yields

Z

K 1

@
@x1

(g1(x1; x2)x i
1x j

2) d� 1 = 0;
Z

K 2

@
@x2

(g2(x2; x3)x j
2xk

3) d� 2 = 0;
Z

K 2

@
@x3

(g2(x2; x3)x j
2xk

3) d� 2 = 0:

Hence, adding these constraints does not change the optimal value of the LP problem
(5.4).

5.2 Exploiting path decomposition sparsity

5.2.1 Path computation theorem

We consider a sparse basic semialgebraic set

K := f x 2 X : 8i 2 N?
N ; gi (� X i (x)) � 0g

with gi 2 R[x i ]m i and its coordinate subspace decompositionRn =: X =
P N

i =1 X i .
Let U i := f x 2 X : gi (� X i (x)) � 0g so that our sparse semi-algebraic set can be
written

K =
N\

i =1

U i :

3Actually, Stokes formulation (4.16) can be made sparse more directly, by enforcing the fact
that the boundary measure� i only depends on the variables of the polynomialgi . However, during
the PhD, we tackled sparse volume computation before working on problem (4.16). As a result, in
this chapter we only use Stokes constraints under the form of (4.15).
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Up to translation and rescaling, we suppose thatK � X := [0; 1]n : Moreover, let

K i := f x i 2 X i : gi (x i ) � 0g = � X i (U i ) ; X i := � X i (X )

and let

Yi := X i \ X ?
i +1 = hx j i j 2 C i \ C c

i +1

be a subspace of dimensionni := jC i \ Cc
i +1 j for i 2 N?

N � 1 with YN = XN . The
superscript ? denotes the orthogonal complement. We work under the following
assumptions.

Assumption 5.6: Connected correlation graph

For all i 2 f 2; : : : ; Ng one hasX i \
i � 1P

j =1
X j 6= f 0g.

Assumption 5.7: Path decomposition

For all i 2 f 2; : : : ; Ng one hasX i \
i � 1P

j =1
X j � X i � 1.

If Assumption 5.6 is violated thenK can be decomposed as a Cartesian product,
and one should just apply our methodology to each one of its factors. Assumption
5.7 ensures that the associated clique tree is a path decomposition as in Figure 5.2,
i.e. that it does not contain branchings.

Theorem 5.8: Path computation

If Assumptions 5.6 and 5.7 hold, then

vol K = p ?
spK := max

(� i ) i

Z
1 d� 1

s.t. � i 2 M (K i )+ i 2 N?
N (5.8a)

� i � � X i \ X i +1
i +1 
 � n i i 2 N?

N � 1 (5.8b)

� N � � nN : (5.8c)

Proof : Let us �rst prove that pspK � volK . For i 2 N?
N , let Wi := X ?

i \
NP

j = i +1
X j

so that
NP

j = i
X j = X i � Wi . Our working assumptions ensure thatWi is never reduced

to f 0g. For x i 2 X i de�ne

d� i (x i ) := 1K i (x i )

0

@
Z

Wi

NY

j = i +1

1K j � � X j (x i + w i ) dw i

1

A dx i : (5.9)

By construction � i 2 M + (K i ) and constraints (5.8a) are enforced. In addition, one
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can check that, if x i;i +1 2 X i \ X i +1 , then

d� X i \ X i +1
i +1 (x i;i +1 ) def=

Z

y i;i +1 2 X?
i \ X i +1

d� i +1 (x i;i +1 + y i;i +1 )

(5.9)
=

 Z

X?
i \ X i +1

1K i +1 (x i;i +1 + y i;i +1 ) : : :

: : :

0

@
Z

Wi +1

NY

j = i +2

1K j � � X j (x i;i +1 + y i;i +1 + w i +1 ) dw i +1

1

A dy i;i +1

1

A dx i;i +1

=

0

@
Z

Wi

NY

j = i +1

1K j � � X j (x i;i +1 + w i ) dw i

1

A dx i;i +1

since by construction of theWj , (X ?
i \ X i +1 ) � Wi +1 = Wi .

Thus, comparing this to (5.9), one can see that constraints (5.8b) are satis�ed.
Moreover, they are saturated onK i . Eventually, one has

X = X1 � W1

and thus
Z

1 d� 1 =
Z

X1

1K 1 (x1)

0

@
Z

W1

NY

j =2

1U j (x1 + w1) dw1

1

A dx1

=
Z

X

0

@
NY

j =1

1U j (x)

1

A dx

=
Z

X
1K (x) dx

= vol K ;

that is, we have just proved thatp?
spK � vol K .

To prove the converse inequality, observe that our previous choice� 1; : : : ; � N

saturates the constraints (5.8b) while enforcing the constraints (5.8a). Any other
feasible solution~� 1; : : : ; ~� N directly satis�es the inequality ~� i � � i . In particular,
~� 1 � � 1 and thus Z

1 d~� 1 �
Z

1 d� 1 = vol K :

Taking the maximum over all feasible(~� i ) i 2 N?
N

yields that p?
spK � vol K . }

Remark 5.1 (Duality in the sparse scheme)
The dual of the LP problem of Theorem 5.8 is the LP problem

d?
spK := inf

(wi ) i

Z
wN d� nN (5.10)

s:t : w1(x1) � 1 x1 2 K 1

wi +1 (x i +1 ) �
Z

Yi

wi (y i + � X i (x i +1 )) dy i x i +1 2 K i +1 i 2 N?
N � 1

wi 2 C(X i )+ i 2 N?
N :
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It is straightforward to prove that if � 1; : : : ; � N is feasible for problem(5.8), then for
any i 2 N?

N , one has
R

1 d� i �
R

1 d� N � C := vol X N = 1, so that Theorem 2.6
holds, and there is no duality gap, i.e.d?

spK = p ?
spK = vol K . For example, in the

case of the bicylinder treated in Section 5.1.5, the dual of(5.4) reads:

d?
spK = inf

w1 ;w2

Z

X 2

w2(x2; x3) dx2dx3

s:t : w1(x1; x2) � 1 (x1; x2) 2 K 1

w2(x2; x3) �
Z 1

� 1
w1(x1; x2) dx1 (x2; x3) 2 K 2

wi 2 C(X i )+ i 2 N?
N :

Thus, if (w(d)
1 ; w(d)

2 )k2 N is a minimizing sequence for this dual LP, then the sets

K̂ d :=
�

(x1; x2; x3) 2 [0; 1]3 : (w(d)
1 (x1; x2) � 1) ^

�

w(d)
2 (x2; x3) �

Z 1

0
w(d)

1 (x1; x2) dx1

��

are outer approximations of the setK and the sequences(vol K̂ d)k and (
R

w(d)
2 d� 2)

decrease tovol K . Similar statements can be made for the general dual problem.

Corollary 5.9: Convergence of the path computation scheme

Under Assumption 2.7 on theK i and X i = � X i ([� 1; 1]n ), i 2 N?
N , the Moment-

SOS hierarchy corresponding to problem (5.8) converges tovol K .

Proof : Since strong dualityp?
spK = d ?

spK holds, this is a direct consequence of
Theorems 5.8, 2.14 and 2.15. }

Remark 5.2 (Sequential Moment-SOS hierarchy)
The LP (5.8) is formulated as a single problem onN unknown measures. How-

ever, it is possible to split it in small chained subproblems to be solved in sequence.
Each subproblem is associated with a maximal clique (in the linear clique tree) and
it takes as input the results of the subproblem associated with its parent clique. This
way, the sparse volume computation is split intoN linked low-dimension problems
and solved sequentially. This may prove useful whenN is large because when solving
the SDP relaxations associated with the single LP(5.8), the SDP solver may en-
counter di�culties in handling a high number of measures simultaneously. It should
be easier to sequentially solve a high number of low-dimensional problems with only
one unknown measure. Both formulations being strictly equivalent, this would not
change the convergence properties of the sparse scheme.

As explained in Chapter 2, the hierarchy of SDP relaxations associated with our
in�nite-dimensional LP provides us with a sequence of upper bounds onvol K . One
may also be interested in computing lower bounds onvol K . In principle it su�ces
to apply the same methodology and approximate from above the volume ofX n K
sinceK is included in the unit box X . However, it is unclear whetherX n K has
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also a sparse description. We show that this is actually the case and so one may
exploit correlative sparsity to compute lower bounds although it is more technical.
The following result is a consequence of Theorem 5.8:

Corollary 5.10: Lower bounds sparse computation

If K is sparse, thenfK := X n K is sparse as well, andvol fK is the value of
the LP problem

p?
speK := max

(� i;j ) i;j

NX

j =1

Z
1 d� 1;j

s:t : � j;j 2 M (cl fK j )+ 1 � j � N

� i;j 2 M (K i )+ 1 � i < j � N

� j;j � � pj 1 � j � N

� i;j � � X i \ X i +1
i +1 ;j 
 � n i 1 � i < j � N

wherepj := dim X j , ni := dim X ?
i +1 \ X i , fK j := [0; 1]pj nK j is open andcl fK j

denotes its closurea.
aThis is necessary to ensure that our measures are de�ned on compact sets so that all

representation theorems hold.

Proof : The following description

fK =
NG

j =1

2

4
j � 1\

i =1

U i \ fU j

3

5 ;

where
F

stands for disjoint union and fU j := f x 2 Rn : � X j (x) 2 fK j g, is sparse.
Indeed the description of the basic semi-algebraic set

L j :=
j � 1\

i =1

U i \ fU j

is sparse. In addition, by� -additivity of the Lebesgue measure, one has

vol fK =
NX

j =1

vol L j :

Finally, by using Theorem 5.8 we conclude thatvol L j is the value of LP consisting
of maximizing

R
X j

d� 1;j subject to the same constraints as in the above LP problem.
Summing up yields the correct value. }

5.2.2 General sparse Stokes constraints

Consider the sequential decomposition of problem (5.8) in Theorem 5.8:
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p?
spK ;i := max

� i

Z
1 d� i

s.t. � i 2 M (K i )+

� i � � ?X i \ X i +1
i +1 
 � n i

for i 2 N?
N � 1, and

p?
spK ;N := max

� N

Z
1 d� N

s.t. � N 2 M (K N )+

� N � � nN

Our algorithm consists of sequentially solving these problems, starting with de-
termining � N , then � N � 1, and so on until � 1, whose mass will bevol(K ). We
implement Stokes constraints on each one of these problems. For the problem in
� N , we implement regular Stokes constraints as in Section 4.4.4:

p?
spK ;N := max

� N

Z
1 d� N

s.t. � N 2 M (K N )+

� N � � nN

(grad hN )� N � (grad hN � N ) = 0

wherehN is a polynomial vanishing on@K N , for examplehN = gN;1 � � � gN;m N .
Then, let i 2 N?

N � 1 and suppose that� i +1 is known, such that determining� i

is reduced to solving the LP problem of computingp?
spK ;i . From the arguments of

Section 5.2.1, we know that the optimal measure� i is supported onK i and that
on this set it is the product measure between� X i \ X i +1

i +1 and the uniform measure on
Yi = hx j i j 2 C i \ C c

i +1
. Since Stokes' theorem is only valid for uniform measures, it will

only apply to � Yi
i .

Let J � N?
n . For f 2 C1(Rn ) we de�ne

grad Jf :=

 
@f
@xj

!

j 2 J

such that grad N?
n
f = grad f and grad f j gf = @f

@xj
for example. This notation allows

us to de�ne Stokes constraints exactly in the directions we are interested in and to
formulate the general sparse Stokes constraints:

p?
spK ;i := max

� i

Z
1 d� i

s.t. � i 2 M (K i )+

� i � � ?X i \ X i +1
i +1 
 � n i

(grad C i \ C c
i +1

hi )� i � grad C i \ C c
i +1

(hi � i ) = 0

wherehi is a polynomial vanishing on@K i , for examplehi = gi; 1 � � � gi;m i .
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Remark 5.3 (Re�ning Stokes constraints)
In some cases, in both dense and sparse contexts, these Stokes constraints can

be slightly improved by choosing a di�erent polynomialh(i; ) j for each basis vectorej

when applying the Gauss formula(4.4) to u = hj ej , such thathj can be taken with
the lowest possible degree, allowing for a better implementation of the hierarchy. For
example, if one is looking for the volume ofK := [0; 1]2, the polynomial vanishing
on @K with the lowest degree ish(x1; x2) := x1(1 � x1)x2(1 � x2), but one can
formulate Stokes constraints by applying the Gauss formula(4.4) to x1(1 � x1) e1

and x2(1 � x2) e2, instead of h(x1; x2) e1 and h(x1; x2) e2. By doing so, one would
replace the constraint(grad h) � � grad (h � ) = 0 with

�
@hj
@xj

�
� � @

@xj
(hj � ) = 0 for

every possiblej . This is what we actually implemented in our numerical examples,
but we presented the Stokes constraints in the restrictive case ofhj = h for all j for
the sake of readability.

5.2.3 Path computation examples

Bicylinder revisited

We refer to (2.8a) as the dense problem and to (5.4) as the sparse problem. For
both problems, we consider instances with and without additional Stokes constraints.
Note that for the bicylinder example of Section 5.1.5 the optimal value for both the
dense and the sparse problem is

vol K =
16
3

� 5:3333

since adding Stokes constraints does not change the optimal value.
We solve the SDP relaxations with Mosek on a standard laptop, for various

relaxation orders and we report the bounds and the computation times in Table 5.1.
We observe a slow convergence for the dense and the sparse versions without Stokes
constraints, and a much faster convergence with Stokes constraints.We also observe
signi�cantly smaller computation times when using the sparse formulation.

A nonconvex set

Let X := R5, X1 = hx1; x2i , X2 = hx1; x3i , X3 = hx1; x4i , X4 = hx1; x5i and for
i = 1; 2; 3; 4

� gi (x1; x i +1 ) := (2 x2
1 � x2

1+ i � 1 ; x1 (1 � x1) ; x i +1 (1 � x i +1 )) ,

� K i := g� 1
i ((R+ )3) = f (x1; x i +1 ) 2 [0; 1]2 : 2x2

1 � x2
i +1 � 1g.

Let us approximate the volume of the sparse set

K :=
n
(x1; x2; x3; x4; x5) 2 [0; 1]5 : 8i 2 N?

4; 2x2
1 � x2

i +1 � 1
o

=
4\

i =1

� � 1
X i

(K i ) :

Here the coordinatesx2, x3, x4 and x5 do not interact: they are only linked with
the coordinatex1. The proper way to apply our linear computation Theorem 5.8 is
to de�ne a linear clique tree as shown in Figure 5.6.
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full sparse

d without Stokes with Stokes without Stokes with Stokes

2 7.8232 (1.0s) 5,828 (1.1s) 7,7424 (1.1s) 5,4984 (1.1s)

3 7.2368 (0.9s) 5,4200 (1.3s) 7,1920 (0.9s) 5,3488 (1.1s)

4 7.0496 (1.4s) 5,3520 (2.2s) 7,0040 (1.2s) 5,3376 (1.2s)

5 6,8136 (3.1s) 5,3400 (4.4s) 6,7944 (1.8s) 5,3352 (1.8s)

6 6,7376 (7.2s) 5,3376 (8.2s) 6,6960 (2.1s) 5,3344 (2.3s)

7 6,6336 (12.8s) 5,3360 (18.3s) 6,6168 (2.6s) 5,3344 (3.2s)

Table 5.1 � Performance of sparse computation of the bicylinder's volume.

Bounds on the volume (and computation times in seconds) vs relaxation order for
the bicylinder.

One can verify that such organization of the cliques satis�es Assumptions 5.6
& 5.7, allowing for the application of Theorem 5.8 and the implementation of the
Moment hierarchy corresponding to problem (5.8) with sparse Stokes constraints.

This yields the following formulation

vol K = p ?
spK = max

(� i ) i

Z
1 d� 1 (5.11)

s.t. � i 2 M (K i )+ i = 1; 2; 3; 4

d� 1(x1; x2) � d� hx1 i
2 (x1) dx2

d� 2(x1; x3) � d� hx1 i
3 (x1) dx3

d� 3(x1; x4) � d� hx1 i
4 (x1) dx4

d� 4(x1; x5) � dx1 dx5

with Stokes constraints
@

@x2

h
(2x2

1 � x2
2 � 1) x2 (1 � x2)

i
d� 1(x1; x2) =

@
@x2

h
(2x2

1 � x2
2 � 1) x2 (1 � x2) d� 1(x1; x2)

i

@
@x3

h
(2x2

1 � x2
3 � 1) x3 (1 � x3)

i
d� 2(x1; x3) =

@
@x3

h
(2x2

1 � x2
3 � 1) x3 (1 � x3) d� 2(x1; x3)

i

@
@x4

h
(2x2

1 � x2
4 � 1) x4 (1 � x4)

i
d� 3(x1; x4) =

@
@x4

h
(2x2

1 � x2
4 � 1) x4 (1 � x4) d� 3(x1; x4)

i

@
@x5

h
(2x2

1 � x2
5 � 1) x5 (1 � x5)

i
d� 4(x1; x5) =

@
@x5

h
(2x2

1 � x2
5 � 1) x5 (1 � x5) d� 4(x1; x5)

i

@
@x1

h
(2x2

1 � x2
5 � 1) x1 (1 � x1)

i
d� 4(x1; x5) =

@
@x1

h
(2x2

1 � x2
5 � 1) x1 (1 � x1) d� 4(x1; x5)

i
:

We can compute analytically

vol K =
1
15

�
7 � 4

p
2

�
' 0:0895:
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x1

x3

x4

C2

C3

x2

x5

C1

C4

(a) Variable graph.

C1 C2

C3C4

(b) Clique tree.

Figure 5.6 � Graph with linear clique tree for the nonconvex set.

On Figure 5.7 we show results from solving several relaxations via the dense
and the sparse approach, with and without Stokes constraints. While solving with
Mosek the degree12 dense relaxation took about1000seconds, solving the degree
12 sparse relaxation took less than10 seconds. With the sparse relaxations it was
possible to go much higher in the hierarchy. Figure 5.7b shows convincingly how
Stokes constraints accelerate the convergence of the hierarchy. We can also observe
that the nonconvexity of K poses no special di�culty for the volume computation.

(a) Computation time vs relaxation order. (b) Bounds on the volume vs relaxation order.

Figure 5.7 � Performance for the nonconvex set.

A high dimensional polytope

Consider
K (n) := f x 2 [0; 1]n : 8i 2 N?

n� 1; x i + x i +1 � 1g:
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According to [118], for any� 2 (� �
2 ; �

2 ), one has the elegant formula :

tan � + sec� = 1 +
1X

n=1

vol K (n) � n

which gives access to the volume ofK (n) for n arbitrarily large. For example when
n = 20 we obtain

vol K (20) =
14814847529501

97316080327065600
� 1:522� 10� 4:

From the SDP viewpoint, vol K (n) is computed by solving relaxations of the LP
problem given in Theorem 5.8 whereN = n � 1, X i = hx i ; x i +1 i and gi (x i ; x i +1 ) =
(x i ; x i +1 ; 1 � x i � x i +1 ), i = 1; : : : ; n � 1.

We implemented the volume computation algorithm forn = 20, with Stokes
contraints. This cannot be achieved without resorting to sparse computation as the
dimension is too high for regular SDP solvers. With the sparse formulation however
we could solve relaxations up to degree28 in less than100seconds, see Figure 5.8.
Note however, that the analytic volume is of the order of10� 4. In consequence we
observe a non monotonicity of the relaxation values which contradicts the theory.
This issue is surprising as the Mosek SDP solver terminates without reporting issues.
This indicates that computing small volumes in large dimension can be numerically
sensitive.

Figure 5.8 � Performance for the high dimensional polytope.

We represent the obtained bounds on the volume vs relaxation order.

In order to �x the monotonicity issue, we added a sparse rescaling to our problem.
The idea is the following: at each step of the algorithm, the mass of the measure� i

is less than the mass of the reference measure

� i := � X i \ X i +1
i +1 
 � n i :

De�ning

" i :=
j� i j
j� i j

2 (0; 1);
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(a) Without rescaling. (b) With rescaling.

Figure 5.9 � Sparse rescaling performance for the high dimensional polytope.

we obtain that

vol K =
NY

i =1

" i

as a telescoping product, sincej� N j = vol X N = 1 (recall that X = [0; 1]n &
X N = [0; 1]nN ). As a result, if N is large and the" i are small, one can expect the
volume to be very small, which explains why the SDP solver encounters di�culties.
Thus, a solution is to multiply each domination constraint by a well-chosen rescaling
factor " such that the mass of� i does not decrease too much. As a result, one obtains
vol K = "N � 1p? "

spK , where

p? "
spK := max

(� i ) i

Z
1 d� 1 (5.12)

s.t. � i 2 M (K i )+ i 2 N?
N

" � i � � X i \ X i +1
i +1 
 � n i i 2 N?

N � 1

� N � � nN :

Figure 5.9 gives a comparison between the results obtained with and without sparse
rescaling, using the SDP Solvers SeDuMi and Mosek, for the choice" = 1

2 .
First, one can see that without rescaling (Figure 5.9a), both SeDuMi and Mosek

have accuracy issues that make them lose monotonicity, while the rescaling (Figure
5.9b) allows recovering monotonicity at least when using SeDuMi (which is slower
but more accurate than Mosek to our general experience). Second, it is clear that the
relative approximation error is much smaller with scaling. This, combined to the fact
that the error is relative (after rescaling, the error is much smaller), demonstrates
the power of our rescaling method.
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A nonconvex high dimensional set

Finally, we consider the set already mentioned in Section 5.1.3, which is both non-
convex and high dimensional. Let

K (n) :=
n
x 2 [0; 1]n : 8i 2 N?

n� 1; x i +1 x i � 1=2
o

whose analytic volume is a function of the dimensionn. For n = 3 the analytic
volume is 0:75, for n = 4 it is 0:6566, approximately. In higher dimensions we do
not have an analytic expression for the volume. However, in order to get a feeling
for its value for biggern, we ran a Monte Carlo simulation with one million samples
for n = 10; 20; 50, and 100.

Remark 5.4 (On Monte Carlo simulations)
We describe the very basic Monte Carlo approach used here. LetX1; : : : ;XN be

i.i.d. samples from some law� . In our case � is the uniform distribution on [0; 1]n .
Further let f be a function from the probability space intof 0; 1g. Again, in our case,
f would return 1 if the sampleX i is in the set K (n) , and 0 else. By the strong law
of large numbers

F̂N :=
1
N

NX

i =1

f (X i ) �!
N !1

Z
f d� = vol K (n) :

This makesF̂N a reasonable guess ifN is large. However,F̂N is stil l a guess, and
it might happen thatF̂N is actually far away from the approximated quantity.

As a consequence of the Central Limit Theorem, the di�erencêFN �
R

f d�
behaves (almost) like a normal distributed random variable with zero mean and vari-
ance � 2=N where � 2 =

R
(f �

R
fd � )2 d� . Note that the variance� 2 can also be

estimated based on the i.i.d. samplesX1; : : : ;XN :

Ŝ2
N :=

1
N � 1

NX

i =1

(X i � F̂N )2:

This allows one to de�ne a con�dence interval for the approximated volume. Indeed,
say we are interested in a 99%-con�dence interval. Then forG a standard normal
distributed random variable, we haveP(jGj < 2:58) � 0:99 and consequently,

P

0

@F̂N �
2:58̂SNp

N
�

Z
fd� � F̂N +

2:58̂SNp
N

1

A � 0:99:

Remark 5.5 (Moment-SOS hierarchy VS Monte-Carlo)
Before we go on, let us emphasize that the method proposed in this chapter is

not in competition with the Monte Carlo approach. While the Monte Carlo method
gives a probabilistic estimate of the volume, our method provides a guaranteed upper
bound. Nonetheless, it would be disconcerting if the computed upper bound were
much smaller than the lower bound of the con�dence interval, and we consider our
approximation valid, when it returns something in the order of the Monte Carlo
approximation. The results for di�erent dimensionsn and solved with the Mosek
SDP solver are summarized in Table 5.2.
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As in the previous section we experience accuracy issues for the relaxations of or-
der 14 and n = 20; 100, as well as for order16 and n = 50. Otherwise, the ap-
proximations provide better upper bounds for increased relaxation orders as expec-
ted. For n = 3; 4 the approximation is reasonably close to the analytic value. For
n = 10; 20; 50 our scheme provides an upper bound in the same order of magnitude
as the 99%-con�dence interval of the Monte Carlo simulation. We interpret this as
a validation for both the Monte Carlo approach and our own approach. Forn = 100
we could not derive a meaningful con�dence interval. Indeed, as our approximation
shows, the volume forn = 100 is less than9 � 10� 6. In order to get an accuracy
of " = 10� 6 one would have to draw approximatelyN = 1

" 2 = 1012 samples. With
our non-sophisticated implementation, the Monte Carlo simulation for one million
points took about 5 seconds. Extending this linearly to a simulation with1012

samples would therefore take a little less than 2 months (5� 106 s ' 1389h ' 58 d).
With more sophisticated methods, this time could certainly be reduced dramatic-
ally. However, it sets the 44 minutes it took to solve relaxation order 16 forn = 100
into perspective.

5.3 Exploiting correlative sparsity

5.3.1 General correlative sparsity pattern

Let us describe a general method to compute the volume of

K :=
N\

i =1

U i

whereU i = f x 2 X : gi (x) � 0g and (g1; : : : ; gN ) is a correlatively sparse family of
polynomial vectors with associated coordinate subspace decompositionX =

P N
i =1 X i .

For this we construct the correlation graphG = ( V ; E) as follows:

� V = f 1: : : ; ng represents the canonical basisf e1; : : : ; eng of X = Rn ;

� E = f (i; j ) 2 f 1; : : : ; ng2 : i 6= j & ei ; ej 2 X k for somek 2 N?
N .

As stated in Section 5.1.4, we suppose that the correlation graph of(gi )1� i � N has
exactly N maximal cliques (see Section 5.3.4 for discussions when it is not the case)
that are in correspondence with theX i .

Let K be the set of maximal cliques ofG. We will use the following property of
graphs:

De�nition 5.11: Clique Intersection Property (CIP)

The graph G = ( V ; E) is said to satisfy theclique intersection property (CIP)
i� there is a clique treeT = ( K; E), E � K 2, such that for all C; C0 2 K ,
C \ C0 � C00for any C00on the path connectingC and C0 in the tree T.
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n=3 n = 4 n=10

d value time (s) value time (s) value time (s)

4 7.86E-01 0.95 7.09E-01 0.61 3.93E-01 1.24

5 7.73E-01 2.87 6.90E-01 0.78 3.57E-01 1.84

6 7.69E-01 2.74 6.84E-01 0.86 3.45E-01 4.21

7 7.66E-01 4.58 6.79E-01 1.83 3.38E-01 4.55

8 7.63E-01 5.00 6.77E-01 2.29 3.34E-01 5.97

9 7.63E-01 6.11 6.74E-01 3.33 3.30E-01 11.56

10 7.62E-01 9.83 6.73E-01 6.86 3.26E-01 18.21

11 7.61E-01 18.16 6.72E-01 8.57 3.26E-01 22.24

12 7.60E-01 19.45 6.71E-01 10.43 3.23E-01 33.78

13 7.60E-01 22.49 6.70E-01 17.89 3.22E-01 74.00

14 7.60E-01 27.02 6.69E-01 26.84 3.21E-01 79.68

15 7.59E-01 32.90 6.69E-01 39.25 3.20E-01 119.7

16 7.58E-01 78.20 6.68E-01 61.32 3.19E-01 176.6

ana/mc 7.50E-01 - 6.57E-01 - [2.99e-01, 3.03e-01]

n = 20 n=50 n = 100

d value time (s) value time (s) value time (s)

4 1.47E-01 5.11 7.68E-03 10.64 9.49E-05 15.19

5 1.20E-01 3.58 4.78E-03 15.10 4.80E-05 26.87

6 1.11E-01 8.13 3.86E-03 21.75 2.84E-05 49.89

7 1.07E-01 11.06 3.42E-03 48.31 2.27E-05 77.07

8 1.03E-01 17.93 3.20E-03 72.78 1.91E-05 135.08

9 1.00E-01 33.31 2.99E-03 120.49 1.63E-05 202.12

10 9.81E-02 41.02 2.99E-03 103.61 1.44E-05 299.44

11 9.70E-02 85.83 2.89E-03 165.56 1.22E-05 441.67

12 9.59E-02 117.08 2.77E-03 220.84 1.19E-05 623.24

13 9.51E-02 138.38 2.67E-03 314.00 1.08E-05 850.92

14 9.57E-02 156.32 2.60E-03 457.92 1.10E-05 1175.02

15 9.39E-02 249.82 2.54E-03 685.64 9.86E-06 1589.49

16 9.36E-02 357.87 2.56E-03 859.60 9.46E-06 2623.02

ana/mc [8.09e-02, 8.24e-02] [1.48e-03, 1.68e-03] -

Table 5.2 � Performances on a nonconvex high dimensional set.

ana/mc refers to the analytic value and the 99%-con�dence interval, respectively.
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Such a property is equivalent to the fact thatG is chordal4, see [13]. We then
replace Assumption 5.7 with the following strong correlative sparsity assumption:

Assumption 5.12: Disjoint Intersection Property (DIP)

We suppose that there is a clique treeT = ( K; E), rooted in someC1, that
simultaneously satis�es the CIP and the followingdisjoint intersection prop-
erty (DIP): 8C; C0; C002 K , if (C; C0) 2 E and (C; C00) 2 E then C0 = C00or
C0 \ C00= ? .

In words, each clique has an empty intersection with all its siblings. See Section
5.3.4 for details on how to check this assumption and construct such a tree when
it exists, as well as possible solutions when Assumption 5.12 does not hold. Figure
5.10 illustrates the meaning of this assumption forn = 12 and N = 8. One can
check that Assumptions 5.6 and 5.12 hold.

Remark 5.6 (On Assumption 5.12)
With these assumptions, the only possible clique trees for applying our method to

the nonconvex example illustrated in Figure 5.6 are linear clique trees. Indeed, any
branched clique tree would imply sibling cliques containingx1.

x2

x3

x4

C2

x5

x6

x7

x8

C3

C4

x9

x10

x11

x12

C5

C6

C7

C8

x1

C1

C1

C5

C6

C7

C8

C2

C3

C4

Figure 5.10 � Chordal graph (left) with its clique tree (right).

4Thus the CIP always holds, up to a chordal extension. In particular, cyclic graphs can be
handled with empty interactions between well-chosen variables.
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5.3.2 Distributed computation theorem

One can formulate a simple generalization of the sequential implementation of The-
orem 5.8 to our general correlative sparsity pattern.

Theorem 5.13: Distributed computation

Let Assumptions 5.6 and 5.12 hold. LetT = ( K; E) be a clique tree as in

Assumption 5.12. Thenvol K =
Z

1 d� ?
1 where for i 2 N?

N , � ?
i is an optimal

solution to the following GMP:

p?
spK ;i := max

� i

Z
1 d� i

s.t. � i 2 M (K i )+ (5.13a)

� i �

0

@
O

(C i ;C j )2E

� ?X i \ X j
j

1

A 
 � n i (5.13b)

and ni = dim X i \

 
P

(C i ;C j )2E
X j

! ?

=

�
�
�
�
�
C i \

 
S

(C i ;C j )2E
C j

! c�
�
�
�
�
.

Proof : We de�ne, for i 2 N?
N ,

Yi := X i \

0

@
X

(C i ;C j )2E

X j

1

A

?

= hxk i k2 C i ; (C i ;C j )2E) k =2 C j

and we observe that, according to Assumption 5.12, for anyi 2 N?
N

X i =

0

@
M

(C i ;C j )2E

X i \ X j

1

A � Yi :

Thus, constraint (5.13b) is well-posed.
For i 2 N?

N , let D(i ) := f j > i : 9 an oriented path fromC i to C j in Tg
be the set of descendants ofC i , as well asWi :=

P

j 2D (i )
X j = hxk i k2 C j ; j 2D (i ) and

r i := dim Wi =

�
�
�
�
�

S

j 2D (i )
C j

�
�
�
�
�
.

We are going to show by induction that fori 2 N?
N ,

� ?
i = 1K i

0

@
Y

j 2D (i )

1K j � � X j � r i

1

A

X i \ Wi


 � n i :

Our base cases are the leaves ofT, i.e. the i such that D(i ) = ? . Then, problem
(5.13) is reduced to the classical problem of computing the volume ofK i , whose
optimal solution is exactly � ?

i = � K i = 1K i � n i (becauseD(i ) = ? ) ni = dim X i ),
which is the expected result.
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Then we can proceed to the induction: leti be a node ofT that is not a leaf:
D(i ) 6= ? ; and suppose that forj 2 D (i ) such that (C i ; C j ) 2 E,

� ?
j = 1K j

0

@
Y

k2D (j )

1K k � � Xk � qj

1

A

X j \ Wj


 � n j :

Then, constraint (5.13b) can be rewritten as

� i �

0

B
@

O

(C i ;C j )2E

0

B
@1K j

0

@
Y

k2D (j )

1K k � � Xk � qj

1

A

X j \ Wj


 � n j

1

C
A

X i \ X j
1

C
A 
 � n i

which in turn is simpli�ed into

� i �

0

B
@

O

(C i ;C j )2E

0

@1K j

0

@
Y

k2D (j )

1K k � � Xk

1

A � n j + qj

1

A

X i \ Wj
1

C
A 
 � n i

since the CIP ensures thatX i \ X j \ Wj = X i \ Wj : indeedC j is on the path between
C i and anyCk with k 2 D (j ), so that C i \ Ck � C j and thusX i \ X k � X j , yielding
X i \ Wj � X j . At this point one can notice that nj + qj = dim( X j + Wj ).

Then, using the DIP, we know that if (C i ; C j ); (C i ; Ck) 2 E with j 6= k then
C j \ Ck = ? and with the CIP C j \ C l = ? for any l 2 D (k). This yields that
(X j + Wj ) \ (X k + Wk) = f 0g and thus Wi =

L

(C i ;C j )2E
(X j + Wj ), allowing us to

rewrite constraint (5.13b) as

� i �

0

@
O

(C i ;C j )2E

1K j

0

@
Y

k2D (j )

1K k � � Xk

1

A � n j + qj

1

A

X i \ Wi


 � n i ;

which simpli�es into

� i �

0

@
Y

j 2D (i )

1K j � � X j � r i

1

A

X i \ Wi


 � n i :

Eventually, we are again faced to a classical instance of the dense volume problem

for K i , with

 
Q

j 2D (i )
1K j � � X j � r i

! X i \ Wi


 � n i instead of only the uniform Lebesgue

measure, and we know that the optimal solution is obtained by multiplying this
non-negative dominating measure with the indicator ofK i , yielding

� ?
i = 1K i

0

@
Y

j 2D (i )

1K j � � X j � r i

1

A

X i \ Wi


 � n i

which is the announced result.
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We conclude by using the fact thatD(1) = f 2; : : : ; Ng and Rn = X1 + W1 =
X1 � (X ?

1 \ W1) to compute the value:

Z
1 d� ?

1 =
Z

1K 1

0

@
NY

j =2

1K j � � X j � q1

1

A

X1 \ W1

d� n1

=
Z

X1

1K 1 (x1)

0

@
Z

X?
1 \ W1

NY

j =2

1U j (x1 + w1) dw1

1

A dx1

=
Z

Rn

 NY

i =1

1U i (x)

!

dx

=
Z

Rn
1K (x) dx

= vol K :

}

Therefore one obtains a sequence of in�nite dimensional LPs on measures that
can be algorithmically addressed using the usual SDP relaxations. The computations
start from the leaves of the clique tree and proceed down to the root. It is worth
noting that all the maximal cliques of the same generation in the tree are totally
independent, which allows treating them simultaneously,i.e. to partially parallelize
the computations. Letd 2 N. We consider the solutionsz(d)

i to the degreed moment
relaxations corresponding to problems (5.13), fori 2 N?

N , as well as the relaxation
valuespd

spK ;i . We are going to study the convergence of the sequencepd
spK ;1 to vol K .

Theorem 5.14: Convergence of the branched Moment-SOS hier-
archy

Suppose that Assumption 2.7 holds for theK i and the X i . Let C i 2 K
such that for C j 2 K satisfying (C i ; C j ) 2 E, we have a converging se-
quence of pseudo-moment vectors(z(d)

j )d: for any appropriate multi-index

k, z(d)
j; k �!

d!1

R
X j

x k
j d� ?

j (x j ).

In this setting, if each relaxation of thei -th LP problem (5.13) has at least
one feasible solution, then the corresponding Moment hierarchy converges: for
any appropriate multi-index k, z(d)

i; k �!
d!1

R
x k

i d� ?
i (x i ).

Thus, by induction, if at all nodes ofT the moment relaxationsremain feasible
at all degreesof relaxation, then the branched Moment hierarchy converges,
namely pd

spK ;1 �!
d!1

p?
spK ;1 = vol K .

Proof : The feasibility assumption ensures that thez(d)
i are properly de�ned at all

degreesd. Then, pointwise convergence of the(z(d)
j )d yields that it is bounded for the

weak-� topology on R[x]0. The moment relaxation of constraint (5.13b) combined
with Lemma 2.9 then yield that (z(d)

i )d is bounded for the weak-� topology onR[x]0,
which means, according to the Banach-Alaoglu theorem, that it has an accumulation
point. Finally, by uniqueness of the solution to the in�nite dimensional LP problem
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(5.13), the convergence of(z(d)
j )d to the moment sequence of� ?

j ensures that this
accumulation point is none other than the moment sequence of� ?

i . This proves
existence and uniqueness of the accumulation point of(z(d)

i )d. Then, we get for any
appropriate multi-index k

z(d)
i; k �!

d!1

Z
x k d� ?

i (x):

To conclude for the global convergence of the sparse scheme, we just need to check the
base case of this induction. Here again the base case is the leaves of the tree at which
we are faced to standard instances of the volume problem, whose associated Moment-
SOS hierarchy is already proved to converge. Thus, our convergence assumption is
satis�ed, which means that as long as all the relaxations are feasible, their solutions
converge weakly-� to the in�nite dimensional optimal measures, and in particular

pd
spK ;1 �!

d!1
p?

spK ;1 = vol K :

}

Remark 5.7 Stokes constraints can be implemented similarly to the linear case.

5.3.3 Distributed computation examples

6D polytope

Let X := R6 and X1 = hx1; x2i , X2 = hx2; x3; x4i , X3 = hx3; x5i , X4 = hx4; x6i . For
i = 1; 3; 4 let gi (x; y) := ( x; y; 1 � x � y) and

K i := g� 1
i

�
R2

+

�
= f (u; v) 2 [0; 1]2 : u + v � 1g:

Let g2(x; y; z) := ( x; y; z; 1 � x � y � z) and

K 2 := g� 1
2

�
R3

+

�
= f (x; y; z) 2 [0; 1]3 : x + y + z � 1g:

Let us approximate the volume of the 6D polytope

K :=

8
>>>>>>>><

>>>>>>>>:

x 2 R6
+ :

x1 + x2 � 1

x2 + x3 + x4 � 1

x3 + x5 � 1

x4 + x6 � 1

9
>>>>>>>>=

>>>>>>>>;

=
4\

i =1

� � 1
X i

(K i ) :

No linear clique tree is associated to this problem through Proposition 5.12. The
only possible clique trees for applying our method are the two branched clique trees
of Figure 5.11.

Let us compare the performance of the algorithms derived from the two possible
clique tree con�gurations and with the dense problem. For that, we �rst write the
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(a) 3 step clique tree.
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(b) 2 step clique tree.

Figure 5.11 � Two possible branched clique trees for the 6D polytope.

problem associated with the 3 step clique tree con�guration of the top of Figure
5.11:

vol K =
Z

1 d� ?
1 (5.14)
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where

� ?
1 = argmax

� 1

Z
1 d� 1

s.t. � 1 2 M (K 1)+

d� 1(x1; x2) � dx1 d� ?hx2 i
2 (x2)

� ?
2 = argmax

� 2

Z
1 d� 2

s.t. � 2 2 M (K 2)+

d� 2(x2; x3; x4) � dx2 d� ?hx3 i
3 (x3) d� ?hx4 i

4 (x4)

� ?
i = argmax

� 3

Z
1 d� i ; i = 3; 4

s.t. � i 2 M (K i )+

� i � � 2:

This problem can be complemented with the following Stokes constraints:

@
@x1

h
x1 (1 � x1 � x2)

i
d� 1(x1; x2) =

@
@x1

[x1 (1 � x1 � x2) d� 1(x1; x2)]

@
@x2

h
x2 (1 � x2 � x3 � x4)

i
d� 2(x2; x3; x4) =

@
@x2

[x2 (1 � x2 � x3 � x4) d� 2(x2; x3; x4)]

@
@xi

h
x i (1 � x i � x i +2 )

i
d� i (x i ; x i +2 ) =

@
@xi

[x i (1 � x i � x i +2 ) d� i (x i ; x i +2 )]

@
@xi +2

h
x i +2 (1 � x i � x i +2 )

i
d� i (x i ; x i +2 ) =

@
@xi +2

[x i +2 (1 � x i � x i +2 ) d� i (x i ; x i +2 )] i = 3 ; 4:

The 2 step clique tree of the bottom of Figure 5.11 yields the following formulation

vol K =
Z

1 d� ?
2 (5.15)

where

� ?
2 = argmax

� 2

Z
1 d� 2

s.t. � 2 2 M (K 2)+

d� 2(x2; x3; x4) � d� ?hx2 i
1 (x2) d� ?hx3 i

3 (x3) d� ?hx4 i
4 (x4)

� ?
i = argmax

� i

Z
1 d� i ; i = 1; 3; 4

s.t. � i 2 M (K i )+

� i � � 2;

with Stokes constraints

@
@xi

h
x i (1 � x i � x j )

i
d� i (x i ; x j ) =

@
@xi

[x i (1 � x i � x j ) d� i (x i ; x j )]

@
@xj

h
x j (1 � x i � x j )

i
d� i (x i ; x j ) =

@
@xj

[x j (1 � x i � x j ) d� i (x i ; x j )]
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for (i; j ) = (1 ; 2); (3; 5); (4; 6). However, no Stokes constraints can be applied for
the computation of � 2 (there is no Lebesgue measure in the domination constraint,
so the optimal measure is not uniform). For this reason one can expect a slower
convergence than in the linear con�guration.

We implement the hierarchies associated to the 2 and 3 step sparse formulations,
as well as the dense problem hierarchy, and compare their performance in Figure
5.12. We can compute analytically

vol K =
1
18

' 0:0556:

(a) Computation time vs relaxation order. (b) Bounds on the volume vs relaxation order.

Figure 5.12 � Performance for the 6D polytope.

Both sparse formulations outperform the dense one in terms of computational
time needed to solve the corresponding SDPs (Figure 5.12a). On the accuracy side
however (Figure 5.12b), we observe that the 2 step formulation seems to be less e�-
cient than the 3 step formulation. In particular when considering the accuracy/time
e�ort relation at order 3 the dense formulation provides a better value in almost the
same time.

We believe that this can be explained by the way Stokes constraints are added
to the program. Indeed, at a given clique, Stokes constraints can only be imple-
mented in the variables that are not shared with the input measure. In the fully
(2 step) branched con�guration, the last step of the optimization program cannot
be accelerated by Stokes constraints at all, while in the 3 step con�guration, step 1
includes Stokes constraints inx3; x4; x5; x6, step 2 includes Stokes constraints inx2

and step 3 includes Stokes constraints onx1, which explains the gap between the
optimal values of these two con�gurations.

Moreover, it seems that even the least branched (3 step) con�guration still
presents a gap between its optimal value and the analytic solution. This might also
happen with a non-sparse instance of the Moment-SOS hierarchy (which converges
theoretically) and it is likely due to the choice of the monomial basis to represent
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polynomials. Indeed, most of the Moment-SOS parsers generate SDP problems with
the basis of monomials, while sometimes other bases (e.g. Chebyshev or Legendre
polynomials) are more appropriate. However, in this precise case, it might also be
linked again with the sparse Stokes constraints implementation. Indeed, in step 2
of the scheme, the unknown measure measuresx2; x3 and x4 but Stokes constraints
are implemented only inx2, leaving a possible Gibbs e�ect inx3; x4. Unlike most of
our numerical examples, this one still includes an optimization step in which most
of the variables are not controlled through Stokes constraints. The gap between the
optimal value and the analytic value for the 3 step branched formulation in Figure
5.12b could be explained by a Gibbs e�ect in the second optimization step.

As a consequence, in the following, one should avoid the branched hierarchies
that cannot be accelerated at each step at least partially by Stokes constraints. Such
a hierarchy appears when the root of the chosen clique tree shares all its vertices
with its children cliques. It can be proved that such a con�guration can always be
avoided while implementing sparse volume computation, by choosing a leaf as the
new root of the tree.

4D polytope

Let X := R4, X1 := hx1; x2i , X2 := hx2; x3i , X3 := hx3; x4i , gi (a; b) := ( a; b;1� a� b),
i = 1; 2; 3 and K i := g� 1

i

�
R3

+

�
= f (u; v) 2 [0; 1]2 : u + v � 1g. Let us approximate

the volume of the 4D polytope

K :=

8
>>>>><

>>>>>:

(x1; x2; x3; x4) 2 R4
+ :

x1 + x2 � 1

x2 + x3 � 1

x3 + x4 � 1

9
>>>>>=

>>>>>;

=
3\

i =1

� � 1
X i

(K i ) :

In such a case, there are two possible con�gurations for the associated clique tree
of Proposition 5.12, see Figure 5.13. Accordingly, we can computevol K in two
di�erent ways. The �rst way

vol K = max
(� i ) i

Z
1 d� 1 (5.16)

s.t. � i 2 M (K i )+

d� 1(x1; x2) � dx1 d� hx2 i
2 (x2)

d� 2(x2; x3) � dx2 d� hx3 i
3 (x2)

d� 3(x3; x4) � dx3 dx4

is the linear formulation given by Corollary 5.8, which is under the form of a non-
parallelizable single linear problem. The following additional Stokes constraints can
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(a) linear clique tree.

x2x1 x3
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C1 C3

C1
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(b) branched clique tree.

Figure 5.13 � Two possible clique trees for the 4D polytope.

be added:

@
@x1

h
x1 (1 � x1 � x2)

i
d� 1(x1; x2) =

@
@x1

[x1 (1 � x1 � x2) d� 1(x1; x2)]

@
@x2

h
x2 (1 � x2 � x3)

i
d� 2(x2; x3) =

@
@x2

[x2 (1 � x2 � x3) d� 2(x2; x3)]

@
@x3

h
x3 (1 � x3 � x4)

i
d� 3(x3; x4) =

@
@x3

[x3 (1 � x3 � x4) d� 3(x3; x4)]

@
@x4

h
x4 (1 � x3 � x4)

i
d� 3(x3; x4) =

@
@x4

[x4 (1 � x3 � x4) d� 3(x3; x4)] :

On the other hand, if one associates the maximal cliqueC1 to the subspaceX2 and
the maximal cliqueC2 to the subspaceX1, one also has

vol K =
Z

1 d� ?
2 (5.17)
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where

� ?
2 = argmax

� 2

Z
1 d� 2

s.t. � 2 2 M (K 2)+

d� 2(x2; x3) � � ?hx2 i
1 (dx2) d� ?hx3 i

3 (x3)

� ?
1 = argmax

� 1

Z
1 d� 1

s.t. � 1 2 M (K 1)+

d� 1(x1; x2) � dx1 dx2

� ?
3 = argmax

� 3

Z
1 d� 3

s.t. � 3 2 M (K 3)+

d� 3(x3; x4) � dx3 dx4

which is the branched formulation associated to Theorem 5.13. Here one can see that
� ?

1 and � ?
3 can be computed independently in parallel, and then re-injected in the

problem to which � ?
2 is the solution. One can add the following Stokes constraints:

@
@x1

h
x1 (1 � x1 � x2)

i
d� 1(x1; x2) =

@
@x1

[x1 (1 � x1 � x2) d� 1(x1; x2)]

@
@x2

h
x2 (1 � x1 � x2)

i
d� 1(x1; x2) =

@
@x2

[x2 (1 � x1 � x2) d� 1(x1; x2)]

@
@x3

h
x3 (1 � x3 � x4)

i
d� 3(x3; x4) =

@
@x3

[x3 (1 � x3 � x4) d� 3(x3; x4)]

@
@x4

h
x4 (1 � x3 � x4)

i
d� 3(x3; x4) =

@
@x4

[x4 (1 � x3 � x4) d� 3(x3; x4)] :

We can compute analytically

vol K =
5
24

' 0:2083:

In Figure 5.14 we compare the two sparse formulations with and without Stokes
constraints. Surprisingly the linear formulation is faster than the branched one
for small relaxation degrees, most probably because at this level of precision the
branching costs more in terms of constructing and parsing the LMIs than it saves
in computational time. When going deeper in the hierarchy we see the advantage
of the branched formulation where more computations are done in parallel. As ob-
served in the previous example however, the branched formulation seems to have
problems to converge to the optimal value on an early relaxation. While the val-
ues of both formulations without Stokes constraints almost coincide, the values of
the linear formulation with Stokes are strictly better than the ones of the acceler-
ated branched formulation. This further supports our conjecture that formulations
where Stokes constraints can be added at every step of the optimization program
are to be preferred: the fact that both con�gurations behave equally without Stokes
constraints and that the branched con�guration keeps a relaxation gap when im-
plementing Stokes constraints suggests that these Stokes constraints behave better
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in linear con�gurations than in branched con�gurations. For this reason, in the 6D
case where all possible con�gurations are branched, we could not completely elim-
inate the relaxation gap, while in this case where there is a linear con�guration, the
relaxation gap vanishes.

(a) Computation time vs relaxation order. (b) Bounds on the volume vs relaxation order.

Figure 5.14 � Performance for the 4D polytope.

5.3.4 The disjoint intersection hypothesis

It may happen that Assumption 5.12 does not hold, in which case all the above
results would not apply. For example one could think of the following set:

K :=
n
x 2 R6 : x2

1 + x2
2 + x2

3 � 1 ^ 8 i 2 f 2; 3g; x2
i + x2

i +2 + x2
i +3 � 1

o

whose correlative graph is represented on Figure 5.15. Here the DIP and CIP cannot
be simultaneously enforced: the CIP would only be satis�ed by a branched clique
tree, but since all the cliques share common vertices, in such a branched tree there
would automatically be sibling cliques with nonempty intersection. Also, one can
notice that in this case (and, as far as we know, only in similar con�gurations where
Assumption 5.12 is violated), the cliqueC2 does not correspond to a polynomial
appearing in the description ofK .

First, we would like to emphasize that the core of this chapter is the linear com-
putation theorem, for which the working assumption always holds. The branched
generalizations are only consequences of this linear computation theorem.

Second, the fact that Assumption 5.12 does not hold is not a dead-end for using
our scheme. In fact, even the simpler CIP might not hold, in which case one would
need to perform achordal extension, which consists of adding virtual links between
variables to construct a chordal graph. Basically, a chordal extension would make
the graph chordal at the price of slightly weakening the correlative sparsity pattern.
In general, the same can be performed to enforce Assumption 5.12: one could add
virtual links between variables to enforce the assumption to hold. For example, if
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x2

x3

x1

C1 C2
x5

x4

x6

C3

C4

Figure 5.15 � A correlation graph that violates Assumption 5.12.

one arti�cially links variables x3 and x4 in the correlation graph ofK , one obtains a
new correlation graph, with an associated clique tree satisfying all our working as-
sumptions (see Figure 5.16). This manipulation results in increasing the correlative
sparsity CS from 3 to 4, which is a weakening of the correlative sparsity pattern.
However, our framework still allows reducing the dimensionality of the problem from
6 to 4.

x2

x3

x1

C1
x5

x4

x6

C3

C2
C1 C2 C3

Figure 5.16 � A way to �x our counterexample.

Remark 5.8 (Alternative to graph extension)
There might exist examples for which the DIP would only be obtained by com-

pletely destroying the sparsity pattern one wants to exploit. However, this could
also happen with the more common CIP. In either case, an option might be to
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consider the standard dual volume computation problem(2.8b) as a way to �nd
minimizing sequences(wd)d that approximate1K , and to apply it to each one of the
K i := f x i 2 X i : gi (x i ) � 0g to obtain a sequence

�
w(d)

1 ; : : : ; w(d)
N

�

d
such that

�
w(d)

i

�

d
approximates1K i . Then, one would stil l have to prove that the convergence of the
hierarchy is stable by product (which is nontrivial) to conclude that

Z NY

i =1

w(d)
i � � X i (x) dx

converges tovol K . The major drawback of this solution is that in order for(wd)d

to approximate1K , we cannot implement Stokes constraints, as they would modify
problem (2.8b) (see Chapter 4) in a way that makes us lose the convergence to an
indicator (this is precisely the point of Stokes constraints: they allow their user
to obtain the volume without trying to approximate discontinuous functions with
polynomials). However, we know that the volume approximation hierarchy has a bad
convergence rate without Stokes constraints. In general, we should not expect any
method that approximates indicators with polynomials to yield satisfactory results in
terms of volume computation. Such a method should be considered only as a last
resort if any trial to apply the above scheme fails. Finally, this option represents a
framework that would be completely independent from the above and thus it remains
out of the scope of this chapter.

We now move on to proposing a detailed method to enforce Assumption 5.12. To
do so, we �rst introduce a more detailed glossary for graph theory. LetG = ( V ; E)
be a graph with vertices setV and edges setE � V 2. The following de�nitions can
be found in e.g. [13]:

� The degreedeg v of v 2 V is the cardial of the setf v0 2 V : (v; v0) 2 Eg i.e.
the number of vertices connected tov.

� A clique of G is a subset of verticesC � V such that v; v0 2 C implies
(v; v0) 2 E.

� A graph G is chordal if every cycle of length greater than 3 has a chord, i.e.
an edge connecting two nonconsecutive vertices on the cycle.

� A tree T = ( K; E) is a graph without cycle.

� The treewidth of a chordal graph is the size of its biggest clique minus 1. Thus
the treewidth of a tree is 1 and the treewidth of a complete graph (E = V 2)
of sizen is n � 1.

� A rooted tree is a tree in which one vertex has been designated theroot.

� In a rooted tree, the parent of a vertex v is the vertex v connected to it on
the path to the root; v is then called achild of v; two vertices that have the
same parent are calledsiblings; a descendantof a vertexv is any vertex which
is either the child ofv or is (recursively) the descendant of any of the children
of v; v is then called anancestor of itself and any of its descendants.
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� The vertices of a rooted tree can be partitioned between the root, theleaves
(the vertices that have parents but no children) and thebranches(that have
children and parents).

� Let K be the set of maximal cliques ofG. A clique treeT = ( K; E) of G is a
tree whose vertices are the maximal cliques ofG.

� A clique tree satis�es the clique intersection property (CIP) if for every pair
of distinct cliques C; C0 2 K , the set C \ C0 is contained in every clique on
the path connectingC and C0 in the tree. We denote byT ct the set of clique
trees ofG that satisfy the CIP.

� The ordering K = f C1; : : : ;CN g satis�es the Running Intersection Property

(RIP) if 8i 2 f 2; : : : ; Ng, 9 ki 2 f 1; : : : ; i � 1g such that C i \
i � 1S

j =1
C j � Ck i :

� Let A � V . Then, the subgraph ofG generated byA is given by

hA i G := ( A ; E \ A 2):

Theorem 5.15: Chordality & RIP

A connected graphG is chordal if and only if T ct 6= ? if and only if K admits
an ordering that satis�es the RIP.

De�nition 5.16: Disjoint Intersection Property

Let G = ( V ; E) be chordal and connected. LetT = ( K; E) 2 T ct be a clique
tree rooted in C1 2 K . T satis�es the Disjoint Intersection Property (DIP) if
8C; C0; C002 K , if (C; C0) 2 E and (C; C00) 2 E then C0 = C00or C0\ C00= ? .
In words, each clique has an empty intersection with all its siblings.

We are now going to give a systematic way to enforce Assumption 5.12 and
generate the associated clique trees. Let(g1; : : : ; gN ) be a correlatively sparse family
of polynomial vectors with a connected chordal correlation graphG = ( V ; E). Let
K be the set of maximal cliques ofG. We construct the clique graphGK = ( K; F )
such that (C; C0) 2 F i� C \ C0 6= ? . One can in turn de�ne cliques (calledmeta-
cliques) for this new graph, and its correlative sparsityCSK is the size of its biggest
maximal meta-clique minus1. One can note that any clique tree is a subtree ofGK

including all its vertices.

Remark 5.9 If GK itself is a tree (as in section 5.3.3), then it trivially satis�es the
DIP and CIP, and Assumption 5.12 automatically holds.
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Lemma 5.17: Genealogy

Let T = ( K; E) be a clique tree satisfying Assumption 5.12.

1) Let C; C0 2 K such that C 6= C0and C\ C0 6= ? . Then, up to permuting
them, C is a descendant ofC0.

2) Let Q be a meta-clique. Then,hQiT is an oriented path of T: the
elements ofQ are ancestor to one another and eachC 2 Q has its
parent in Q except one of them.

Proof :

1) Let C00 be the last common ancestor ofC and C0, meaning that C00 is an
ancestor of bothC and C0 but any child of C00is the ancestor of at most one
of them. Such ancestor exists since the rootC1 is a common ancestor toC
and C0. Then, C00 is on the path betweenC and C0. SinceC 6= C0, up to
permuting them, we can suppose thatC 6= C00.

By contradiction, we suppose thatC0 6= C00. Then, let Ĉ be the child of C00

that is also the ancestor ofC, and ~C the child of C00that is also the ancestor
of C0. Both exist sinceC00is an ancestor ofC and C0 and C 6= C0 6= C00. C00

being the latest common ancestor ofC and C0, we deduce thatĈ 6= ~C so that
Ĉ and ~C are siblings. Then, the DIP ensures that̂C \ ~C = ? . However, Ĉ
and ~C are on the path betweenC and C0, so according to the CIP they both
contain C \ C0 which is nonempty. This is a contradiction.

2) According to point 1), all elements ofQ are descendants of one another, so
that they are all on the same path inT. We only have to show that anyC
between two elementsC0; C00of Q on this path is also an element ofQ. Indeed,
let C0002 Q . Then, up to a permutation onf C0; C00; C000g we can suppose that
the unoriented path includes in this order:(C0; C; C00; C000). Then, C is on the
path betweenC0 and C000, so the CIP implies that C � C0 \ C000is nonempty
(sinceC0 and C000belong to the same cliqueQ), and then C has a nonempty
intersection with C000. This shows that C has a nonempty intersection with
any element ofQ, which by maximality of Q is the de�nition of C 2 Q .

}

Corollary 5.18: Path decomposition

If GK is a complete graph (all pairs of maximal cliques have nonempty in-
tersection as in section 5.3.3), then the only candidates for our clique tree
are linear clique trees (i.e. path decompositions). In such case, Assumption
5.12 is equivalent to the existence of a reordering of(g1; : : : ; gN ) such that
Assumption 5.7 holds.
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We now give an alogrithm to generate a clique treeT = ( K; E) that satis�es
the DIP and the CIP. In case Assumption 5.12 does not hold, this algorithm auto-
matically adds edges toE until it �nds an appropriate clique tree (see Algorithm
1).

Remark 5.10 (Explanation of Algorithm 1) � Minimizing degC1 is a way
to ensure Stokes constraints will be fully implementable, in contrast to the 2
step implementation in section 5.3.3.

� Index i denotes a clique that has already been added to the tree; the algorithm
adds to the tree every clique that shares vertices withC i , and then increments
i .

� Index j denotes the meta-clique in which we are working; according to Lemma
5.17, in such meta-clique the cliques should be added in line.

� Index k denotes the number of elements that have already been added to the
tree; whenk is equal to the number of cliques, our clique tree is complete.

� Index l denotes the lates clique of the meta-cliqueQj that has been added to
the tree; according to Lemma 5.17,C l should then be the parent ofCk+1 .

� At line 1 we maximizejQ j j to favor linear con�gurations as they are the most
compatible with Stokes constraints.

� The if loop at line 1 checks whether it is possible to add the remaining cliques
of Qj to our tree without destroying the CIP.

� The if loop at line 1 checks whether the clique we want to add destroys the DIP
or not.

� At line 1 we maximizejCk+1 \ C l j so that it is less likely to pose problems with
CIP and DIP in the future iterations.

� The if loops at lines 1 and 1 are meant to minimize the correlative sparsity of
the new graphG = ( V ; E), since it is the limiting factor for the tractability of
our algorithm.

Theorem 5.19: Convergence of Algorithm 1

Any clique tree returned by Algorithm 1 satis�es the DIP and the CIP.

Proof : We are going to show by induction that at any stepk, the graph
Tk := ( Pk ; Ek) is a tree that satis�es the CIP and the DIP. First, it is trivial that
T1 = ( f C1g; ? ) is a tree and satis�es the CIP and the DIP. Next, we suppose
that we have constructed a treeTk satisfying CIP and DIP through iterations of our
algorithm, and that the next iteration leads us to de�ne aTk+1 := ( Pk [ f Ck+1 g; Ek [
f (C l ; Ck+1 g). Since the only edge we added connectedC l to a new vertex that was
not in Tk , it did not introduce any cycle, thusTk+1 is still a tree. We are now going
to check the CIP and DIP.
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Algorithm 1: How to build an appropriate clique tree

Data: G = ( V ; E) and its clique graphGK = ( K; F ).
Result: T = ( K; E) satisfying CIP & DIP if Assumption 5.12 holds,

G = ( V ; E) with additional edges else.
Initialization: Choose C1 2 K with minimal degree inGK ;

Initialize i = j = k = 1, P1 := f C1g, E1 := ? ;
while k < jKj do

while Mik := fQ maximal meta-clique : Q \ P c
k 6= ? ; C i 2 Qg 6= ? do

ChooseQj 2 argmax
Q2 Mik

jQj ;

while Qj \ P c
k 6= ? do

l := maxf r � k : C r 2 Q j g;
if
9(C; C0) 2 argmaxfj Ĉ \ C l j : ( ~C; Ĉ) 2 P k �Q j \P c

k ; ~C \ Ĉ * C lg
then

if jC l [ Cj > jC l [ C0j then
foreach v 2 C0; v0 2 C l do E  E [ f (v; v0); (v0; v)g;
return G = ( V ; E) ;

else
foreach v 2 C; v0 2 C l do E  E [ f (v; v0); (v0; v)g;
return G = ( V ; E) ;

end
else

ChooseCk+1 2 argmax
C 2Q j \P c

k

jC \ C l j

end
if 9C 2 P k s.t. (C l ; C) 2 Ek & C \ Ck+1 6= ? then

if jC [ Ck+1 < jC l [ Ck+1 j ^ j C l [ Cj then
foreach v 2 C; v0 2 Ck+1 do E  E [ f (v; v0); (v0; v)g;
return G = ( V ; E) ;

else if jC l [ Cj > jC l [ Ck+1 j then
foreach v 2 Ck+1 ; v0 2 C l do E  E [ f (v; v0); (v0; v)g;
return G = ( V ; E) ;

else
foreach v 2 C; v0 2 C l do E  E [ f (v; v0); (v0; v)g;
return G = ( V ; E) ;

end
else

Pk+1 := Pk [ f Ck+1 g;
Ek+1 := Ek [ f (C l ; Ck+1 )g;
k  k + 1 ;

end
end
j  j + 1 ;

end
i  i + 1 ;

end
return T := ( PjKj ; EjKj );
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� Let C; C002 P k+1 ; C \ C006= ? . Let C0 2 P k be on the path betweenC and
C00in Tk+1 (C0 6= Ck+1 becauseCk+1 is on no path in Tk+1 ).

� If C; C002 P k then by our induction hypothesisC \ C00� C0.

� Else, without loss of generality we haveC00= Ck+1 and C 2 P k .

� Since we successfully passed through the if loop of line 1, we have
C \ Ck+1 � C l .

� By our induction assumption (Tk satis�es the CIP), we haveC \ C l �
C0 (because eitherC0 = C l or C0 is on the path betweenC and C l ,
the parent of Ck+1 ).

This yields C0 � C \ C l � C \ (C \ Ck+1 ) = C \ Ck+1 = C \ C00.

Then, Tk+1 satis�es the CIP.

� Let C 2 P k ; C0; C002 P k+1 such that (C; C0); (C; C00) 2 Ek+1 .

� If C0; C002 P k then by our induction hypothesisC0 \ C00= ? .

� Else, without loss of generality we haveC00= Ck+1 ; C = C l , and since
we successfully passed through the if loop of line 1, we haveC0 \ C00=
C0 \ Ck+1 = ? .

Then, Tk+1 satis�es the DIP.

}

Finally, we conjecture that if Assumption 5.12 holds, then Algorithm 1 will
directly return a clique tree satisfying the CIP and the DIP without adding any
edge toG.

Conclusion

Our results

In this chapter we addressed the problem of approximating the volume of sparse
semi-algebraic sets with the Moment-SOS hierarchy of SDP relaxations. As illus-
trated by our examples, our sparse formulation allows one to dramatically decrease
the computational time for each relaxation, and to tackle high dimensional volume
computation problems that are not tractable with the usual SDP methods. By
splitting the problems into low dimensional subproblems, one drastically reduces
the dimension of each relaxation, without loss of precision. This reduction of com-
plexity is due to the correspondance between the structure of our algorithm and the
correlative sparsity pattern in the description of the semi-algebraic set.

We also showed that additional Stokes constraints have a huge e�ect on con-
vergence and precision for volume computation, and that they can successfully be
adapted to our sparse formulations. This yields a much better rate of convergence for
the corresponding hierarchy. However, implementing these Stokes constraints leads
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to subtle constraints that have to be enforced if one wants to e�ciently compute the
volume:

� First, one should always prefer the linear formulation of Theorem 5.8 whenever
possible, since this ensures that Stokes constraints can always be e�ciently
implemented.

� Then, in the more general case of Theorem 5.13, one should always avoid for-
mulations in which the root of the computation tree has no Stokes constraint;
fortunately, such con�gurations can always be avoided by chosing a leaf as the
root of the clique tree.

Furthermore, in the branched case, one should be aware of the fact that each
step of the algorithm introduces an approximation error, and the errors accumulate
until the root is reached. Consequently, a formulation in which the clique tree has
too many generations will lead to a larger global error than a formulation with less
generations. For this reason, one should minimize the number of generations in the
clique tree, which is equivalent to parallelizing as much as possible. In addition
to that, when the problem has many dimensions and branches, parallelization can
obviously drastically increase the speed of the computations.

Applications and future work

To the best of our knowledge, this sparse method for solving volume problems is
new and full of promises for future applications. For instance, the problem of com-
puting the mass of any compactly supported measure absolutely continuous (with
respect to the Lebesgue measure) can be adressed using this sparsity method. Also,
measures that are not compactly supported but have some decay properties (e.g.
Gaussian measures) can also be handled by our method, which may prove useful in
computations for probability and statistics. Also, speci�c constraints could prob-
ably be used in addition to Stokes constraints when the semi-algebraic set presents
a speci�c structure (e.g. a polytope, a convex body).

Furthermore, the framework of exploiting correlative sparsity can be applied to
any method that relies on computations on measures, whether these measures are
represented by their moments (as it is done in this chapter), or by samples (as in
the stochastic volume computation methods). In particular, we believe that this
formalism could easily be extended to Monte-Carlo-based volume computations.

Finally, we also believe that this method can be adapted to the computation of
regions of attraction, through the formalism developed in [42], for high dimensional
di�erential-algebraic systems that present a network structure, such as power grids,
distribution networks in general and possibly other problems. The main di�culty
resides in taking sparsity into account when formulating the Liouville equation, and
keeping uniqueness of the solution as in the non-controlled non-sparse framework.





6
Theoretical contributions to stability

analysis

This �nal chapter gathers original contributions to the particular problem of di�er-
ential systems stability analysis, which is the goal of this thesis. While Chapter 3
merely was an extension of existing frameworks to power systems TSA, this chapter
draws on most previously presented results to build two new frameworks for stability
analysis of di�erential systems.

Section 6.1, which is based on the work [100], uses the results of Chapter 2 to
extend the existing frameworks presented in Chapter 3, to the inner approximation of
the Maximal Positively Invariant (MPI) set of a di�erential system, whose relevance
for power systems security and slightly reduced computational complexity will be
discussed hereafter.

Section 6.2, published as [123], then extends the results from Chapters 3 and 5
to approximating regions of attraction of large scale, sparsely coupled, di�erential
systems, in a �rst attempt to �ll the gap between stability regions approximation
theory and its application to large scale power grids.
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6.1 Inner approximation of maximal positively in-
variant sets

This section is an e�ort along a research line initiated in [42] for developing convex
optimization techniques to approximate sets relevant to non-linear control systems
subject to non-linear constraints, with rigorous proofs of convergence in volume.
The approximations are obtained by numerically solving a hierarchy of semide�nite
programming or linear matrix inequality (LMI) relaxations, as proposed originally
by Lasserre in the context of polynomial optimization [70]. Convergence proofs are
achieved by exploiting duality between non-negative continuous functions and Borel
measures, approximated respectively with sums of squares (SOS) of polynomials
and moments, justifying the terminology moment-SOS or Lasserre hierarchy. In the
context of control systems, the primal moment formulation builds upon the notion
of occupation measures [72] and the dual SOS formulation can be classi�ed under
Hamilton-Jacobi techniques [9].

Previous works along this line include inner approximations of the region of
attraction [58], outer approximations of the MPI set [57], as well as outer approx-
imations of the reachability set [83]. Besides their use for power systems stability
analysis (see Section 3.1), these techniques were applied e.g. in robotics [86] and
biological systems [109]. In [42, 58] the regions of attraction are de�ned for a �-
nite time horizon, which is a technical convenient framework since the occupation
measures have then �nite mass. To cope with an in�nite time horizon and MPI
sets, a discount factor was added in [57] so that the mass of the occupation meas-
ure decreases fast enough when time increases. In [83], the mass was controlled by
enforcing a growth condition on the volume of complement sets. This condition,
di�cult to check a priori, can be validated a posteriori using duality theory.

It must be emphasized here that, in general, the in�nite time horizon setup
is more convenient for the classical Lyapunov framework and asymptotic stability,
see e.g. [20] and references therein, whereas the �nite time horizon setup is more
convenient for approaches based on occupation measures. In the current section, we
make e�orts to adapt the occupation measure framework to an in�nite time horizon
setup, at the price of technical di�culties similar to the ones already encountered in
[83]. Contrary to the outer approximations derived in [57], we have not been able to
use discounted occupation measures for constructing inner approximations. Instead,
the technical device on which we relied is a growth condition on the average exit
time of trajectories.

The main contributions of this section are:

1. A moment-SOS hierarchy for constructinginner approximations of the MPI
set for a polynomial dynamical system with semialgebraic constraints;

2. A detailed, self-contained, rigorous proof of convergence of the hierarchy, under
an assumption on the average exit time of trajectories.
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Section 6.1.1 presents the problem statement. In section 6.1.2 we introduce
a modi�ed version of occupation measures which allow for a new GMP formula-
tion. Section 6.1.3 describes the MPI set inner approximation method with proof
of convergence under appropriate assumptions. Numerical results are analyzed in
Section 6.1.4.

6.1.1 MPI set

Consider the autonomous system

_x(t) = f (x); x 2 
 � Rn ; t 2 [0; + 1 ) (6.1)

with a given polynomial vector �eld f 2 R[x]n of degreed0. The state trajectory
x(:) is constrained to the interior
 of a nonempty compact basic semi-algebraic set

X := f x 2 Rn : 8i 2 N?
mX

; gi (x) � 0g

where thegi are given polynomials of degreedi . We de�ne @X := X n 
 .
The vector �eld f is polynomial and therefore Lipschitz on the compact setX . As

a result, for anyx0 2 
 , there exists a unique maximal solutionx(�jx0) to ordinary
di�erential equation (6.1) with initial condition x(0jx0) = x0. The time interval on
which this solution is de�ned contains the time interval on whichx(�jx0) 2 
 .

For any T 2 [0; + 1 ], we de�ne the following set.

De�nition 6.1: Time T secure initializing set

X T := f x0 2 
 : 8t 2 [0; T]; x(tjx0) 2 
 g

is the set of all initial states generating trajectories staying in
 between time
t = 0 and t = T.

Remark 6.1 (Meaning of the name � secure initializing set�)
If one considers the setX as a set of polynomial security constraints that should

be enforced (e.g. in the �eld of power systems: bound speci�cations for current and
voltage magnitudes as well as active and reactive power or phase shifting), then
X T is the set of initial conditions generating trajectories that satisfy these security
constraints between timet = 0 and t = T, hence the name of timeT �secure�
initializing set.

Remark 6.2 (Link with constrained regions of attraction)
Using the notation of De�nition 1.5, one has

X T
def= A 


T (
 ):

To avoid heavy notations, we use the simplerX T naming.

On another hand, the maximal positively invariant set included in
 is de�ned
as follows
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De�nition 6.2: Maximal Positively Invariant (MPI) set

Let P � Rn . P is said to bepositively invariant (PI) for the system (6.1)i�

8x0 2 P; 8t � 0; x(tjx0) 2 P:

Then, the maximal positively invariant setincluded in X is de�ned as its name
suggests:

MPI X :=
[

P � X
P PI

P:

Remark 6.3 (Positive invariance and boundary)
De�ning as in Chapter 4, for any x 2 @P, the outward pointing normal vector

n(x), one immediately has thatP is PI for (6.1) i�

8x 2 @P; f (x) � n(x) � 0:

It is then straightforward to draw a link between the MPI set and in�nite time
secure initializing sets, under the form of the following lemma.

Lemma 6.3: MPI set characterization

The in�nite time secure initializing set is the MPI set included in 
 :

X 1 = MPI X :

Proof : Let x0 2 X 1 , t; t 0 2 [0; 1 ). Then

x(t0jx(tjx0)) = x(t + t0jx0) 2 
 ;

so that x(tjx0) 2 X 1 : X 1 is PI, and thus X 1 � MPI X .
Let x0 2 MPI X , t � 0. By de�nition, x(tjx0) 2 MPI X � X , and thus x0 2 X 1 ,

which yields MPI X � X 1 . }

Remark 6.4 (Relevance of the MPI set)
In terms of stability analysis, computing the in�nite time secure initializing set

is very interesting. Indeed, this set is de�ned as the set of initial (or post-fault)
conditions for which the system is bound to �eternally� satisfy all speci�ed security
constraints that de�ne the setX . In other words, a trajectory initialized in X 1 is
sure not to lose synchronism, and the values of the current, voltage and power are
prevented from reaching dangerous heights.

We make the following assumption implying thatX 1 has non-empty interior:

Assumption 6.4: Lyapunov stability


 contains a Lyapunov-stable equilibrium pointx for f .
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Indeed in such case if" > 0 is such that B " (x) � 
 , then De�nition 3.7 provides
us with a � > 0 such that B � (x) � X 1 , whereB R(x) = f y 2 Rn : jx � y j � Rg is
the radius R euclidean ball aroundx.

The complementary setX c
T := 
 n X T is the set of initial conditions generating

trajectories reaching the target set@X at any time beforeT: this is the region of
attraction of @X with free �nal time lower than T

X c
T =

[

� 2 [0;T )

A 

� (@X ): (6.2a)

The complementary setX c
1 is the region of attraction of@X with free and unboun-

ded �nal time
X c

1 =
[

� � 0

A 

� (@X ): (6.2b)

In this section we want to approximate the MPI setX 1 from inside as closely
as possible.

The next section presents a new instance for the GMP, which is as usual ac-
companied with a hierarchy of convex linear matrix inequality (LMI) relaxations
yielding a converging sequence (in the sense of the Lebesgue measure) of inner ap-
proximations of the MPI set.

However, due to the in�nite time horizon, such a strong result is available only
under some assumptions, based on the notion of exit time.

De�nition 6.5: Exit time

For a givenx0 2 X , we de�ne the exit time as the smallest time at which the
trajectory initialized in x0 hits the boundary @X :

� (x0) := inf f t � 0 : x(tjx0) =2 
 g:

De�nition 6.5 allows for straightforward characterizations of the previously in-
troduced sets of interest: forT � 0,

X T = f x 2 
 : � (x) > T g; X c
T = f x 2 
 : � (x) � Tg

X 1 = f x 2 
 : � (x) = 1g ; X c
1 = f x 2 
 : � (x) < 1g :

In the rest of this section we make the assumption that the average exit time of
trajectories leaving
 is �nite:

Assumption 6.6: Exit time integrability

� :=
1

� (X )

Z

X c
1

� (x) dx < + 1 :

Remark 6.5 (Motivation for Assumption 6.6) This assumption is necessary
for the rigorous proof of convergence of the sequence of approximations ofX 1 . It is
di�cult to check a priori. We will show however that, independently of this assump-
tion, the validity of our approximations can be checked numerically a posteriori.
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6.1.2 Primal approximation problem and its value

As seen in the literature, the standard set approximation hierarchies are designed
for outer approximations: see Section 3.1.2, [42], [57]. Then, inner approximations
of a setK are obtained as a byproduct of the complementary outer approximation
of K c: see Corollary 5.10 and [58]. In the present case, we thus aim at outer
approximations of X c

1 . We take our inspiration in the concept of reachable set.
Consider the continuous time dynamical system (6.1) as well as the discrete time
dynamical system

xk+1 = f (xk) (6.3)

so that xk = f k(x0) for any k 2 N, x0 2 X , wheref k = f � f : : : � f| {z }
k times

.

De�nition 6.7: Reachable sets

Let K 0 � X and inductively de�ne K r +1 := f (K r ) \ X .

� The (forward) reachable set (RS)of K 0 for system (6.1) is de�ned as

R X
K 0

:= f x(Tjx0) : (T � 0) ^ x0 2 K 0 s:t : 8t 2 [0; T]; x(tjx0) 2 X g

� The (forward) reachable set (RS)of K 0 for system (6.3) is de�ned as

R X
K 0

:=
n
f K (x0) : K 2 N ^ x0 2 K 0 s:t : 8k 2 N?

K ; f k(x0) 2 X
o

=
1[

r =0

K r

� The backward reachable set (BRS)of K 0 for a discrete (resp. continuous)
time system is the RS if the discrete (resp. continuous) time system with
f replaced with � f (i.e. time �owing backwards).

On the one hand, in [83], the authors dealt with the problem of approximating by
outside the forward reachable set for a given initializing set, in the setting of discrete
time dynamical systems (6.3). On the other hand,X c

1 can be seen as thecontinuous
time, backwardreachable set of the boundary@X : indeed, it is constituted of all
the initial conditions generating trajectories that hit the boundary @X . Thus, our
contribution here mostly consists of a (nontrivial) adaptation of the work found in
[83] to continuous time systems.

Again, such a method resorts to occupation measures, in a slightly adapted form:
instead of working with the occupation measure� � = I � A 7!

R
X

R
I 1A (x(tjx0)) dt d�

(see Section 3.1.1), consider its time average counterpart

� � := A 7!
Z

X

 Z � (x 0 )

0
1A (x(tjx0)) dt

!

d�:

Also, we replace the terminal measure� � 2 M (K )+ with a boundary measure
 � 2
M (@X )+ which will measure where the trajectories leaveX . Then, if � 2 M (X c

1 )+ ,
the Liouville equation (3.3) can be integrated with respect to time to yield

div( � � f ) + 
 � = �; (3.30)
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which we incorporate into our traditional set approximation problem. Eventually, we
enforce �by hand� an upper bound on the mass of our average occupation measure.

Problem 17: Primal inner MPI approximation LP

For a given � + 2 R+ , we de�ne the following instance of the GMP

p?
MPI (� + ) := sup

�; �;


Z
1 d�

s:t : � 2 M (X )+

� 2 M (X )+


 2 M (@X )+

� � � (6.4a)

div( � f ) + 
 � � = 0 (6.4b)
Z

1 d� � � + � (X ) (6.4c)

Remark 6.6 (Loss of uniqueness)
While the classical Liouville equation(3.3) has a unique solution(�; � ) = ( � � ; � � ),

it is not the case anymore with its integral counterpart: there can be several couples
(�; 
 ), di�erent from the expected (� � ; 
 � ) and satisfying (3.30). For example, if
� = 0, then any(�; 
 ) = ( t � x ; 0) is a solution to(3.30), wherex is the L-S equilibrium
point for f and t 2 R. Thus, Theorem 3.5 for the �nite time ROA does not have an
MPI counterpart, making the analysis of Problem 17 harder to carry out.

Remark 6.7 (Strong duality condition)
Here, � + is introduced to ensure that all the feasible measures have a �nite mass.

Otherwise, the strong duality Theorem 2.6 would not hold. We give more details on
this subject in Section 6.1.3.

Note that problem (6.4) is linear in the decision variables which are the three
measures�; �; 
 . The two following lemmata link the in�nite-dimensional LP (6.4)
and the MPI set X 1 .

Lemma 6.8: Upper bound on p?
MPI

Assuming that � + � � , we havep?
MPI (� + ) � � (X c

1 ).

Proof :

� � ? := � X c
1

� � ? := A 7!
R

X c
1

R� (x 0 )
0 1A (x(tjx0)) dt dx0

� 
 ? := A 7!
R

X c
1

1A (x(� (x0)jx0)) dx0

de�ne a feasible triplet. Indeed, constraint (6.4a) is automatically satis�ed and one
has :
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�
Z

1 d� ? =
Z

X c
1

 Z � (x 0 )

0
dt

!

dx0 = � � (X ) � � + � (X ) so that (6.4c) holds

� constraint (6.4b) is satis�ed, since8v 2 C1(X ),

hdiv( � ? f ); vi = �
Z

X c
1

Z � (x 0 )

0
grad v(x(tjx0)) � f (x(tjx0)) dt dx0

= �
Z

X c
1

(v(x(� (x0)jx0)) � v(x0)) dx0

= h� ? � 
 ?; vi :

then, p?
MPI (� + ) �

Z
1 d� ? =

Z
1 d� X c

1
= � (X c

1 ). }

Lemma 6.9: Lower bound for p?
MPI

For any triplet (�; �; 
 ) feasible in (6.4),� is supported onX c
1 , i.e.

Z
1X 1 d� = 0:

The proof of this lemma uses the following assumption on the MPI set:

Assumption 6.10: Choice of X

8x 2 @X 1 \ @X ; f (x) � n(x) < 0. In words, at all points where @X 1 is
tangent to @X , the trajectories strictly enter X . Up to the choice ofX , this
assumption is reasonable for any physical system.

Proof : Let (�; �; 
 ) be a feasible triplet for (6.4). Let� := div( � f )
(6.4b)
= � � 
 .

For x 2 Rn , let

' (x) :=

8
<

:

K exp
�
� 1

1�j x j2

�
if jx j < 1

0 else

whereK > 0 is such that
R

' d� = 1. Then, for " > 0 and x 2 Rn , let:

� ' " (x) := 1
" '

�
x
"

�
� 0

� � " (x) :=
Z

X
' " (y � x) d� (y) � 0

� � " (x) := div(� " f )(x) = grad � " (x) � f (x) + � " (x) div f (x).

According to the theory of molli�ers (see [15, Section 4.4]),' , ' " , � " and � " are
smooth compactly supported functions, and for anyw 2 C0

c (Rn ),

Z

Rn
w(x) � " (x) dx �!

" ! 0

Z

X
w(x) d� (x)
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from which it directly follows that for v 2 C1
c (Rn )

Z

Rn
v(x) � " (x) dx =

Z

Rn
v(x) div( � � f )(x) dx

= �
Z

Rn
grad v(x) � f (x) � " (x) dx

�!
" ! 0

�
Z

Rn
grad v(x) � f (x) d� (x)

=
Z

Rn
v(x) d� (x):

By density of C1
c (Rn ) in C0

c (R) with respect to the supremum normk:kL 1 (Rn ) , this
implies that � " � weak-� converges (in the sense of measures) to� .

For a given � > 0 consider the set

X �
1 :=

�

x 2 X 1 : inf
y 2 @X

jx � y j > �
�

:

By de�nition, X �
1 \ @X = ? , and then for any Borel setA � X �

1 , one has� (A ) =
� (A ). In particular, � (@X �

1 ) = � (@X �
1 ) = 0 since � � � . Then, we can apply

the Portemanteau theorem (equality marked with a� , see [56, Theorem 13.16]) to
� (X �

1 ):

� (X �
1 ) = � (X �

1 )
�= lim

" ! 0

Z

X �
1

� " (x) dx

def= lim
" ! 0

Z

X �
1

div(� " f )(x) dx

= lim
" ! 0

Z

@X �
1

f (x) � n � (x) � " (x) d� (x) (6.5)

wheren � stands for the unit normal vector to@X �
1 pointing towards X � c

1 , according
to the Gauss formula (4.4). Now, letR+ be the function

R+ :

8
>>>>><

>>>>>:

@X 1 \ @X �! R

x 7�! sup

8
><

>:

R > 0 : 8� 2 (0; R); 8y 2 @X �
1

jx � y j < R =) f (y) � n � (y) � 0

9
>=

>;
:

In words, R+ (x) is the largest range aroundx in which the f � n � are non-positive.
According to Assumption 6.10,f being continuous,R+ takes only positive values.
Moreover, due to the regularity off , X and X 1 , R+ is continuous on the compact
set @X 1 \ @X , therefore it attains a minimum R?

+ > 0.
Let � 2 (0; R?

+ ), x 2 @X �
1 . Then, there are two possibilities:

� either x 2 @X 1 , and then by positive invariance ofX 1 , f (x) � n � (x) � 0;

� or inf
y 2 @X

jx � y j = � < R?
+ , and by de�nition of R?

+ , f (x) � n � (x) � 0.
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It follows that for any x 2 @X �
1 , f (x) � n � (x) � 0. Thus, one obtains

Z

@X �
1

f (x) � n � (x) � " (x) dx � 0

and after letting " tend to 0, using equation (6.5), we have� (X �
1 ) � 0, which means,

by non-negativity of � , that � (X �
1 ) = 0 .

Eventually, sinceX �
1 � X 1 and � � � , one has

� (X 1 ) = � (X 1 ) � � (X �
1 )

= � (X 1 n X �
1 )

� � (X 1 n X �
1 )

= �
��

x 2 X 1 ; inf
y 2 @X

jx � y j � �
��

�!
� ! 0

� (X 1 \ @X ) = 0

which leads to the conclusion that� (X 1 ) = 0 : }

Theorem 6.11: Value of Problem 17

Assuming that � + � � , the in�nite-dimensional LP (6.4) has a value
p?

MPI (� + ) = � (X c
1 ). Moreover the supremum is attained, and the� ? com-

ponent of any solution is necessarily the measure� X c
1

.

Proof : This is a straightforward consequence of Lemmata 6.8 and 6.9. }

6.1.3 Dual approximation problem and its value

According to the developments in Section 2.1, the dual LP of problem (6.4) reads
as follows.

Problem 18: Primal inner MPI approximation LP

For a given � + 2 R+ , we de�ne the following in�nite-dimensional LP

d?
MPI (� + ) := inf

u;v;w

Z

X
(w(x) + � + u) dx

s:t : w � v � 1 2 C(X )+ (6.6a)

u � f � grad v 2 C(X )+ (6.6b)

v 2 C(@X )+ (6.6c)

w 2 C(X )+

v 2 C1(X )

u 2 R+ :
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Lemma 6.12: Positive invariance

Let (0; v; w) be a feasible triplet for problem (6.6).
Then, the setX̂ 1 := f x 2 
 : v(x) < 0g is a PI subset ofX 1 .

Proof : SinceX 1 is the MPI set included inX and X̂ 1 � X by de�nition, it is
su�cient to prove that X̂ 1 is positively invariant.

Let x0 2 X̂ 1 . Then, for any t > 0, one has

v(x(tjx0)) = v(x0) +
Z t

0
r v � f (x(sjx0)) ds � v(x0) < 0

using constraint (6.6b).
We still have to show that x(tjx0) remains in 
 at all times t � 0. If not, then

there exists at@ > 0 such that x(t@jx0) 2 @X according to the intermediate value
theorem, the trajectory being of course continuous in time. However, by feasibility
of (0; v; w), one then hasv(x(t@jx0)) � 0, which is in contradiction with the fact
that v(x(tjx0)) < 0 for all t > 0 which we just proved.

Thus, we obtain that for all t > 0, x(tjx0) 2 
 and v(x(tjx0)) < 0, i.e. x(tjx0) 2
X̂ 1 . }

Remark 6.8 (Inner MPI approximation)
For a feasible triplet (u; v; w), if u 6= 0, then there is no guarantee that the

solution of (6.6) yields an inner approximation ofX 1 . However, it stil l gives access
to inner approximations of theX T , T 2 R+ , and we will show that under Assumption
6.6, these approximations converge toX 1 .

Lemma 6.13: Inner approximation of X T

For any triplet (u; v; w) feasible in (6.6), for anyT > 0,

X̂ T := f x0 2 
 : v(x0) + u T < 0g � X T :

Proof : Let (u; v; w) be a feasible triplet in (6.6) and letx0 be an element ofX c
T

for a givenT > 0.
By de�nition of X T we know that T � � (x0), where � is the exit time, and

that for any t 2 [0; � (x0)]; x(tjx0) 2 X . Thanks to constraint (6.6b), we can
therefore say that for any t 2 [0; � (x0)]; (r v � f )(x(tjx0)) � u. Hence for any
t 2 [0; � (x0)]; v(x(tjx0)) � v(x0) + u t. In particular, we deduce that

v(x(� (x0)jx0)) � v(x0) + u� (x0) � v(x0) + u T:

As x(� (x0)jx0) 2 @X , (6.6c) yields that v(x(� (x0)jx0)) � 0 and thus v(x0) � � u T.
This proves that

X c
T � f x0 2 
 : v(x0) � � u Tg

henceX̂ T � X T . }
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Theorem 6.14: Strong duality

There is no duality gap between primal LP problem (6.4) on measures and
dual LP problem (6.6) on functions in the sense thatp?

MPI (� + ) = d ?
MPI (� + ).

Proof : This is a direct consequence of Theorem 2.6: the only thing that we
have to prove is the boundedness of the masses of� , � and 
 . Boundedness of�
and � respectively follow from constraints (6.4a) and (6.4c). Then,

Z
1 d


(6.4b)
=

Z
1 d�

so that the mass of
 admits the same bound as the mass of� . }

Remark 6.9 (The importance of � + )
Taking � + to in�nity or, equivalently, removing constraint (6.4c) boils down to

imposingu = 0 in the dual problem(6.6). Although this would indeed ensure that our
approximating setX̂ 1 is included in the actual MPI setX 1 , it would also destroy
our proof of strong duality.

But looking in detail leads to understand that things are even worse: without
constraint (6.4c), any feasible� generates an in�nity of feasible candidates� t :=
� + t � x , where x is the L-S equilibrium point of system(6.1) and � x is the Dirac
measure inx. Actually, this � x would be a nontrivial element of the kernel of(A ; c)
(using the notations of Chapter 2), i.e. a counterexample to equation(� ) which
is asked to hold in the proof of Theorem 2.6. In other words, constraint(6.4c) is
absolutely necessary to enforce strong duality.

Without this constraint, the results in Section 6.1.2 would stil l hold, yielding that
p?

MPI (� + ) = vol X c
1 , but one would only haved?

MPI (� + ) � p?
MPI (� + ). From a �Slater�

viewpoint (see [70][pp. 8,128,313] or [11][p. 171]) problem(6.6) might not admit
any interior point. Finding a way to bypass the arti�cial use of constraint(6.4c) is
actually an open question for inner MPI computation.

6.1.4 Numerical implementation and its convergence

Following the developments of Section 2.2.2, problem (6.6) admits a SOS tightening
which can be written as follows:

dd
MPI (� + ) := inf

u;v;w;p
(sij ) i;j

w � l + u � + l0

s:t : w � v � 1 = s10 + s1 � g (6.7a)

u � f � grad v = s20 + s2 � g (6.7b)

v = s30 + s3 � g + p h (6.7c)

w = s40 + s4 � g

v; w 2 R2d[x ]

u 2 R+
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s10; s10; s10; s10 2 � d[x ]

s1i ; s1i ; s1i ; s1i 2 � d�d di =2e[x ]

p 2 R2d�
P

i
di

[x ];

where h = g1 � � � gmX . Vector l denotes the Lebesgue moments overX indexed in
the same basis in which the polynomialw with vector of coe�cients w is expressed.

SOS problem (6.7) is a tightening of problem (6.6) in the sense that any feasible
solution in (6.7) gives a triplet (u; v; w) feasible in (6.6).

Theorem 6.15: Inner MPI approximation

Problem (6.7) is an LMI problem and any feasible solution(ud; vd; wd) gives
inner approximations X̂ d

t := f x 2 
 : vd(x) + uk t < 0g of the X T s. In
particular, if ud = 0, X̂ d

1 := f x 2 
 : vd(x) < 0g is an inner approximation
of X 1 .

Proof : This is a direct consequence of Proposition 2.13 as well as Lemmata
6.12 and 6.13. }

This SOS tightening is a �nite dimension convex optimization, and as such it
admits a primal formulation derived from Lagrangian theory, which can be seen as
an LMI relaxation of in�nite dimensional LP (6.4) (see Section 2.2 for details).

Theorem 6.16: Convergence of the hierarchy

Let � + > � . Then, under Assumption 2.7 forX ,

1. The sequence(dd
MPI (� + )) is monotonically decreasing and converging to

� (X c
1 )

For every d � dmin := 1=2
P

i di , let  d := ( ud; vd; wd) denote a 1
d-optimal

solution of the dual tightening of orderd. One has then :

2. ud �!
d!1

0,

3. wd
L 1 (X )
�!
d!1

1X c
1

.

Proof :

1. is a direct consequence of Theorems 2.14 and 6.14.

2. We de�ne � ? := ( � ?; � ?; 
 ?) feasible for (6.4) as in the proof of Lemma 6.8.
Then,

ud

Z
1 d� ? =

Z
ud d� ?

(6.6b)
�

Z
f � grad vd d� ?

(6.4b)
=

Z
vd d
 ? �

Z
vd d� ?
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(6.6c)
� �

Z
vd d� ?

(6.6a)
�

Z
(1 � wd) d� ?

def= � (X c
1 ) �

Z
wd d� ?

(6.4a)
� � (X c

1 ) �
Z

X
wd(x) dx (6.8)

so that

0
(6.4c)
� (� + � (X ) � � ?(X )) ud

(6.8)
�

Z

X
(wd(x) + � + ud) dx � � (X c

1 )

1
d -optim.

� dd
MPI (� + ) +

1
d

� � (X c
1 )

1:�!
d!1

0:

Since by assumption� + > �� = � ? (X )
� (X ) , this means that ud �!

d!1
0.

3. Let " > 0. Let T > 0 such that � (X T n X 1 ) � " . Let �d � dmin such that for
all d � �d one has thatkud TkL 1 (X ) � " and j

R
X wd(x) dx � � (X c

1 )j � " . Such
an integer exists from points1 and 2. Using the triangle inequality and the
fact that kud TkL 1 (X ) � " one has

kwd � 1X c
1

kL 1 (X ) � k wd + ud T � 1X c
1

kL 1 (X ) + ": (6.9)

With the notation A = kwd + ud T � 1X c
1

kL 1 (X ) , one has

A =
Z

X c
T

jwd(x) + ud T � 1X c
1

(x)j dx +
Z

X T

jwd(x) + ud T � 1X c
1

(x)j dx:

We denote byB and C these two terms, respectively. SinceX c
T � X c

1 , one
can replace1X c

1
with 1 in B . Then, constraint (6.6a) along with Theorem

6.15 allow us to remove the absolute value to obtain

B =
Z

X c
T

(wd(x) + ud T � 1) dx =
Z

X c
T

wd(x) dx � � (X c
T ) + � (X c

T )ud T

and since� (X c
T )ud T � k ud TkL 1 (X ) � " ,

B �
Z

X c
T

wd(x) dx � � (X c
T ) + ": (6.10)

Moreover, we have thatC �
R

X T
(jwd(x)j + jud Tj+ j1X c

1
(x)j) dx and therefore,

using the nonnegativity of wd and the fact that kud TkL 1 (X ) � " , one has
C �

R
X T

wd(x) dx + " + � (X T nX 1 ): Since we have� (X T nX 1 ) � " by choice
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of T, we deduce thatC �
R

X T
wd(x)dx + 2". Combining this inequality with

(6.10), we have :

A = B + C �
Z

X
wd(x) dx � � (X c

T ) + 3 "

from which we deduce thatA � 5", using that j
R

X wd(x) dx � � (X c
1 )j � "

and � (X c
1 n X c

T ) � " . Combining this with (6.9), we have that

kwd � 1X c
1

kL 1 (X ) � 6":

}

Remark 6.10 (No free lunch rule) Despite this convergence result, one should
be aware of the fact that the computational burden increases sharply with the di-
mension of the state space and the degree of the relaxations. Indeed, the involved
polynomials haveD 2d

n =
�

n+2 d
n

�
coe�cients. Consequently, high values ofn and d

might be intractable. A possible way to handle this consists in exploiting the struc-
ture of the considered problems, such as sparsity. The key is to split the state space
into low dimensional subspaces and distribute the problem over the obtained parti-
tioning (see Chapter 5 as a �rst example of what can be done in practice for volume
computation).

For this section, we chose to focus on the simple example of the Van der Pol
oscillator, as was done in [42]:

8
<

:
_x1 = � 2 x2

_x2 = 0:8 x1 + 10 (1:022x2
1 � 0:2) x2:

(6.11)

Let X = f x 2 R2 : x2
1 + x2

2 � 1g and � + = 100
� .

We implemented the hierarchy of SOS problems (6.7) in MATLAB, using the
toolbox YALMIP interfaced with the SDP solver MOSEK. For d = 6 and 7 (SOS
degrees12 and 14 respectively), we compared the obtained regions to the outer
approximations computed using the framework presented in [57], see Figure 6.1. In
this implementation, we checked at each relaxation whetheru was near to zero:
for d = 6, we had u � 10� 7, and for d = 7 we obtained u � 10� 6, which is
satisfactory. Moreover, we also ran the hierarchy with constraintud = 0 (to enforce
inner approximations) and obtained the same results.

However, we observed some di�culties:

� For low degrees, the only solutionv found by the solver is very close to the
zero polynomial: the coe�cients are of the order10� 5, therefore the plots
are irrelevant; one loses conservativeness and several constraints are violated
(namely the positivity constraint on v on @X ).

� For higher degrees, the basis of monomials is not adapted since for example in
dimension 1x � is close to the indicator off� 1; 1gn . As a result, the coe�cients
are of the order105 or more, and again the plots make little sense.
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Figure 6.1 � Outer and inner MPI set approximations.

Carried out for the Van der Pol oscillator with the unit disk as the admissible state
set X . The reported k are the relaxation orders (namedd in the rest of the
section).

One can also �nd numerical applications of this method to actual electrical engin-
eering problems in [99] with very promising results.

Our original motivation is the study of transient phenomena in large-scale elec-
trical power systems, see Section 3.1 and references therein. Our objective is to
design a hierarchy of approximations of the MPI set for large-scale systems de-
scribed by non-linear di�erential equations. A �rst step towards non-polynomial
dynamics can be found in [99]. Since the initial work [42] relied on the mathem-
atical technology behind the approximation of the volume of semi-algebraic sets,
we already studied in Chapter 5 the problem of approximating the volume of a
large-scale sparse semi-algebraic set. We are now investigating extensions of the
techniques for approximating the MPI set of large-scale sparse dynamical systems,
and the current section contributes to a better understanding of its inner approx-
imations, in the small-scale non-sparse case. Our next step consists of combining
the ideas of Chapter 5 with those of the current section, so as to design a Lasserre
hierarchy of inner approximations of the MPI set in the large-scale case, and apply
it to electrical power system models.

As it was done at the end of Chapter 3 we display an updated comparison table
of the various approaches to stability analysis, depending on the set one intends to
approximate. The need for parameter� + is the main drawback of this method, for
two reasons:

� It should be greater than the average exit time� of the studied system, which
most of the time is completely unknown;



6.2. SPARSITY-BASED APPROXIMATION FOR FINITE TIME ROA 169

� When � + is too big, numerical issues arise in the hierarchy, mostly because the
integral w � l in the objective of the dual (6.7) becomes negligible with respect
to � + u l0.

However, the advantages of approximating the MPI set are multiple:

� The approximating scheme presents the classical convexity and convergence
properties of the Lasserre hierarchy, as for the �nite time ROA approximation
schemes

� The involved measures and polynomials do not depend on time, so that e.g.
for d = 10 and in state dimension5 (which is a reasonable setting in practice),
the LMI size is D 10

5 = 3003 instead ofD 10
6 = 8008;

� From the power systems stability viewpoint, it is very interesting since it
exactly computes the set of post-fault conditions that will not lead to violation
of the given security constraints that make upX .

Lyapunov ROA �nite time ROA MPI set

Nb of variables n (x) n + 1 (t; x) n (x)

Constraints BMI LMI LMI

Convexity no yes yes

Scheme convergence local global global

Parameters none X ; K ; T X ; � +

Time horizon in�nite �nite in�nite

Target x K X

Table 6.1 � Comparison between ROA, �nite time ROA & MPI set schemes.

6.2 Sparsity-based approximation for �nite time
ROA

This section describes a computational technique for generating outer approxima-
tions of �nite time ROA of sparse polynomial ODEs, with the purpose of assessing
the stability of large scale power systems in the future. These outer approximations
contain all initial conditions for which the dynamical systems can operate safely. In-
deed, power networks are usually modeled by an interconnection of weakly coupled
nodes, while the dynamic behaviour of the system is mainly driven by generators,
which are modeled by (closed-loop controlled) ordinary di�erential equations.
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Most of the technical literature on stability analysis for power networks focuses
on the construction of Lyapunov functions computed by nonconvex optimization,
and more speci�cally a bilinear variant of polynomial SOS optimization, as in e.g.
[6, 50] and Section 3.2. An inner approximation of the in�nite time ROA is then
modeled as a sublevel set of the Lyapunov function, and various heuristics are used
to enlarge this sublevel set as much as possible, see e.g. [20] and references therein.
It can be enforced that the Lyapunov functions have the same sparsity structure as
the system to be analyzed, see e.g. [147] and references therein, but to our knowldge,
it was never applied to ROA approximation. Regardless of the application, some
e�orts have been made to improve the scalability of the costly SOS programming
techniques (see [2, 3, 85] and the references therein), at the price of accuracy of the
computed solutions. The work of [63, 64] is a �rst step towards the application of
Lyapunov techniques to ROA estimation for interconnected systems. Another way
of exploiting the system's structure is to rely on sparsity in terms of time scales
instead of sparsity in terms of variables, see e.g. [121].

The main contribution of the current section is to identify a sparsity structure
that allows us to apply the moment-SOS hierarchy for sparse ROA approximation.
We construct a hierarchy of outer approximations of increasing degree, though the
sparsity is introduced at the price of the convergence proof that no longer holds.
For this, we rely heavily on Chapter 5 which focused on the approximation of the
volume of a sparse semi-algebraic set.

In the context of di�erential systems stability analysis, our work can be seen
an extension to large-scale systems of results of Sections 3.1 and 6.1 as well as
[99]. It can be interpreted as well as a �nite time dual approach to the standard
Lyapunov approach of Section 3.2 and [20, 6, 64, 147]. We prefer however to see the
Lyapunov approach as a dual to an in�nite time occupation measure approach, in
the sense that Lyapunov functions are obtained as a (dual Lagrangian) certi�cate of
a property (stability) of the system's trajectories (modeled by occupation measures
in a primal problem). The advantage of considering �nite time ROA instead of
standard Lyapunov ROA is the linearity of its characterization (which leads to
solving convex LMIs instead of nonconvex bilinear matrix inequalities as in the
Lyapunov framework), as well as the proof of convergence in volume (in the non-
sparse case).

6.2.1 A path decomposition sparsity pattern

Let N 2 N. We consider the following system of sparsely coupled polynomial ODEs:

_x i = f i (x i ; x i +1 ) x i 2 X i i 2 N?
N � 1 (6.12a)

_xN = fN (xN � 1; xN ) xN 2 X N (6.12b)

where for alli 2 N?
N , X i := f x i 2 Rn i : gX i (x i ) � 0g, are �nite dimensional compact

basic semialgebraic sets andf i 2 R[x i ; x i +1 ]n i , i 2 N?
N � 1, fN 2 R[xN � 1; xN ]nN are

polynomial maps. We de�neX i := Rn i , X := X1 � : : : � XN , X := X 1 � : : : � X N ,
f := ( f1; : : : ; fN ) and n := n1+ : : :+ nN . Note that X is also a compact semialgebraic
set described by the polynomial vectorgX := ( gX 1 � � X1 ; : : : ; gX N � � XN ).
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Given a �nite time horizon T > 0 and compact basic semialgebraic target sets
K i = f x i 2 X i : gK i (x i ) � 0g � X i , K := K 1 � : : : � K N , we aim at computing
outer approximations of the �nite time ROA, de�ned as

A X
T (K ) :=

8
><

>:
x0 2 Rn :

8t 2 [0; T]; x(tjx0) 2 X

x(Tjx0) 2 K

9
>=

>;
: (6.13)

Remark 6.11 (Link with Chapter 5)
This is the path decomposition special case of correlative sparsity that we studied

in Section 5.2. The only di�erence here is that instead of appearing in the description
of the setK we indended to measure, the sparsity pattern is found in the dynamics
of the di�erential system _x = f (x).

Here there areN � 1 cliquesC i = I(gX i )[ I(gX i +1 ), i 2 N?
N � 1 (using the notations

of Section 5.1.4), see Figure 6.2.

... xN � 2 xN � 1x3x2x1 xN

C1 C2 CN � 2 CN � 1

Figure 6.2 � Illustration of the studied sparsity pattern.

Remark 6.12 (Information transfer)
A way to look at this sparse di�erential system consists of building the exact

same clique tree as in Chapter 5 (in the present context, we call it the clique path),
and then look at the cliqueCN � 1, which is the leaf of the tree. Indeed, the dynamics
of this clique do not depend on any exogenous variable, and it can be viewed as a
subsystem of the form

_xN � 1 = fN � 1(xN � 1; xN )

_xN = fN (xN � 1; xN ):

Then, solving this system provides us with trajectoriesxN � 1(tjx0), xN (tjx0), and
one can consideruN � 2(t) := xN � 1(tjx0) as a control law for the dynamics ofxN � 1:

_xN � 2 = fN � 2(xN � 2; uN � 2):

Eventually, iterating until one reaches the root of the clique path yields the total
trajectory. However, this is only the problem of �nding a trajectory given some
initial condition x0 2 X , while our interest is in the inverse problem of �ghting
suitable initial conditions A X

T (K ) such that the trajectory hits the target setK at
time T.
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Remark 6.13 (Speci�city of set approximation)
Contrary to the volume problem where our interest is only in the volume of a

given set, i.e. the mass (or �rst moment) of a measure, in set approximation we
are interested in determining the set, i.e. computing the support of a measure. The
reason why classical schemes for sparse polynomial optimization (see e.g. [132, 69])
do not directly apply to volume computation is precisely that they are rather adapted
to retrieving the support of a measure (i.e. determining minimizers of a polynomial),
but if implemented for the volume computation problem, they do not converge to
the volume of the considered set, hence the necessity for the original contribution
in Chapter 5. However, again the scheme developed in Chapter 5 is speci�cally
adapted for volume computation, which is not relevant for approximating regions of
attraction. In the next sections we develop a new method, inspired from the existing
ones, speci�cally designed for the study of dynamical systems.

With the future application to electrical power systems in mind, we focus on
exploiting the network-like structure in our computations. A power network model
has the particularity that not all the variables directly interact in the equations.
Especially, nodes that are geographically far from each other are not connected
together in the dynamics of the system. This corresponds to a sparse structure,
which motivates this work.

6.2.2 A sparse in�nite dimensional formulation

Following the inspiration given by both Chapter 5 and [147], we derive an LP prob-
lem that can be split into small dimensional subproblems, and thus is a lot more
scalable than the dense formulation (3.7). To that end, we introduce the number
of cliques K := N � 1 as well as the setsX 0

i := X i � X i +1 , X 0
i := X i � X i +1 ,

K 0
i := K i � K i +1 , states x0

i := ( x i ; x i +1 ), maps f 0
i := ( f i ; f i +1 ) and dimensions

n0
i := dim X 0

i = ni + ni +1 , i 2 N?
K .

We recall that the dense formulation for the �nite time ROA outer approximation
(3.7) reads:

p?
ROA := sup

�;�;�

Z
1 d� (3.7a)

s:t : � 2 M (X )+

� 2 M (I � X )+

� 2 M (K )+

� � � 2 M (X )+

@t � + div( � f ) = � 0 � � � T �;

d?
ROA := inf

v;w

Z
w d� (3.7b)

s:t : w � v(0; �) � 1 2 C(X )+

� @tv � f � grad v 2 C(I � X )+

v(T; �) 2 C(K )+

w 2 C(X )+

v 2 C1(I � X ):

Now, as in Chapter 5 the idea is to split the measures along the cliques dis-
tribution. However, as we are not looking for a volume, we do not need any of
the resulting measures to be marginals of the original ones, which gives us more
slack. The main di�culty lies in the Liouville equation (3.3). Indeed, if we split our
measures�; �; � into � i ; � i ; � i , then the following happens in the Liouville equation
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applied to � 1; � 1; � 1(extending derivative notation of Section 5.2.2) :

@t � 1 + div x 1 (� 1 f 0
1) + div x 2 (� 1 f2) = � 0 � 1 � � T � 1;

which makes no sense if the measures� 1; � 1; � 1 only depend on statesx1; x2, as f2

depends onx2 and x3. Enlarging the number of states modelled in a measure is
not an option, since one would always have to deal with the termdivx j (� 1 f j ), f j

depending on bothx j and x j +1 . For this reason and to preserve sparsity, we extend
� 1 with a measure� 1 2 M (I � X 0

2)+ and introduce aconsistency condition(see [69])
between them:

� ht;x 2 i
1 = � ht;x 2 i

1

so that � 1 and � 1 can be seen as the two marginals of an occupation measure, subject
to a hybrid �Liouville consistency� constraint:

(� 0 � 1 � � T � 1 � @t � 1)ht;x 1 i = div x 1 (� 1 f1)ht;x 1 i

(� 0 � 1 � � T � 1 � @t � 1)ht;x 2 i = div x 2 (� 1 f2)ht;x 2 i :

Then, one can write the following GMP:

Problem 19: Primal sparse ROA approximation

p?
spROA := sup

(� i ) i ;(� i ) i
(� i ) i ;(� i ) i

KX

i =1

Z
1 d� i (6.15)

s:t : � i 2 M (X 0
i )+ i 2 N?

K

� i 2 M (I � X 0
i +1 )+ i 2 N?

K � 1

� i 2 M (I � X 0
i )+ i 2 N?

K

� i 2 M (K 0
i )+ i 2 N?

K

� n0
i � � i 2 M (X 0

i )+ i 2 N?
K

(� 0 � i � � T � i � @t � i )
ht;x 1 i = div x i (� i f i )ht;x i i i 2 N?

K � 1

(� 0 � i � � T � i � @t � i )
ht;x i +1 i = div x i +1 (� i f i +1 )ht;x i +1 i i 2 N?

K � 1

@t � K + div( � K f 0
K ) = � 0 � K � � T � K

� ht;x i +1 i
i = � ht;x i +1 i

i i 2 N?
K � 1

whose dual writes

d?
spROA := inf

(u i ) i ;(wi ) i
(vij ) i;j ;vK

KX

i =1

Z
wi (x i ; x i +1 ) dx i dx i +1 (6.16a)

s:t : wi (x i ; x i +1 ) � vi 1(0; x i ) � vi 2(0; x i +1 ) � 1 (6.16b)

(x i ; x i +1 ) 2 X 0
i ; i 2 N?

K � 1

wK (xK ; xN ) � vK (0; xK ; xN ) � 1 (6.16c)
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(xK ; xN ) 2 X 0
K

f i +1 (x i +1 ; x i +2 ) � grad vi 2(t; x i +1 ) � � u(t; x i +1 ) (6.16d)

(t; x i +1 ; x i +2 ) 2 I � X 0
i +1 ; i 2 N?

K � 1

@tvi 1(t; x i ) + @tvi 2(t; x i +1 ) + f i (x i ; x i +1 ) � grad vi 1(t; x i ) � u(t; x i +1 ) (6.16e)

(t; x i ; x i +1 ) 2 I � X 0
i ; i 2 N?

K � 1

@tvK (t; xK ; xN ) + f 0
K (xK ; xN ) � grad vK (t; xK ; xN ) � 0 (6.16f)

(xK ; xN ) 2 X 0
K

vi 1(T;x i ) + vi 2(T;x i +1 ) � 0 (6.16g)

(x i ; x i +1 ) 2 K 0
i i 2 N?

K � 1

vK (T;xK ; xN ) � 0 (6.16h)

(xK ; xN ) 2 X 0
K

wi 2 C(X 0
i )+ ; i 2 N?

K

vi 1 2 C1(I � X i ); i 2 N?
K � 1

vi 2 2 C1(I � X i +1 ); i 2 N?
K � 1

vK 2 C1(I � X 0
K )

ui 2 C(I � X i +1 ); i 2 N?
K � 1

Here the idea is to split the decision variablesv and w of problem (3.7b) and
distribute them along the components of our sparse system. The decision variables
ui are added to take into account the interconnection between the components:
summing (6.16d) and (6.16e) yields a regular Lyapunov-like inequality onvi =
vi 1 + vi 2. Thus, we do not simply compute an uncerti�ed intersection of regions of
attraction of smaller subsystems, but rather a sparsely de�ned outer approximation
of the global region of attraction. By doing so, we end up with inequality constraints
involving only the variables of one of the considered subsystems at a time, which
drastically reduces the dimension of the decision space in the SOS hierarchy.

Our main result is the numerical certi�cation that can be stated as follows:

Theorem 6.17: Sparse outer ROA approximation

Let (u; v; w) be feasible for problem (6.16), and consider the set

Â v :=

8
><

>:
x 2 Rn :

8i 2 N?
K � 1; vi 1(0; � X i (x)) + vi 2(0; � X i +1 (x)) � 0

vK (0; � X0
K

(x)) � 0

9
>=

>;
: (6.17)

Then, one hasA X
T (K ) � Â v .

Proof : Let x0 2 A X
T (K ). Then, by de�nition, x(Tjx0) 2 K , and according to

constraint (6.16g) one has fori 2 N?
K � 1

vi 1(T; � X i (x(Tjx0))) + vi 2(T; � X i +1 (x i +1 (Tjx0))) � 0: (6.18)
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Moreover we know that

vi 1(T; � X i (x(Tjx0))) � vi 1(0; � X i (x0)) =
Z T

0

d
dt

(vi 1(t; � X i (x(tjx0)))) d t

=
Z T

0
@tvi 1(t; � X i (x(tjx0)))+

f i (� X0
i
(x)) � grad vi 1(t; � X i (x(tjx0))) d t

(6.16e)
�

Z T

0
ui (t; � X i +1 (x(tjx0))) � @tvi 2(t; � X i +1 (x(tjx0))) d t:

The same reasoning onvi 2 yields

vi 2(T; � X i +1 (x(Tjx0))) � vi 2(0; � X i +1 (x0))
(6.16d)

�
Z T

0
@tvi 2(t; � X i +1 (x(tjx0))) � ui (t; � X i +1 (x(tjx0))) d t:

Finally, adding both inequalities, one obtains

0
(6.18)
� vi 1(T; � X i (x(Tjx0))) + vi 2(T; � X i +1 (x(Tjx0)))

� vi 1(0; � X i (x0)) + vi 2(0; � X i +1 (x0)) :

SincevK is nonnegative at timeT in K K in virtue of (6.16h), and decreasing
along trajectories in virtue of (6.16f), the last required inequality is also satis�ed.
Thus, x0 2 Â v . }

With this formulation, we design a method to compute sparse outer approxim-
ations of the ROA, using only convex semide�nite programming, while all existing
methods resort only to nonconvex optimization, namely bilinear matrix inequalit-
ies. However, the constraint that the approximation should be sparse is a signi�cant
restriction that prevents us from proving convergence to the actual ROA. Indeed,
with the following elementary exemple we show that in the case of sparse dynamics
and target set, the ROA has no reason to be sparse.

6.2.3 Sparsity of the actual �nite time ROA

Consider the simple case whereN = 3 and the dynamics are:

_x1 = ( x2
1 + x2

2 � 0:25)x1 (6.19a)

_x2 = ( x2
2 + x2

3 � 0:25)x2 (6.19b)

_x3 = ( x2
2 + x2

3 � 0:25)x3: (6.19c)

Here, it is clear that the bicylinderC := f x 2 R3 : x2
1+ x2

2 � 0:25; x2
2+ x2

3 � 0:25g
is contained in the in�nite time ROA of the equilibrium point 0.

However, this ROA is strictly larger than our sparsely de�nedC, and it intricates
all variables, which means that it cannot be sparsely described.
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Figure 6.3 � A stable trajectory x1(tjx0).

Here the initial conditions arex01 = 0:46, x02 = x03 = 0:25.

To illustrate this fact, we plotted the evolution of x1(tjx0) with di�erent initial
conditions x0 = ( x01; x02; x03) outside C (see Figures 6.3 and 6.4). In the three
cases,(x02; x03) is in the disk of radius0:5 such that x2(tjx0) and x3(tjx0) go to 0
quickly.

However, depending on bothx02 and x03, the trajectory of x1(tjx0) is either
stable (with quick convergence to0) or unstable (with �nite time explosion).

This example highlights the non-sparsity of the in�nite time ROA. The same
observation carries over for any �nite time ROA (say forT = 100, K = [ � 0:1; 0:1]3)
which is very close to the in�nite time ROA.

From this we can deduce that exploiting sparsity prevents from directly proving
the convergence of our ROA estimations towards the actual ROA, the former being
sparsely de�ned while the latter is not. However, we can still obtain good outer
approximations of the ROA using this technique. The advantages that one gains
while giving up convergence are twofold :

� The computational time is drastically reduced for systems that were tractable
using the converging dense framework;

� This framework allows one to handle systems that are intractable with the
standard dense framework, as shown experimentally below.

Besides, two possibilities exist that might allow improving this contribution into
a converging scheme:

� First, the fact that the exact ROA itself is not sparse does not mean that it
cannot be approximated with sparsely de�ned sets; thus, looking into sparse
approximation of dense sets, especially emphasizing the sparse structure of the
dynamics, might be an interesting option;
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Figure 6.4 � Two unstable trajectoriesx1(tjx0).

Here the initial conditions arex01 = 0:46, x02 = 0:26, x03 = 0:25 (left) and x01 =
0:46, x02 = 0:25, x03 = 0:3 (right).

� Second, looking for sparse polynomials does not mean that our ROA approx-
imations have to be correlatively sparse; for example, one could also look at
the set ~A v := f x 2 Rn : v(x) := vK (0; � X0

K
(x)) +

P K � 1
i =1 vi (0; � X i (x)) � 0g,

whose description is not correlatively sparse asv depends on all variables;
however it is obvious that A X

T (K ) � Â v � ~A v so that the sparse approx-
imation is tighter; nevertheless, other non-sparse ROA approximations with
sparse schemes could also be investigated.

6.2.4 Computing sparse ROA approximations

We tested our formulation (6.16) on two numerical examples: the �rst one is the
example that we mentioned in section 6.2.3, and the second one is a dimension20
chain constituted by 10 interconnected Van der Pol oscillators.

Reducing computational time: a toy example

To check that our sparse method is relevant, we implemented it on system (6.19)
and compared its performances to those of the dense formulation of [42], with SOS
polynomials of degrees8 (Figure 6.5a) and10 (Figure 6.5b), with state constraint
set X = [ � 1; 1]3, time horizon T = 100 and target setK = [ � 0:1; 0:1]3.

On these �gures we also plot the bicylinder (that should be inside the in�nite
time ROA and the �nite time ROA A X

T (K ) for T large enough andK small enough).
We gathered the computational times in Table 6.2.
The �rst thing one can note is the important gain in computational time: our

sparse formulation is by far less costly than the standard dense formulation, and the



178 CHAPTER 6. THEORETICAL STABILITY ANALYSIS

degree dense sparse

4 4 4

6 24 10

8 334 83

10 5542 440

12 - 1865

Table 6.2 � Performances of the sparse ROA approximation scheme.

We report and compare the computation times (in seconds) for the dense and sparse
formulations.

gap increases with the degree (at degree10 the sparse formulation is more than10
times faster).

(a) Degree 8. (b) Degree 10.

Figure 6.5 � Comparing the sparse and dense ROA approximation schemes.
We compare the sparse (red) and dense (green) ROA approximations and the bicyl-
inder (brown).

Second, one can see that while at degree8 the dense approximation is tighter than
the sparse one, at degree10 this does not hold anymore: the sparse approximation
is actually tighter around x = 0 (resulting in the blue-green spot on the side of the
surface), and more generally both approximations are close one to another.
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High dimension: a chain of Van der Pol oscillators

To test our method on large scale systems, we take the same example as in [63], but
adapted to our �rst sparsity pattern: we consider a chain of Van der Pol oscillators
linked with random couplings. The general framework is as follows:

_yi = � 2zi (6.20a)

_zj = 0:8yj + 10(1:22y2
j � 0:21)zj + � j zj +1 yj (6.20b)

_zN = 0:8yN + 10(1:22y2
N � 0:21)zN (6.20c)

with i 2 N?
N and j 2 N?

K ; K = N � 1. This corresponds to our sparse polynomial
ODE (6.12) with ni = 2 and x i = ( yi ; zi ) for i = 1; : : : ; N (thus n = 2N ). One
can notice that the sparse structure is even more speci�c than stated in our general
framework since

f j (x j ; x j +1 ) =
�

f j 1 (zj )
f j 2 (x j ;zj +1 )

�
for j = 1; : : : ; K:

Here� j is a random variable that follows the uniform law on[� 0:5; 0:5], modelling
a weak interaction between the oscillators. For reporting our results, we letN = 10,
X = [ � 1; 1]20, T = 30 and K = [ � 0:1; 0:1]20 and we use a particular sample� . We
report on degree12 certi�cates, which takes approximately 23', among which 11'35�
for declaring the decision variables with the YALMIP interface, 10'46� for solving
the SDP problem with MOSEK and 41� for plotting the results with Matlab.

For j = 1; : : : ; K we plot the sets

Â j := f x j 2 X j : vj 1(0; x j ) � 0g

which correspond toT = 30, K j = [ � 0:1; 0:1]2 for the j -th Van der Pol oscillator
with perturbation � j zj +1 yj where zj +1 is a trajectory from the (j + 1) -th Van der
Pol oscillator, starting in 0 at t = 0, as well as

Â N := f xN 2 X N : vN (0; xN ) � 0g

which corresponds toT = 30, K K = [ � 0:1; 0:1]2 for the N -th (non perturbed) Van
der Pol oscillator see Figure 6.6.

As expected considering the low magnitude of the interactions, on Figure 6.6 one
can identify shapes similar to the ROA of a standard Van der Pol oscillator. How-
ever, the shapes are perturbed: their respective sizes di�er slightly. The standard
framework of [42] cannot be used here, due to the high dimension of the state space.
It is also important to note that an important part of the computational time was
spent for modelling the SDP problem, while the SDP solver was quite fast, once the
decision variables were properly declared. We believe that these results are quite
encouraging for future works on sparse ROA approximation.

Further comments

This work is a �rst step towards convex computation of large scale stability regions
for sparse systems. Like Lyapunov-based methods, this framework gives no conver-
gence guarantee for the polynomial approximations when the degree tends to in�nity,
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Figure 6.6 � 2D representations of �nite time ROA approximations.
We representedÂ 1 to Â 10 (from left to right and top to bottom). These are not
actual projections of the ROA approximations but can be visually compared with
an actual Van der Pol oscillator ROA (due to the small magnitude of the random
coupling � ).

due to the strong sparsity constraints imposed to the SOS certi�cates. However, we
have been able to reduce the problem of assessing stability of a large scale sparse
system into a tractable convex problem. In our opinion this is a complete novelty,
since previous works resulted into nonconvex bilinear problems.

This framework is valid for any chain of coupled ODEs, and it can readily be
extended to other sparsity patterns, as highlighted in [126]. The presentation of
the results is however more complicated, which is the reason why we only presented
chained ODEs in this chapter.

For now, we applied it only for outer approximations of the �nite time ROA, while
inner approximations of the �nite time ROA and maximal positively invariant sets
remain to be studied. Future work will also include the transient stability assessment
of a meshed multi-machine system as in [6, 53], and the stability analysis of di�erent
converter grid-forming controls as in [7, 127].

The present contribution seems to outperform the direct application of [69, 132,
147] on example (6.19), although it seems very similar to them. At this point, we
do not have a theoretical explanation of why this heuristic works better in practice
than previously established works on sparsity. Similarly, we expect our framework
to be more accurate than DSOS and SDSOS approaches such as [84] (where similar
scales are tackled) as sparsity keeping full semide�nite constraints usually is.

Synthesis of sections 6.1 & 6.2

In this chapter we developed two new GMP instances for power systems stability
analysis. The MPI set had already been studied in [57] where an outer approx-
imation scheme was given. However, inner approximations required a signi�cant
improvement of the method, through a non-trivial extension of the results proposed
in [83], which was the object of Section 6.1. Such a contribution yields a very inter-
esting tradeo� between the time-independent Lyapunov formulation of Section 3.2
and the convex Lasserre hierarchy strong convergence guarantees associated to Sec-
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tion 3.1. Then, an original, general heuristic was developed in Section 6.2 in order to
exploit correlative sparsity patterns that may appear in the dynamics of power grids,
due to their network structure. Exploiting network topology for moment-SOS ROA
approximation is a new feature, since so far sparsity was mostly used for polynomial
optimization and Lyapunov function computation only.

Naturally, while the scheme is proposed and illustrated for the �nite time ROA
outer approximation, it can as well be applied to inner ROA approximation as well
as inner and outer MPI set approximation. We chose to use the �nite time ROA
outer approximation framework to illustrate this heuristic, as it is historically the
�rst ever application of moment-SOS hierarchies to stability analysis. Combining
the schemes of sections 6.1 and 6.2 means combining the advantages of the two
methods: in particular, the size of each clique decreases by1, as time disappears
from the problem. This combination, which we postponed to future developments,
might yield very interesting results.

Eventually, we want to highlight the fact that both our MPI approximation
framework and our correlatively sparse scheme also have the potential to combine
with other sparsity methods, such as sparse BSOS [138], term sparsity [108, 134, 135,
136] or time sparsity as it is exploited in the case of grid-forming power converters
in [121]. Especially, we have an ongoing collaboration with the authors of this last
promising paper, which might lead to time sparsity exploiting, inner MPI set ap-
proximation schemes, and thus allow for improved stability analyses of grid-forming
power converters, combining the bene�ts of these approaches.





7
Conclusions and perspectives

7.1 General conclusions

Although the motivation for this thesis is the industrial need for innovative methods
in the �eld of large scale stability analysis, it was the occasion for several contribu-
tions in various domains. Indeed, a particular focus was put on methods resorting
to set approximating moment-SOS hierarchies, and more precisely on the expected
computational gain that exploiting network sparsity structures can yield. This led
to a variety of related problems, that can be listed in chronological order:

1. Since moment-SOS hierarchies take only polynomials as input, is it possible
to apply them to AC power systems, which feature non-polynomial functions
such as sine, cosine, modulus and saturations? Based on the existing work [6],
the answer was yes, but a systematic proof was missing.

2. While sparsity had already been used for polynomial optimization (see [132,
69, 54]), its extension to set approximating hierarchies was nontrivial. The
problem of formulating a sparse scheme for the simplest set approximating
hierarchies (i.e. volume computation) then naturally arose.

3. A side problem to this was the question of theoretical and practical convergence
of the moment-SOS hierarchies, especially for set approximation, which led us
to look for systematic proofs of theoretical convergence as well as techniques to
speed up practical convergence, and to investigate more in depth the connexion
between volume computation and set approximation.

4. Eventually, in parallel to solving all these problem, the fundamental question
of designing new moment-SOS hierarchies, allowing for a fast, tractable stabil-
ity analysis in the case of high dimensional, network-like di�erential systems,
needed to be addressed.

Each of these subproblems was then addressed within one or several chapters of
this thesis, whose technical contributions are listed in what follows:

� Although Chapter 2 was mainly dedicated to formally introducing Lasserre's
moment-SOS hierarchies that are at the core of the thesis, it represented an
opportunity for several original contributions regarding general features of the
GMP and its numerical solution using moment-SOS hierarchies. Indeed, in

183
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most previous works on the subject, the features of the involved hierarchies
had to be studied �from scratch�, while always invoking the same set of math-
ematical theorems. For the �rst time, in this Chapter we formulated general
results independent from the speci�c problem at hand: Theorem 2.6 states
explicit conditions for strong duality to hold in any instance of the GMP,
Lemma 2.9 gives a new bound on pseudo moment sequences magnitudes, The-
orem 2.16 is a �nite dimensional version of Theorem 2.6 for strong duality in
general moment-SOS hierarchies, and Theorem 2.17 is an �all inclusive� the-
orem which proposes standard conditions one can check to ensure convergence
of the moment-hierarchy in terms of pseudo-moment sequences, which is one
of the strongest possible convergence properties.

� In Chapter 3 we continued to introduce key concepts for moment-SOS sta-
bility analysis, such as occupation measures, Liouville PDEs and set approx-
imating properties, as well as mentioning classical stability notions such as
local asymptotic stability and Lyapunov functions. However, these standard
objects were again accompanied with some contributions w.r.t. their applica-
tion: Section 3.1 studied the application of moment-SOS hierarchies to non-
polynomial di�erential systems, through the use of changes of variables and
the corresponding equality constraints. The core contribution was the obser-
vation that these equality constraints do not have to be implemented in the
moment-SOS hierarchy (which would require the use of Hausdor� measures
and Stokes theorem), but can instead be addedafter solving the corresponding
SDP relaxations. This was the �rst application of moment-SOS hierarchies to
the problem of power systems stability analysis. Then, Section 3.2 extended
these results to a Lyapunov-based hierarchy of SOS programming problems,
identifying exactly the class of dynamics that could be studied through polyno-
mial optimization (which we namedalgebraic dynamics), and pushing standard
solvers to their limits in terms of problem dimension (n = 6).

� Chapter 4 can be seen as a practical follow up to Chapter 2 in the sense
that, after studying theoretical convergence of general moment-SOS hierarch-
ies, we focused on practical convergence of the volume computation hierarch-
ies through the use of so-called Stokes constraints. Classical results from
the theory of PDEs could be invoked to prove the existence of optimal solu-
tions to both primal and dual in�nite dimensional GMP instances (main The-
orem 4.5), so that the dual optimal solution could be uniformly approximated
with polynomials, which is the most favorable setting for hierarchical poly-
nomial optimization, and in practice drastically improves the convergence of
the volume computation hierarchy. However, we also observed that this con-
vergence improvement mostly concerns the scalar value that approximates the
actual volume of the considered set, and that it destroys the set approxima-
tion property of the volume computing problem, which is a crucial property for
stability analysis (as our strategy consists of applying the set approximation
property to stability sets such as regions of attraction). This is a fundamental
di�erence between the original volume computation problem and the derived
stability analysis problems.
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� In Chapter 5 we started studying the possibility of exploiting sparsity in set
approximating moment-SOS hierarchies. Focusing on the fundamental volume
problem, we designed two original distributed computation schemes (summed
up in Theorems 5.8 and 5.13) that exploit correlative sparsity patterns to
solve previously intractable high-dimensional volume computation problems.
Additional graph theory assumptions were required in contrast to sparsity
in polynomial optimization [69], so that a computation propagating strategy
could be implemented, based on the notion of marginal measures, allowing for
partial parallelization, distributed rescaling and again Stokes-based conver-
gence acceleration. This original scheme allowed for unprecedented numerical
computation of volumes in dimension 100, outperforming by far the stand-
ard moment-SOS hierarchy and even competing with non-certi�ed randomized
methods. However, we later found out that as for sparse polynomial optim-
ization schemes, this strategy is very speci�c to volume computation where
the target is the scalar value of the volume, approximated with marginals of
measures, and does not directly extends to stability analysis, for which another
sparsity exploiting strategy is required.

� Eventually, Chapter 6 groups two original contributions to the domain of
hierarchical stability analysis: Section 6.1 is a contribution on the inner ap-
proximation of maximal positively invariant sets, which can be understood as
the biggest secure sets regarding security conditions formulated as polynomial
constraints of type g(x) � 0. Strongly relying on the results of Chapter 2, a
new moment-SOS hierarchy is proposed to inner-approximate MPI sets, with
convergence guarantees. Then, Section 6.2 is a �rst attempt to formulate a
sparsity exploiting moment-SOS hierarchy for the problem of stability analysis.
Here we focused on outer, �nite time ROA approximation, and highlighted the
fact that even sparse dynamics do not ensure sparsity of the description of the
actual ROA. However, we were still able to compute quite accurate outer ap-
proximations in settings where the state space dimension exceeded by far what
we used to be able to tackle with non-sparse moment-SOS hierarchies.

To conclude, in this thesis, we studied a variety of aspects of moment-SOS hier-
archies, from theoretical general scheme convergence properties to pratical applica-
tion to power systems, including various subtleties around original set approximating
hierarchy formulations. The possible routes for next research works are detailed in
the following section.

7.2 Perspectives

In this section we give our view of possible future works related to the contributions
that we presented in this thesis.

7.2.1 Exploiting time sparsity

As a follow-up to the work in Section 6.2, a collaboration was starded at ETH Zürich
with Florian Dör�er and Irina Suboti¢, on the exploitation of time sparsity, based
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on [121]. The aim of this project is twofold.

� Apply moment-SOS related methods to the stability analysis of grid forming
power converters, which interface renewable energy sources to global AC power
grids, and using the results to compare di�erent grid forming control strategies,
such as droop control, distributed virtual oscillator control, matching control,
and more. See [127] for details on these control strategies.

� Combine the heuristics developed in [121], that allow looking for sparse Lya-
punov functions in the setting of nested di�erential systems with multiple time
scale, with the sparsity exploiting methods developed in this thesis, mostly in
Chapter 6, to be able to tackle accurate power converter models, which scale
at a minimum of 12 state variables.

Brie�y, the focus is on a system of the form:

_x1 = f1(x1; x2) = p(x1) + M( x1)(P x1 + Q x2) (7.1a)

_x i = f i (x1; : : : ; x i +1 ) =
i +1X

j =1

A ij x j 2 � i � N � 1 (7.1b)

_xN = fN (x1; : : : ; xN ) =
NX

j =1

ANj x j (7.1c)

wherex1 2 Rn1 ; : : : ; xN 2 RnN are ordered from slower to faster convergence towards
steady-state, p 2 R[x1]n1 is a polynomial vector �eld, M : Rn1 ! Rn1 � m (with
m 2 N?) is a linear map, P 2 Rm� n1 , Q 2 Rm� n3 and A ij 2 Rn i � n j are matrices.
Intuitively, each state variable's dynamics linearly depend on all the slower variables
as well as the �rst faster variable (except forx1).

In such setting, and under some additional technical assumptions, [121] proposes
to look for Lyapunov functions under the form

V(x1; : : : ; xN ) =
NX

i =1

Vi (y i ); (7.2)

wherey i = x i � x s
i is the di�erence betweenx i and its steady-state mapx s

i . Thus,
reproducing their developments, it is possible to adapt the moment-SOS hierarchies
corresponding to �nite time ROA and MPI set approximation schemes, and look for
dual variables under the same form, drastically reducing the computational time, as
the sparse schemes presented in this thesis allowed to do.

Theoretical developments are near to complete, and mostly the numerical exper-
iments remain to be carried out, with challenging model complexity and parameter
tunings.

7.2.2 Combining Stokes & Christo�el-Darboux

The issue with Stokes constraints presented in Chapter 4 is that while they address
the Gibbs phenomenon, they also lead to losing the set approximating property,
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which is crucial to deduce any stability region from the super-level set of a polyno-
mial, as was done in Sections 3.1, 6.1 and 6.2. However, Stokes constraints consist
of adding linear constraints on the involved measures, that are redundant in the
GMP formulation but become active in its moment relaxations. Thus, even though
our contribution focused on the dual side of Stokes constraints, strong duality in
the hierarchy implies that they also have a positive impact on the convergence of
the pseudo moment sequences corresponding to the SDP relaxations. Then, instead
of looking for a description of the approximated set in terms of super-level set of
a function from the SOS hierarchy, one could directly use methods to deduce set
descriptions from moments, such as the Christo�el-Darboux polynomial method.

De�nition 7.1: Christo�el Darboux (CD) polynomial

Let � 2 M (X )+ , and let zk :=
R

x k d� de�ne its moment sequencez. Let
d 2 N and de�ne a basised(x) of Rd[x ] as in De�nition 2.8. We recall that �
then has a moment matrix

M �;d := M d(z) =
Z

ed(x) � ed(x) d� (x)

which represents the bilinear functional(p; q) 7!
R

p q d� .
Assuming that the support of� contains a ballB , for all p := p �ed(x) 2 Rd[x ]
with p 2 RD d

n n f 0g, one has

p> M �;d p =
Z

p2 d� �
Z

B
p2 d� > 0;

and M �;d is positive de�nite. In such setting (M �;d � 0), the Christo�el-
Darboux (CD) polynomial is de�ned by

q�;d (x) := ed(x)> M � 1
�;d ed(x):

The work in [74] shows how sublevel sets ofq�;d can be used to recover the
support of � for large d, and its extension [87] gives a method to do the same when
the support of � has an empty interior. Our hope is that Stokes constraints can
improve the accuracy of the CD semialgebraic set approximations, and we believe
that it would be very interesting to compare the results obtained using the set
approximation property highlighted in this thesis with those obtained using the
Stokes-augmented, CD approximation. The question of conservativeness, which is
guaranteed by the set approximation property but does not hold in general in the
CD framework, should be studied with care.

7.2.3 Studying sparsity for general lift-and-project methods

As highlighted in Remark 5.5, although our sparsity exploiting schemes were de-
signed to be applied with moment-SOS hierarchies, they are compatible with other
computational methods, such as Monte-Carlo schemes. Also, moment-SOS hier-
archies can be seen as lift-and-project methods, which consist in taking a di�cult
problem, lifting into a higher dimensional linear problem, and solving projections
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of the obtained high dimensional linear problem. Indeed, in the context of power
systems moment-SOS stability analysis, one is looking for a stability region for a
�nite dimensional di�erential system _x = f (x), which one represents using occupa-
tion measures and the Liouville equation (lift ), and then one solves a hierarchy of
corresponding �nite dimensional, SDP relaxations (project).

However, other lift-and-project methods exist, among which one can cite the
framework ofReproducing Kernel Hilbert Spaces(RKHS).

De�nition 7.2: Reproducing Kernel Hilbert Spaces

If X is a set andH � RX is a Hilbert space of functions onX , de�ne the
evaluation functional

Lx :

8
><

>:

H �! R

f 7�! f (x)

� H is called a Reproducing Kernel Hilbert Space(RKHS) if 8x 2 X ,
operator Lx is continuous: 9 Cx > 0 s:t : jLx (f )j = jf (x)j � Cx kf kH .

� Then the Riesz representation theorem ensures the existence of� x 2 H
s.t. Lx = h�; � x i H , which allows us to de�ne thereproducing kernel

� : (x; y) 7! h� x ; � y i H ; so that Lx = f 7! hf; � (x; �)i H :

Remark 7.1 (Christo�el-Darboux kernel)
Using the notations of De�nition 7.2.2, let

� �;d (x; y) := ed(x)> M � 1
�;d ed(y)

(note that one then hasq�;d (x) = � �;d (x; x), and the vector of coe�cients of � �;d (x; �)
in the basised(y) is exactly M � 1

�;d ed(x)). Consider the setX = Rn as well as the
Hilbert spaceH := L2(� ) = f f 2 RX :

R
f 2 d� < 1g and let p(y) := p � ed(y) 2

Rd[y]. One then has, by construction ofM �;d :

hp; � �;d (x; �)i H =
Z

p(y) � �;d (x; y) d� (y) = p> M �;d

�
M � 1

�;d ed(x)
�

= p �ed(x) = p(x);

so that � �;d is a reproducing kernel for the Hilbert spaceRd[x ] � H .

Then, moment-SOS hierarchies and RKHS intersect in approximatingM �;d . Al-
though RKHS have their own sparsity exploiting heuristics, it could be interesting
to compare both �elds and see whether moment-SOS sparse schemes could be trans-
posed to RKHS, or conversely if RKHS sparse schemes could have applications in
moment-SOS hierarchies.

7.2.4 Studying Active electricity Distribution Networks

There exists di�erent types of power grids, such as high voltage electricity trans-
mission networks that exist at the national / continental scale and are operated by
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transmission system operators (TSO) such as Réseau de Transport d'Électricité in
France. At a more local scale, power supply is managed through active distribu-
tion networks (ADN) that are at the interface between the high voltage network
and most power generators and consumers. Such networks have a tree structure
very similar to the clique tree structures exploited in Chapter 5, which gives us the
intuition that sparse schemes should be quite compatible with the study of ADNs.

Thus, from the power systems point of view, all previously mentioned theoretical
options could be implemented for the study of ADNs. The idea, from the TSO
viewpoint, is that having access to stability regions of ADNs makes it possible to
add stability constraints at the interface between the transmission grid and the
ADN, and these constraints can be taken into account by the TSO when planning
the next operations, e.g. as additional constraints in the ACOPF problem.

In addition to the possibilities mentioned in the previous sections, new ap-
proaches can also be considered for ADN (as well as power systems in general)
stability analysis, such as data-driven control barrier functions, that are a generaliz-
ation of the dual variablesv and w in (3.7). For example, the contributions found in
[12] could prove to be useful; indeed, in this paper, an uncertainty set and a control
policy are designed to �t an error bound on the trajectory of a linear discrete time
system, and these outputs (uncertainty set and control policy) might be integrated
as constraints or additional information for the transmission grid side OPF prob-
lem. Here one could aim at extending from discrete time to continuous time or from
linear dynamics to polynomial dynamics if electrical powers are involved.

Back to RKHS, recent developments make possible to combine data-driven ana-
lysis and robust computation (see e.g. [82], which computesdeterministic error
bounds on the predictions provided by RKHS methods), allowing for robust kernel-
based control and certi�ed data-driven stability assessment. Here the idea would be
to see whether it is possible to obtain certi�ed (conservative) approximations of the
ADN stability regions at a lower cost than the hierarchy's relaxations.

All these possible approaches pave the way for new computational methods in
the �eld of power systems stability analysis and control, in the continuation of this
thesis: with appropriate e�ort and investment, one of them might be tomorrow's
industrial standard.
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