
HAL Id: tel-03404043
https://laas.hal.science/tel-03404043v2

Submitted on 10 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Knowledge representation and exploitation for
interactive and cognitive robots

Guillaume Sarthou

To cite this version:
Guillaume Sarthou. Knowledge representation and exploitation for interactive and cognitive robots.
Library and information sciences. Université Paul Sabatier - Toulouse III, 2021. English. �NNT :
2021TOU30104�. �tel-03404043v2�

https://laas.hal.science/tel-03404043v2
https://hal.archives-ouvertes.fr

THÈSETHÈSE

En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par : l’Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier)

Présentée et soutenue le 20/09/2021 par :

●✉✐❧❧❛✉♠❡ ❙❆❘❚❍❖❯

Knowledge representation and exploitation for interactive and cognitive
robots

JURY
Michael BEETZ Professeur Rapporteur
Paulo MENEZES Professeur Associé Rapporteur
Rachid ALAMI Directeur de Recherche Directeur de Thèse
Aurélie CLODIC Ingénieure de Recherche Directrice de Thèse
Simon LACROIX Directeur de Recherche Président du Jury
Kerstin FISCHER Professeure Associée Membre du Jury

École doctorale et spécialité :
MITT : Informatique et Télécommunications

Unité de Recherche :
LAAS-CNRS

Directeur(s) de Thèse :
Rachid ALAMI et Aurélie CLODIC

Rapporteurs :
Michael BEETZ et Paulo MENEZES

i

Acknowledgments

En démarrant cette thèse, je pensais qu’une thèse était un travail personnel et
que personnel rimait avec solitaire. Ces trois ans (et même plus en soi) au sein de
cette équipe ont su me démontrer mon erreur. Je ne serais jamais arrivé à réaliser le
travail que ce manuscrit retranscrit sans toutes ces personnes qui m’ont accompagné
durant ces trois années.

En tout premier lieu, je souhaite remercier ma compagne Margaux pour m’avoir
supporté (et c’est peu dire) et soutenu depuis certes de nombreuses années, mais
avant tout durant cette thèse. Ces matins où j’étais déjà parti, ces soirs où je n’étais
pas encore rentré, ces week-ends où j’étais absent, ces vacances quasi-inexistantes,
tu as su les accepter, les comprendre, et ne jamais me les reprocher. Merci de
m’avoir toujours remotivé, d’avoir écouté mes complaintes et de m’avoir poussé à
toujours aller plus loin même si cela voulait dire se voir moins.

Une thèse démarre avant tout avec un directeur de thèse et dans mon cas deux.
Je tiens d’abord à remercier Aurélie Clodic pour avoir cru en mon travail avant
même le début de cette thèse, et cela, jusqu’au bout. Ton soutien sans failles a
été une véritable force pour moi. Si je voulais résumer ce soutien, je pourrais citer
qu’une phrase de toi: "Je n’ai jamais vu d’article comme ça et je ne sais pas si ça

se fait mais si tu penses que c’est ce qu’il faut faire alors vas-y"1.
Je remercie également Rachid Alami, directeur de cette thèse, pour l’ensemble

des idées qui ont nourri cette thèse, toujours précises, affinées et enrichies, et don-
nant un véritable cap à suivre et évitant ainsi de se perdre dans des contributions
trop vagues. Merci pour ta disponibilité, tes relectures toujours attentives et an-
ticipées et ton sens de la phrase pour trouver les bons titres.

Mes remerciements vont également à Micheal Beetz et Paulo Menezes pour
avoir accepté d’être rapporteurs de cette thèse, ainsi qu’aux autres membres du
jury, Kerstin Fischer et Simon Lacroix.

Je me dois bien évidemment de remercier une seconde fois Simon, qui en plus
de sa magnifique prestation de président de jury et de ses questions probabilistes
a également été un camarade de pause toujours de bon conseil, grâce à qui j’ai pu
mieux comprendre le monde de la recherche.

En restant sur la thématique des pauses probabilistes, je souhaite remercier
Arthur pour son regard critique et bienveillant sur mon travail.

Outre les collègues quelque peu formels disons, une thèse est également accom-
pagnée de compagnons d’infortune parmi lesquels j’ai su trouver mes mousquetaires,
pour affronter ensemble le cardinal de Richelieu et ainsi créer une super démo. Sans
vous, ces années n’auraient sûrement pas été aussi agréables et cette thèse n’aurait
pas été aussi riche. Je pourrais, j’en suis sûr, noircir quelques pages pour vous
remercier mais promis je vais faire court.

Guilhem, qui eût cru que tu l’aies fait, peut-être pas toi, mais nous oui. Malgré
ton pessimisme constant, tu as été une véritable source d’inspiration pour moi,

1Nominated for the best paper.

ii

avec une vision de la robotique et de la HRI toujours juste, réfléchi, critique et
réaliste. Toujours prêt à tout remettre en question, j’ai pu mieux construire ma
vision, toujours prêt à débattre, j’ai pu étayer mes arguments, toujours prêt à tout
recommencer à zéro, j’ai trouvé un camarade de code. Merci pour toutes ces longues
discussions, ces débats, ces engueulades et ces bières.

Amandine, j’espère qu’après ces quelques années je te fais enfin moins peur.
Véritable juke-box ambulant, tu as su transformer de longues soirées d’intégration
laborieuses en moments agréables où la bonne humeur était le maître-mot. Cama-
rade de confinement non respecté, merci pour ces longues discussions, ces midis de
jeux et ces gâteaux.. Ho ces gâteaux... Merci également pour tous ces développe-
ments sans lesquels nos travaux seraient restés théoriques et pour tes exigences nous
ayant poussés à aller toujours plus loin.

Kathleen, petite folle dont je n’oublierai pas la rencontre quelque peu incon-
grue pour quelqu’un devant nous aider à savoir comment interagir avec un humain,
j’espère qu’un robot ne fera jamais comme toi. Un grand caractère dans une si
petite personne. Merci pour toutes ces pauses de complaintes, cette éthique sans
failles qu’on a eu tant de mal à respecter. Merci également pour ton partage de
connaissance passionné qui a donné une autre envergure a cette thèse. J’en suis
sûr, ce n’est que le début d’une collaboration.

Merci ensuite à tous ceux que j’ai obligés à faire tant de pauses café, matin,
midi et soir. Je me doute à quel point cela a dû être dur pour vous. Yannick,
fidèle ingénieur ayant un sens du mouvement tout personnel. Amélie, dont le rire
illuminait le bâtiment tel un feu d’artifice. Jules, programmeur talentueux à qui
le rouge allait si bien. Rafa, roi d’Espagne ne craignant pas la coupe. Phani,
danseuse étoile nous ayant fait tourner la tête. Philippe, dont l’âge n’a d’égale que
l’humour. Jérémy, athlète friand de punch ing ball. Ilinka, loup garou par défaut.
Alexandre, peintre attentif. Léa, pile sur pâtes. David, la chaleur dégagée par son
réseau de neurones a eu raison de ce qu’il se trouvait dessus. Dario et Margot,
camarades de week-ends. Merci aussi à Alejandro, Christophe, Ellon, Anthony,
Antoine, Jerôme, Martin, Tanguy, Victor, Jean-Hugues, Élise, Vivien, Gianluca,
Andréa, Pierre, Florian un et deux, Idriss, Paul et tous ceux que j’ai pu croiser
durant ces années.

Merci également à tous les permanents du bâtiment H toujours prêts à aider
et à discuter de tout et de science. Christelle, encadrante de la première heure.
Matthieu, dompteur de robot. Anthony, plus efficace que marraine la bonne fée avec
une baguette (de mocap). Felix, actionnaire principal du CAF40. Merci également
à Daniel, Nic, Juan, Corrine et Patrick.

Je souhaite également remercier tous les enseignants que j’ai pu avoir durant
mon parcours scolaire et qui, alors que je voulais faire des études courtes, ont su
me donner le goût du travail. Pour n’en citer que certains, merci à Damien, Gaelle,
Bruno, Bruno, Alexandre, Pierre-Emmanuel, Claude, Didier, Christophe et tous les
autres.

Merci à l’ensemble de l’équipe du fablab. Vous avez été ma petite bulle de grand
n’importe quoi durant ces années, toujours partants pour une bière, une raclette,

iii

un barbecue, éclater des composants, faire des arcs électriques, imprimer des choses
utiles, casser des machines, faire un ordinateur dans une boîte à pizza et j’en passe.
Alors merci pour votre passion, vos idées et vos rires.

D’un point de vue plus personnel, je souhaiterais vivement remercier Julien,
toujours présent depuis bien des années. Tu es celui que mes collègues connaissent
sous la casquette d’ingénieur de recherche personnel. Merci pour toutes tes relec-
tures de code, tes conseils avisés et m’avoir poussé à aller toujours plus loin, à ne pas
me reposer sur mes acquis. Je pense que bien des fois, tu as dû te questionner sur
l’utilité de mes logiciels, mais qu’importe, tu voulais les améliorer. Merci également
pour ton amitié et tous ces projets durant toutes ces années.

Merci enfin à ma famille et tout particulièrement à ma mère et mes sœurs. Je
sais que vous n’avez pas toujours compris ce que je faisais et l’importance que ça
avait pour moi, mais vous m’avez toujours soutenu et vous avez su accepter mes
absences sûrement trop nombreuses. Alors certes, il semblerait que je ne sois pas
encore au bout du chemin, mais soyez sûres de la place que vous avez dans mon
cœur.

Contents

1 Introduction 1
1.1 A prototypical scenario . 1
1.2 Interacting with a robot: What can we expect ? 4
1.3 Knowledge organization . 7
1.4 Contributions . 10

1.4.1 Knowledge management . 10
1.4.2 Knowledge exploitation . 11
1.4.3 Cognitive architectures . 11

1.5 A reader’s guide . 12

2 Ontologenius: A semantic memory for HRI 15
2.1 Design and features . 16

2.1.1 Why an ontology? . 16
2.1.2 Desired features . 19
2.1.3 Ontology formalism . 21

2.2 Architecture . 28
2.2.1 Permanent versus temporary data structure 28
2.2.2 Reasoning to enrich the knowledge 31
2.2.3 Concepts name in natural language 32

2.3 Managing partners’ estimated knowledge 32
2.3.1 Ontologenius multi-instances principle 32
2.3.2 Catching knowledge at a given moment 33
2.3.3 Exploring several possible mental states at once 34

2.4 Using Ontologenius in robotic applications 35
2.4.1 Updating the knowledge base 35
2.4.2 Retrieving knowledge . 36
2.4.3 Interfacing with Ontologenius 38

2.5 Computational performance evaluation 40
2.5.1 Comparing with Knowrob . 40
2.5.2 Comparing with ORO . 44
2.5.3 Additional tests . 47

3 Elaborating a route for a human partner based on semantic knowl-
edge 51
3.1 Introduction . 52
3.2 Related work . 53
3.3 The Semantic Spatial Representation 55

3.3.1 The SSR classes . 56
3.3.2 The SSR properties . 57
3.3.3 An example of description . 59

vi CONTENTS

3.4 Finding routes: A two-level search 60
3.4.1 The region-level: Trim down the search 61
3.4.2 The place-level: Refine the search 63

3.5 Generating an explanation in natural language 66
3.5.1 Reconstructing the paths . 66
3.5.2 The robot putting itself in your shoes 68
3.5.3 A pattern-based generation 69

3.6 Experiment in the mockup and the real environment 70

4 Ontology-based Referring Expression Generation 73
4.1 Introduction . 74
4.2 Related work . 76
4.3 Define the REG problem . 80

4.3.1 The knowledge representation 80
4.3.2 Contextualization and restriction for situated REG 82
4.3.3 Expected solution: structure and validity criteria 84

4.4 Uniform Cost Search REG . 86
4.4.1 Formalisation as a search problem 86
4.4.2 Algorithm choice . 88
4.4.3 Algorithm presentation . 88
4.4.4 Replanning and explaining failures 91

4.5 Results . 92
4.5.1 Solution analysis: The pen in the cup 92
4.5.2 Scaling up: The three-room apartment 93
4.5.3 Comparisons with other state-of-the-art algorithms 95

4.6 Integration on a robotic system . 97

5 Estimating communication feasibility and cost at task planning 101
5.1 Introduction . 102
5.2 Related work . 104
5.3 The involved components . 106

5.3.1 The Hierarchical Task Planner 107
5.3.2 The Semantic Knowledge Base 108

5.4 Integrating planners . 108
5.4.1 The representation of the communication action 110
5.4.2 Maintaining the right knowledge base, at the right time . . . 111
5.4.3 Reducing the number of updates 112

5.5 Results . 113
5.5.1 Prevent execution dead-end 113
5.5.2 Reduce the overall communication complexity 115
5.5.3 Compare with other communication means 115

5.6 Integration in a robotic system . 116

CONTENTS vii

6 Extending the REG with knowledge about past activities 119
6.1 Introduction . 120
6.2 Related work . 122

6.2.1 Interaction based Referring expression 122
6.2.2 HTN-based tasks representation in ontology 123

6.3 Structuring and gathering the knowledge 124
6.3.1 The three knowledge representations 124
6.3.2 The knowledge gathering scheme 126
6.3.3 Building the ontology . 128

6.4 REG algorithm modifications . 132
6.5 Results . 134

6.5.1 One execution trace for five referring expressions 134
6.5.2 Impact of the extension on the performances 138

6.6 Discussion . 139

7 Beyond binary relations in the REG 141
7.1 Introduction . 142
7.2 Related work . 143
7.3 Through the use of compound relations 145

7.3.1 Defining a compound relation 146
7.3.2 A lightweight representation of the verbal link 147
7.3.3 A strategy to explore compound relations 148

7.4 REG with compound relations . 152
7.4.1 Exploring the compound relations 152
7.4.2 Determining a referring expression validity 154
7.4.3 From tree to radix tree . 155

7.5 Results . 155
7.5.1 The actor playing James Bond 155
7.5.2 The description of past activities as compound relations . . . 157
7.5.3 Assessing compound relations impact on performance 159

8 A robot in the mall: The MuMMER project 161
8.1 Introduction . 162
8.2 Related work . 162
8.3 Learning from exploratory studies 163
8.4 The deliberative architecture . 164

8.4.1 Environment representation 165
8.4.2 Perceiving the partner . 168
8.4.3 Managing the robot resources 168
8.4.4 Describing the route to follow 170
8.4.5 Planning a shared visual perspective 170
8.4.6 Navigating close to human 173
8.4.7 Executing and controlling the task 173

8.5 Embody architecture in a physical robot 174

viii CONTENTS

8.5.1 Pepper in Ideapark . 174
8.5.2 Pepper “in the wild” . 175

9 The Director Task: Assessing cognitive architectures 177
9.1 Introduction . 178
9.2 From psychology to Human-Robot Interaction 180

9.2.1 The original task . 180
9.2.2 The Director Task setup . 182
9.2.3 The adapted task . 184
9.2.4 Additional rules for the first implementation 184
9.2.5 Additional abilities . 186

9.3 The cognitive architecture . 187
9.3.1 Storing and reasoning on symbolic statements 188
9.3.2 Assessing the world: from geometry to symbols 188
9.3.3 Planning with symbolic facts 191
9.3.4 Managing the interaction . 191
9.3.5 Speaking and understanding 192

9.4 Experiments . 194
9.4.1 PR2 as the director . 195
9.4.2 PR2 as the receiver . 196

9.5 Open challenges for the community 198
9.5.1 Challenges to take up . 199
9.5.2 User studies to perform . 201

Conclusion: represent, store, explore, communicate 203

A Route description supplementary material 209
A.1 Routes verbalization patterns . 209
A.2 Routes search solutions . 212

B REG suplementary material 213
B.1 Referring Expression Generation solutions 213
B.2 Compare REG with other communication means 215
B.3 Referring Expression Generation comparisons 216

C Résumé en Français 219

Bibliography 245

Acronyms

CE Compound Entity. 146, 147, 148, 152, 153, 154, 157

CR Compound Relation. 143, 145, 146, 147, 148, 149, 151, 152, 154, 155, 157,
158, 159, 160, 205

CT Compound Tree. 152, 153, 154, 155

GBA Graph-Based Algorithm. 77, 96, 97

HATP Hierarchical Agent-based Task Planner. 107, 108, 110, 111, 116, 121, 125,
126, 128, 131, 191, 204, 205, 215

HET Hierarchical Execution Trace. 122, 123, 124, 128, 205

HRI Human Robot Interaction. 7, 10, 11, 12, 13, 15, 19, 32, 40, 44, 52, 71, 72,
102, 106, 120, 123, 126, 138, 141, 160, 178, 182, 184, 185, 203, 204, 205, 206,
265

HTN Hierarchical Task Network. 107, 109, 110, 119, 121, 122, 123, 124, 125, 127,
128, 129, 130, 131, 134, 139

IA Incremental Algorithm. 77, 78, 207

KB Knowledge Base. 10, 11, 12, 17, 18, 19, 20, 28, 29, 30, 31, 32, 33, 34, 35, 36,
37, 40, 41, 42, 43, 44, 47, 48, 49, 101, 106, 107, 127, 134, 159, 160, 161, 188,
203, 204, 207

MuMMER MultiModal Mall Entertainment Robot. 11, 51, 72, 161, 162, 170, 205

RE Referring Expression. 11, 13, 76, 77, 78, 79, 80, 83, 84, 85, 86, 87, 88, 90, 91,
92, 93, 95, 96, 97, 99, 102, 103, 106, 110, 113, 115, 119, 121, 122, 128, 133,
134, 135, 136, 137, 138, 147, 148, 152, 153, 154, 155, 158, 159, 160, 205, 207

REG Referring Expression Generation. 11, 12, 13, 73, 75, 76, 77, 78, 79, 80, 82,
83, 84, 86, 87, 88, 89, 90, 92, 95, 96, 98, 100, 101, 102, 105, 106, 107, 108,
109, 110, 111, 112, 114, 117, 119, 120, 121, 122, 124, 127, 128, 132, 134, 139,
143, 146, 147, 148, 149, 152, 153, 154, 155, 178, 191, 192, 193, 198, 204, 205,
206, 207, 213, 215, 216, 265

SSR Semantic Spatial Representation. 11, 53, 55, 56, 58, 59, 60, 67, 70, 72, 167,
175, 203, 204

UCS Uniform-Cost Seach. 88, 89, 97, 100, 119, 132, 133, 134, 153, 213

Chapter 1

Introduction

Contents
1.1 A prototypical scenario . 1

1.2 Interacting with a robot: What can we expect ? 4

1.3 Knowledge organization . 7

1.4 Contributions . 10

1.4.1 Knowledge management . 10

1.4.2 Knowledge exploitation . 11

1.4.3 Cognitive architectures . 11

1.5 A reader’s guide . 12

In order to introduce this thesis and to provide a global picture of its content, we
first narrate a short story about a robot in a store. This story will then be used to
identify some of the mains abilities a robot needs in order to interact with humans
with a focus on the knowledge it needs. While this thesis is from a roboticist point of
view, working on interaction naturally leads to the study of cognitive psychology.
From this field, we want to present an overview of the knowledge organisation
models that have had an impact on the field, at the point to be now used for
robotic research.

1.1 A prototypical scenario

A company selling cameras have recently invested in a robot to support its employ-
ees in its stores. Their goal with these robots is to help the employees during their
daily tasks in the stores. The robots can prepare orders, put items on the shelves,
cash customers, or advise them.

Max is one of these robots. It is a PR2 equipped with a head, two arms, and a
mobile base with wheels. It is 9 a.m. and the robotic company having developed
Max, power it on for the first time in the store. The robot starts navigating in
the store, looking at all the products on the shelves. Liam, the human employee
is counting the cash register when a customer enters the store. This customer is
Tony. He looks to some cameras displayed on the shelves, going from one shelf to
another.

Max, seeing Tony looking at all the cameras and Liam occupied to count the
cash register, decides to go to see whether the customer needs help.

2 CHAPTER 1. INTRODUCTION

Max - “Hi, I am Max. Have you found a camera that interests you or

do you need advice?”

Tony - “Hi, I don’t really know anything about cameras. I am planning

to go on a trip in a month and I would like a camera to take animal

pictures during the trip.”

For an amateur, Max chooses to present to Tony some automatic models. More-
over, since it is for a trip, it advises Tony to prefer a small camera. Looking at the
prices, the customer explains that he did not want to spend more than 500 euros.
Max thus selects three options for him:

Tony - “You have this one at 350, the small black one here in front of

you at 475, and on the other shelf there the small brown one near to

the screen costs 230.”

Figure 1.1: A PR2 robot, as an employee of a camera store, advises a customer.

Explaining that, Max points to the cameras. They continue to discuss when
Tony’s phone rings. He has to go to join his wife, in another store in the mall. Not
knowing where the other store is located, he asks:

Tony - “I am sorry I have to go. I will come back in the week. I have

to go to a store selling video games but I do not remember the name.”

Max - “There is only one store selling video games in this mall, it is

Game-ania.”

Tony - “Do you know how to reach it from there ?”

Max - “For sure”

1.1. A PROTOTYPICAL SCENARIO 3

Max moves next to the entrance, followed by Tony. It raises one arm pointing
to the aisle and said:

Max - “Go down this aisle then turn left straight after the salad bar.

After that Game-ania will be on your right when we walk.”

Tony leaves and comes back the morning after. Max recognizes him and moves
towards him. It asks Tony if he has easily found the video game shop then recalls
the camera identified the day before.

Max - “Yesterday we stop on two Fujifilm cameras and a Canon for

your trip.”

They continue to discuss and finally Tony selects the camera at 350 euros.
Following Max’s advice, he takes a memory card and a second battery to have
enough storage and power during his trip. In addition, he takes a zoom lens to
take pictures of animals at long range. Unfortunately, the desired camera is not
available at the moment. The last one in the store is the demonstration one. Max
proposes to Tony to order the camera. The client agrees and leaves.

Figure 1.2: A PR2 robot and a human employee collaborating to close a box.

A few days later, before opening, several boxes are delivered to the store. Liam,
the human employee, and Max have to open them, fill stocks and prepare Tony’s
order. This is the first time since Max arrival they have to do it. They both go to
the backroom in order to do this task together. There are two boxes. Liam starts
opening one and so Max starts opening the other. Max informs Liam about the
camera which has been ordered and is planned to be in the delivery.

4 CHAPTER 1. INTRODUCTION

Max - “Tell me if there is a X-T100, a customer orders one.”

Liam finds the camera. The robot explains to him that it also needs an SD
card of 32Go and a lens XC 15-45mm. It informs the human that the SD cards
are too small for it to grasp them. It thus proposes to Liam to take some of the
cameras to put on the shelves and to bring back the card and the lens at the same
time. During this time, Max gets a box, puts the camera and the battery inside.
When Liam comes back, he puts the two other items in the same box. Then, Max
maintains the box close while Liam tapes it. When finished, they both take the last
items to put on the shelves and go to the main room.

The afternoon of the same day, while Max is cashing in a customer, Tony enters
the store. Seeing him, Max requests Liam:

Max - “Can you bring the order we prepared this morning? The client

is the one just entering, with the blue T-shirt.”

Liam goes to the backroom and brings back the correct box. Max charges the
customer who finally gets his camera on time.

1.2 Interacting with a robot: What can we expect ?

Even if the scenario of the robot in a store is not intended to be entirely imple-
mented, it allows us to identify what is needed in terms of knowledge representation,
for a robot interacting with humans. First of all, we can draw a rough partition of
the needed knowledge:

1. common-sense knowledge. It is the knowledge not necessarily related to
the current situation but required to understand it. In the scenario, this is
not because the robot is in a camera store that it knows the concept of a
camera, this concept is more general. Thanks to this common ground it is
able to understand the concept of video games, trips, boxes, or animals in our
scenario.

2. knowledge of the environment, grounded in the space. The robot does
not only need to know how it can move in its environment, it has to identify
the elements composing it, link them to the common ground, and refine them.
When Max is powered on for the first time, it goes around the environment
to analyse it. Seeing an object, Max identifies it as being a camera. With
additional cues, it can refine its knowledge through the model of this camera
and its characteristics. This object is on a support, this is a shelf, dedicated
to a specific brand, and so on.

3. knowledge of the activities, grounded in the space and the time. More
than how to perform a given task, we are here interested in how it has been
achieved. By whom? With whom? Where? When? On which entities? In

1.2. INTERACTING WITH A ROBOT: WHAT CAN WE EXPECT ? 5

our scenario, Liam has brought back an SD card from the main room, during
this time, Max has prepared a box in the backroom, and these two tasks have
been made to prepare, together, Tony’s command.

Through this rough partition, we can identify three types of knowledge. The
general ones, the knowledge related to space, and those related to time. Where the
first can be seen as partially static, all have to be dynamic. The robot should be
able to gather knowledge, update it, and create links in between.

At this stage, one can ask: where is the interaction in it? Even if this knowledge
is mandatory for a robot interacting with a human, it holds also for a robot acting
alone in an environment.

Speaking about interaction, the first use of the knowledge we can think about
is communication, meaning sharing information. Consequently, an important prop-
erty of the robot’s knowledge is that a part of it has to be narrative-enabled. The
robot should be able to communicate its knowledge. As humans, we can naturally
think about verbal communication, for example when it explains the characteristics
of the cameras. It can however also be through gestures, like pointing or other dietic
gestures. When the robot says “turn right” while explaining a route to follow, the
language can be accompanied by a hand gesture, turning it on the right. Moreover,
for a robot equipped with a screen, we could also imagine communication through
texts or images. We claim that only a part of its knowledge has to be narrative-
enabled since another part can be dedicated to its internal functioning, from a pure
engineering point of view.

When we qualify a piece of knowledge to be narrative-enabled, we can restrict
ourselves to communication from the robot and to the human. However, if we
consider the robot able to express knowledge, we can assume it to be able to under-
stand it. In this way, in our conception of narrative-enabled knowledge, the robot
should be able to formulate sentences and understand humans speech, based on its
knowledge. Moreover, to understand its partner the robot not simply has to match
the expressed concepts to its knowledge. Since some communications are under-
specified, like when the client requests a camera for a trip, the robot can make use
of inference to better understand the human. In our scenario, the client explains
he is not an expert so the robot advises for an automatic camera. Since he goes
on a trip, more storage and battery could be necessary. Since he wants to take
pictures of animals, a zoom lens could be useful. All these pieces of information
are not explicit to the communication, but thanks to inference on the knowledge
can be understood by the robot. Finally, to fully understand its partner, the robot
has to consider the context of the entire interaction. When Tony said he wants to
acquire a camera at 350 euros, it seems trivial that it is the one at this price among
the three previously identified.

Moving toward the knowledge about activities, we have to speak about plans.
Keeping it simple for the moment, we can consider a plan as a succession of actions
allowing an agent to achieve a task. In this way, a cooking recipe is a kind of
plan allowing to achieve the task to prepare a dish. Through the narrative-enabled

6 CHAPTER 1. INTRODUCTION

characteristic of knowledge, we thus want a robot to be able to express a plan. In
our scenario, Max asked Liam to bring back an SD card and a lens, it thus expresses
a part of a plan. However, it could also have explained to Liam to go in the main
room, to move toward the second shelf, to open the rightmost door, to take the
SD card in a blue package, and to come back in the backroom. This explanation
expresses the same thing but goes deeper into the details, taking a lower level of
abstraction. Here we see that the robot has to be able to express a plan at various
levels of abstraction. For example, if the robot says “Let us prepare the order” it
expresses the global task.

Such an explanation of a plan to be carried out highlights a number of key
elements regarding the robot’s need for knowledge. Here we introduce two of them:

• If the robot can express the same plan with different granularity, how does
it choose the right one? To answer this question, we have to introduce the
self-and-other distinction. To know which information to share, a robot has to
estimate its partner knowledge, that it is the common-sense knowledge
as well as the knowledge about the environment and the activities. It is on
the basis of this estimation that the robot can know how to communicate.
In our scenario, the robot interacts with the human employee to prepare the
order. Since Liam was in the store before the robot, it could estimate that
the employee knows where the SD cards are. Communicating this low-level
information would thus be useless and inefficient for the task. The human
employee would be a new one, the robot would have interacted in a different
way. This estimation of the others knowledge can be found somewhere else in
the scenario. When Max refers to a specific camera to the client, it describes
it in relation to its attributes and location. To the difference, to refer to the
same entities to Liam, Max uses the precise model name of the camera. It
thus estimates that the client does not know the model’s name but that the
employee does.

• To allow the robot to communicate at the right level of abstraction, estimating
the other knowledge allows the detection of belief divergence. It appears
when the robot estimates that the other does not have a piece of knowledge
or still considers a piece of knowledge that no more holds. Detecting such a
divergence can be used to prevent errors for example. In our scenario, if the
robot has taken the last zoom lens on a given shelf and estimates that the
employee is not aware of this information, it can detect a belief divergence.
Consequently, rather than just asking for a zoom lens, it can inform the other
that there is no more lens at this place. The employee will not have to search
at the original place and will be able to directly go to another place where
there is still some zoom lens.

Continuing to explore the knowledge implies by the realisation of a plan, we can
move toward the elaboration of the plan, the planning of the task. By achieving
the task together, the human and the robot are performing a joint-task, meaning

1.3. KNOWLEDGE ORGANIZATION 7

having a joint-goal and collaborating to achieve it. To collaborate the robot elab-
orates a plan considering the human. It can thus propose to him to achieve a
part of the task. To know how to dispatch the actions, the robot needs knowledge
about human abilities as well as its own abilities. In the scenario, the SD card is
assigned to the human because the robot is aware that it can not grasp it. If the
object to bring back was graspable by it, maybe it would have done it by considering
it as uncomfortable for the human to walk too much. Underlying, this ability to
plan for himself and others also requires a projection into future situations and thus
a representation of possible worlds state, like what is done in task planning.

Finally, the human is not an agent like the robot, he can not be controlled. Even
if the robot plans by considering him, the human can act freely. The robot thus
has to monitor, interpret, and ground human actions. From there and with
regard to the plan and thus the joint-task, it can react and adapt. In our scenario,
when Liam starts opening one of the two boxes, the robot adapts and takes the
other one, even if it planned a different course of action. In this situation inverting
does not raise any issue, they can thus continue.

In this section, we have identified some of the key elements need and use about
knowledge for Human Robot Interaction (HRI). Even if we were not able to tackle
all of them in this thesis, they give the context in which the presented contributions
have been thought and they aim to be integrated. In this section, we have often
use the term “knowledge”. However under this general term can be found a number
of concepts related to memory and how, as humans, we are able to remember
things. Before moving to the contributions of this thesis, we propose in the next
section an overview of some model from the cognitive psychology, allowing to better
understand how we represent our knowledge.

1.3 Knowledge organization: Drawing inspiration from
cognitive psychology

Even if our goal in robotics is not to create a copy of the human, either in terms
of body shape or cognition, drawing inspiration from it is nevertheless important.
In the same way that roboticists take inspiration from the human body to create
robots able to act in a world created by and for the human, the field of cognitive
robotics takes inspiration from the human cognition to create robots able to interact
with humans. While we do not aim to imitate human cognition, we think that a
robot must be endowed with some similar capabilities if we want them to interact
with us efficiently and in an acceptable way.

Regarding the knowledge representation, the first experimental study has been
realized in 1885 by Ebbinghaus [Ebbinghaus 1885]. Since then, the definition of
memory as the capacity to encode, store, and retrieve knowledge [Roediger 1996] has
been widely accepted. At the same time, the word “memory” has become a generic
term suggesting a unique system. However, the human memory can rather be seen
as several sub-systems that differ from their storage duration, storage capacity,

8 CHAPTER 1. INTRODUCTION

and the level of consciousness necessary for information retrieval. In the rest of
the section, we present some memory models, presented in a non-chronological
way, and focussing on what is called long-term memory. During all this section, it
is important to keep in mind that we only present models aiming to understand
human cognition with a focus on knowledge management. No formal truth is stated
here given that there is no consensus in the field. The presented models and terms
will allow us to better understand the existing robotic cognitive architectures and
give inspiration for the design and structuring of the components developed in this
thesis.

The primary division of the memory is done concerning the storage duration and
capacity. From there has been defined the short-term memory (STM) and the
long-term memory (LTM) [Atkinson 1966]. Short-term memory is characterized
by its small capacity and its capability to retrieve information that has just been
seen. It is often stated that it is near to twenty seconds and seven items (or
chunks)[Miller 1956]. Long-term memory, on the opposite, refers to any situation
where we use information that has not just been seen. It is often stated that it has
an infinite capacity and duration. It is this latter that allows the acquisition of new
knowledge and the retrieval of information acquired a long time ago.

Over the years, what was called short-term memory has become the working
memory (WM) [Baddeley 1986]. This change has been made to add a notion
of knowledge manipulation. Instead of focusing on the only temporal aspect, it
reflects its functional aspect. It is thus a system that retains information for the
time necessary for its use by other cognitive functions. The working memory and
the long-term memories are two independent but related systems. For information
to be stored in long-term memory, we think that it has to pass by the working
memory.

For the structure of the long-term memory, a first dichotomy is proposed by Graf
and Schacter [Graf 1985] with the implicit and explicit memory. It reflects the
way knowledge can be retrieved. Knowledge from explicit memory can be retrieved
consciously and voluntarily. On the opposite, knowledge from implicit memory is
retrieved in situations in which our behaviors are influenced by an experience. This
is the case when one pours water into a glass. We do not need to retrieve explicitly
how to perform this task. It is our experience that influences how we do it.

Another dichotomy has been proposed by Squire and Cohen [Squire 1982] with
the procedural and declarative memory. Procedural memory is the system al-
lowing us to retain knowledge about our cognitive, motor, or perceptual skills. It is
the memory of the know-how. A specificity of this memory is that it is difficult to
verbalize the knowledge it stores and we use them unconsciously. The declarative
memory stores representations of facts, events, general knowledge, and memories of
past events. This knowledge can be retrieved consciously and we can speak about
them. Taking the example of the code of your credit card. Initially, this knowledge
is stored in the declarative memory. When you need it, you can easily remember it
and say it. The more you use it and it slowly becomes an automatism. It became
hard to remember it consciously while you use it every day and if you need to say

1.3. KNOWLEDGE ORGANIZATION 9

it you need to type it on a virtual keyboard to remember it. It has slowly moved
into your procedural memory. We see that both dichotomies are almost equivalent.
The declarative memory of Squire is related to the implicit memory of Graf, and
the procedural one is related to the implicit memory.

Going deeper into the declarative memory, Tulving has proposed a dichotomy
between episodic and semantic memory [Tulving 1995]. The episodic memory
retains knowledge related to past experienced events, which are specific to our
individual experience, and localized both in space and time. The semantic memory
is more general and retains knowledge that we accumulate all along with our life
concerning our environment. It can be seen as an encyclopedic memory independent
of the acquisition context. While the episodic memory is related to “remembering”,
the semantic one is related to “knowing”. Taking as an example your visit to
Toulouse 1, this visit is encoded in the episodic memory while the knowledge that
Toulouse is a city in France is encoded in the semantic one.

Figure 1.3: Relations between episodic memory and semantic memory according
to the SPI (Serial, Parallel, and Independent) model of Tulving (1995).

With the previous example, we saw that even if these two sub-systems of the
declarative memory are independent, they are therefore in interaction with each
other as we can apply a semantic treatment on the episodic memory. To better un-
derstand their relation, Tulving has proposed the Serial, Parallel, and Independent
model (SPI). As illustrated in Figure 1.3, the encoding of information is serial (S)
passing first by the semantic memory, then in the episodic one. The storage in both
memories is performed in parallel (P). Finally, the information recovery is indepen-
dent between the two memories. As we explain at the beginning of this section, the
presented theory can not be proven and must therefore be taken as [Tulving 1995]
“an explicit starting point for a more systematic pursuit of what is clearly the next
problem that needs to be tackled”.

For this thesis, and robotic in general, these hypotheses about the knowledge
organisation for humans allows a better understanding of the kind of knowledge we

1If you never visit it, you can take another city you have visited but you should plan to visit
it anyway.

10 CHAPTER 1. INTRODUCTION

have to manage. We have identified three types: semantic, episodic, and procedural.
Wanting to insert a new piece of knowledge, we can thus identify the types it is of
and thus where to store it.

1.4 Contributions

This section summarizes the main contributions of this thesis. They are organised
around three complementary topics: knowledge management, knowledge exploita-
tion, and cognitive architectures. All have been thought in the context of Human
Robot Interaction, meaning what a robot needs to take the human into account
and interact with him.

1.4.1 Knowledge management

The starting point of this thesis is the need to store and maintain both the robot’s
and humans’ estimated knowledge. We focused our efforts on semantic knowledge,
using an ontology to represent it. The core contribution of this thesis is thus a
software component to manage ontology instances. Each instance represents an
agent knowledge, with the robot one being its “ground truth”2 and its partners’
ones being an estimation of their knowledge3. The ontology is used to represent the
common-sense knowledge, the knowledge about the environment, knowledge about
activities, as well as knowledge for the proper functioning of the robot.

The resulting software is called Ontologenius. It is a lightweight and open-source
software developed in C++ and working as a server within a robotic architecture.
Any component of the architecture can thus access the knowledge it maintains
through the ROS middleware, ensuring uniformity of the knowledge among the
entire architecture. It comes with extensive documentation, debugging tools, and
an API in C++ and python.

Ontologenius supports dynamic updates of the Knowledge Bases it maintains
and keeps them consistent at any instant thanks to reasoners. At the date, five main
reasoners are available in the form of plugins, each dedicated to a specific axiom.
Others can thus be added depending on the need. They can be activated or deacti-
vated at runtime and propose different reasoning managements. We can for example
choose to run then upon the query, at an update or periodically. Ontologenius is
able to make the difference between a stated fact and a deduced one.

At the difference of other ontology management software, Ontologenius comes
with more than 60 low-level inbuilt parametrizable queries, allowing a fast and
precise exploration of the knowledge. These queries have been designed in such a
way to be called from search algorithms to create higher-level cognitive processes.
In addition, it proposes a sparql interface.

Ontologenius has also been designed to be used for task planning applications
by representing several possible world states in a single instance, switching from

2This is the knowledge about what has been directly perceived by the robot.
3Either estimated to be perceived by the human or explicitly provided by the programmer.

1.4. CONTRIBUTIONS 11

one to another.
It was made from scratch and thought like a sandbox, based on ontology stan-

dards but sometimes allowing to deviate from them to better explore the possibilities
and never be limited.

During this thesis, a software to manage episodic knowledge has also been devel-
oped and linked with Ontologenius. It is called Mementar. Due to its early stage,
it will not be presented in-depth but used in the final contribution of this thesis.

1.4.2 Knowledge exploitation

On the basis of the semantic knowledge management software Ontologenius, several
knowledge exploitation contributions have been developed. We can group them all
into the topic of spatial referring.

The first tackles the route description task. Describing an indoor environment
using an ontology, we have proposed two complementary algorithms able to find
several routes leading to a target place. To represent an indoor environment with
an ontology, we have proposed a piece of ontology to describe the topology, called
the Semantic Spatial Representation. It allows the description of the static elements
of the environment, perceptible by humans, as well as elements necessary for the
verbal description of a route. We have then developed an algorithm to verbalise
routes, respecting good practices.

The second tackles the Referring Expression Generation task. The goal is to
search for the knowledge to communicate to a hearer allowing him to identify the
target entity without ambiguity, in a given context. The resulting algorithm has
been shown as being the most efficient to date, even if the input KB is not dedicated
to the task. This contribution has been an important source of inspiration and
has lead to three other related contributions. We have linked this algorithm to a
symbolic task planner to evaluate communication feasibility and cost during the
planning process. After this link with a planner, we tried to exploit the shared
Human-Robot experience as a new kind of knowledge usable to generate Referring
Expression. The latter contribution leads us to a proposal of task representation
in an ontology. To move toward a more generic method to generate Referring
Expression, we finally start a preliminary work aiming to support n-ary relations.

1.4.3 Cognitive architectures

The last contributions of this thesis are two cognitive architectures embodied on a
Pepper and a PR2 robotic platforms. The first architecture has been developed in
the context of the MultiModal Mall Entertainment Robot project. It makes use of
the route description to guide customers in a mall. The second has been developed
later at LAAS-RIS to experiment recent developments of the team. This architec-
ture makes use of the contributions around the Referring Expression Generation.
It has been tested in a task inspired by cognitive psychology and adapted to the
Human Robot Interaction, called the Director Task.

12 CHAPTER 1. INTRODUCTION

Both architectures use Ontolognenius to manage the robot and humans seman-
tic KBs. Since both architectures were developed two years apart, we will see in
this thesis how the semantic Knowledge Base has become a central element of our
cognitive architecture for Human Robot Interaction.

1.5 A reader’s guide

Thesis organisation

This thesis is partly based on published or submitted work. Some of the key con-
tributions are more detailed than the paper version, while work involving several
students is rather summarized to provide an overview of an integrated contribution.
This thesis is organised in an almost progressive way. Such an organisation aims at
following step by step the way in which each contribution has been thought about
regarding the previous ones. For example, from Chapter 5 to Chapter 7 an archi-
tecture is built proposing each time the integration of new components and new
abilities.

This thesis is organized into three parts: knowledge management, knowledge
exploitation through referring applications, and finally the integration into robotic
architectures. The knowledge management is presented in Chapter 2 with the soft-
ware Ontologenius. This software is then the core of all the other contributions. The
knowledge exploitation has been studied with referring tasks. Chapter 3 proposes a
knowledge representation and algorithm to describe routes for guide robots. Chap-
ters 4 to 7 are all around the Referring Expression Generation problem. This thesis
ends with two robotic architectures embodied respectively into a Pepper and a PR2
robotic platform. The first architecture has been developed approximatively from
2017 to 2019 in the context of a European project. The second architecture is an
internal project of the team, giving more flexibility to explore new designs and new
organisation of its components. The latter has been developed from 2020 to 2021.
While the first architecture uses the route description knowledge exploitation, the
second use the contributions on the Referring Expression Generation. Having these
two architectures grouped at the end of this thesis allows us to compare them and
see how knowledge management has taken a primary place in a robotic architecture
for Human Robot Interaction applications.

All along this thesis, special attention has been paid to the performance of each
contribution. Each time our aim is to integrate the presented contribution into a
wider system and work in an incremental manner. To not spoil the final Human-
Robot interaction and be able to create more high-level cognitive capabilities, this
attention is essential to us. At the end of most of the chapter, a performance
analysis is thus provided.

LIST OF PUBLICATIONS 13

To get to the point

For the readers having less time and wanting to go to the point of this thesis, we
can propose a shorter reading route. For sure, this selection is subjective, we often
prefer our latter work, which seems to us more mature, having a better background
on the topics. We thus suggest to read to following:

• Chapter 2: Ontologenius, the ontology management software, the core of this
thesis,

• Chapter 4: The Referring Expression Generation algorithm,

• Introductions of chapters 5 and 6: Some challenges around the Referring
Expression Generation,

• Chapter 7: A preliminary work to create more generic Referring Expressions,

• Section 9.3: Our most advanced cognitive architecture for Human Robot In-
teraction applications.

List of Publications

Published

• Sarthou, G., Alami, R., & Clodic, A. (2019, June). Semantic Spatial Repre-
sentation: a unique representation of an environment based on an ontology
for robotic applications. In Combined Workshop on Spatial Language Under-
standing (SpLU) and Grounded Communication for Robotics (RoboNLP).

• Sarthou, G., Clodic, A., & Alami, R. (2019, October). Ontologenius: A long-
term semantic memory for robotic agents. In 2019 28th IEEE International
Conference on Robot and Human Interactive Communication (RO-MAN) (pp.
1-8). IEEE.

• Heikkilä, P., Lammi, H., Niemelä, M., Belhassein, K., Sarthou, G., Tam-
mela, A., Clodic, A., & Alami, R. (2019, November). Should a robot guide
like a human? A qualitative four-phase study of a shopping mall robot. In
International Conference on Social Robotics (pp. 548-557). Springer, Cham.

• Buisan, G.*, Sarthou, G.*, Bit-Monnot, A., Clodic, A., & Alami, R. (2020,
August). Efficient, situated and ontology based referring expression genera-
tion for human-robot collaboration. In 2020 29th IEEE International Con-

ference on Robot and Human Interactive Communication (RO-MAN) (pp.
349-356). IEEE.

• Buisan, G., Sarthou, G., & Alami, R. (2020, November). Human aware task
planning using verbal communication feasibility and costs. In International

Conference on Social Robotics (pp. 554-565). Springer, Cham.

14 CHAPTER 1. INTRODUCTION

• Sarthou, G., Mayima, A., Buisan, G., Belhassein, K., & Clodic, A. The Di-
rector Task: a Psychology-Inspired Task to Assess Cognitive and Interactive
Robot Architectures. To be published in 2021 30th IEEE International Con-

ference on Robot and Human Interactive Communication (RO-MAN).

• Sarthou, G., Buisan, G., A., Clodic, A., & Alami, R. Extending Referring
Expression Generation through shared knowledge about past Human-Robot
collaborative activity. In 2021 IEEE/RSJ International Conference on Intel-

ligent Robots and Systems (IROS)

Submitted

• Mayima, A., Sarthou, G., Buisan, G., Singamaneni, P., Sallami, Y., Belhas-
sein, K., Waldhart, J., Clodic, A., & Alami, R. Direction-giving considered as
a Human-Robot Joint Action. Submitted to User Modeling and User-Adapted

Interaction (UMUAI) Journal.

Chapter 2

Ontologenius: A semantic
memory for HRI

Contents
2.1 Design and features . 16

2.1.1 Why an ontology? . 16

2.1.2 Desired features . 19

2.1.3 Ontology formalism . 21

2.2 Architecture . 28

2.2.1 Permanent versus temporary data structure 28

2.2.2 Reasoning to enrich the knowledge 31

2.2.3 Concepts name in natural language 32

2.3 Managing partners’ estimated knowledge 32

2.3.1 Ontologenius multi-instances principle 32

2.3.2 Catching knowledge at a given moment 33

2.3.3 Exploring several possible mental states at once 34

2.4 Using Ontologenius in robotic applications 35

2.4.1 Updating the knowledge base 35

2.4.2 Retrieving knowledge . 36

2.4.3 Interfacing with Ontologenius 38

2.5 Computational performance evaluation 40

2.5.1 Comparing with Knowrob . 40

2.5.2 Comparing with ORO . 44

2.5.3 Additional tests . 47

In this chapter, we present the software Ontologenius. It is a lightweight and
open-source software to store an ontology, perform reasoning on it, update it, and
query it. Ontologenius has been developed especially for Human Robot Interaction
applications. To do so, it allows to manage several ontology instances in parallel
and puts a focus on the concepts’ names in natural language. It is aimed to be
used as a server, shared by an entire robotic architecture, providing consistent and
always up to date knowledge to every component of the architecture. Consequently,
it is thread-safe and can be queried by several components at a time while being
constantly updated.

16 CHAPTER 2. ONTOLOGENIUS

A previous version of this contribution has been presented and published at
the RO-MAN 2019 conference [Sarthou 2019b]. The current chapter presents new
features and a more mature contribution.

2.1 Design and features

In this section, we first explain our choice to use ontology as a means of representing
knowledge, both from the point of view of its expressiveness and its growing use
in robotics. Then, we present the desired features and the level of expressiveness
we have selected for this software. Finally, we introduce a formalism of the kind of
ontology we will use all along this thesis.

2.1.1 Why an ontology?

In cognitive psychology, semantic memory refers to the encyclopedic knowledge
of words associated with their meanings. After several studies about participants
response times to questions, some authors have proposed a model of this semantic
memory as being a semantic network [Collins 1969, Collins 1970]. With this model,
they put the hypothesis that knowledge is organized in a hierarchical way, respecting
a principle of inclusion among classes. For example, a class representing the concept
of cat would inherit from an upper class, representing the concept of animal. In
addition, instances of these classes would be linked to others through properties,
and in the same way, as for the classes, a notion of hierarchy over the properties
would exist. Such a structure of knowledge in humans would allow a cognitive
economy as well as efficient storage of this knowledge. Even if they were not the
first to formalize the principle of a semantic network, Collins and Quillian have
provided prominent work and computer implementations.

As reported in [Prasad 2020], such a semantic network, also called semantic
graph or knowledge graph, is today frequently used as knowledge representation in
robotic applications to represent among others:

• the categories of entities at different levels of abstrac-
tion [Bálint-Benczédi 2018], e.g. a handle is a physical object

• the characteristics of entities [Tenorth 2017], e.g. a fridge has a handle

• the function or purpose of entities [Paulius 2019], e.g. the fridge handle allows
to open the fridge

• the location of an entity with respect to another one (i.e. spatial rela-
tions) [Singh 2020], e.g. the milk bottle is in the fridge

It is on the basis of this knowledge that we can then create programs to provide
cognitive capabilities to robots. Here is an important point, this knowledge should
support the components of the architecture but is not necessarily part of it. It is thus

2.1. DESIGN AND FEATURES 17

called the knowledge-enabled robot programming paradigm [Beetz 2012], where the
knowledge is separated from the program. It allows to have several subsystems of
a robotic architecture, each providing a specific cognitive capability but all sharing
the same knowledge. The choice to share common knowledge leads to important
challenges requiring first to agree on the knowledge content and second to provide
it in a machine-understandable way. Considering the use of a semantic network
as knowledge representation, the use of ontology is intended to respond to these
challenges.

The first definition of an ontology has been proposed by Guber in [Guber 1993]
as: “an ontology is an explicit specification of a conceptualization”. Later,
Borst [Borst 1999], has introduced two new concepts defining an ontology as a “for-

mal specification of a shared conceptualization”. The new concepts are the notions
of “formal” and “shared”. Merging these two definitions, Studer et al. [Studer 1998]
reached the definition: “An ontology is a formal, explicit specification of a shared

conceptualization”. With this last definition, we start to see that an ontology can
be a powerful tool to create a Knowledge Base (KB) common to an entire robotic
architecture and used by subsystems providing specific cognitive capabilities.

Even if all the previous definitions trend to refine what is an ontology, they all
rely on the common notion of conceptualization for which no formal definition is
provided. A former definition, presented in [Genesereth 1987], was:

“A body of formally represented knowledge is based on a

conceptualization: the objects, concepts, and other entities that are

assumed to exist in some area of interest and the relationships that

hold among them. A conceptualization is an abstract, simplified view of

the world that we wish to represent for some purpose. Every knowledge

base, knowledge-based system, or knowledge-level agent is committed to

some conceptualization, explicitly or implicitly.”

However, as explained by Guarino in [Guarino 2009], such a definition of a con-
ceptualization does not correspond to our intuition either our need for an ontology.
Indeed, we do not want the conceptualization to depend on the current situation.
It should rather be what is common to any situation, allowing to represent them
in a uniform way. As explained in [Guarino 1995], when the world is modified, the
conceptualization should stay the same. We are thus interested in the meaning
of the concepts used to describe a world state. However, the final definition of a
conceptualization provided by Guarino goes with difficulty in this direction despite
its initial goal. For the simplicity of the current purpose, the conceptualization
should be the meaning of any concept allowing to represent a given situation or
world state. Consequently, an ontology could be defined as:

a formal and explicit specification of the shared meaning of any concept

allowing to represent a given situation.

In other words, an ontology aims at constraining the interpretation of a used
vocabulary. It is thus a logical theory. However, looking at the literature, we notice

18 CHAPTER 2. ONTOLOGENIUS

that the definition of an ontology is still today blurry. Indeed, even if it represents
the meaning of the usable concepts, we want to apply it to the KB representing a
given world state, even if it changes over time. Where a semantic network would
represent this instantiation, because the meaning of its edges could be defined by
the use of an ontology, in this thesis, we will use the term ontology to refer to a
semantic network owning a restriction on the interpretation of the used
vocabulary. As the goal of this thesis is not to model these restriction rules but
rather to use them, it should not lead to any confusion.

Considering the study of ontology in robotics, and more generally in computer
science, we can distinguish three kinds of contribution:

• ontology creation,

• ontology storage and inference,

• framework using ontology

Ontology creation focuses on the definition of vocabulary and rules. The created
ontologies are often divided into four categories: upper-level, reference, domain, and
application. The upper-level ontologies define widely applicable concepts, transver-
sal to several disciplines. The more used are DOLCE (Descriptive Ontology for
Linguistic and Cognitive Engineering) [Masolo 2003], Cyc [Lenat 1989], or SUMO
(Suggested Upper Merged Ontology) [Niles 2001]. Reference ontologies are based
on upper-ontology and describe the vocabulary of a discipline, like engineering or
medicine. For example, [Schlenoff 2015] covers robotics and automation, describing
the robot from an engineering point of view, with its sensors, its processes, and
its pose. Domain ontologies aim at refining a discipline, focussing on a more re-
stricted domain in it, like the SOMA ontology [Beßler 2020] focussing on activities
representation. Finally, applications ontologies extend domain ontologies for precise
applications. The ontology design uses languages like RDF (Resources Description
Framework), FOL (First Order Logic), or OWL (Web Ontology Language). Each
language comes with characteristics like formality or computability.

Using these ontologies, a number of frameworks have been developed to support
high-level reasoning processes in robotic applications. Among them, we find ontol-
ogy used for decision making, situation assessment, planning, or belief maintenance.
A complete review of these reasoning capabilities and the corresponding frame-
works is available in [Olivares-Alarcos 2019]. Among the reviewed frameworks, the
emblematic ones are KnowRob [Tenorth 2013], ROSETTA [Stenmark 2013], CA-
RESSES [Bruno 2017], RoboBrain [Saxena 2014], or ORO [Lemaignan 2010].

The last contribution type, being the one of the current chapter, is the on-
tology storage and inference to form a Knowledge Base on which the framework
can rely to perform high-level reasoning. KnowRob uses Prolog [Wielemaker 2003]
with a library to manage RDF triples. ROSETTA uses a Sesame triple
store [Broekstra 2002]. ORO uses the Jena triple store in addition to the Pel-
let [Sirin 2007] reasoner. Finally, RoboBrain uses a custom graph database. We

2.1. DESIGN AND FEATURES 19

can see that no standard solution has emerged as it mostly depends on the ap-
plication needs in terms of query capability, expressiveness support, or technical
support and compatibility. As other tools we can find in C++ owlcpp [Levin 2011]
based on Raptor and Fact++ [Tsarkov 2006], or in Python RDFlib, OWLReady2,
or AllegroGraph.

To sum up, a Knowledge Base in the form of an ontology, can be viewed as a
semantic graph relying on a formal and explicit specification of the shared meaning
of concepts used to represent a given situation. In order to be used in a framework
to perform high-level reasoning, ontology has to be stored to expose the knowledge
it contains to other components. No standard storage solution has emerged so far as
it mostly depends on the application needs. Consequently, in the next part of this
section, we discuss our needs with a focus on Human Robot Interaction applications
and taking inspiration from the existing solutions, we define the features we want
for our storage system.

2.1.2 Desired features

Work as a server: The robotic architecture we target is composed of several
modules, able to communicate. On top of the architecture, we consider a supervision
system, being a kind of “puppet-master” which calls each component when needed.
A common issue with such an architecture is that each component owns a part of the
general knowledge which can lead to inconsistencies. Consequently, the Knowledge
Base we want should be a server, accessible by query and update by any component.
It thus provides uniform knowledge among the architecture. To create a server, we
could use any existing tool and attach a communication layer to it. This is for
example the case of ORO, which works as a server, based on the Jena triple store
and providing a Telnet interface to send the queries and updates.

Support multiple instances: Since we target HRI application, we need to be
able to represent an estimation of the human partners’ knowledge. Where some
could use a single Knowledge Base to represent the robot knowledge as well as the
humans’ knowledge, we want our software to support the “self-other distinction”.
It is presented in [Pacherie 2012] as the fact that “for shared representations (...)
to foster coordination rather than create confusion, it is important the agents be
able to keep apart representations of their own and other’s actions and intentions”.
To the best of our knowledge, ORO is the only software proposing this ability.
However, it uses a simple way to implement it by running several instances of the
same triple store, each attached to an agent. As we will see in the sequel, in robotic
application such a solution is not sufficient. For task planning usage, we could need
to estimate a future state of a KB. To implement this feature, we need to be able
to capture the state of a KB at a given instance then be able to modify it without
impacting the original KB, which is continually updated by perception. At the date
of this thesis, no ontology-based tool provides this possibility.

20 CHAPTER 2. ONTOLOGENIUS

Query at the semantic level: As explained in [Broekstra 2002], to query RDF
graphs, three levels are possible. Considering an ontology written in XML, the
syntactic level would query the XML structure. Consequently, it would query a
tree rather than a graph. A query would be “give me the resources nested in
a Description element having the attribute about with the value X”. It is thus
dependent on the language and requires to known the used keywords. The structural
level, as available in [Lassila 1998], provides an abstraction to the language. It
allows query of the kind “give me all the elements of type A” regardless of how
it is represented in the language. However, the structural level only looks at the
explicit triples. If B is a subtype of A and the element x is described as being of
type B, requesting for the elements of type A, x will not be returned. The last
query level is the semantic level which is not limited to explicit knowledge. At this
level, requesting for the elements of type A, x would be returned as x is of type B
and B is a specification of A. This means that we do not consider a simple triple
store trying to match patterns. To support this query level, two solutions can be
used: computing the closure of the graph (adding A as a type of x and storing it),
or inferring it at query. While the first solution removes a part of the semantic by
flattening the hierarchy1, the second can be time-consuming for the queries.

Specific queries: We aim to use our software with solver algorithms. This means
that we want to provide fine access to the stored knowledge at high frequency. At
the difference of Prolog having its own search algorithm, we would prefer lower-
level queries such as: “which are the direct types of X?”, “which are the inverse
properties of Y?”, “which properties link C and D?”, or “is E in the domain of
application of F?”, and that at the semantic level. Nevertheless, for fast queries,
we should be careful with the number of inferences needed at query time.

Reasoning at update: To avoid too many inferences at query time, we want
some inferences to be applied at update. While computing the entire closure would
flatten the KB, some relations can still be computed at updates like the ones coming
from inverse relations, or chain axioms.

Thread safe: Since the software should work as a sever, we want it to support
multiple queries in parallel but to be safe on update.

Expressiveness level: Considering the Web Ontology Language (OWL), there
exist different levels of expressiveness depending on the needs. The most expressive
one is OWL-full, however, it is said to be not computational, meaning that the
inferences it allows cannot be resolved at query time. Then, OWL-DL (Description
Logic) supports property and class hierarchy, enumeration value restriction, inverse
properties, or cardinality restriction. Finally, OWL-lite is the less expressive one,
not supporting the cardinality restriction and the restriction on value. Even if

1We lose the fact that x is of type A because it is of type B.

2.1. DESIGN AND FEATURES 21

OWL-DL would be suitable, in a first version OWL-lite could be sufficient. It is,
however, the minimal expressiveness to support as a whole.

Custom reasoning: For research purposes, we do not want to be limited to
First-Order Logic reasoning. We want to be able to integrate application-dependent
reasoning processes having direct access to the internal structure. Such a feature
could be provided by the support of plugins for example. The advantage of plugins
is that anyone can add reasoning capability without modifying the core of the
software or owning a custom version.

In the light of our desired features, of the number of available tools no more
maintained or without documentation, and our need to be able to implement new
capacities according to our research needs evolving over time, we choose to develop
new software from scratch. The resulting software is Ontologenius. Such a choice
is risky because it will be difficult to reach the level of much more mature software.
On the other hand, this allowed us during this thesis to have control over its internal
functioning and to be able to make it evolve easily during the different projects in
which we used it.

Ontologenius is part of the continuity of the ORO software but by offering more
advanced multi-instance management and a query system more suited to integration
into algorithms. So far we have used the terms of class, properties, inverse prop-
erties, etc. Before starting the presentation of Ontologenius implemented features,
we first propose a formalisation of what is an ontology and an explicit definition of
the terms. This formalism will then be used all along this document and give an
overview of the expressiveness supported by Ontologenius at the date.

In the rest of this thesis, we will often use the expression “to query the ontology”.
Through this term we always consider a query of a semantic graph built with a
formal and shared vocabulary based on OWL, using Ontologenius.

2.1.3 Ontology formalism

Even if we saw that the use of ontology is today a common way to represent semantic
knowledge, we will recall in this subsection the contents of an ontology. For each
element composing it, we will draw a formalization based on Description Logic
(DL), then give examples using the Turtle syntax. The pieces of ontologies used in
the examples of this subsection are voluntarily simplified. The introduced notations
will be the ones used in the rest of this document and the graphical representations,
both in terms of color and shape, will be used as often as possible.

On the base of the definition of a Description Logic ontology presented in
[Fokoue 2006] and [Krötzsch 2013], we define a semantic knowledge base KS repre-
sented as an ontology by KS = 〈A,T,R〉. A, T, and R are respectively called the
ABox, TBox, and RBox of the ontology.

In the Description Logic knowledge base it is common to only consider a TBox,
containing extensional knowledge (general knowledge about a domain), and an

22 CHAPTER 2. ONTOLOGENIUS

ABox containing intensional knowledge (instantiated knowledge) [Baader 2003].
The first describes the terminology while the latter contains assertions. The defini-
tion we choose with the RBox extracts a part of the TBox to put it into the RBox,
making it clearer.

2.1.3.1 The ontology TBox: Terminological Knowledge

Figure 2.1: Representation of an ontology class hierarchy graph to illustrate the
composition of a TBox. Taking the class Human, the arrow linking “Human” to
“Man” has to be read as “A man is a kind of Human”. The texts at the bottom
left of the class are the classes’ labels in natural language, when they exist.

The TBox T contains assertions about the classes (types) of the ontology. It
is defined by T = 〈T, H〉. It can be seen as a directed acyclic graph as presented
in Figure 2.1. T is the set of all the classes of the ontology. In our example,
T = {Thing, Agent, Object, ..., IkeaLisabo}. Considering the TBox as a graph,
H stores its directed edges. They represent the inheritance links between the classes
(i.e. the subsumption assertions). We often use the special property “isA” to refer
to these links (e.g. (Human, isA, Agent)). In the OWL language, they are described
with the property rdfs:subClassOf, as illustrated in Listing 2.1.
:Human rdf:type owl:Class ;

rdfs:subClassOf :Agent .

:Man rdf:type owl:Class ;

rdfs:subClassOf :Human .

Listing 2.1: Description of ontology classes in the OWL language using the Turle
syntax.

2.1.3.2 The ontology RBox: Relations between Roles

The RBox R contains axioms about the properties (roles). It is at least defined
by R = 〈P, Incl, Inv, Dom, Ran〉. P is the set of properties, and Incl stores the
directed edges of the finite directed acyclic graph representing the inheritance links

2.1. DESIGN AND FEATURES 23

Figure 2.2: Representation of an ontology property hierarchy graph to illustrate
the composition of an RBox. Taking the property isBelow, the bottom arrow has
to be read as: “The property isUnder is a specification of the property isBelow”.

between the properties. Such a graph is represented in Figure 2.2. These inher-
itance links aim at specifying properties. In our example, the property IsOn is
a specification (more detailed) of the property isAbove in the way that an object
being on another is an object that is above the latter and being in contact with. It
is described with the property rdfs:subPropertyOf in the OWL language.

Inv = {(p, p−1) ∈ P 2} is the set representing the properties inverses (e.g.

(isOn, isUnder) ∈ Inv). Describing the inverse of a property is useful first to
reduce description work since if some describe a relation involving a property for
which an inverse is defined, the inverse relation is also described in an underlying
way. Moreover, for an algorithm exploring an ontology, knowing that a relation
uses a property having an inverse can allow to reduce the algorithm complexity by
not considering the inverse relation into the exploration.

Finally, Dom and Ran are two sets representing respectively the properties
domains and ranges. Their are define by Dom = {(p, t)} and Ran = {(p, t)} with
p ∈ P a property and t ∈ T a class. The domain of a property informs on the type
of resources that may use the property, thus the type of the subject of a triplet.
The range of a property informs on the valid values applied to the property, thus
the type of the object of a triplet. For the property isOn, we would therefore have
(isOn, Object) ∈ Dom and (isOn, Support) ∈ Ran. In this way, we state that
the property IsOn can be used to describe that an object is on top of an object
being support. Domains and ranges can be used in two ways. It can be to check
the consistency of an ontology by checking if the way the properties have been used
corresponds to their definition. It can also be used to reason on the ontology and
extract new knowledge from a given situation. If, for example, an entity is said to
be on top of another that is not described as being a support, we could deduce that
this second entity is a support.

The formalization above considers only a general kind of property while the
OWL language makes the distinction between two main categories. The object

24 CHAPTER 2. ONTOLOGENIUS

properties, linking two entities, and data properties, linking an entity to a
value (representing entities’ attributes). While both are slightly different, we will
only keep a general definition of a property for our formalization. This is only
to simplify the future algorithm explanations. An example of the description of an
object property and a data property from the Figure 2.2 are illustrated in Listing 2.2
using the OWL language.

:isOn rdf:type owl:ObjectProperty ;

rdfs:subPropertyOf :isAbove ;

owl:inverseOf :isUnder ;

rdfs:domain :Object ;

rdfs:range :Support .

:hasCadModel rdf:type owl:DatatypeProperty ;

rdfs:domain :Object .

Listing 2.2: Description of ontology properties in the OWL language using the Turle
syntax.

2.1.3.3 The ontology ABox: Asserting facts

Figure 2.3: Representation of an ontology instances graph to illustrate the com-
position of an ABox. Red boxes are individuals of the ontology. Green arrows are
properties coming from the RBox and applied to individuals. Red arrows represent
a direct inheritance link between an individual and a class coming from the TBox.
The texts at the bottom left of the individuals are the individuals’ labels in natural
language, when exist.

The ABox A contains assertions about the entities (individuals) of the ontology.
When we refer about entities, we no more speak about general concepts but rather
of instantiated concept, being either a physical or conceptual entity. The ABox is
defined by A = 〈A, C0, R〉. A is the set of all the entities represented in the ontology.
C0 the set of direct types of A such as C0 = {(a, t)} with a ∈ A an individual and
t ∈ T a class. In the graphical representation of an ABox in Figure 2.3, the red
blocks are the ABox entities (A = {human_0, pr2, ..., table_1}) and the red

2.1. DESIGN AND FEATURES 25

arrows with the label “isA” are the entities direct types ((cube_42, Cube) ∈ C0).
R is finally the set of relations between entities. Such relations are in the form of
triplets (s, p, o) where s is the subject, p the property and o the object. The set of
relations is thus defined by R = {(s, p, o)|(s, o) ∈ A2, p ∈ P}. These relations are
represented by the green arrows between the entities in Figure 2.3. We can note in
this figure the presence of the use of a data property “hasCadModel”. This property
does not link two entities, which goes against the previous definition. Regarding
our formalization and to keep it tractable, we can however keep it as it is, and view
the string value as an entity having for direct type a concept “String”. An example
of the description of an entity from Figure 2.3 is illustrated in Listing 2.3 using the
OWL language.

:cube_42 rdf:type :Cube ;

:hasColor :color_red ;

:hasCadModel ‘‘folder/cube.obj’’^^string ;

:isOn :table_1 .

Listing 2.3: Description of an ontology individual in the OWL language using the
Turle syntax.

We just saw that in the ABox, C0 contains the direct types of entities. We
also saw that the classes can inherit from one another in the TBox, thanks to the
classes inheritance directed edges stored in H. This means that the individuals
of the ABox have inherited types. Taking the entity cube_42 of Figure 2.3, its
direct type is the class Cube ((cube_42, Cube) ∈ C0). Regarding the TBox rep-
resented in Figure 2.1, a Cube is a kind of Pickable ((Cube, P ickable) ∈ H),
itself being a kind of Object ((Pickable, Object) ∈ H). We can thus say
that the entity cube_42 is a Cube, a Pickable, and an Object. To represent
it, we use C to denote the set of direct and inherited types. We thus have
{(cube_42, Cube), (cube_42, P ickable), (cube_42, Object)} ⊂ C.

2.1.3.4 Extending the ontology TBox

With the use of the relation set R of the ABox, we saw that we can apply properties
to individuals to link them together and form relations in the form of triplets.
However, one could want to apply properties to classes to describe general links
between classes. While properties domains and ranges already give such relations
this can be not enough. Taking an object property hasMother, we can assign to
it the class Human for domain and Woman for range. With such description, we
state that a human CAN have a mother, that is a woman. However, we do not
describe that even if we do not know who it is, a human has a mother who is a
woman. For this particular example, we could use cardinality constraint but we
will not go that far. Taking now the data property hasCadModel of Figure 2.2, we
have applied it to a specific entity in the example of Figure 2.3. But what about a
Table Lisabo (IkeaLisabo in Figure 2.1)? Any table of this model will have the same
CAD model and we do not want to put this relation to every entity of this type.
Here domains and range are not sufficient to represent it. To do so, we will use

26 CHAPTER 2. ONTOLOGENIUS

annotation properties applied to classes. Annotation properties are usually used
to document ontologies and not to describe general relations on classes. We take
thus some liberty regarding the OWL standard for convenience. However, we will
try to use it in very particular cases where no other simple solution can be applied.
Relations to classes using annotation properties are thus added to the definition of
a TBox T = 〈T, H, E〉, where E is the set of relations between classes in the form
of triplets.

2.1.3.5 Advanced use of properties

In this sub-section, we present a formalism of an ontology in the form of KS =
〈A,T,R〉. All the knowledge stored in KS is sufficient to build exploration algo-
rithms on top of it. However, to reason on ontology, additional descriptions are
necessary in the form of properties characteristics. We do not add them to the
knowledge base formalism but enumerate them below:

• Symmetric property: If the relation (x, p, y) holds in R with p being a
symmetric property, the relation (y, p, p) is also part of R.
e.g. hasSpouse

• Asymmetric property: If the relation (x, p, y) holds in R with p being an
asymmetric property, the relation (y, p, p) cannot be part of R.
e.g. hasChild

• Reflexive property: A reflexive property can be used to link an individual
to itself.
e.g. hasRelative

• Irreflexive property: An irreflexive property cannot be used to link an
individual to itself.
e.g. hasParent

• Functional property: Every individual can be linked by a functional prop-
erty to at most one other individual. By this way, if (x, p, y), (x, p, z) ⊂ R,
then y = z.
e.g. hasFather

• Inverse functional property: Every individual can hold at most one inverse
functional property. By this way, if (x, p, y), (z, p, y) ⊂ R, then x = z.
e.g. hasHusband

• Transitive property: A transitive property describes a link between two
individuals x and z whenever it exists a link between x and y, and y with z
with this property. If (x, p, y), (y, p, z) ⊂ R with p a transitive property, then
(x, p, z) ∈ R.
e.g. hasAncestor

2.1. DESIGN AND FEATURES 27

• Property chain axiom: While the transitive property characteristic dec-
sribes a link between several individuals with the same property, the chain
axiom does the same with distinct properties. Given the chain p1 • p2 ⇒ p3,
if (x, p1, y), (y, p2, z) ⊂ R, then (x, p3, z) ∈ R.
e.g. hasParent • hasParent⇒ hasGrandparent

• Disjunction: Given two disjoint elements (classes or properties), a third
element cannot inherit of two disjoint elements.
e.g. Man ⊔Woman

2.1.3.6 Labeling functions

We saw in the previous chapter that the semantic knowledge base is part of what
we assimilate to be the declarative memory. The particularity of such memory is
the ability to verbalize the knowledge it stores. In this way, we introduce a labeling
function L for any element of the ontology. This labeling function is specified for
the individuals (La), the classes (Lt), and the properties (Lp). Considering the
individuals labeling function La : A → Lbl with Lbl a set of communicable names
encoded as UTF8 string in our implementation. The same holds for the other two
labeling functions.

2.1.3.7 Ontology for Human-Robot Interaction

Since we are working in the field of Human-Robot Interaction, it is mandatory for
the robotic agent to be able to represent its own knowledge but also to represent
an estimation of its human partners’ knowledge. Such features will be explained
later in this thesis and we only introduce the related notation for the moment. We
define the robot’s own symbolic knowledge base KR

S = 〈AR,TR,RR〉. Then, for
each human agent Hi the robot knows, we consider the agent’s semantic knowledge
KHi

S = 〈AHi ,THi ,RHi〉. The robot’s global knowledge thus encompasses both its
own semantic representation of the environment as well as an estimation of the
other agent’s knowledge.

To go further, when the robot meets a new human partner, it can estimate him
to have a minimal set of knowledge. It is what is called the common ground. We
define it as KCG

S = 〈ACG,TCG,RCG〉. Since it represent the minimal knowledge we
estimate an agent to have, we can state that KCG

S ⊂ KR
S and KCG

S ⊂ KHi

S . The
common ground represents the fact that, for example, anybody knows the color
blue, the concept of a table, or the property isAbove.

In the rest of this document, we will simply use the notation KS in cases where
the used knowledge base does not matter (i.e. either the robot one or an estimated
one can be used).

2.1.3.8 Ontology formalism recap

The ontology definition used all along this thesis is summarized in Table 2.1.

28 CHAPTER 2. ONTOLOGENIUS

Table 2.1: The list of symbols used to define a semantic knowledge base as an
ontology
A ABox entities/indiv T TBox classes/concepts
A: set of entities T : set of classes
C0: entities’ direct types H: classes inheritance links
R: relations between entities E: relations between classes
La: individuals labeling function Lt: classes labeling function

R RBox roles/properties
P : set of properties
Incl: properties inheritance links Inv: properties inverses
Dom: properties domains sets Ran: properties ranges sets
Lp: properties labeling function

2.2 Architecture

Now we have presented what an ontology is and the desired features for a software
managing a Knowledge Base (KB) based on an ontology, we introduce the resulting
software, Ontologenius. In this section, we start with the software architecture able
to manage a single ontology instance, meaning the KB of a single agent. The goal
of this section is not to go deep in the technical implementation but rather to give
cues to understand how the KB is managed.

The architecture of Ontologenius is divided into three major modules as shown
in Figure 2.4: the knowledge storage (permanent and temporary data structures),
the KB exploration (transient data) and the reasoning processes (plugins). Ontolo-
genius has been developed in C++14 and is based on ROS for the communication
layer and the plugins management. It is compatible with ROS Kinetic (2016),
Melodic (2018), and Noetic (2020).

In this section, we first explain how ontology files are loaded and converted into
a semantic graph. Then, we present the available reasoners and their management.
Finally, we explain how the system deals with natural language names.

2.2.1 Permanent versus temporary data structure

To store the Knowledge Base as an ontology, we first use OWL files using the
XML/RDF syntax. The files can be read from a local folder on the computer
or retrieved from the Internet. Ontology files often include others, as an upper
ontology. However, Ontologenius is not able for now to solve these dependencies.
All the required files thus have to be listed. These files are what we consider to
be a permanent data structure. Nevertheless, our goal is not just to load a static
Knowledge Base. This latter aims to be updated all along an interaction and if
the robot learns new concepts, we want it to be able to memorize them for the
next interaction. In the same way, if the robot interacts with a given agent and
estimates that he/she knows some concepts, it needs to memorize them for the next

2.2. ARCHITECTURE 29

Figure 2.4: The software architecture of Ontologenius to manage a single Knowl-
edge Base in the form of an ontology.

interaction with this specific agent. Consequently, we consider two kinds of files.
On one hand, we have what we call the input files, being a default Knowledge Base
(i.e. the common ground). On the other hand, we have the internal file, being the
Knowledge Base of a given agent. Their management is illustrated in Figure 2.5.
If no internal file exists for the managed agent, the input files are loaded (a). This
will be the case for the first time we start the robot if the Knowledge Base is the
robot’s one, or the first time the robot interacts with a new human if the Knowledge
Base is an estimation of an agent Knowledge Base. The input files thus represent
the minimal knowledge we estimate an agent to have. Once we power off the
robot or when an agent leaves an interaction, all the maintained Knowledge Base
is serialized into a single OWL file, the internal file. This file is thus a backup of
an agent’s Knowledge Base. The next time the robot is powered on, or the next
time it interacts with a known agent, the internal file is load and the input files
are no more considered (b). The robot can thus refine its estimation of the others
knowledge as well as its own knowledge over interactions.

When ontology files are loaded, they are converted into a semantic graph, at
the difference of triple store. Elements of the ontology (individuals, classes, object
properties, and data properties) are represented as nodes. We thus have four types
of nodes. The nodes have several sets of pointers toward other nodes, each having

30 CHAPTER 2. ONTOLOGENIUS

Figure 2.5: a) In the case where no internal file already exists, the input files are
considered as the default Knowledge Base of the agent b) In the case where an
internal file exists for a given agent, this means that the robot is already interacting
with this agent. In the latter case, the input files are not taken into account and
the previously estimated Knowledge Base of the agent is loaded. If the current
Knowledge Base represents that the robot’s one, the robot simply restarts with its
previous knowledge base.

a semantic meaning. Such a representation is useful for efficient search algorithms
like query resolution. For example, wanting to know all classes from which an
individual inherits, from the node of this individual, we just have to iterate over all
the nodes in the set of inheritance and perform recursion on each of them, iterating
once again on the set of inheritance.

To find the entry point of the graph, we have four containers, one for each ele-
ment type, as illustrated in Figure 2.6. These containers provide efficient retrieval
of an element from its identifier thanks to the use of maps to store the nodes. In ad-
dition, the containers provide a readers-writer lock mechanism, allowing concurrent
access for ready-only operation while ensuring exclusive access for a write operation.
Thanks to this synchronization primitive, Ontologenius is thread-safe.

Figure 2.6: The semantic graph has four containers, one for each type existing
in an ontology (i.e individuals, classes, object properties, and data properties).
The containers own the nodes representing the elements of the ontology and store
them in maps where the keys are the identifiers of the elements and the values are
the nodes themselves. Each container also provides a lock mechanism allowing to
prevent concurrency issues in multi-thread usage.

2.2. ARCHITECTURE 31

2.2.2 Reasoning to enrich the knowledge

Reasoning on a Knowledge Base is a primal need to deduce new knowledge from the
described one. At the difference of tableau algorithm [Zuo 2006], we do not want
to create a dedicated model to do so. Consequently, we made the choice to develop
our own reasoners, able to run on the Ontologenius internal representation.

The reasoners are implemented on the basis of plugins for an easy extension2.
The proposed plugin interface allows the execution of reasoning processes either
before the resolution of a query, after an update of the KB, or periodically. The
reasoners are not necessarily limited to first-order logic. Users can implement any
process depending on their needs. To date, we have four usual reasoners to solve
the symmetric properties, the inverse properties, to reason on domain and range,
and to solve chained axioms. We have also implemented a reasoner dedicated to the
elaboration of complementary labels and another to create relations on classes, using
annotation properties, being a generalization of the existing relation. For example,
if several entities own relation toward the same CAD model file, the reasoner will
generate a relation toward this CAD model to an upper common class to all these
entities.

A YAML configuration file can be provided to choose the reasoners to use and to
tune each reasoner depending on the application. Any available reasoner could also
be activated and deactivated at run time. However, no order among the reasoners
can be defined. This means that each reasoner has to be independent of the others.

To avoid time loss during reasoning, two mechanisms are available. For the
reasoners needing to run once on each element, they can mark the elements on
which they have run. By checking these marks they can know if an element has
already been analysed or not. The second can be compared to a to-do list. Any
element owns an update flag. When an element is modified by an external process,
like a perception process, the flag of the element is raised. Reasoners then run only
on the elements having this flag raised. If they find a new relation to insert in the
KB, they can raise the flags of the impacted elements. The other reasoners will
thus check again for these newly updated elements. A reasoning pass ends when no
more update has been performed by any of the reasoners. While a reasoning pass
is in progress, no additional external modifications of the KB are applied to avoid
conflicts.

Finally, to facilitate the deletion of inferred relations, we attach a reference
to any relations that have allowed those inferences. In this way, by removing a
relation, we are able to find side relations that also need to be removed. For
example, consider the chain axiom isIn • isOn⇒ isOn. If A isIn B and B isOn C,
the reasoners will generate the relation A isOn C. The two former relations have
thus allowed the inference of the latter. If one of them is removed, the third also has

2Even if dedicated symbolic planners, like the ones presented in the rest of this document,
could be implemented using the Ontologenius plugin system, in this section, we only consider as
reasoners algorithms aiming to deduce new pieces of knowledge from the existing ones and storing
them in the ontology.

32 CHAPTER 2. ONTOLOGENIUS

to be removed. If A is no more in B, it is consequently no more on C. In this way,
the KB can always be kept up to date without performing reasoning from scratch at
each update, neither by creating a side model dedicated to the reasoning. However,
it is less efficient than classic reasoning methods which can use dedicated models.

2.2.3 Concepts name in natural language

Having labels attached to elements is quite usual. Like other systems, Ontologenius
attaches to any element a map linking a country-language code to a set of labels.
The slight difference of Ontologenius is that it supports a special kind of label,
called muted labels. They are labels that are only used to retrieve an element from
it but that can not be retrieved from an element. For HRI application, it allows the
robot to understand some words but to not use them when it speaks. For example,
for the restaurant Mac Donalds, we want the robot to understand “Mickey D’s” in
the US, “Mekkes” in Germany, or “McDo” in France. However, we prefer the robot
to use the true name.

2.3 Managing partners’ estimated knowledge

A major feature of Ontologenius is the ability to manage several ontology instances,
to represent both the robot’s knowledge and the estimation of its partners’ knowl-
edge. In this section, we first present how the multiple instances are managed by
Ontologenius. We then present two advanced uses: the deep copy of an instance
and the representation of multiple knowledge states in a single instance.

2.3.1 Ontologenius multi-instances principle

What we refer to when we use the term instance is an instantiation of the previously
presented architecture. It thus represents a single Knowledge Base being either the
one of the robot or an estimation of the Knowledge Base of one of its partners. To
manage multiple instances, we use the architecture represented in Figure 2.7.

The architecture of each instance stays the same as previously, this means that
each instance has its own ROS instance and can be queried and updated indepen-
dently. However, to void to manually run several instances and not have any conflict
on the ROS topic and service names, we add an instance manager. This manager
owns all the instances and can create new ones as well as deleting existing ones.
In addition, it attributes an identifier to each instance. It is often the identifier of
the agent it represents. With this identifier, each instance creates dedicated and
non-overlapping ROS services and topics. The manager itself owns a ROS interface
to perform the deletions and creations.

When a new instance is created, it runs in a dedicated thread. Consequently,
having multiple instances does not slow down Ontologenius. The manager keeps
a reference to the instance and can have access to the knowledge of each of them
without relying on ROS. It allows the manager to propose queries involving several

2.3. MANAGING PARTNERS’ ESTIMATED KNOWLEDGE 33

Figure 2.7: The software architecture of Ontologenius to manage multiple Knowl-
edge Bases in the form of an ontology. An instance manager makes the link between
each instance (see Figure 2.4) and has a direct access to each semantic graph to
propose queries.

instances. For example, the only existing one for the moment computes the differ-
ence of knowledge between two instances, about a given entity. With such direct
access to the semantic graphs, it allows easy and efficient belief divergence checking.

Finally, because each instance has an identifier, when one is killed, it stores the
maintained knowledge in an OWL file referenced with this identifier. Consequently,
when an instance is started, it can automatically load the previous state of the KB,
using the instance identifier.

2.3.2 Catching knowledge at a given moment

The instances representing the robot’s KB and the estimation of its partners’ KBs
aim to be continuously updated by perception processes. However, some processes,
like task planning, need a stable version of a KB. In addition, some processes like
(once again) task planning may need to modify a KB to represent hypothetical
future states of the KB. Nevertheless, if a process modifies the same KB that is
updated by the perception, it would neither represent the future state, neither the
current states.

To avoid such a situation, Ontologenius provides a mechanism to copy an in-
stance. It performs a “deep copy”, keeping all the inferred knowledge, the inference

34 CHAPTER 2. ONTOLOGENIUS

traces, or the reasoners’ configurations. The resulting instance becomes completely
independent from the previous one and can be modified without altering it.

The only difference is that an instance resulting from a copy will not be saved
into an OWL file when it will be deleted. It is a draft, to test possible states.

2.3.3 Exploring several possible mental states at once

Having a dedicated instance to represent possible futures is useful, however planning
processes could need to maintain multiple states at a time. A deep copy is far from
being a free operation as presented in the result section of this chapter. It takes
time, especially for large KBs. Moreover, we cannot imagine to maintain too many
instances at the time3.

Figure 2.8: An example of a versioning tree drawn with Ontologenius. In red
are the commits and in blue the changes. The temporal order of the operations is
respected from top to bottom.

To face this issue, we propose with Ontoogenius a kind of versioning system.
First of all, this system is only available on instances resulting from a copy, as the
others do not aim to represent multiple states. Taking the term of the git versioning
system, we perform some modifications on a KB and all the changes are tracked.
When a user considers that all the changes represent a version, he/she performs
a “commit”. For example, in use for task planning, a commit would correspond
to a plan step. This commit has an identifier, and a parent commits. Wanting to
go back to a previous version of the KB, we can checkout this version thanks to

3From our unlucky tests, the process died after the creation of 82 instances with small knowledge
bases.

2.4. USING ONTOLOGENIUS IN ROBOTIC APPLICATIONS 35

the identifier. The versioning system thus applies the modifications in the inverse
order to create the previous state. From there we can thus have multiple versions
of the same KB but it only represents a linear evolution. Most of the planning
systems work with branching, allowing from one state to imagine multiple future
states. Where git would use branches also, with ontologenius, we do not and we
can simply perform a new commit on an old one. It automatically creates a new
branch without explicit management of it. We can thus easily checkout a commit
of another branch. However, once a branch is created, it will never be possible to
merge it with another one. Consequently, it creates a tree.

From the commit identifier, the users are free to set it or to let Ontologenius
setting it.

Finally, for debug purposes, Ontologenius can generate an XML file representing
all the versioning, with the commits and the changes. An executable allows then
to generate an image of it to understand what an algorithm has performed. An
example of such an image is presented in Figure 2.8.

2.4 Using Ontologenius in robotic applications

Now we explain Ontologenius architecture and its management of instances, in the
current section, we present how to use it once it is launched. We explain how
knowledge is inserted at run-time and how knowledge can be retrieved. Finally, we
present tools to facilitate its use with API and GUI.

2.4.1 Updating the knowledge base

In order to represent the state of an evolving environment, updating the KB is a key
feature for software managing KB. First of all, the update process is asynchronous in
Ontologenius. Updates are filled in an internal buffer which is periodically analysed.
For a usual instance, updates are looked up at 20hz. Such a frequency is sufficient for
updates coming from perception processes. For the instances coming from a copy,
the update process runs at a higher frequency of 1000hz, meaning that a published
update will start to be processed at most 1ms after its publication. The need for a
higher frequency for instances coming from copy is designed not to hamper planners
using it and having to explore a large number of states4. The goal of such instances
is to make a caption of the state of a KB at a given instant and then to freely
modify it to run an external process like task planning. A delay of 50ms would not
be acceptable for this kind of process. Once the update process is triggered by a
non-empty buffer, it runs until the buffer is empty. In this way, even if a lot of
updates are published at once, no additional delay is introduced.

Since the updates are asynchronous but that some components may need to
be sure that all updates have been applied before continuing, Ontologenius raises a

4We could have chosen to provide a dedicated method to request the execution of the reasoners
but we preferred to keep the same mechanism among the instances, whether they come from a
copy or not.

36 CHAPTER 2. ONTOLOGENIUS

signal once it has no more update to process. Before rasing this signal Ontologenius
also applied all the needing reasoning so that the KB is consistent and populates
with all the inferred knowledge. It allows a synchronisation for components needing
it (like task planner), to start a new process on a stable KB.

The content of a single update is composed of an operator, either an addition
or removal, and a triplet. In the current version, the triplet can be relations to
individuals using object or data properties, relations to classes using annotation
properties, inheritance links, inverse axioms on object properties, or labels to any
elements. At least the subject or the object of the triplet must be already known
by the system to apply the update. ALL the other elements are created with a
deduction of their types (i.e. individual, class, property).

If the content of an update is a removal, all the inferences made on the basis of
the original triplet are removed too. In addition, for any update, the related triplet
is republished on another topic with a timestamp. For the inferred triplet, they
are published by Ontologenius on a dedicated topic with a reference to the triplets
having been used to perform the inference or to remove it. It allows, if needed,
temporal storage of all the updates of the world with a temporal consistency about
the inferred knowledge. This means that even if the knowledge has been inferred
later than the original knowledge update, it is possible to temporally align them.

2.4.2 Retrieving knowledge

To retrieve knowledge from Ontologenius, two ways are available. The main query
system consists in a set of low-level and parametric queries for precise and efficient
retrieval. The second system is based on a more classic RDF query language that
is sparql.

2.4.2.1 Low-level queries

The principal query system proposed by Ontologenius is a set of low-level queries
organized around the four main types used in the ontology: the individuals/entities,
the classes/concepts, the object properties, and the data properties. For each of
these types, dedicated queries are available.

First, all four types have 10 common queries related to the exploration of the
upper hierarchy and the names in natural language. We will not review them one
by one but rather take two of them to give an indication of their composition and
functioning.

string getName(string uri,

bool take_id = true);

The getName query allows a user to retrieve one of the labels of a given element.
If the element has multiple labels, one is selected randomly. This query is impacted
by the general language configuration. If Ontologenius is configured to work in
English, only English labels will be retrieved. The language configuration can be

2.4. USING ONTOLOGENIUS IN ROBOTIC APPLICATIONS 37

changed at run-time. This query has an optional parameter take_id. If it is set
to true, if the queried element does not have labels, its id can be used as a default
label, regardless of the language setting.

vector<string> getUp(string uri,

int depth = -1,

string selector = "");

The getUp query allows a user to explore the upper hierarchy of a given element.
By setting only the mandatory parameter, it returns all the elements for which
the given element inherits. If A inherits from B and B from C, interrogating the
hierarchy of A will give B and C. With the depth parameter, the user can set the
depth exploration. Setting it to 1, the query will only return the direct hierarchy.
The last optional parameter, the selector, can be used to filter the results to be
returned. Among the returned elements, Ontologenius will only keep the ones
inheriting from the selector. Wanting to know if entity A is of type B, one can
query a getUp on A with B as the selector. If the result is empty, A does not
inherit B.

To query individuals, Ontologenius provides 14 additional queries. We can query
for the properties applied to a given entity, the entities it is linked with, the proper-
ties it is the range of, etc. Most of them support the optional parameters of depth
and selector.

For the classes, we have 13 additional queries. We can explore the relations
using annotation properties, get the classes inheriting from a given one, get the
properties for which it is the domain of, etc.

For the object properties, we have 5 additional queries. We can know their
domain and range, their inverse, their disjunction, or their hierarchy. For the data
properties, we have the same excepted the inverse.

2.4.2.2 SPARQL-like queries

The low-level queries provide a fine and efficient exploration of the KB. Encouraging
the user to select the right query depending on its need, Ontologenius does not have
to perform analysis on the query itself to find how to resolve it. However, such
queries can be difficult to use in a first time and are not adapted to every usage.
Consequently, with Ontologenius we also provide a sparql-like query interface.

sparql, for sparql Protocol and RDF Query Language, is a semantic query
language for databases. A sparql query looks like:

38 CHAPTER 2. ONTOLOGENIUS

SELECT ?name

?email

WHERE

{

?person is Person .

?person name ?name .

?person mbox ?email

}

Through the SELECT keyword, we first specify the variables we want to get the
possible binding. Here we ask for pairs of names and emails. With the WHERE
block, we explain the conditions to respect in order to fill the variable. It is the
query pattern. In the provided example, we define a variable (always prefixed with
a question mark) person which should be of type Person. Then, for all the possible
values of the variable person, we retrieve their name and email. With the SELECT
keyword, we can specify a sub-set of the involved variable to be returned.

Three other keywords can be used instead of SELECT. It exists CONSTRUCT,
ASK, and DESCRIBE. In addition, we can apply filters or aggregation rules.
sparql is a really rich language but we have chosen to take the minimum as it
is not the main entry point of Ontologenius.

Consequently, Ontologenius only implements the SELECT query variation with
the pattern in the WHERE, as a list of triplets. Nevertheless, we have added the
keyword DISTINCT, optional after the SELECT, which ensures to only retrieve
distinct results.

In the rest of the document, and for better readability, we only use the patterns
of the sparql queries when we present some.

2.4.3 Interfacing with Ontologenius

We provide to the users several tools to work with Ontologenius in the easiest way
as possible. Here we present the Application Programming Interface (API) and the
debugging Graphical User Interface (GUI).

2.4.3.1 The Application Programming Interfaces

To provide an abstraction of the ROS middleware, and thus of the ROS messages, we
propose two APIs to use Ontologenius. One is in C++5 and the other in Python6.
Both are constructed in the same way and use approximately the same methods
names to easily go from one to the other depending on the needs. They are composed
of 13 classes for a total of more than 90 distinct methods. Such a number of
methods allows a fine and precise use for the instance management, the reasoners’
management, the knowledge insertion, or the ontology query. In addition, the
methods support all the exploration options in an intuitive way.

5https://sarthou.github.io/ontologenius/cpp_API/CppAPI.html
6https://sarthou.github.io/ontologenius/python_API/PythonAPI.html

https://sarthou.github.io/ontologenius/cpp_API/CppAPI.html
https://sarthou.github.io/ontologenius/python_API/PythonAPI.html

2.4. USING ONTOLOGENIUS IN ROBOTIC APPLICATIONS 39

The API also takes advantage of advanced ROS use for the services. It provides
a direct TCP connection with a recovery mechanism. For intensive query use in
a limited time, the first query will take more time to establish a direct connex-
ion and all the following will benefit from it. It thus provides efficient and safe
communication without additional complexity for the users.

Finally, Ontologenius comes with five tutorials7 covering its more basic usage
to the more complex ones including the use of the versioning mechanism.

All the APIs description and the tutorials are available online on a website
dedicated to Ontologenius: https://sarthou.github.io/ontologenius.

2.4.3.2 Debbuging tool

Figure 2.9: A view of the Ontologenius Graphical User Interface. With the dis-
played panel a user can insert or remove triplets from a given instance. On the
left-hand bottom, we can see that the current ontology instance is the one of the
human Tony.

7https://sarthou.github.io/ontologenius/cpp_Tutorials/Tutorials.html

and https://sarthou.github.io/ontologenius/python_Tutorials/Tutorials.html

https://sarthou.github.io/ontologenius
https://sarthou.github.io/ontologenius/cpp_Tutorials/Tutorials.html
https://sarthou.github.io/ontologenius/python_Tutorials/Tutorials.html

40 CHAPTER 2. ONTOLOGENIUS

To help new users to take in hand Ontologenius and to help more experienced
users to debug their applications using Ontologenius, we provide a Graphical User
Interface (GUI). It has been developed using Qt. It is linked to ROS and provides
almost all the methods available with the API like the instance management, the
reasoners’ management, the knowledge insertion, and the ontology query. In addi-
tion, for all the exploration queries, when hovering a button the interface provides
a brief explanation of the hovered method and its equivalent in the ROS command
lines.

In this chapter, we have seen that Ontologenius is based on a lot of low-level
queries for a precise and efficient exploration of an ontology. This GUI is thus often
used during the development of an application using Ontologenius to choose the
right method to use by allowing the developer to directly test the kind of results
he/she can expect with a given query. In addition, at run-time, developers can easily
explore the KB to understand the origin of potential bugs in their application.

2.5 Computational performance evaluation

In this section, we evaluate the Ontologenius performance and scalability through
comparison with two systems and using their own tests. First, we compare with the
KnowRob system with a focus on the required CPU time to insert new knowledge
and required memory to store this knowledge. The second system is ORO. With
this latter, we measure query resolution time. Finally, we present some additional
measurements like concept recovery time and deep-copy time.

2.5.1 Comparing with Knowrob

We start these comparisons with the KnowRob system presented in [Tenorth 2013].
This system is composed of several modules able to perform dedicated reason-
ing like temporal reasoning, CAD model segmentation, or object perception. All
these modules are integrated around the logical programming language SWI Pro-
log [Wielemaker 2012]. OWL ontologies are loaded using the SWI Prolog’s Semantic
Web library [Wielemaker 2003] which provides an efficient and scalable way to ma-
nipulate RDF structures in Prolog. Internally, the triplet structure of the ontologies
is represented as Prolog predicates. Unlike Ontologenius, the Prolog system and
thus KnowRob does not aim to be used as a server but rather as a monolithic and
highly integrated system. To provide a fair comparison, in the part, we use Ontolo-
genius without the ROS communication layer. Consequently, a single process runs
both Ontologenius and the test application.

[Tenorth 2017] proposes a detailed presentation of the internal representation
of KnowRob and presents some performance and scalability analysis. The follow-
ing comparisons have to be considered carefully. KnowRob is a wider and more
mature system than Ontologenius. It proposes more advanced capability in terms
of reasoning and integration. Ontologenius is more focused on HRI applications as
presented earlier in this section. In this way, some simplifications that have been

2.5. COMPUTATIONAL PERFORMANCE EVALUATION 41

done to fit at our best the KnowRob tests may impact the results. The final reason
why the following results should be taken with caution is that due to the complexity
of the KnowRob system, we did not perform their test on our end. The results for
the KnowRob system comes from their paper [Tenorth 2017]. Consequently, in this
section, we do not aim to show that Ontologenius is “better” than KnowRob. We
rather want to show that Ontologenius is not out of scope in terms of performance
and scalability regarding a well-established software.

For the tests we have replicated, they use the description of visual perception
entities. Such an entity represents the occurrence of the perception of a given
object, having a given pose at a given instant. An example of one of these entities
is illustrated in Listing 2.4. The entity cup_i is the perceived object. The entity
V isualPerception_i is the perception occurrence. It uses an object property to
make a link with the perceived object and two data properties to represent the
object’s pose and the perception time stamp. The first simplification we had to
make is the representation of the matrix of position. In Ontologenius, the data
types are only represented in a serialized way as no internal manipulation of these
types are made. Thanks to the use of Prolog, KnowRob can manipulate such a
matrix and perform operations on it. Even if it is not said if they have inverse
properties or not, we add one for the objectActedOn property in order to know in
which perception instance an object has been perceived.

:cup_i rdf:type :Cup ;

:VisualPerception_i rdf:type :VisualPerception ;

:objectActedOn :cup_i ;

:eventOccursAt [[1,0,0,2.56], ... ,[0,0,0,1]]^^RotMat ;

:startTime 6572^^Time .

Listing 2.4: Description of a visual perception entity created in a comparable way
as in the KnowRob system. The description is provided in the OWL language using
the Turtle syntax.

The first test consists of creating and inserting N visual perception entities in the
KB and measuring the required CPU time to insert one of them. This means that we
measure the average CPU time over N insertions. For each visual perception entity,
we thus have to create two entities (the visual perception entity and the perceived
object), two inheritance links, two raw data, and three relations (two based on data
property and one based on object property). The results are shown in Figure 2.10.
KnowRob has a constant insertion time around 1.3ms. With Ontologenius we do not
have constant time. The first decreasing part can be explained by the asynchronous
Ontologenius mechanism. It looks for updates at 20hz. Consequently, we can
have a delay between the moment we publish updates and the moment they are
processed. The effect of the mechanism disappears with the amount of data to
process since once the update mechanism started, it does not stop while data have
to be processed. The general trend is thus an increase in the required CPU time.
This increase can come from the fact that Ontologenius performs reasoning, like
the creation of the inverse relations, at update where KnowRob resolves it at query.

42 CHAPTER 2. ONTOLOGENIUS

In addition, Ontologenius also performs consistency checks at updates. However,
until 1,000,000 insertions and thus 2,000,000 of entities, 2,000,000 raw data, and
5,000,000 triples (2 for inheritances and 3 for relation per perception entity), the
required CPU time is under 1ms.

Considering the same insertions as previously, the second test consists of measur-
ing the required memory. The results are shown in Figure 2.11. For a high number
of individuals, Ontologenius required a bit less memory. It can be explained by the
fact that it has a simplified matrix representation. In addition, no information had
been provided about the initial content of the KB. Both systems, therefore, require
memory in the same order of magnitude.

The last test with KnowRob is about the required CPU time to perform queries.
They took the same KB as made previously, with N visual perception entities. The
goal here is to select randomly one of the perceived cups, then retrieve its pose. In
Prolog, the query is:

?- owl_individual_of(Obj, kr:’Cup’), current_object_pose(Obj, Pose).

Using the low-level queries of Ontologenius, we have made a function doing the
equivalent. It requests for all the cups, selects one randomly, retrieves the visual
perception entity it is linked to, and fetches the pose. The required CPU time is
reported in Figure 2.12.

Concerning KnowRob, the query time is almost constant, jumping between
one and two milliseconds. It has to be noted that in Prolog, the time measurement
resolution is about 1 millisecond. Nevertheless, due to the jump, we can assume that

Figure 2.10: Comparison of the CPU time required to create a large number
of object perceptions in the knowledge base. Each inserted object corresponds to
a visual perception entity linked to a cup, a pose matrix and a timestamp (see
Listing 2.4. Ontologenius is used without the ROS communication layer to provide
comparable usage and thus results.

2.5. COMPUTATIONAL PERFORMANCE EVALUATION 43

Figure 2.11: Comparison of memory required to create a large number of object
perceptions in the knowledge base. Each inserted object corresponds to a visual
perception entity linked to a cup, a pose matrix and a timestamp.

Figure 2.12: Comparison of the required CPU time for querying the pose matrix
of a randomly selected object after that N perception entities have been created.
Ontologenius is used without the ROS communication layer to provide comparable
usage and thus results.

the real value is not far from the millisecond. For Ontologenius, the query time is
also almost constant, with values around 0.02ms. This significant difference, with an
average factor of 75, can be due to the more precise queries provided by Ontologenius
and to the fact that Ontologenius does not have to solve inference at query time. For
the more precise queries, submitting a query to Prolog, KnowRob has to perform
a kind of search among the KB to make the submitted predicates true. At the
difference, Ontologenius requires the programmer to refine and decompose the high-

44 CHAPTER 2. ONTOLOGENIUS

level query, allowing the execution to be more efficient. For the inference, most of the
relations are inferred at the update, like the ones coming from inverse properties.
At query, Ontologenius only has to go through the existing relations and only
reasons about the classes and properties inclusion axioms. For example, if we had
a query for all the objects, no direct link would have been created between the
cups instances and the object class, this part would thus have been solved at query
thanks to exploration.

In light of the presented results, even if both software have not the exact same
goal, way of use, and maturity, we can at least conclude that Ontologenius is not out
of scope with acceptable performance and scalability. Since Ontologenius provides
fewer functionalities or at least different ones, the results are encouraging.

2.5.2 Comparing with ORO

For the second comparison, we select the software ORO [Lemaignan 2010]. At the
difference of KnowRob which does not address the same HRI applications, ORO
does. It works as a central server, usable by all the components of architecture and
is able to manage several instances at a time. In this way, it has been designed
for HRI applications. We can however note three major differences from a techni-
cal point of view. It is based on the Jena framework for the RDF triplets storage
and uses Pellet [Sirin 2007] for the reasoning part. Pellet supports OWL-DL ex-
pressiveness level to perform reasoning where with Ontologenius we are still at the
OWL-lite expressiveness. Regarding the way to query the ontology, ORO uses the
Jena sparql interface. It also provides some built-in high-level queries made for
specific applications. Finally, to communicate with the server, ORO uses a TCP
connection with a Telnet protocol.

In [Lemaignan 2010] they propose three test queries to assess the software per-
formance. We thus reproduce these tests and we add a second dimension being
the scalability. Consequently, the three test queries have been performed on KB of
different sizes. Before presenting the results, let us see the content of the test on-
tology. This ontology does not aim to be semantically correct. We first have three
object properties: isAt, isOn, and isUnder. The property isUnder is described as
being the inverse of isOn and isOn as being a sub-property of isAt. Moreover, the
property isOn has for domain the class animal8. No additional information about
this ontology is needed for the presented results.

Before performing any query, N triplets are inserted in the KB. These triplets
are of the form:

individual_i isOn apple

In this triplet, apple is an entity already existing in the ontology and which have
as type the class Plant. Since the property isOn has for domain the class animal,
all the individual_i should be inferred as inheriting of this latter class. Moreover,

8We said that the ontology does not have any real meaning.

2.5. COMPUTATIONAL PERFORMANCE EVALUATION 45

because of the inverse property, the inverse relation (apple isUnder individual_i)

should exist.
The first test query concerns inheritance. The goal is to retrieve all the indi-

viduals inheriting the class animal. Regarding the inserted relations, if N relations
have been inserted, the query should return the N individuals consequently created,
meaning the N individual_i. In sparql the query would be:

?i rdf:type animal

Figure 2.13: Comparison of the required CPU time for querying all the entities
being animals, after that N entities have been created. Ontologenius and ORO are
used with their own communication layer. To assess the impact of the commu-
nication layer on ORO performance, we also provide measures without the ORO
communication layer (ORO local).

For the test, ORO has been queried through the sparql query where Ontologe-
nius has been queried through low-level queries. To provide results representing the
way the software should be used, both have been queried through their respective
API. This means that results include the communication times. However, to not
fall in a comparison of the communication layers but rather of the software, we
have also tested to query ORO without the communication layer. The three plots
(one for Ontologenius with the communication layer and two for ORO one with the
communication layer and one without) are presented in Figure 2.13.

First of all, we can note that with the communication layer we have not achieved
to go over 10,000 entities with ORO. Rather than a limitation of the software itself,
here it is a limitation of the test which requires the retrieval of too many entities.
Nevertheless, with ORO without the communication layer, we succeed to go to
450,000 entities. We can see that Ontologenius performs far better than ORO,
even when ORO is tested without its communication layer. This means that even
if the communication time impacts the results, it does not spoil them. In server
usage, Ontologenius is more efficient of a factor around 255 on average. In this

46 CHAPTER 2. ONTOLOGENIUS

test Ontologenius takes advantage of its reasoning process applied at the update,
allowing a more direct search.

For the two next queries, we only present the results in server usage as we just
saw that this additional time is not inordinate. The second query uses the inverse
properties. It aims at retrieving all the entities being under the apple. As for
the previous query, we thus expect to retrieve the N newly created entities. The
corresponding sparql query is:

?i isUnder apple

The third query is more complex and uses a conjunction. The query aims at
retrieving all the entities having a relation involving the property isAt toward an
entity being of type Plant. Since all the newly created entities have a relation
using the property isOn, which is a sub-property of isAt, toward the entity apple,
which inherits of the Plant class, the N individual are expected to be retrieve. The
corresponding sparql query is:

?i isAt ?p, ?p rdf:type Plant

The results of these two queries are presented for both software in Figures 2.14
and 2.15. They are almost the same as those of the first test query. Ontologenius
performs on average better of a factor around 250 and we previously saw that
the ORO communication layer has a limited impact which cannot explain such
difference.

Figure 2.14: Comparison of the required CPU time for querying all the entities
having a relation of the kind “isUnder” toward a given entity. Since the invert
relation has been inserted for all the created entities, the software has to solve the
inverse relation to answer the query. Ontologenius and ORO are used with their
own communication layer.

Through the comparison with ORO, considering its expected usage, we can
fairly conclude that Ontologenius seems to be more adapted for performance re-
quirements. Nevertheless, the test itself could be discussed. The fact that the

2.5. COMPUTATIONAL PERFORMANCE EVALUATION 47

Figure 2.15: Comparison of the required CPU time for querying all the entities
having a relation of the kind “isAt” toward an entity of type “Plant”. Ontologenius
and ORO are used with their own communication layer.

software has to retrieve such an amount of entities does not represent real use-
cases. Moreover, in the light of such equivalent results from a query to another, we
can question what is really measured here. Looking backwards to the tests with
KnowRob, the query time of Ontologenius was quite constant where here we have a
constant increase. This test is however complementary with the ones of KnowRob,
showing Ontologenius ability to retrieve a large number of entities. In addition,
even with few entities (100), the performance gap is already significant, confirming
the usability of Ontologenius even if it is not based on any established libraries like
Jena or Pellet.

2.5.3 Additional tests

With the previous tests, we have performed comparisons based on tests proposed
by other systems. We now present some additional tests to assess the performance
of Ontologenius. Among the number of features, we have selected two of them.

We first propose to compare the required CPU time to retrieve an entity by its
name in natural language and its identifier. For this test, we have taken 466,508
English words. These words have a length going from 1 letter to 45 letters with
a means of 9.42 words. For each step of the test, N words have been randomly
selected and inserted in the ontology as individuals. In addition, to each entity, we
have defined a name in natural language, which is the same as the identifier. The
N inserted entities have then been retrieved with their name in natural language
and their identifier. The results are presented in Figure 2.16. The retrieve of an
entity through the use of its identifier is constant with a required CPU time of
around 0.046ms. At the difference, retrieving an entity through the use of its name
in natural language is highly impacted by the size of the KB. We reach a CPU

48 CHAPTER 2. ONTOLOGENIUS

Figure 2.16: Comparison of the required CPU time to retrieve an entity by its name
in natural language and its identifier. Ontologenius is used with its communication
layer for both cases.

time of 0.62ms for a KB with 450,000 entity. This result highlights the fact that
the name in natural language should be used, with Ontologenius, as an interface
with the human partner and that all the algorithms should rather use the identifier.
Even if this result could seem evident, it still shows the constant CPU time with
the use of identifier, and that, even with large KB.

The second feature of Ontologenius we choose to evaluate is the instance copy.
As explained earlier in this chapter, with Ontologenius we are able to make a
deep copy of an ontology instance, resulting in a new and independent instance.
Moreover, we have presented a kind of versioning mechanism allowing to represent
multiple knowledge states in a single instance. We explained that the expected

Figure 2.17: Evaluation of the required CPU time to perform a deep-copy de-
pending on the number of perceived entity, represented in the Knowledge Base.
Ontologenius is used with its communication layer.

2.5. COMPUTATIONAL PERFORMANCE EVALUATION 49

usage is to perform a single copy to create an independent instance, not altered
by other components, then to use the versioning mechanism on the newly created
instance. The presented test aims a measuring the required CPU time to perform
such a copy, depending on the ontology size.

For this test, we have taken again, the ontology content proposed by the
KnowRob tests. It consists of inserting visual perception structures. We thus
add N structures resulting in the creation of 2*N entities, 2*N raw data, 2*N inher-
itance links, and 3*N relations. Once the N structures were inserted, we performed
an instance copy and measured the required CPU time. The results for N going
from 100 to 1,000,000 are represented in Figure 2.17. As expected, the required
CPU time grows with the KB size. Starting around 100ms for the smallest KB,
it grows to 4s for the largest one. Even if the results seem acceptable regarding
the job to perform, we can however conclude that such an operation should not be
performed too frequently. This reinforces the idea of doing a single copy then using
the versioning mechanism if we want to represent many states of the same KB.

Chapter 3

Elaborating a route for a
human partner based on

semantic knowledge

Contents
3.1 Introduction . 52

3.2 Related work . 53

3.3 The Semantic Spatial Representation 55

3.3.1 The SSR classes . 56

3.3.2 The SSR properties . 57

3.3.3 An example of description . 59

3.4 Finding routes: A two-level search 60

3.4.1 The region-level: Trim down the search 61

3.4.2 The place-level: Refine the search 63

3.5 Generating an explanation in natural language 66

3.5.1 Reconstructing the paths . 66

3.5.2 The robot putting itself in your shoes 68

3.5.3 A pattern-based generation 69

3.6 Experiment in the mockup and the real environment 70

In this chapter, we propose a representation of indoor environments in a se-
mantic way by building a minimal but sufficient ontology, oriented around a route
description task. This representation is then used to plan a route that a human has
to follow to reach a goal destination. Finally, from the computed route a second
process allows the robot to verbalize the route, seen as a procedure to be followed,
allowing the guided human to mentally navigate along the route.

The contribution presented in this chapter is excerpted from our work, pub-
lished in the proceedings of the Spatial Language Understanding (SpLU) 2019
workshop [Sarthou 2019a]. In this manuscript, the contribution is more detailed
and discussed. This work is part of the MuMMER project, aiming at develop-
ing a robot guide in a mall. At the end of this document (Chapter 8), a chapter
is dedicated to the presentation of the project and the integration of the current
contribution in a robotic system.

52 CHAPTER 3. ELABORATING A ROUTE FOR A HUMAN PARTNER

3.1 Introduction

We all have already been requested, or have ourselves asked for, for a route in a city,
in a shopping center, or more simply in a house. When providing such information
to a person, we perform what is commonly called a guidance task. Even if it can
seem trivial for us, developing a robot able to perform it can be challenging. In this
chapter, we choose to focus on the sub-task consisting at generating the explanation
sentence. This sub-task is called the route description. To perform it, we first need
a set of knowledge about the environment in which the guided person will walk,
such as the paths, the intersections of the paths, or the elements alongside them.
Then, we need a set of “good practices” to provide a route easy enough to follow
and to remember.

In the Human Robot Interaction (HRI) field, robots guides have been
studied intensively and deployed into shopping centers [Okuno 2009], muse-
ums [Burgard 1999, Clodic 2006, Siegwart 2003], or airport [Triebel 2016]. From
a knowledge representation point of view, we can notice the use of metrical repre-
sentations [Thrun 2007] or topological representations [Morales Saiki 2011] to rep-
resent the environment in which the robot acts. Since we focus on the route de-
scription task, we consider that the robot does not accompany the human to his
final destination but rather explains how to reach it. Consequently, the metri-
cal representation will not be considered as being mainly used for navigation pur-
pose [Thrun 2007]. To perform more specifically a route description, topological
knowledge is not sufficient. In addition to the topology of the environment, the
robot needs to know the types of the elements composing the environment and
their names in natural language. Some contributions have thus tried to mix met-
ric or topologic representations with semantic ones to hold this additional knowl-
edge [Satake 2015b, Chrastil 2014, Zender 2008]. However, mixing them can create
a lack of uniformity among the overall knowledge representation. In this way, cre-
ating a unique representation allowing a robot to compute routes and expressing
them could ensure uniformity among the knowledge.

Even equipped with a consistent representation of its environment, the robot
has to find a route not for itself but for the guided human. A robot accompanying
the human only has to determine a path, adapted to its capacities and interpretable
only by itself. Providing a route to a human, the route has to be adapted to the
human capabilities and knowledge. For example, in an outdoor environment, we
will not give the same route for a car driver or a cyclist. In the context of a mall,
we will not give a route with stairs to a mobility-impaired person or to someone
with a shopping cart. Once computed, the robot has to explain the route. Where
interactive maps only have to highlight a path, here, the robot has to generate a
sentence that the human will be able to memorize. For sure the robot will not
instruct a human with a sentence like “walk 30 meters them turn -90 degrees”. This
would not be adapted. The use of orientation and reference to elements of the
environment will be needed through a sentence like “walk until the florist then turn
left”. We thus want the robot to generate plans understandable and executable by

3.2. RELATED WORK 53

the human.
The first contribution of this chapter is a unified representation of an indoor

environment using an ontology, to include both topological and semantic knowledge.
Then, on the basis of this representation, we propose a first algorithm to find a
suitable route to be explained to a human and a second algorithm to verbalize
a route in an appropriate way.

First, we review the literature on route description. Then, we introduce our
unified semantic representation under the name of Semantic Spatial Representation
(SSR). We then present the algorithm used to compute the route and in a second
time the algorithm to verbalize the previously computed route. We end this chapter
with experimental results on both mockup and real environments.

3.2 Related work: the route description task

In the literature, a route description task is defined as being a particular kind of
spatial description. First, from a cognitivist point of view, Denis in [Denis 1997] has
identified three main cognitive operations used to generate such a spatial discourse:
1) the activation of an internal representation of the environment, 2) the planning
of a route in this representation, 3) and finally the formulation of the procedure to
follow. From a computer science point of view, Cassell [Cassell 2007] considers the
second operation as the fact of finding a set of route segments, each connecting two
important points, and the third operation as chronologically explaining the route
segments. In the same way, Mallot in [Mallot 2009], sees the second operation as
the fact of selecting a sequence of places leading to the objective, and the third as
managing declarative knowledge to choose the right action to be explained at each
point of the sequence. While both second operations are equivalent, the third about
the formulation of the procedure are rather complementary.

The route description task has been extensively studied in linguistic through
verbal and textual communication to understand how humans communicate spatial
knowledge. The goal of such studies has been to identify the invariants but also
the good practices ensuring the success of the task. Through five experiments in
both urban and indoor environments, Allen [Allen 2000] has identified three basic
practices seen as being important for communicating knowledge about routes. They
can be summarized as follows: a) respect the spatiotemporal order, b) concentrate
on the information about the points of choice and c) use landmarks that the listener
can easily identify.

This latter practice about the use of landmarks, also called reference marks,
has been identified by Tversky [Tversky 1999] as a critical piece of information for
the success of a route description. [Tversky 1998] finds that in addition to informa-
tion about actions, reorientation, and direction, 91% of the guidance instructions
contains the use of landmarks. These results confirm the ones of [Denis 1997].
Montello [Montello 1993] tries to identify when the use of landmarks appears in a
description. Defining the Vista space as being the area within sight and the Environ-

54 CHAPTER 3. ELABORATING A ROUTE FOR A HUMAN PARTNER

mental as being the rest of the environment reachable through locomotion, he finds
that guides usually use landmarks when the target places are no longer in the Vista

space but in the Environmental one. Moreover, with regard to [Tversky 1999], the
use of landmarks appears during an explanation of a direction changing. In addition,
their choice is based on salient features over a route description [Nothegger 2004].

Figure 3.1: Comparison of two routes in terms of complexity and length. Even if
the blue route (. . .) is the shortest, many directions changing are required. Each
of them is a risk for the guided person to make a mistake and be lost again. The
red route (- - -), although being a bit longer, is easier to explain and to remember,
and has few directions changing.

Even if the use of landmarks helps at understanding direction changing by an-
choring in the environment the action to be performed, there is still a risk for the
guided person to make a mistake, taking the wrong path. While the length of the
route is an important criterion in the choice of a route, its complexity has also to
be taken into account when we need to explain it. Morales [Morales 2015] argued
that reducing the route complexity, in terms of the number of stages composing it,
should be preferred to its length. This feature reduces the risk of mistakes concern-
ing the choice to make along the route and also has an impact on its understanding
and memorization. This criteria of minimal explanation can be compared to the
Grice’s Maxim of quality [Grice 1975]. In the example of Figure 3.1, some should
prefer to explain the red route rather than the blue one, even if it is longer, since
it is easier to remember.

Finally, to explain the same route, Taylor [Taylor 1992] has noticed that a
speaker can use two kinds of perspectives. First, the survey perspective tend to
adopt a bird’s eye view point of the environment, meaning a top view of it like look-
ing at a map. With this perspective, the speaker refers to the different landmarks
of the route with respect to one another. They are thus referred to using terms in-
cluding north-south-east-west. This perspective is opposite to the route perspective.
With such a perspective, the speaker mentally navigates along the route, making
an imaginary tour of the environment. As a result, he refers to the landmarks with
respect to the future guided person position along the route. The landmarks are

3.3. THE SEMANTIC SPATIAL REPRESENTATION 55

thus referred to using terms like left, right, front, or back. [Taylor 1996] notices
that the survey perspective is generally used for open environments whereas the
route perspective is generally used in environments with already identified paths.
For indoor environments, the route perspective should thus be preferred to facilitate
route understanding and memorization.

3.3 The Semantic Spatial Representation

Satake [Satake 2015a] has developed a topological graph for the route search pro-
cess. To understand the human request about the destination node in the graph,
they build an ontology, providing a semantic description of them. The descrip-
tion informs about the places types (e.g. cloth shop, restaurant, ...), names and
nicknames, and the sold items. However, as explained in [Morales 2015], such a
map with annotated elements does not provide a suitable base to generate route
explanations using a route perspective as it misses directional information. Never-
theless, we can note that the use of an ontology is suitable to describe the meaning
of the elements of the environment. In the same way, one can also describe other
elements than shops, like stairs, elevators, entrances, or escalators. To unify the rep-
resentations, we could thus, represent the topology in an ontology. Since both are
graphs, this representation should be feasible and provide more information about
the elements along the paths. As explained in the previous chapters of this thesis,
ontologies are widely used for knowledge representation, to capture the meaning
of the elements of an environment but also to encode knowledge dedicated to the
robot’s internal process. In this way, they provide a good interface between the
robot’s processes and its human partner in terms of interaction.

To semantically represent an environment, Kuipers in [Kuipers 2000] introduces
the Spatial Semantic Hierarchy (SSH). He defines a ’topological level’ composed
of three main elements being the places, paths, and regions, as well as relations
between them. To create our semantic description of an indoor environment, we thus
choose to take it as a basis. However, this representation does not use an ontology,
we thus present how we extend it to represent the topology in an ontology. The
resulting representation and its underline pattern are what we will call the Semantic
Spatial Representation (SSR).

Since this contribution is focused on a pattern to describe environments and
algorithms using it to compute routes, the presented representations are made by
hand. However, many contributions trend to automatically generate a topological
graph from geometric measurements (e.g. Region Adjacency Graphs [Kuipers 2004],
Cell and Portal Graphs [Lefebvre 2003], hierarchical models [Lorenz 2006], or from
natural language [Hemachandra 2014]). Even if we do not have used such tech-
niques for the moment, our contribution could benefit from these works, solving the
complexity of creating such a representation by hand.

In the following, we first present the used classes and properties before ending
with an example of a description.

56 CHAPTER 3. ELABORATING A ROUTE FOR A HUMAN PARTNER

3.3.1 The SSR classes

Kuipers has defined three distinct concepts being the region, the path, and the
place. To represent the topology, we have refined the concepts of place and path.
Here below, we define these concepts and their refinement. The resulting class
hierarchy is representing with the TBox of Figure 3.2.

Figure 3.2: Representation of the TBox (classes hierarchy) of the Semantic Spatial
Representation used to describe the topology of an indoor environment. While the
top part is inherent to the SSR, the bottom one extends the latter to provide more
granularity.

Region: It represents a two-dimensional element, drawing an area. An area is a
subset of an overall environment. A description of an environment must include
at least one region being the entire environment itself. However, defining multi-
ple regions aims at creating a finer representation. For example, for multi-storey
buildings, we will at least represent each floor by a distinct region. Regions can be
described as being nested if needed.

Path: It is a one-dimensional element, like a line. We can materialize it as an
element along which it is possible to move by following it. Even if it is not directly
semantically represented, a path must have a direction in order to describe other
elements in relation to it. A path can be refined into:

• Corridor: It represents a kind of path having a distinct beginning and end.
In this way, a corridor cannot be a loop. The direction of the corridor can be
chosen arbitrarily. However, its direction defines the position of its beginning
and end. Consequently, it also defines the right and left of the corridor. The
direction does not mean that the corridor can be used in a unique way but
will be used to describe the elements along with it.

• Open space: It is a kind of path which does not have any defined beginning
or end. It thus forms a loop. It can also be viewed as a “potato-shaped”
describing the outline of open space. It materializes the possibility of turning
the gaze around the room and the fact of not having to go through a defined

3.3. THE SEMANTIC SPATIAL REPRESENTATION 57

path to reach one of its points. In a building, a hall would typically be
described with such a path.

Place: It represents a point of zero dimension1. It can either represent a physical
or symbolic element. In the context of a mall description, a shop would inherit
the place class as a point representing its door can be sufficient to describe it. To
represent the topology, we refine it into:

• Path intersection: It represents the connection between two and only two
paths. It is thus a waypoint to go from one path to another. In the case of a
crossing between three paths, three intersections have to be described.

• Interface: It represents the connection between two and only two regions.
It is thus a waypoint to move from one region to another. It can be physical,
like a door or a staircase, or symbolic like a passage.

To better catch the difference between paths and places, it can be related to the
differences between the types of rooms made by [Andresen 2016]. Some rooms in
a building such as a house have the main use to circulate from a room to another,
they are corridors. Other rooms have an explicit use that is not the traffic, they
are places even if you can move in.

3.3.2 The SSR properties

The relations introduced by Kuipers aim at representing the connections of places
and paths, the order of the places along a path, and the elements in the regions.
The main relations are the following:

on(place, path) place is on path

order(path, place1, place2, dir) the order on path from place1 to place2 is dir

right_of(path, dir, region) path, facing direction dir, has regionon its right

left_of(path, dir, region) path, facing direction dir, has regionon its left

in(place, region) place is in region

Through these relations, we can first see a slight difference in our use of the
main elements. The regions are used to group a set of places along a path, avoiding
in this way to describe each individual place as being at the right/left of a path.
That way, our use of the concept of region will thus require more description for
each place but has the advantage to give a finer granularity of huge environments
representation with a first level of abstraction. With it, we could imagine a short
prior description like “it is on the first floor”.

1For sure it has a 3D location, but here we are speaking of its use in navigation from one place
to another.

58 CHAPTER 3. ELABORATING A ROUTE FOR A HUMAN PARTNER

A major limitation of these relations is that they cannot be used in an ontology
as they are not all in the form of triplets. The issue comes from the need for a
direction to determine the order and the side positions. The properties we introduce
aim at fixing this issue and give a more precise description. For example, with the
representation of Kuipers, we cannot have a place at the edge of a path. All
the properties presented here can be extended with their inverse (e.g. isIn and
hasIn) for a more expressive model and thus easier handling. The resulting property
hierarchy is represented with the partial RBox of Figure 3.3

Figure 3.3: Representation fo the RBox (properties hierarchy) of the Semantic
Spatial Representation used to describe the topology of an indoor environment.

isInRegion: isInRegion(path/place, region) describes the fact that a path or a
place is in a region.

isAlongPath: isAlongPath(place, path) describes the fact that a place is along
path. Depending if the path is a corridor or an openspace, a finer description can
be needed:

• isAlong(place, corridor): Since a corridor is a line, the places along the path
can first be described as being either on a side of the corridor with the prop-
erty isAtSideOfPath or at the edge with the property isAtEdgeOfPath.
Thanks to direction of the corridor, these properties can be refined with
isAtBeginOfPath and isAtEndOfPath for the places at an edge, and
isAtRightOfPath and isAtLeftOfPath for the places along a side of the
corridor. Even if the direction of the corridor is not directly represented in
the ontology, since the places have been positioned in relation to the direction,
we can retrieve it.

• isAlong(place, openspace): For open spaces, since they do not have a begin-
ning or an end, places are only defined as being along with an open space.

isBeside: isBeside(place1, place2) describes the fact that place1 is beside place2.
To really represent their order, we use the properties hasAtLeft and hasAtRight.

3.3. THE SEMANTIC SPATIAL REPRESENTATION 59

The choice of these properties is made by positioning themselves at the place and
facing the path the place is along.

isInfrontOf: isInfrontOf(place1, place2) describes the fact that place1 is in
front of place2. This property is not mandatory for all the places but provides
a finer description. The more it is used, the more the verbalization of the itinerary
will be easy. We will see in the sentence generation section that it is however im-
portant to always define a place in front of an intersection. This information will
be used to determine if the guided human will have to go left or right in some cases.
If there is no described place in front of an intersection, we can use a emptyP lace

class that would inherit the place class.
To simplify the description few axioms are made. The property isInfrontOf

is defined as reflexive. The properties hasAtRight and hasAtLeft are defined as
inverse from one another. Finally the chain axiom isAlong • isIn → isIn is used
to not have to set the isIn property for each place. It can be deduced thanks to
the path they are along.

3.3.3 An example of description

To illustrate the use of our SSR, we will describe the shop pl_5 (with the red
floor) represented in Figure 3.4. For the description of this place, we will use the
previously introduced classes and properties.

Figure 3.4: An example of environment with two corridors, an intersection, and
two shops represented as places. All the elements are in the same region. The
arrows represent the corridors directions.

To describe our environment, we start with the description of its paths. The
corresponding ontology is available in Listing 3.1. In the example, we have two
corridors. We assume that both are in a common region named region_1. The
paths do not need further description. To pass from one to the other, we create an

60 CHAPTER 3. ELABORATING A ROUTE FOR A HUMAN PARTNER

intersection, here denoted i_2. To describe its position along with the two paths
we have to take a look at the paths’ directions. For corridor_4, the intersection is
at its end edge. For corridor_1, the intersection is at its left.

:corridor_1 rdf:type :Corridor ;

:isInRegion :region_1 .

:corridor_4 rdf:type :Corridor ;

:isInRegion :region_1 .

:i_2 rdf:type :Intersection ;

:isAtEndOfPath :corridor_4;

:isAtLeftOfPath :corridor_1.

Listing 3.1: Description of the two corridors and their common intersection in the
OWL language using the Turle syntax.

Once the paths and intersections are described, we can describe the other places
of the environment. For this example, we only describe the shop pl_5. We would
do the same process for all the others. The place pl_5 is first a shop, which is a
particular kind of place. Regarding the corridors, it is at the left of corridor_1.
However, it also has an entrance overlooking corridor_4. We can thus describe it
as being along two paths. Depending on the starting point of the description, we
will be able to instruct for one of its two entrances. For corridor_4, pl_5 is at its
left. Now that the place is positioned along paths, we have to describe its position
according to its adjacent places. Facing corridor_1, the intersection i_2 is at the
right of pl_5 and the shop pl_2 is in front of it. Facing corridor_4, the intersection
would be at its left. However, pl_5 is on a side of the corridor while i_2 is at one of
its edges. Consequently, we do not have to describe any order between them. The
resulting ontology part is provided in Listing 3.2.

:pl_5 rdf:type :Shop ;

:isAtLeftOfPath :corridor_4 ;

:isAtLeftOfPath :corridor_1 ;

:hasAtRight :i_2 ;

:isInFrontOf :pl_2.

Listing 3.2: Description of the shop pl_5 using the SSR in the OWL language using
the Turle syntax.

3.4 Finding routes: A two-level search

At this point, we have created and built a representation of the environment using
the Semantic Spatial Representation (SSR). Using this representation, we now want
to compute routes from one place to another. We already saw that even if the length
of a route can be a criterion, the complexity of the description is a more important
criterion when we have to describe it. Moreover, depending on the guided person,
some routes could be prefered to others, to avoid stairs, to favor elevators, or to
reduce the use of potentially crowded paths.

3.4. FINDING ROUTES: A TWO-LEVEL SEARCH 61

In this section, the goal is to provide multiple routes so that we can then choose
the best route based on personal preferences, during the interaction. In order to
reduce the complexity of this exhaustive search, especially for large scale environ-
ments, we propose to work at two levels:

• First the region-level. It considers only regions and interfaces such as doors,
stairs, or elevators. In such a way, we will not consider paths in regions not
leading to the goal destination. If we are on the ground floor and want to go
to a place also on the ground floor, exploring other floors would be useless.

• Then the place-level. It provides complete routes computation including
paths and intersections within regions.

3.4.1 The region-level: Trim down the search

In large-scale environments such as multi-storey buildings, routes computation can
lead to combinatorial explosion. Exploration at the region-level can decrease this
effect, giving a first high-level exploration. To study this first level, we take the
example of Figure 3.5. It represents a building composed of five regions. Each is
linked to others through the use of interfaces, being doors, stairs, or escalators. In
this environment, the goal is to guide a human from the flag “start” to the flag
“end”. Quickly analysing this figure, we can see that the human will have to pass
by regions 1, 2, and 3. To pass from region_1 to region_2 the only interface is

Figure 3.5: Representation of an environment at the region-level. Regions are
linked through interfaces. We know that the starting point of the search is in
region_1 and the goal place is in region_3.

62 CHAPTER 3. ELABORATING A ROUTE FOR A HUMAN PARTNER

interface_1. To pass from region_2 to region_3, two interfaces can be used, either
interface_2 or interface_3. The exploration of the two other regions is useless.

For this first level of exploration, we only use the regions and the interfaces
as they link the regions. Since the places are along paths and the paths are in
regions, we know in which region is each place. Using the property isInRegion, we
get the starting region and the goal region respectively from the start place and
the end place. In our example, we get that the human has to go from region_1

to region_3. These two regions define the initial state and goal state of a search
algorithm. Considering the regions as the nodes of a graph and the interfaces as its
edges, we can thus apply a graph search algorithm to find routes at the region-level.

Algorithm 1 Exhaustive Graph Search algorithm for region exploration
1: function Exhaustive_region_search(problem)
2: state← (problem.initial_region, _)
3: frontier ← a FIFO queue of state
4: frontier ← INSERT(state, frontier)
5: solutions← an empty set
6:

7: loop
8: if empty(frontier) then
9: return solutions

10:

11: state← pop(frontier)
12: if state.current_region is problem.goal_region then
13: solutions← INSERT(state, solutions)
14: else
15: for all interface of state.current_region.hasInRegion s.t. /∈ state do
16: for all region s.t. interface.isInRegion do
17: if region /∈ state then
18: frontier ← INSERT(state∪ (region, interface), frontier)

Since we want to provide several routes, we use the exhaustive graph search
algorithm represented in Algorithm 1. Such an exhaustive search allows us to take
into account all possible interfaces. In this algorithm, we consider a state as being
a list of pairs composed of a region and the intersection used to come to the region.
The initial state (line 2) thus takes the initial region and no interface. When we
explore a state (line 11) we first test if its current region (the last one in the list)
is the goal region (line 12). If it is, rather than returning the state, we simply add
it to a solution set (line 13). If the current region is not the goal one, we retrieve
from the ontology all the interfaces connected to the current region thanks to the
property hasInRegion which is the inverse of isInRegion. For each of these interfaces
not already used in the state (line 15), we get the regions it is connected to (line
16). With each of these regions not already used in the state (line 17), we finally
create a new state which is added to the frontier (line 18). The algorithm only stops
when no more state has to be explored (line 8). By including the knowledge base

3.4. FINDING ROUTES: A TWO-LEVEL SEARCH 63

exploration directly inside the search algorithms, it is not necessary to extract a
topological graph with nodes and edges. It is carried out within the search algorithm
without preprocessing.

Figure 3.6: An illustartion of the exploration process at the region-level for the
example of Figure 3.5.

The exploration performed by this algorithm on our example is illustrated in
Figure 3.6. The region_4 has been detected as being a deadend and the region_5

has not been explored at all. The two found solutions are the routes:

region_1− interface_1− region_2− interface_2− region_3

region_1− interface_1− region_2− interface_3− region_3

This type of result makes it possible to quickly eliminate unnecessary regions
to be analysed next and thus reduces the complexity for a more detailed search at
a second time. This technique is similar to what is done for GNSS road naviga-
tion systems where the main roads are studied upstream of secondary roads with
pyramidal (or hierarchical) route structure [Bovy 2012].

3.4.2 The place-level: Refine the search

Place-level search is based on the Region-level search results with the aggregation
of start and end places. The format changes from:

region− place− region− ...− region

to

place− region− place− region− ...− region− place

Place-level search works from one place to another through a single region. We
have therefore divided the previous solutions to meet this constraint. This step
aims to reduce complexity again. Indeed, several routes can pass through the same
region with the same places of departure and arrival. The inner route can thus

64 CHAPTER 3. ELABORATING A ROUTE FOR A HUMAN PARTNER

be calculated once and for all. In our example, the division gives five sub-routes
instead of six:

start− region_1− interface_1

interface_1− region_2− interface_2

interface_2− region_3− end

interface_1− region_2− interface_3

interface_3− region_3− end

The place-level algorithm aims to replace each region in the sub-routes with
a succession of paths and intersections. Focusing on region_1, illustrated in Fig-
ure 3.7, we need to find a route from the start place to intersection_1. Using the
property isAlongPath, we get from the ontology that the starting place is along
corridor_1 and the interface 1 (i_1) is along corridor_5. Solving it by hand, a
possible solution would be to take corridor_1, then pass by the intersection 1 (i_1)
to reach corridor_5.

Figure 3.7: Representation of region_1 at the place-level. A region is composed
of paths (here corridors only) connected through intersections. We know that the
starting point of the search is along corridor_1 and the local goal place is in cor-
ridor_5.

3.4. FINDING ROUTES: A TWO-LEVEL SEARCH 65

Whereas at the region-level an exhaustive search was acceptable due to the
limited number of regions and their limited connectivity, such a search cannot be
applied to the place-level. In our example of region_1 we could find four routes,
without loops, to go from the start place to interface_1. In a more realistic en-
vironment, it could be of the order of several tens. We thus choose to only get
the less complex route, at the place-level, for each sub-route. Since the complexity
of the route is only impacted by the number of items composing the route, a not
cost-based algorithm can be used. Moreover, considering the places of the region as
nodes and the paths as edges, we thus have a graph. To find the optimal route in a
graph without costs associated with the edges or nodes, we choose a breadth-first
algorithm. Its pseudocode is provided in Algorithm 2.

Algorithm 2 Adapted breadth-first search algorithm for paths exploration. This
version does not return the first valid solution but all the solutions having the same
minimum length.

1: function Exhaustive_path_search(problem)
2: frontier ← a FIFO queue of state
3: explored← a set of explored path
4: solutions← an empty set
5: min_length← inf
6:

7: for all path ∈ problem.initial_paths do
8: state← (path, _)
9: explored← INSERT(path, explored)

10: if path /∈ problem.goal_paths then
11: return state
12: else
13: frontier ← INSERT(state, frontier)

14:

15: loop
16: if empty(frontier) then
17: return solutions
18:

19: state← pop(frontier)
20: for all intersection s.t. state.current_path.hasAlong ∧ /∈ state do
21: for all path s.t. intersection.isAlong ∧ /∈ state do
22: if path ∈ problem.goal_paths then
23: state← state∪ (path, intersection)
24: if state.size ≤ min_length then
25: solutions← INSERT(state), solutions)
26: min_length← state.size
27: else if path /∈ explored then
28: frontier ← INSERT(state∪ (path, intersection), frontier)
29: explored← INSERT(path, explored)

66 CHAPTER 3. ELABORATING A ROUTE FOR A HUMAN PARTNER

This algorithm has been adapted to better fit our problem. First of all, a place
can be along several paths. In the case of our starting place, in addition to be
along corridor_1, we have described it as being also along corridor_4. Performing
a search for each combination of departure path and destination path would be
time-consuming. Where a breadth-first algorithm commonly takes one initial state
and one goal state, we have adapted it to assume several initial and goal states.
This modification is visible from line 7 to line 12 of our algorithm. For each initial
path, we create an initial state and test if it is one of the goal paths or not. We
also put them all in the explored set to avoid to search route passing by them since
we are already along with them. The second adaptation comes from the number
of solutions. A breadth-first search only returns the shortest solution. However, if
several solutions exist with the same length, only the first found is selected. Since
we want to propose several routes, we do not exit the algorithm once a solution is
found but rather bound it from there with the variable min_length. At line 23, any
state having a size bigger than the minimum length is forsaken. Once all the routes
under exploration reach this limit the frontier becomes empty and the algorithm
stops.

This algorithm is applied to each sub-route found at the previous stage. The
overall routes are then recomposed with the results found at the place-level. The
final routes are in the form of:

start place− path− place− ...− place− path− goal place

3.5 Generating an explanation in natural language

This section describes the third cognitive operation of [Denis 1997] to generate a
spatial discourse: the formulation of the procedure. Similarly to [Cassell 2007], we
define a route description as a set of route segments, each connecting two important
points. Taking the format of the previously found routes, the segments correspond
to each path of the route and the two places linked to. The segments have then
to be verbalized in a chronological way. To generate the full explanation, we start
with the determination of the actions to be performed and the computation of the
positions of the landmarks along the route, taking the route perspective. Then, with
this information, we present how we elaborate an explanation in natural language.

3.5.1 Reconstructing the paths

In the same way as [Tversky 1999], we consider that to enable their explanation,
each segment of a route corresponds to a triplet: orientation, action, and landmark.
A route description can thus be realized through the repetition of three steps:
designating a landmark, reorienting the listener, and continuing the progression by
prescribing an action.

3.5. GENERATING AN EXPLANATION IN NATURAL LANGUAGE 67

The issue with the environment representation used to compute the route is
that it is not directly usable to generate the formulation of the procedure. With
the current representation, the orientation and action are too complex to extract,
given that they depend on the direction by which the guided human arrives. Nev-
ertheless, thanks to the additional information provided by the Semantic Spatial
Representation, it is possible to interpret the representation in relation to the esti-
mated future position of the human. This interpretation is what we call an internal
representation. It is an interpretation of the SSR based on the current task. To gen-
erate the triplets of the segments, we create such an internal representation for each
segment of the route to explain. The segments are thus represented and analysed
independently from one another.

For the corridors, we start by defining four sets. These sets are used to represent
the places at the left of a path, the places at its right, the places at its beginning,
and the places at its end. Given the corridor c_i such that (c_i, Corridor) ∈ C,
the set of places Piright at its right is:

Piright = {pl_i | (pl_i, isAtRightOfPath, c_i) ∈ R}

Figure 3.8: Internal representation of a corridor_1 extracted from the semantic
representation. Thanks to the specialisations of the isAlongPath property (i.e.
isAtLeftOfPath, ...) we know on which side of the path each place is. With the
specialisations of the isBeside property, we can reconstruct the order of the places
for each side.

The three other sets are built in the way using relations including the properties
isAtLeftOfPath, isAtBeginOfPath, and isAtEndOfPath. We then consider
these sets as being partialy ordered sets (posets) through the binary relation <. For
two elements a and b of a set Pi, we said that a < b if (a, hasAtRight, b) ∈ R.
Thanks to these four partially ordered sets2 we can reconstruct the arrangement of

2The sets are not totally ordered because we do not consider the transitivity of the relations
hasAtRight and hasAtLeft directly in the ontology. Consequently not all the elements can be
compared.

68 CHAPTER 3. ELABORATING A ROUTE FOR A HUMAN PARTNER

a corridor like in Figure 3.8 for corridor_1 of our running example and of Figure 3.9
for an automaticaly generated visualisation of the reconstruction of a corridor of a
real mall (used in Chapter 8). To match the positions of places on opposite sides,
we use the relations involving the property isInFrontOf .

Figure 3.9: An example of an automaticaly generated visualisation of a recon-
struction based on the semantic knowledges. The places in green are intersections,
the place in blue is an interface, and the others are shops.

For the open spaces, we only generate one partially ordered set representing all
the locations along with it. We still use the property isInFrontOf to improve the
placement of the places.

3.5.2 The robot putting itself in your shoes

Once we have an internal representation of each segment, we can determine the
procedure that the user must perform. Cassell in [Cassell 2007] mentions that an
action, a reorientation, a progression, or a positioning must be carried out at the end
of each segment. The end of one segment being the beginning of the next, we choose
to determine the actions at the beginning of each segment (which corresponds more
precisely to our internal representation). It allows to work on one path at a time.
This rule is formalized in [Mallot 2009] as:

“choosing action Ai at place Pj will lead to place P ′′
k

This determination of actions can be made thanks to our internal representation.
It is represented in red on the top of Figure 3.10 assuming the human to come from
the place pl_5 (Pj) and Pk as being one of the other places of the corridor. For
example, if the local place to reach is pl_1 the action will be “turn left”. If the local
place to reach is pl_2 the action will be “go in front of you”. If the place is on the
same side, the ordering of the set is sufficient to determine the action. If the place
is on an edge, the action depends on the side from which the humans come and the
edge to reach. If the place to reach is on the other side of the path, we have to use
the property isInFrontOf to determine the action to perform.

The information in blue on the two sides of Figure 3.10 gives the orientation
of the sub-goal place Pk taking into account the previous reorientation. With this
orientation information, we can inform the guided human about the location of
the next step once the previous action has been performed. Wanting to reach
intersection i_1, we can give the explanation “take the corridor at your right”.

3.5. GENERATING AN EXPLANATION IN NATURAL LANGUAGE 69

Figure 3.10: In red (on top) is represented the resolution of the action to be
performed (i.e. going in front, turning left, or turning right) from the starting place
pl_5. In blue (on the sides) is represented the resolution of the position of the place
to reach depending on the performed action. Starting from place pl_5, to reach
the intersection i_1, the guided human will have to turn right (red) then the place
will be on his right (blue). Starting from place pl_5, to reach the place pl_3, the
guided human will have to turn left (red) then the place will be on his right (blue).

The full sentence would thus be turn right then take the corridor on your right"3.
Consequently, taking into account the orientation of the guided person after an
action, we provide directions in the route perspective. The guided human can thus
perform an imaginary tour of the environment [Cassell 2007].

Working segment by segment in the order given by the route search algorithm,
we necessarily generate the explanations with a spatiotemporal ordering. This
criterion is an important point in Allen’s best practice in communicating route
knowledge [Allen 2000].

The latest critical information is the landmarks. With our internal representa-
tion, we provide all the landmarks (corresponding to places along the paths) around
which action must be taken. In the previous example, the sentence may be con-
fusing because there will have two corridors on the right. We are able to refer to
place pl_4 to ground the action. With this new information, a sentence without
ambiguity would be “turn right then take the corridor at your right straight after

pl_4”. With this last sentence, we can no longer go to i_2.

3.5.3 A pattern-based generation

In order to generate the sentences in natural language, we first analyzed expla-
nations used by human guides in a human-human study [Belhassein 2017]. From
this study, we have identified four types of explanation components: those corre-
sponding to the beginning of the route, the end of the route, the progress in it,
and the particular case of routes with only one step. Each type has sub-types of
explanation components. For example, for the sentences expressing progress in the
route, we can mention two sub-types: sentences expressing a redirection action and

3We can note that this sentence can also lead to i_2. We will fix it after.

70 CHAPTER 3. ELABORATING A ROUTE FOR A HUMAN PARTNER

the ones expressing the fact of continuing forward. Thus, each explanation belongs
to a sub-type according to the kind of information it expresses. This classifica-
tion allows us to have multiple ways to express the same information, varying the
robot turn of phrase and vocabulary when talking to a person. To represent similar
sentences and to be able to generate sentences with variations, we have grouped
sentences with close lexical structures. Each sentence is then represented with its
variations through the use of patterns. An example of pattern is: [“you will”],
[“see”, “find”],[“it”, “/X”], [“on”], [“your”, “the”], [“/D”],[“side”,“when you walk”,
“”]. When using a sentence, the variations are randomly chosen with a uniform dis-
tribution. We can notice in the previous example the use of place-holders such as X
or D. The place-holder X corresponds to the name of an element of the environment
and D to a direction (right or left). We also implemented the use of a Y variable
to refer to another element of the environment (a landmark) and DY to refer to
its location. The pattern “You will see X at the DY of Y” becomes for example
“You will see Burger King at the right of Espresso House” after instantiation. If
a sentence requires a variable that the algorithm is not able to extract from our
internal representation, then we select another sentence with the same meaning or
another variation of the sentence that does not require the previously used variable.

In our English verbalization, we have 238 unique patterns to express the end of
a route description, 64 to express its beginning, 20 to express the continuation, and
66 for the special case of a route with a single step. All the patterns are available
in appendix A.1.

For the example of Figure 3.7, a possible verbalization would be:

“Go through this corridor, turn right straight after pl_4, then you will

see the door on your left.”

For the same route, the system would be able to generate another sentence like:

“Walk across this corridor and turn right straight after pl_4. After

that, the door is on the left there, straight after pl_7.”

3.6 Experiment in the mockup and the real environ-
ment

The SSR was first used to describe a mockup mall to test the related algorithms.
This representation has then been tested in a real mall to study its applicability
in a larger environment. Table 3.1 indicates the number of elements described in
both environments. The number of places does not correspond to the sum of the
shops, interfaces and intersections since much more elements have been described,
such as ATMs, restrooms or carts location. These two environments are detailed in
Chapter 8.

To assess the usability of such a description and its related algorithms, we pro-
pose to measure the resolution time of several places on the real mall representation.

3.6. EXPERIMENT IN THE MOCKUP AND THE REAL ENVIRONMENT 71

Mockup mall Real mall

Places 83 251
Shops 19 140

Interfaces 11 18
Path intersections 10 50

Paths 11 41
Regions 5 3

Table 3.1: Number of elements described in the mockup and real environment.

Over the 140 shops of the mall, we have selected 26 of them in such a way that
they all are along a single and distinct path. Computing routes for all the places
along the same path would give the same results. Figure 3.11 reports the resolution
time for each target shop in function of the maximum route length. The resolution
times include the ROS communication time to query the ontology. It is thus a real
use case. The first element to note in these results is the maximum resolution time
of 40.79 ms for a maximal route length of 5. This place is a bit particular as being
in another region than the one of departure and that only one interface allows to
reach this place. It can be seen as an unadapted description due to a special case
where an additional region would be required. Nevertheless, resolution times under
45ms are still acceptable for HRI applications.

Speaking about the division of the environment into regions, we have here circled
all the measures related to places into the same region. In blue are the places being
in the same region as the departure place. In green ones are places in a small region
composed of 4 paths and three interfaces. In red are the places on the first floor
of the building. Eleven interfaces have been identified to pass from the departure
region to the first floor. The results over these three regions draw three distinct
and non-overlapping clusters. Results in the same region as the departure one give
resolutions under 5ms with a maximum route length of four. Results over the small
region give resolutions time between 12.5ms and 15ms with routes going from 4 to
5 paths. Results over the last region create an important gap in terms of resolution
time with a minimum around 28ms.

These results could be discussed at length. On one hand, we could say that the
division into regions has a positive impact on the resolution time by restricting the
search space. For the places in the same region as the departure one, the paths
in the other regions do not impact the search. Such an explanation would be in
adequation with the presented graph. On the other hand, the “high” resolution
times for the region in red can be attributed to this same region division. Because
we want to propose several routes, and at least one passing by each interface,
we artificially increase the search space with the need of at least 22 sub-routes
computation for places in a region connected with 11 interfaces (one sub-route to
go from the departure place to the interface and one sub-route to go from the
interface to the destination place). For the smallest region (in green) 6 sub-routes

72 CHAPTER 3. ELABORATING A ROUTE FOR A HUMAN PARTNER

Figure 3.11: The resolution times of 26 places of the real mall related to the
maximum route length found for each of them. The places are each on a unique
and distinct path. We identify three clusters. The blue one on the left corresponds
to places in the same region as the departure place. The green cluster on the center
corresponds to places in a small region with few paths, different from the region of
the departure place. The red cluster on the right corresponds to places in a third
region with more paths in it and more interfaces to reach it.

computations are needed because of 3 interfaces.
To conclude the analysis of these results, we can say that regarding the need

of searching several routes passing by different interfaces, the proposed algorithm
is fully suitable with resolution time adapted to HRI applications. However, the
number of interfaces linking two regions has a non-negligible impact on these res-
olution times. A careful description of such an environment is thus important and
attention must be put on the division into regions.

Results about the integration of the SSR and its related algorithms in a robotic
architecture will be provided at the end of this document over a chapter dedicated
to the MuMMER project (Chapter 8).

Chapter 4

Ontology-based Referring
Expression Generation

Contents
4.1 Introduction . 74

4.2 Related work . 76

4.3 Define the REG problem . 80

4.3.1 The knowledge representation 80

4.3.2 Contextualization and restriction for situated REG 82

4.3.3 Expected solution: structure and validity criteria 84

4.4 Uniform Cost Search REG . 86

4.4.1 Formalisation as a search problem 86

4.4.2 Algorithm choice . 88

4.4.3 Algorithm presentation . 88

4.4.4 Replanning and explaining failures 91

4.5 Results . 92

4.5.1 Solution analysis: The pen in the cup 92

4.5.2 Scaling up: The three-room apartment 93

4.5.3 Comparisons with other state-of-the-art algorithms 95

4.6 Integration on a robotic system 97

In this chapter, we present a method that allows a robot to generate the “opti-
mal” set of assertions that are necessary to produce an unambiguous reference to an
entity of an environment. We propose a novel approach to the Referring Expression
Generation (REG) problem and its integration into an interactive robotic system.
The method is domain-independent and based on an ontology as a knowledge base.

The contribution presented in this chapter is excerpted from our work, pub-
lished in the proceedings of the RO-MAN 2020 conference [Buisan 2020b]. In this
manuscript, the contribution is more detailed and discussed. The presented work
has been achieved in collaboration with Guilhem Buisan, with an equal contribu-
tion. Several algorithms have been developed by both of us, giving, as a result,
the one presented in this chapter, merging the best of our trials. My focus was
mainly on how to fully take advantage of the ontology as a knowledge base and on
algorithmic optimisations to make our method the most efficient with respect to
the current literature.

74 CHAPTER 4. ONTOLOGY-BASED REG

4.1 Introduction

Referring to an entity is one of the most common tasks that we perform every day.
“Can you bring me my mug? It is the black one next to the sink”. “I don’t remember
the name of the man with the red shirt and the glasses”. “I lost my keys, they are on
a keychain with a unicorn-shaped plush toy”. Such kind of communication, accurate
and efficient, is a key aspect for the success of a collaborative task. Nevertheless, in
complex environments with a wide variety of objects, places, or people, referring to
a specific entity can become a real challenge for a robot. It has to take into account
the context of the upper task, the diversity of facts that can be extracted from the
situation and which depend on available perception modalities, and the available
common ground between the robot and its partner.

Figure 4.1: Six situations viewed from the hearer perspective, with the robot
placed on the other side of the table. Referring to the same pen involves different
mechanisms to solve the ambiguity, in each situation. The sentence below each
situation is a possible referring expression to refer to said pen unambiguously.

Consider the situation where you are around a table with your collaborative
robot and the robot needs a pen. The simple statement “Give me the pen” can
result in several situations of various complexities. In the case where there is only
one pen (Fig.4.1a), referring to it is obvious. Now consider two pens on the table.
If one is reachable by you (the human) and the other is not (Fig.4.1b), reachability
can be used to refer to the pen. If both pens are not reachable but one is visible to

4.1. INTRODUCTION 75

you and the other is not (Fig.4.1c where a pen is hidden under the box), visibility
through perspective-taking could be used to determine that the other pen does not
lead to ambiguity. Now both pens are visible and reachable, but one is blue and the
other is red (Fig.4.1d). The addition of the color of the pen solves the ambiguity.
If both pens have the same color but one is in a pencil box (Fig.4.1e), the relation
to the pencil box resolves the ambiguity. If unfortunately, both are in a pencil box
but one is green and the other orange (Fig.4.1f), the relation to the pencil box and
the color of the latter resolves the ambiguity. We could continue like this for a long
time, considering that one is at your left and one at your right, that there is no pen
on the table but there is one on a shelf and so on.

Until now, we considered that the robot knows the concepts of pen and pencil
box as well as their names in natural language to speak about them. However,
imagine yourself travelling in another country and having to speak english1, you
can sometimes miss some words and thus use a more generic one instead. However,
by doing so some new ambiguity can be raised because this generic word also refers
to other entities. It is the same for our robot if it has to speak French and does not
know the translation of the pencil box concept. It will have to use a more generic
term, such as “container”. However, this more generic term could also refer to other
entities, like boxes.

In addition to the concepts names, the robot must pay attention to the relation-
ships it uses. The exact weight or length of an object wouldn’t be useful as a human
cannot easily evaluate them. On the contrary, the color of the object seems to be a
suitable property to use, unless the robot partner is color blind. This means that
the robot has to use relations that it estimates to be known and easily observable
by its partner. Such can be done considering the theory of mind and performing
the Referring Expression Generation on the human knowledge base estimated by
the robot.

This task to refer to a precise entity among others is commonly called the
Referring Expression Generation (REG) task. It is often decomposed
into two sub-tasks: the content determination and the linguistic realisa-
tion [Krahmer 2012]. The content determination aims at determining the relations
to be used to refer to an entity while the linguistic realisation aims at choosing the
words to be used to communicate the content. The contribution of this chapter is
focused on content determination but we can not consider these two sub-tasks as
entirely independent. As explained earlier, if the robot does not know some concept
names in natural language, the linguistic realisation will fail in the case the content
determination select them. Another possibility for the linguistic realisation would
be to choose a more general word but it would not correspond to the determined
content. We could imagine a dedicated knowledge base for the REG with only
concepts usable in natural language, but such a solution is not suitable if we want
a unique knowledge base for the entire robotic system. Moreover, it could be hard
to maintain this dedicated knowledge base during the interaction, in addition to

1I apologize to the native English speakers who will not take full advantage of this example.

76 CHAPTER 4. ONTOLOGY-BASED REG

others since it would be a knowledge duplication.
The main contribution presented in this chapter is an ontology-based and

domain-independent algorithm for the generation of referring expres-
sions. It uses a customizable cost function estimating the cognitive load required
for a human to interpret the RE in order to produce the “optimal” set of ver-
balizable assertions which allows to refer unambiguously to a given entity.

First, we review the literature concerning the REG problem and discuss the
issues we aim to tackle. Then, we refine the definition of the problem to manage
it at a search problem in a second part. We then compare our algorithm with two
states of the art algorithms to assess its solutions and its performance. We end this
chapter with an integration on a real robotic system with some details on the used
perception system and the verbalization method.

4.2 Related work

Referring Expression Generation is a classic task in Natural Language Generation
[Gatt 2018] that has been studied for decades. It has been defined by Reiter as the
concern of “how we produce a description of an entity that enables the hearer to
identify that entity in a given context” [Reiter 2000]. Over time, the criteria for a
good Referring Expression (RE) have been refined but still take their roots from
the Grice’s maxims [Grice 1975]:

The maxim of manner requires the communication to be unambiguous. It is
also the referential success for the target entity to be unambiguously identified by
the RE hearer. The maxim of relation requires the communication to be relevant
regarding the current context both the context of the task to achieve and the current
world state. If you are asking someone to give you an object that is in the room
where you are, you can reasonably assume that the objects in the rest of the house
are not ambiguous with the one you are requesting.

The maxim of quality seems to be evident and requires the provided informa-
tion to be true. If you are asking for a bottle and you do not know if it is full or
not, you should not use this information to refer to the bottle.

The maxim of quantity requires the communication to be as informative as
required but not more informative than required. In simple words, to be brief.
In the context of REG, the hearer must understand quickly want you are talking
about. Moreover, giving unnecessary information could lead to false implications.
Saying “give me the red pen” could imply that at least one other non-red pen exists
and thus warns the hearer to not do the mistake to take the wrong one. If no other
pen exists regarding the current context, the sentence “give me the pen” is thus
sufficient.

4.2. RELATED WORK 77

Dale and Reiter are considered as being the pioneers of the Referring Expression
Generation and have proposed over years three main algorithms solving it. The two
first fundamental approaches are the Depth First Search (DFS) [Dale 1989] and the
Full Brevity [Dale 1992]. While the first algorithm does not always find an optimal
solution in terms of the number of relations used, the second does it at the cost of an
exhaustive search. The most notable advance was thus the Incremental Algorithm
(IA) first presented in [Reiter 1992] then refined in [Dale 1995]. With this algorithm,
the notion of preference over features has been highlighted. This notion aims at
representing the fact that some features are easier to understand than others. For
example, the color or the shape of an object is easier the understand than spatial
relations [Belke 2002]. However, the major limitation of the presented algorithms
is the used representation of knowledge. They used a set of attribute-value pairs
for each entity. This means that an entity has a set of attributes but no relation
to other entities of the representation at the difference of a graph. Consequently,
the solutions can only be composed of entity attributes and cannot use relations
between entities. To be more precise, the algorithms can give the fact the referred
entity is on a table but cannot discriminate the said table among others.

With the introduction of a new representation in the form of a labeled directed
multi-graph (also known as the REG graph), Krahmer et al. solved the issue of
the reference to other entities [Krahmer 2003]. The related Graph-Based Algorithm
(GBA) REG is able to manage relations between entities and, as Dale and Reiter,
considers a preference over features. This preference, called Preference Ordering
(PO), is represented by a cost assigned to each edge of the graph. The GBA algo-
rithm uses a branch&bound algorithm which allows finding the optimal RE. On this
new basis, extensions have been developed or at least discussed. Regarding the thin
link with Description Logic, Krahmer raised the problem of the hierarchy of entity
types in [Krahmer 2012]. On its side, Li et al. have proposed an optimized version
of the GBA [Li 2017] GBA allowing an efficiency gain close to 56%. However, the
used task only involved cubes, meaning that their algorithm does not have to take
into account the entities’ types, which were just added as a post-process. A last
interesting GBA is the Longest First (LF) algorithm presented in [Viethen 2013].
However, more than not respecting the maxim of quantity, its exhaustive search
entails poor performance when used on larger realistic knowledge bases.

Learning-based approaches have of course been proposed. The belief network-
based method presented in [Yamakata 2004] can only work with objects’ attributes.
Moreover, the authors indicate that a specific belief network should be constructed
and therefore trained for each attribute. Such limitation reduces the genericity
of the method. With a log-linear model trained from a corpus of the probability
distribution of REs [FitzGerald 2013], Fitzgerald et al. face the same problem.
Nevertheless, by working on belief bases, Yamakata has highlighted the importance
to run the algorithm on the human partner’s estimated belief base. It ensures that
the robot generates a referring solution compatible with concepts estimated to be
known by the human.

All the algorithms presented above are highly dependent on the task to per-

78 CHAPTER 4. ONTOLOGY-BASED REG

form. Where learning approaches are dependent on their training corpus, the
others rely on knowledge bases integrating only relations usable in the context
of the task. Williams et al. proposed a hybrid approach between domain-
dependent and domain-independent with a distributed Incremental Algorithm
(DIST-PIA) [Williams 2017]. The idea besides this algorithm is to make the core
Incremental Algorithm independent of the knowledge representation by making it
querying domain-dependent consultants [Williams 2016]. A consultant is an inter-
face of a knowledge base and each knowledge base of the distributed architecture
owns one. Each consultant is thus dedicated to a specific set of properties and can
be queried regarding these properties. To get relations about the location of enti-
ties, the Incremental Algorithm can thus query the consultant associated with the
knowledge base of locations. While this solution is interesting for distributed ar-
chitectures, we can ask ourselves about the domain-independence of the core Incre-
mental Algorithm. Indeed, the ordering of the consultants to query in the algorithm
can have an impact on the found solution. However, it is worth mentioning that this
method has been successfully integrated into a robotic architecture [Williams 2019].

At the date, the closest work to the one presented in this chapter is introduced
in [Ros 2010]. This method uses ontology as a knowledge base. As explained ear-
lier, such knowledge representation is suitable for domain-independent applications.
However, here again, the used algorithm takes as a hypothesis that only relations
useful for the REG task are present in it. Moreover, in the same way as the IA-
based algorithm, their method only supports entities’ attributes and not relations
between entities. This method has still been integrated into a robotic system that
can take advantage of perspective-taking to construct an estimated knowledge base
of the human partner to give pertinent RE [Lemaignan 2011].

Even if all the presented algorithms rely on different kinds of knowledge repre-
sentations and have non-equivalent abilities, they all consider a perfect linguistic
realisation [Krahmer 2012]. We mean here that they all consider that any concept
of their knowledge bases has a word in natural language and can thus be verbalized.
Wanting to run on the same knowledge base as the other component of the robotic
architecture, we do not want to make this assumption. Even if our contribution is
focused on content determination, we aim with this contribution to make a first step
in the linguistic realisation by not considering these to sub-task as being indepen-
dent of one the other. We thus assume that not all the concepts in the knowledge
base can be used in natural language.

To give a better overview of the progress in the REG field, the most representa-
tive contributions presented above are summarized in Table. 4.1. The contributions
are organized chronologically and around six major features that we have mentioned
throughout this section. These desired features are:

• Domain independent: The knowledge base used by the REG must be able
to be used by other components of a robotic architecture. The REG algorithm
must not consider that all the knowledge represented can be used for this task.

• Representation type: The used knowledge representation must be able

4.2. RELATED WORK 79

to be updated all along an interaction to deal with the dynamics of robotic
applications.

• Use of types: The type of an entity is the minimal information to use to
refer to an entity. Without type, linguistic realisation can not be done.

• Preference ordering (PO): Some properties are easier to understand than
others. Ordering the properties according to this preference allows finding
efficient referring expressions.

• Referring to other entities: Entities attributes are not sufficient to find
referring expressions in realistic situations. Being able to refer to an entity by
referring to another one is thus mandatory.

• Natural language: Considering the linguistic realisation during the con-
tent generation could prevent the appearance of ambiguity at the linguistic
realisation or even the incapacity to perform it.

Table 4.1: Summary of the most representative contributions in the REG field
regarding the six major features of the problem. The contributions are listed in
chronological order to give a better overview of progress in the field.

Contributions
Domain

inde-
pendent

Rep.
Type

Use of
types

PO
Referring
to other
entities

Natural
language

[Dale 1989] No
Knowledge
base entity

No No No No

[Dale 1992] No - - No No No

[Reiter 1992] No
attribute-
value pairs

Yes Yes No No

[Krahmer 2003] No REG graph No Yes Yes No

[Yamakata 2004] No
Belief

Network
No Yes No No

[Ros 2010] Yes Ontology No Yes No No
[Viethen 2013] No REG graph No Yes Yes No

[Williams 2017] Yes
Distributed

KBs
No Yes No No

[Buisan 2020b] Yes Ontology Yes Yes Yes Yes

The literature presented here before is focused on REG in its nominal form.
Some researches have however addressed side problems that we do not aim to
tackle here. Not entering much in the details, we mention them to give a more
global picture of the field. The use of spatial relations is not trivial as these re-
lations can differ for certain entities taking the RE emitter’s or receiver’s point of
view while for other entities, having a clear orientation system (e.g. a car), the re-
lations remain unchanged [Kelleher 2006, dos Santos Silva 2015]. Spatial relations

80 CHAPTER 4. ONTOLOGY-BASED REG

can also be expressed not only based on a single entity but also according to a set of
entity [Fang 2013]. While a RE is often considered as being a single sentence refer-
ring to an entity without ambiguity, some see it as a more collaborative task where
the RE is provided step by step, allowing to catch acknowledgement and to refine
it according to the receiver understanding [Fang 2014, Wallbridge 2019]. Finally,
some research tries to integrate REG in a more global interaction where several
agents refer to entities. The robot thus tries to reuse properties previously used by
the partner ensuring that these properties are known [Williams 2020]. Limitations
about this work will be discussed later in this thesis.

4.3 Define the REG problem

In this section, we first present an example ontology that we use all along this
chapter to illustrate the algorithm. We then discuss how the upper-task in which
a REG could be performed can be used to constrain the search among the entire
knowledge base. Finally, we formally define the expected form for a solution to a
REG problem and the constraints it must respect.

4.3.1 The knowledge representation

As presented earlier, ontology is a way to represent knowledge that is now largely
used in many fields. It allows standardization of the representation, easy extension
of an existing knowledge base, and the use of inference engines to enrich the knowl-
edge base. For these reasons, we choose to use a knowledge base in the form of an
ontology as input of our algorithm for the REG problem. Moreover, we saw that
a number of recent REG algorithms tend to use graph representation as it allows
to refer to an entity through relations to other entities. Since an ontology can be
seen as a more complex and more expressive graph, this representation seems to be
adequate to use for the REG problem.

Figure 4.2: A situation view from the hearer perspective, with the robot placed
on the other side of the table. Three pens and two cups are on a table. The two
blue pens are each in a cup.

In this chapter, we take as an example the situation represented in Figure 4.2.

4.3. DEFINE THE REG PROBLEM 81

The situation is assumed to be perceived by the robot2 and represented in its
semantic knowledge base. This knowledge base as an ontology is of the form KR

S =
〈AR,TR,RR〉. A, T like presented in Section 2.1.3. The estimated knowledge base
of the human partner KH

S is here assumed to be the same as that of the robot in
the way that KR

S ≡ KH
S ≡ KS

3.
The TBox used to describe the situation of this example is represented in Fig-

ure 4.3. The class IkeaLisabo represents a precise model of tables and does not
have any label. The class Pen is specified through two classes the ClickingPen and
the TurningPen. These two classes aim at representing the pens you need to click
on top to get the tip of the pen out and the pens you need to turn to get the tip
of the pen out. These classes do not have any label to directly speak about them.
They are only used by the robot to know how to use them. For sure a more precise
ontology could be drawn but we try to keep it simple for the purpose of this chapter.

Figure 4.3: Representation of the TBox (classes hierarchy) used to describe the
situation of Figure 4.2.

The ABox used to describe the situation is represented in Figure 4.4. The two
cups C_1 and C_2 are on table T_1. The two pens P_1 and P_2 are respectively
in the cups C_1 and C_2 while P_3 is directly on the table. The pen P_4 is
another pen, not on the table. Other objects could be represented as the robot and
the human could know other objects being in the room. The pen P_1 is the only
pen for which the agent has to click to get the tip of the pen out.

The RBox is not represented but the properties composing it are the ones
used in the ABox. In addition we define the properties hasIn being the inverse of
isIn and isUnder being the inverse of isOn ({(isIn, hasIn), (isOn, isUnder)} ⊂
Inv). Moreover, the property isOn inherits of the upper property isAbove

({(isOn, isABove), (isUnder, isBelow)} ⊂ Incl). While the first defines a di-
rect contact between two entities, the other does not. Finally, we declare the chain
axiom: isIn • isOn⇒ isABove. This axiom allows to reason on the ontology and

2Or estimated to be perceived by the human partner through perspective-taking.
3Meaning that no object is hidden to the human partner.

82 CHAPTER 4. ONTOLOGY-BASED REG

Figure 4.4: Representation of the ABox (relation graph) used to describe the
situation of Figure 4.2.

declare that if a first entity is in a second one and that this second is on a third
one, the first entity is above the third. Taking our example, since P_1 is in C_1
which is on T_1, the pen P_1 is above the table T_1.

4.3.2 Contextualization and restriction for situated REG

The human (let us name him Tony) and the robot are involved in a shared task
around a table. During the task, the robot needs a blue pen to write. However,
it can not take one by itself as the blue pens are in cups. Moreover, with its huge
gripper, it can not use the kind of pens where you have to click. Our robot thus
precisely need the pen P_2 of our example and has to ask it to its human partner4.

The robot is thus aiming to unambiguously designate a specific entity at ∈ A,
called the target entity, through its attributes and relations to other entities.
However, as explained, the REG is meant to be used in the context of an upper
task that has to be taken into account. In our example, the collaborative task
concerns objects on the table so that the other entities in the room are clearly
out of context. Asking for a pen, P_4 will not lead to an ambiguous situation
as it is not on the table around which the interaction is performed. To represent
this restriction, we provide the problem a context Ctx = (Rctx, Cctx). It is a
set of relations and direct types that are implicit in the current communication

4Some could tell that if it is not the first time that our robot and this human collaborate, the
human could be aware of the robot capabilities. In this case, the robot would just have to ask for
a blue pen and the task would be over. We thus consider that our robot never had interacted with
this particular human. For sure it could explain its capabilities but the purpose is not there.

4.3. DEFINE THE REG PROBLEM 83

with regard to the task. This context is used to find a reference to at, but has
not to be included in the generated RE. For our example the context could be
Ctx = ({(at, isAbove, T_1), (at, isV isibleBy, Tony)}, ∅). With this context, we
state that the entity to refer to (i.e. at) is known to be above the table T_1 and
visible by the human partner, Tony. Since isAbove is an upper property of isOn,
all entities on the table are concerned. Moreover, thanks to the chain axiom, any
entity being in an entity on the table are also concerned. The direct types in the
context could be used in a more complex communication in which we already know
that we are speaking about a pen.

In addition to the entities being out of the context and thus not taken into
account, some relations might be present in the knowledge base, but cannot be
used in a communication process. In our example, the relations using the has-

CadModel property should not be used as the robot cannot communicate them
verbally. To represent this restriction, we provide the problem a set of so-called
usable properties U ⊆ P . Any relation involving as predicate a property that
is not part of the usable properties set can, therefore, not be used in the solution.
Because of properties inheritance, Incl all the properties inheriting from the ones
in U are consequently usable to solve the problem.

With regard to the presented restrictions, the REG problem is defined as follow:

Definition 1 (Referring Expression Generation problem) The REG prob-

lem is a tuple P = 〈at, K, Ctx, U〉 with at ∈ A the target entity, KS the hearer

semantic knowledge base, Ctx the RE context, and U ⊂ P the usable properties.

Figure 4.5: Representation of the ABox (relation graph) on which the context of
the problem and the usable properties have been applied.

84 CHAPTER 4. ONTOLOGY-BASED REG

A representation of the ABox on which the restrictions have been applied5 is
represented in Figure 4.5.

4.3.3 Expected solution: structure and validity criteria

What we might expect from a REG solver would be to generate a natural language
sentence. However, as explained earlier, we focus here on the sub-task that is the
content generation rather than the linguistic realization. For the content generation,
the attempted solution is often a set of relations like {(at, hasColor, red)}. The
issue with such a set is that it can not be verbalized afterwards. Indeed, some
entities are not labelled and thus can not be used directly in the solution. In our
example, it the case for the three pens P_1, P_2, and P_3. They are what we
called anonymous entities. To refer to an anonymous entity and be able to speak
about it we must resort at least to its type. This is what we naturally do when we
say “the red pen” where the concept “pen” does not directly refer to the entity but
rather to its type. Before going ahead in the definition of the form of the solution,
we can already set a constraint on its content through the naming need.

Theorem 1 (The naming need) For any entity appearing in a RE, exactly one

naming relation must be added.

What we call a naming relation is in its simplest form the presence of a la-
bel. The relation to add is thus of the form: (at, hasLabel, “tony′′). In the
case an entity does not have any label, we use one of its types which has a label:
{(at, isA, Pen), (Pen, hasLabel, “pen′′)}. This type is not necessarily the direct
type of an entity. It could be an inherited one if needed.

Let us now introduce X, a set of variables. Since anonymous entities are not
directly present in the RE sentence (hence the presence of ambiguities), we will
replace all of them with variables. They are prefixed with a question mark. The
set X thus keeps track of these variables. Taking the example of the red pen
and replacing the anonymous entities by their corresponding variable, the set of
relation become: {(?0, isA, Pen), (Pen, hasLabel, “pen”), (?0, hasColor, red),

(red, hasLabel, “red”)}. Since anonymous entities are now represented by variables,
the relations representing the labels can be removed as it is implicit that the others
have one. The reference is thus {(?0, isA, Pen), (?0, hasColor, red)} that is exactly
of the form of a sparql query.

Definition 2 (Referring expression) A referring expression is a set of under-

specified relations of the form of (s, p, o) ∈ (X ∪ A)× P × (X ∪ A) or (s, isA, o) ∈
X × “isA′′ × T for type ascription.

The form of the wanted solution would thus be similar to a sparql query. It can
easily be built from a set of relations. All the content information are present in it,

5We do not create a second ABox with the only elements that can be used. The REG algorithm
will have to manage the restrictions during the search process. Otherwise, we lose the interest to
run on a knowledge base common to the entire robotic architecture.

4.3. DEFINE THE REG PROBLEM 85

in addition to the representation that some entities can not be verbalized directly.
The way to resolve a sparql query can be compared to the process we perform as
humans to understand a RE. We search all the combinations of entities matching
the RE. We can thus define the correct instantiation constraint.

Theorem 2 (The correct instantiation) For any variable appearing in a RE,

at least one substitution function f : X → A must exist.

Target Relations set sparql query Sentence Instantiations

a) P_3
{(P_3, isA, Pen),
(P_3, hasColor, red)}

{(?0, isA, Pen),
(?0, hasColor, red)}

The red pen [?0 =>P_3]

b) P_2
{(P_2, isA, Pen),
(P_2, isIn, C_2)
(C_2, isA, Cup)}

{(?0, isA, Pen),
(?0, isIn, ?1)
(?1, isA, Cup)}

The pen in
the cup

[?0 =>P_2,
?1 =>C_2],
[?0 =>P_1,
?1 =>C_1]

c) P_2

{(P_2, isA, Pen),
(P_2, isIn, C_2),
(C_2, isA, Cup),
(C_2, hasColor, green)}

{(?0, isA, Pen),
(?0, isIn, ?1),
(?1, isA, Cup),
(?1, hasColor, green)}

The pen in
the green cup

[?0 =>P_2,
?1 =>C_2]

Table 4.2: Three referring expressions extracted from the example of Figure 4.1.
For each target, is represented the relations set, the equivalent sparql query, the
corresponding sentence in natural language, and the possible instantiations.

Examples of REs base on the Figure 4.1 are presented in Table 4.2. All three
respect the constraints of theorems 1 and 2. However, the example b) does not
refer in an unambiguous way to the entity P_2. We thus define the two RE validity
constraints below.

Theorem 3 (The RE minimal validity) A RE is said to be minimally valid iff

the variable xt ∈ X representing the target entity at has only one possible instanti-

ation being at itself.

Theorem 4 (The RE complet validity) A RE is said to be completely valid iff

it is minimally valid and if for all the variables x ∈ X involved in the RE, each has

only one possible instantiation.

Taking the example of Figure 4.6 where the goal of the situation is to refer to
cup B, it can be achieved in two manners. Asking for the cup with a pen inside is
a referring expression said to be minimally valid as the referred pen is ambiguous.
However, not solving this ambiguity between the two pens in the cup still allows
identifying the referred cup. To ensure the solution to be completely valid, we
should ask for the cup with the red pen inside or the cup with the blue pen inside6.

6A minimally valid reference can thus use references to sets of entities. This is not an issue but
the linguistic realisation should take it into account using “a” rather than “the” (e.g. “with a pen
inside” rather than “with the pen inside”).

86 CHAPTER 4. ONTOLOGY-BASED REG

Figure 4.6: A situation where referring to the cup B through relations to the pens
can be done either by leaving the ambiguity on the pen (minimally valid RE) or
also disambiguating the color of the pen (completely valid RE).

With regard to the presented constraints, a solution to a REG problem is defined
as follow:

Definition 3 (Referring Expression Generation solution) A solution to the

REG problem is thus S = 〈E, xt〉, with E a valid referring expression in the form of

a set of under-specified relations representing the sparql query and xt the variable

designating the target entity at.

Finally, considering the fact that some relations are easier to understand than
others, we can define the relations cost function7 C : R→ R

+. Thanks to it, we can
now define an optimal solution to a REG problem.

Definition 4 (Optimal Referring Expression Generation solution) The

optimal solution S∗ = 〈E∗, xt〉 is thus the solution minimizing
∑

r∈E∗ C(r) over the

set of all the possible solutions for a REG problem.

4.4 Uniform Cost Search REG

In the previous section, we have defined a Referring Expression Generation problem
as well as its solution. In this section, we first formalise this problem as a search
problem and we then present an algorithm able to solve it in an efficient way.

4.4.1 Formalisation as a search problem

In the REG problem, we can consider a candidate Referring Expression as a
state s of a search algorithm. A candidate RE is a RE under construction that
does not respect all the constraints to make a valid RE. It is a set T ⊆ R ∪ C of
relations r representing relations present in the referenced knowledge base KS . The
initial state is specified by the context of the problem that is a set of relations
that we assume to be already known by the hearer.

To find all the entities referred by a candidate RE, we transform it into a sparql

query by replacing the anonymous entities with variables. We then submit it to
7The cost function is here seen as a black-box which can be a static map, the result of a learning

process or other.

4.4. UNIFORM COST SEARCH REG 87

the ontology to know which entities can be bound to each variable of the query.
Depending on whether the result of the query gives the correct matches between
variables and entities or not, we can know if a state is a target state or not. A
state is a target state if the matching between the variables and the entities make
the RE valid (minimally or completely regarding our needs).

An action ❛ in the REG problem consists in the insertion of a new triplet (s, p, o)
to the set T of a state s. Performing an action on state results in the creation of a
new state s′. The inserted triplet can represent an entity type (coming from C) or
a relation between entities (coming from R). When it represents an entity type, we
call the action a typing action with p ≡ isA. When it is a relation coming from
the relation set R, we want it to reduce the existing ambiguity in a given state. We
thus expect the relation to differ between ambiguous entities in s. In this case, we
call the action a differentiation action. To consider the open-world assumption,
we can refine this difference in two categories:

Definition 5 (Hard difference) A hard difference exists when two ambiguous

entities own the same property towards a different entity: (ai, p, oi) ∈ R∧(aj , p, oj) ∈
R|oi 6= oj. We note this difference between two entities (ai, ∆ , aj).

Definition 6 (Soft difference) A soft difference exists when an entity owns a

property that is not owned by another ambiguous entity: (ai, p, oi) ∈ R ∧ (aj , p, ·) /∈

R. We note this difference between two entities (ai, δ , aj).

Considering Figure 4.6 with the two pens, there exists a hard difference between
the two pens regarding their color as one is blue and the other is red. The two pens
own a relation with the same property hasColor but on different entities, red and
blue. A soft difference exists between the two cups as cup B has something inside
and not cup A.

To represent the fact that some referring expressions are easier to understand
than others depending on the property they use, we define a cost for each state.
It is the sum of the cost of the properties used in the relations composing the
candidate RE. The cost can thus be regardless assigned to the property of the
relation or the relation itself and the cost of an action is the cost of the relation it
inserts. If we assume a state s with a cost ❝, performing an action ❛j corresponds
to the fact of adding a relation rj and creates a new state s′. The cost of this new
state can be calculated either from the cost of the previous state ❝

′ = ❝ + C(rj)
or independently ❝

′ =
∑

r∈T C(r). In addition, as the hard differences respect the
open-world assumption while the soft differences do not, we propose to promote the
use of hard differences when possible by adding an extra cost to relations coming
from soft differences.

To manage the REG problem as a search problem, we finally define a search
node ♥ that is composed of a candidate RE (thus a state) s and a cost ❝.

88 CHAPTER 4. ONTOLOGY-BASED REG

4.4.2 Algorithm choice

We consider the REG problem to be a graph search problem when we perform it on
an ontology. If we had considered a state s

′ as being composed only of the relation
provided by the action ❛ from state s, a tree search should have been used because
state s

′ would depend on state s. Considering a state as being a set T of relations
r, the states become independent of each other and can be compared as Tx = Ty iff
∀z, (z ∈ Tx ⇔ z ∈ Ty).

From any state, we can compute the number of pending ambiguous entities. We
could think that this knowledge beyond the problem definition could be used to
drive the search. However, when we say that it still has X ambiguous individuals
this means that the algorithm will have to perform at most X actions to reach a
target state. This means that the heuristic function would overestimate the cost to
reach the goal. In this sense, such a heuristic is not admissible and informed search
is not applicable.

Although we could define the reverse actions that are to remove relations from
a state, we do not know any solution to the problem and therefore we cannot do a
backward search from it.

Taking a look at the breath-first search, it is optimal when all steps costs are
equal because it always expands the shallowest unexpanded node. However, in
the REG problem, actions do not have the same cost as explained previously to
represent the preference over features. In this case, the breadth-first search is not
optimal and is therefore not suited to our problem.

At the difference of the breadth-first search, the Uniform-Cost Seach (UCS)
expands the node with the lowest cost. This allows us to take advantage of the
preference over features to find efficiently the optimal solution. Indeed, it is opti-
mal and complete with positive action costs and a finite number of entities and
properties in K.

4.4.3 Algorithm presentation

Our REG algorithm performs a graph search in the space of states, using the
Uniform-Cost Seach algorithm presented in Algorithm 3. From an initial state,
built from the context of the query, the algorithm generates a set of actions that
add relations to the current state and creates new states to explore. Just like Di-
jkstra’s algorithm, it expands the states in increasing cost order until a solution is
discovered or the search space is exhausted. We can however note a slight difference
with the original algorithm. In our case, we know that two candidates RE said to
be equivalent (i.e. owning the same relations regardless of their order) always have
the same cost. Consequently, we do not need to replace in the frontier a node with
an equivalent state but having a higher cost than the newly created child node.

4.4. UNIFORM COST SEARCH REG 89

Algorithm 3 Uniform-Cost Search algorithm for Referring Expression Generation
function UCS_REG(problem)

node← a node with RE = create-initial-re(problem.context), cost = 0
frontier ← a priority queue of nodes ordered by their cost
frontier ← INSERT(node, frontier)
explored← an empty set

loop
if empty(frontier) then

return failure

node← pop(frontier)
if GoalTest(problem, ToQuery(node)) then

return SOLUTION(node)

add node.RE to explored
for all action in Actions(node) do

child← CreateChild(node, action)
if child.RE is not in explored or frontier then

frontier ← INSERT(child, frontier)

We will now detail the functions specific to the UCS used in the REG algorithm.

ToVariable: We globally define a symbol table S to keep track of the
variables assigned to the anonymous entities. When a new anonymous entity is
found, it is inserted in this symbol table with a unique variable identifier. We note
S−1 the inverse table, allowing us to retrieve the entity represented by an existing
variable.

ToQuery: It performs the translation of a set of triplets into a sparql query.
To do so, each anonymous entity has to be replaced by its corresponding variable.
For each entity involved in the set of triplet to convert, they are given a UTF8
string representation with the function v : A 7→ str:

v(a) =







str(a), if La(a) 6= ∅

S(a), otherwise

SparqlResult: It takes a sparql query as input and returns a match table
M in the way that M(x) is the set of entities matching the variable x in the
given query. While usually the matching entities of a given variable depend on
the matching entities of another one8, we do not need to keep this link in our
application.

8See the example b of Table 4.2 for an illustration of this link.

90 CHAPTER 4. ONTOLOGY-BASED REG

GoalTest: The test first fails if not all the anonymous entities involved in the
tested candidate RE are typed. If this first test succeeds, the function succeeds,
for a minimally valid solution, if the target entity at is the only solution to the
variable v(at) in M. For a completely valid solution, the test succeeds if the
previous test succeeds and if all the others variables ofM have exactly one solution.

CreateChild: Creating a child node from a parent node and an action is easy
to see. The CreateChildfunction is specified in the pseudo-code of Algorithm 4.

Algorithm 4 Child node function pseudocode
function CreateChild(action, parent)

return a node with
RE = parent.RE ∪ action
cost = parent.cost + C(action)

Actions: For each explored state, we consider two kinds of possible actions
that we can perform on it. First, the TypingActions aims at proposing the
addition of inheritance relations for all the anonymous entities for which no
inheritance relation exists in T . Second, the DifferentiationActions, divided
into hard differentiation actions and soft differentiation actions, consists in
the addition of relations that differ between the ambiguous entity for each variable
in M.

In the TypingActions function (Alg. 5), the function UsableClasses returns
the most specific labeled classes of an entity a. In other words, it returns the set of
classes t ∈ T such that (a, t) ∈ C, Lt(t) 6= ∅, and 6 ∃t′ s.t. (t′, t) ∈ H ∧ Lt(t′) 6= ∅.

Algorithm 5 Typing actions pseudocode
function TypingActions(state)

for all (s, p, o) in state do
if La(s) = ∅ ∧ 6 ∃t s.t. (s,“isA”, t) ∈ state then

return { (s, “isA”, t) | t ∈ UsableClasses(s) }
else if La(o) = ∅ ∧ 6 ∃t s.t. (o,“isA”, t) ∈ state then

return { (o, “isA”, t) | t ∈ UsableClasses(o) }
return OK ⊲ every anonymous entity is typed

The choice to select the most specific class differs from the one of [Dale 1995]
that prefers the least specific types also called the basic-level classes. However,
using a knowledge base not specific to the REG task, it would always return the
classes Object or Thing. This could lead to confusion for the hearer and would not
help to reduce the ambiguity with other entities. Selecting the most specific thus
reduces the branching factor of the algorithm as soon as possible and does not
impact the completeness. Moreover, working on the estimated knowledge base of
the RE hearer, we can assume that the used labels and thus concepts are known

4.4. UNIFORM COST SEARCH REG 91

to the hearer.

The TypingActions is always performed before the DifferentiationAc-

tions and this second is even not called if the first has found possible actions.
We thus ensure that we do not have more than one untyped anonymous entity at
the time. This particularity explains why the TypingActions stops at the first
untyped anonymous entity. Besides, it reduces once again the branching factor.
Because of the naming need constraint, we knew that any untyped anonymous en-
tity has to be typed to find a valid solution. It is thus useless to try to add other
relations while such an entity still exists in a candidate RE. Even if, for any reason,
we found ourselves in a case with multiple untyped anonymous entities at the time,
each of them will be typed after the other9.

Algorithm 6 Hard differentiation actions pseudocode
1: function HardDifferenceActions(state)
2: actions← an empty set of actions
3: matches← SparqlResult(ToQuery(state))
4: for all (x, a) in matches do
5: if a 6= S−1(x) then
6: for all r = (S−1(x), p, o) in S−1(x) ∆ a do
7: rinv = (o, Inv(p),S−1(x))
8: if r 6∈ state ∧ rinv 6∈ state ∧ p ∈ U then
9: actions← actions ∪ {r}

return actions

The DifferentiationActions function call consecutively the hard then soft
differences actions functions and merge their results. The pseudo-code of the hard
differentiation actions function is provided in Algorithm 6. The ∆ at line 6 (resp.
δ) operator returns all the relations that are hard differences (resp. soft) between
two entities. In both cases, an action can be added only once and must not be
present in the current state to avoid redundancy. Moreover, an action can not be
added if the inverse relation to the one added is already present in the current state
or proposed actions. We use the Inv set defined in the knowledge base to check it.
It once again avoids any redundancy. Taking the example of Figure 4.2, the relation
(C_1, isOn, T_1) would be redundant if the relation (T_1, isUnder, C_1) has been
already used in the current candidate RE.

4.4.4 Replanning and explaining failures

When the hearer does not understand the referring expression, we could either
repeat exactly the same sentence or be smarter and add more information than
needed to help him. To do so, slight modifications have to be made to the current

9Typing them at once would reduce the execution time but would necessitate actions to be
the insertion of a set of relations which adds complexity to the algorithm for cases that should not
happen.

92 CHAPTER 4. ONTOLOGY-BASED REG

algorithm. In the case of replanning, the frontier and the explored set does not
have to be re-initialized and in case of success, the current node has to be inserted
in the explored set and the next possible actions to be found before exiting. These
simple modifications are sufficient to refine a not understood RE.

When no referring expression can be found, it could be interesting to give more
information about the failure to the upper process. In the case of the REG problem,
it could be to give the entities still in ambiguity. With such information, an upper
deliberative process could in this way act on these entities to remove the ambiguity.
To do so, we just have at each step of the algorithm, to keep a track of the node
having the minimum of ambiguous entities. This information is present in the
matching table M for each node.

4.5 Results

In this section, we present the solution found by our algorithm on the example
presented in section 4.3.1. We then challenge our algorithm on a large scale ontol-
ogy representing a three-room apartment to analyse it in terms of time execution,
solution length and composition. Finally, we provide comparisons with two state-
of-the-art methods on their own domains.

4.5.1 Solution analysis: The pen in the cup

To familiarize with the form of the solutions and better understand how the algo-
rithm constructs them, we first solve the example of Figure 4.2. The target entity
at is P_2. The corresponding variable xt in the sparql query is denoted ?0. We as-
sume the general knowledge to be the Tbox of Figure 4.3 and the perceived relations
to be the ABox of Figure 4.4.

The context of the problem is that we are speaking about objects being above
the table T_1: Ctx = ({(?0, isAbove, T_1)}, ∅). The usable properties are
U = {visualProp, geometricProp}. Because of the properties inclusions, the
properties isIn, hasIn, or hasColor are usable. The problem is thus defined by
P = 〈P_2, KS , Ctx, U〉.

Since the classes ClinkingPen and TurningPen do not have labels, the lowest
labelled class of P_1, P_2, and P_3 is Pen. A recall of the situation and the
available knowledge base on which the context and the usable properties have been
applied is represented on the top of Figure 4.7.

The search process is represented at the bottom of Figure 4.7. It starts with
node 0 in which we know that P_2 is above the table. In this node, P_2 is an
anonymous entity and is not typed. The only possible action is thus to type it,
creating node 1 with the candidate RE {(?0, isA, Pen)}. From this node, two
differentiation actions are created and two new nodes are generated. Since the
action leading to node 3 introduces a new anonymous entity, it also introduces a
new variable to represent it. The candidate RE related to node 3 is thus {(?0,

isA, Pen), (?0, isIn, ?1)}. The node with the lowest cost is explored first. In our

4.5. RESULTS 93

Figure 4.7: On top, a recall of the situation of Figure 4.2 and the entities types
and relations. At the bottom, a graphical representation of the search progress to
generate a referring expression to the entity P_2. Numbers represent the order
in which the nodes are explored. Arrows are the actions performed on the nodes.
Hashed arrows correspond to typing actions and greyed nodes do not respect the
naming need constraint. Double circled nodes are valid nodes.

example, all properties have a unary cost so the node to be explored is selected
randomly. Considering node 2 to be explored first, the entity blue has a label so
no anonymous entity has to be typed. The only possible action is that P_2 is
in cup C_2. Between nodes 3 and 4, node 3 has the lowest cost and is explored
first. In this node, C_2 is anonymous and not typed. The only possible action
is to type C_2. The same is done for node 4, resulting in node 6. When node 5
is explored, two differentiation actions are possible. However, adding the relation
(P_2, hasColor, blue) to the candidate RE of node 5 results in the same state as
node 6. The newly created node is thus discarded as already existing. It can also
be seen as a merge of the two nodes with the same state. The second action coming
from node 5 gives node 7 with the candidate RE {(?0, isA, Pen), (?0, isIn, ?1),

(?1, isA, Cup), (?1, hasColor, green)}. At this stage, the new node is just created
but not evaluated. We do not know at the moment that it is a goal node. Node 6
is thus explored first and gives node 8. Node 7 is then tested as being a goal node
as the variable 0 has for only matches P_2 that is the target entity and variable 1
can only be bound to C_2. The algorithm does not test node 8 since a goal node
has been found.

The final solution to refer to the entity P_2 is thus {(?0, isA, Pen), (?0, isIn,

?1), (?1, isA, Cup), (?1, hasColor, green)}. It could be read as “The pen in the

green cup”. Here, we see how referring to another entity lead to interesting solutions.

4.5.2 Scaling up: The three-room apartment

The previous example was a simple situation with few entities. To assess the rel-
evance of our approach and evaluate it in terms of performance and solution size,
we have created a larger, more realistically-sized, situation. It is the description

94 CHAPTER 4. ONTOLOGY-BASED REG

of a three-room apartment with several types of furniture (tables, chairs, shelves)
and objects (cups, boxes, books) linked through geometrical relations (isAtLeftOf,
isOn, isIn) and attributes (color, weight). The resulting ontology is composed of
101 entities, 36 classes, 40 properties and 497 relations once the reasoners have
been applied (i.e. the inverse relations, reflective relations, and the relations com-
ing from chain axioms have been computed). The algorithm has been run over the
77 physical entities, inheriting from the Object class.

For all the presented measures, we used the Ontologenius soft-
ware [Sarthou 2019b] to manage the ontology. To avoid taking the ROS
communication into account in the measures, we used a direct connection by
running the core of Ontologenius in the same process as the algorithm.

Figure 4.8: Percentage of entities referred successfully over time using a logarithmic
timescale.

During a human-robot interaction, a too-long execution time to generate a refer-
ence to an entity could spoil the interaction. To assess it we measure the resolution
time10 of the 77 objects. These measures are reported in Figure 4.811 and on Ta-
ble B.1 in the appendix. All the 77 entities (100%) have been referred in under
6.40ms. This is well below 100ms which is the maximum system response time for
the user to get a feeling of instantaneity [Miller 1968]. Moreover, 50% are referred
under 516µs and 75% under 1.32ms. On average, the algorithm needs to explore
10.6 nodes to refer to an object. It gives an exploration time of 101.88µs/node on
average. All the results over the 77 entities are available in appendix B.1.

Regarding the complexity of the solutions, we found that 32 (41.56%) need at
least two relations to be referred to. As the type count for a relation, this means
the second relation is one of the entity attributes. Among the others, 25 entities

10Times reported are run on a CPU Intel Core i7-7700 CPU @ 3.60GHz with 32 Go RAM
11The results differ from the original paper because here we are using the latest version of each

software to be comparable with the other chapters.

4.5. RESULTS 95

(32.46%) are referred to through the use of four or more relations. The maximum
was six relations for only one of the objects. Moreover, 49.4% need a reference
to another entity in their solution and two objects need references to two other
entities in their RE. This means that 49.4% of the objects of our situation can not
be referred using approaches like [Ros 2010] or [Dale 1995].

These results over a larger knowledge base highlight the need for a REG algo-
rithm to use relations and references to other entities to be able to generate suitable
RE. They also show the importance of the entities type that is often sufficient with
only one attribute to generate an optimal RE. Finally, we demonstrate over these
results that our algorithm is suitable for use in human-robot interaction, even with
a “large scale” knowledge base. With such results, we can even think that it is suit-
able to be integrated into a planning process needing to request it at high frequency.
Such application will be presented in the next chapter.

4.5.3 Comparisons with other state-of-the-art algorithms

The previous situation has been designed by us and could be adapted for our algo-
rithm. Moreover, existing methods could be more efficient than ours. To compare
with other algorithms, we choose to perform two comparisons with state-of-the-art
algorithms on their domains. Since we saw the importance for a REG algorithm
to be able to refer to entities through relations to other entities and thus through
references to other entities, we have only selected methods having this ability.

4.5.3.1 The Longest First algorithm

The Longest First (LF)12 algorithm [Viethen 2013] is a graph-based algorithm and
it has been tested on the GRE3D3 Corpus. This corpus is composed of 20 scenes.
As illustrated in Figure 4.9 with the eleventh scene, each is composed of three
objects with different spatial relations relative to one another (isOn, isAtLeftOf).
Each object has three attributes being a color, a size (small or large) and a type
(ball or cube). The entity to refer to is marked by an arrow. This entity has always
a direct adjacency relation (e.g. the ball is on the red cube).

Analysing the corpus, we find that 8 target entities can be referenced using only
their type (e.g. the ball). Seven entities can be optimally referred to with the use
of their type and an attribute (their size or color). In the last five scenes, the target
entity can be referred with their types, color and size attributes (e.g. the small
green cube). This means that spatial relations are not needed to refer to the target
entity.

To perform our analysis, we choose only one scene among the ones needing the
most attributes. This scene is the 19th of the corpus, illustrated on Figure 4.9.
Since the LF does not consider the types13, the chosen scene is only composed of

12http://www.m-mitchell.com/code
13The objects type are only added as a post-process. This can explain why they use the spatial

relations while it is not necessary.

http://www.m-mitchell.com/code

96 CHAPTER 4. ONTOLOGY-BASED REG

Figure 4.9: The 19th scene of the GRED3 corpus [Dale 2009]. The target entity is
the one marked by the arrow.

cubes to give comparable solutions. Even if we do not compare with the simple
cases, we can note that our algorithm resolves the scene requiring only the type in
less than 100µs and those with the types and one attribute in less than 250µs.

The LF algorithm has the objective to generate over-specified REs. To limit the
solution length, a maximum length parameter is available on the queries. Setting
it to the recommended value, that is 4, we get in 311ms the result which we can
read as “The small green cube on top of a cube”. Setting it to 3, which is the
optimal value for this scene, we get in 109ms the result “The small green cube”.
This optimal solution is the one found by our algorithm in 0.87ms. The difference
factor is thus 125.

For all the 20 scenes, setting the maximum length parameter to the optimal
length (the minimum of relations allowing the hearer to distinguish the referred
entity without ambiguity), both the LF and our algorithm find the same solutions.
However, this parameter raises an issue. In the previous situation of the three-room
apartment, 13% of the entities need more than 4 relations to be referred to. This
means that with the recommended value, all these entities would not be referred
to while it is possible. On the other hand, we saw that this parameter has a huge
impact on the execution time and set it to a higher value would thus require more
computational time and give too complex RE.

4.5.3.2 The optimized Graph-Based Algorithm

The GBA [Viethen 2013] has been a significant turning point in the REG field.
We thus compare our algorithm with its more recent optimized version presented
in [Li 2017]. From an entities relations graph dedicated to the task, it aims at
finding the lowest cost isomorphic subgraph containing the target entity. To do so,
the GBA approach is based on a branch and bound algorithm. Once a first solution
is found, any other branch that exceeds the cost of the current best-found solution
is bounded. Such an algorithm thus needs to explore a large part of the graph if
the optimal solution is not found early in the search.

4.6. INTEGRATION ON A ROBOTIC SYSTEM 97

Figure 4.10: The 4th scene used in the user-study in [Li 2016]. The target entity
is the one marked by the red arrow.

Their algorithm has been tested on a corpus with 28 tabletop scenes [Li 2016]
like the one presented in Figure 4.10. Each scene is composed of 15 cubes of different
colors linked through spatial relations and only one of these cubes has to be referred
to. To compare our algorithm on their corpus, we selected only one scene (the fourth
represented in Figure 4.10) and we have converted their graph into an ontology. On
this unique scene, we have tested RE generation for each of the 15 cubes composing
it. The GBA, as well as our algorithm, have found a solution for 10 cubes. Since
the same costs on relations have been used, both algorithms have found the same
solutions. The only difference is that our algorithm has added the objects types. In
these 10 cases, our algorithm has performed faster with a factor of 29.4 on average.
Because of their use of a branch and bound algorithm, the speed increase is more
important for cases with many solutions. We go from a speed factor of 4 for 50%
of the cases, growing to 50 for 25% of the cases, and reaching 130 at the maximum.
For the other 5 cases where no solution is found, both algorithms detect the absence
of a solution in a few milliseconds.

The difference with the GBA is that the Uniform-Cost Seach ensures the first
found solution to be the optimal one. Moreover, because their approach does not use
the entities types, we think that our approach should work even faster on knowledge
bases containing entities with different types since we prioritize the use of the type.
Such a test has not been performed since their algorithm can not manage other
data than their corpus.

4.6 Proof of concept integration on a robotic system

To assess the usability of our method, we have integrated it on a PR2 robotic plat-
form and used it in a “real” tabletop scenario. The used architecture is represented
in Figure 4.11.

The geometrical situation assessment is based on the Robosherlock [Beetz 2015a]
perception system. This software does not require any a priori on the environment
such as CAD model, mesh or training. With the used pipeline, it detects objects
on a surface and gives information about their position, shape (“circular” or “rect-

98 CHAPTER 4. ONTOLOGY-BASED REG

Figure 4.11: The architecture used to validate the method. The knowledge base
is continuously kept up to date through the situation assessment.

angular”), color, and size (“large”, “medium” or “small”). On top of that, we have
applied simple filtering and tracking based on the previous information. This infor-
mation is then continuously added to the ontology to keep it up to date with the
current state of the environment. Since the objects’ types are not determined by the
system, all the detected objects are thus added as inheriting from the “Object” class.
To go further, we could have used the SPARK/TOASTER [Milliez 2014] framework
to extract higher-level relationships such as “isOnTopOf” or “isIn”. However, the
limited information provided by Robosherlock, with the used pipeline, is already in-
teresting to test our algorithm since the robot is not able to use high-level concepts
and resulting in various ambiguities.

The knowledge base as an ontology is managed using the software Ontologenius
[Sarthou 2019b]. It is used as a server sharing knowledge about the environment
with the entire architecture. Since no perspective-taking is performed in this ex-
ample, it manages a single instance representing the robot’s knowledge. The REG
is thus performed on this instance even if it should rather be run on the human
partner’s estimated knowledge.

An ad hoc linguistic realisation has been made, based on simple grammar and
the labels present in the ontology. It takes as input a sparql query and is able to
generate a sentence in English or in French depending on the ontology configuration.
For example, it is able to transform the query “?0 isA Cup, ?0 isOn ?1, ?1 isA Table,
?1 hasColor black” into “the cup on the black table”. The relations in the query do
not have to be ordered as the link between the variable can be analysed and a
simple language model provides the attribute order for each language.

4.6. INTEGRATION ON A ROBOTIC SYSTEM 99

Figure 4.12: Two situations where the robot has to refer to the cup on the right
of the image. The presence of the milk bottle (with the red circle on the image
on the right and the red arrow in the RVIZ view) changes the generated RE. On
the right-bottom part of each image, the geometrical representation of the scene is
displayed as perceived by the robot.

The scenario 14 consists of several objects on a table. As illustrated on the left
part of Figure 4.12, the initial situation is composed of five objects. The robot
has to generate a RE for the cup. The found solution can be verbalized as“The

white circular object” since there are other non-white circular objects and other
white non-circular objects. In a second time, a human adds a milk bottle on the
table (right part of Figure 4.12). Since the added bottle is circular and white, the
previous RE is no more valid. When the robot is asked to describe the cup, it

14Commented video available at: https://youtu.be/mKDLvDbHfvkit

https://youtu.be/mKDLvDbHfvkit

100 CHAPTER 4. ONTOLOGY-BASED REG

generates this time the sentence “The white small circular object”. The addition of
the size attribute solves the introduced ambiguity.

With this simple task, we show that our UCS ontology-based REG algorithm
is usable within a robotic architecture, can deal with a dynamic environment, and
can adapt its explanation to the current situation.

Chapter 5

Estimating communication
feasibility and cost at task

planning

Contents
5.1 Introduction . 102

5.2 Related work . 104

5.3 The involved components . 106

5.3.1 The Hierarchical Task Planner 107

5.3.2 The Semantic Knowledge Base 108

5.4 Integrating planners . 108

5.4.1 The representation of the communication action 110

5.4.2 Maintaining the right knowledge base, at the right time . . . 111

5.4.3 Reducing the number of updates 112

5.5 Results . 113

5.5.1 Prevent execution dead-end 113

5.5.2 Reduce the overall communication complexity 115

5.5.3 Compare with other communication means 115

5.6 Integration in a robotic system 116

In this chapter, we take advantage of the REG solver to link it with a symbolic
task planner, in order to take into account the feasibility and cost of referring
communication actions at the task planning level in the context of human-robot
interaction. With this method, we endow the task planner with the ability to avoid
deadlocked situations where referring is not feasible, to reduce the task overall
communication complexity, and to evaluate different communications strategies.

The contribution presented in this chapter is excerpted from our work, published
in the proceedings of the ICSR 2020 conference [Buisan 2020a]. In this manuscript,
the contribution is more detailed and discussed. In the continuity of the previ-
ous chapter, the presented work has been achieved in collaboration with Guilhem
Buisan. While his focus was on task planning, mine was on the link between the
Knowledge Base as an ontology and the task planner. In this thesis, we will deepen
this link and discuss possible improvements to the one initially presented.

102 CHAPTER 5. ESTIMATING COMMUNICATION AT TASK PLANNING

5.1 Introduction

It is well established that a key aspect of the success of collaborative tasks is based on
clear and fluent communication grounded in the context of the interaction. Focusing
on verbal communication, in the Natural Language Processing (NLP) research field
and by extension in the Human Robot Interaction (HRI) field, it has been divided
into two dual problems [Tellex 2020]. On one hand, the Natural Language Under-
standing (NLU) aims the robot to interpret and grounds human’s utterances with
regard to the current situation and to react according to it [Brawer 2018]. In another
hand, the Natural Language Generation (NLG) aims the robot to produce language.
It could either be to ask for help [Tellex 2014], to align knowledge [Devin 2016], or
to explain its decision to its partner [Roncone 2017].

In the previous chapter, we have introduced an algorithm able to generate the
content of a referring expression. Such contribution thus falls in the NLG problem.
Considering the REG as an action that can be performed by the robot means that
the robot could plan such communication in terms of when and what to commu-
nicate. While the “when” is directly handled by the task planner, the “what” in
terms of content is provided by the REG1. However, the REG does not only provide
the content but is also able to state if such communication is feasible or not and give
information about its cost. In the context of the REG, communication feasibility
is related to the ability to generate an unambiguous RE while the cost depends on
the number of relations to communicate. Because the REG algorithm work on a
knowledge base representing the current state of the environment, maintaining a
comparable representation of the environment for the future states of the task (as it
is done in symbolic task planning) would allow the robot to estimate the feasibility
and the cost of the verbal communication actions all along with a task.

With these two pieces of information, being the cost and the feasibility, a task
planner could compare verbal communication with one another, compare with other
means of communication, minimize the overall communication complexity, and pre-
vent some plan failures. This approach to estimating the communication during task
planning can be compared to the one proposed in [Lallement 2016]. In the latter,
motion actions were evaluated at task planning to estimate their feasibility, costs,
and indirect effects. With both approaches, the symbolic plans can be optimized
and can be more reliable in preventing execution failures and thus the need for
reparation.

To better understand the advantage to consider the communication at the task
planning level, consider the situations of Figure 5.1. The robot has to arrange RFID
tags on three areas on a table. The robot can identify them with their unique id but
being too small, it can not grasp them. On the contrary, the human partner can
not identify them uniquely but can grasp them. For this example, we also assume
that the robot cannot point to the tags. The robot must therefore communicate

1The REG does not determine the entity to refer to but only how it will be referred to. We
could say that the “what” is chosen by a higher decision-making component, while the “how” is
determined by the REG. To fit the usual definition we assume this linguistic simplification.

5.1. INTRODUCTION 103

Figure 5.1: A Human-Robot collaborative task with three colored areas and three
RFID tags (situation a). The robot has to explain to its human partner to put the
tag o1 in the black area and the tag o2 in the white area, to reach the situation
d. The objects identifiers’ are only known to the robot. If all the communications
of the task are not planned ahead, a deadlocked situation could appear if the robot
first asks to move the tag o1 before o2 (situation b).

the successive actions that the human will have to perform to go from the inial
configuration (5.1 a) to the goal configuration (5.1 d). Between both configurations,
only the tags o1 and o2 have to be moved. The tag o1 has to be moved from the
red area to the black and o2 from the black area to the white. While the tag o3 can
be referred to unambiguously thanks to its color, the two others can not. However,
they can be referred thanks to the area they are in (e.g. “the tag is the red area”).

If the content of the communications is only refined at execution, two equivalent
solutions can be planned (5.1 sequence a-b-d and a-c-d). At execution, the first
solution begins by asking the human to move o1 in the black area resulting in the
instruction “take the tag that is in the red area and put it in the black area”. In this
new situation where both red tags are now in the black area (Figure 5.1b). The
robot has no way to designate the tag o2 without ambiguity. Hence, the task is
blocked2. Estimating the communication feasibility and cost during the planning
process would result in the second possible solution. The robot first ask to move the
tag o2 (Figure 5.1 c) and then the tag o1 (Figure 5.1 d). If the robot could have
pointed, the deadlock of the first solution can be avoided with a pointing action
and nevertheless, thanks to the communication cost estimation, the least expensive
solution can be selected3.

2The robot could use spatial relations like right, left, or the closest to me. However, the
generation of such RE is not an easy job and the understanding of it neither. Even if the situation
is not really blocked, the required communication can be complex.

3Plenty of other solutions could exist but depend on the robot capability. Giving the two
instructions in the initial state before the human act solve also the problem for example. Nev-
ertheless, if the robot cannot compare these different solutions regarding its current capability,
non-desirable situations could still appear.

104 CHAPTER 5. ESTIMATING COMMUNICATION AT TASK PLANNING

The main contribution presented in this chapter is an approach to estimate
communication feasibility and cost at task planning level. It implies a fine
link between a planner and an ontology to estimate communication grounding
in the future estimated state of the environment.

First, we briefly review the literature concerning the task planning problem and
discuss the issues we aim to tackle. Then we, give an overview of the involved
components with a focus on the task planner while the others have been detailed
in the previous chapters. We then present how the fine integration of the compo-
nents allows us to take estimation the communication at task planning and discuss
possible improvement. We end this chapter with three case studies, to show how
this approach can be used to prevent deadlocked situations at execution, how it can
reduce the global communication complexity during a Human-Robot collaborative
task and how it can be used to balance between different communication means.

5.2 Related work: The need to plan communication

A significant amount of research has been dedicated to Human-Robot verbal com-
munication, especially to answer the questions of what and when to communi-
cate [Mavridis 2015]. A lot of early works address these questions at execution
time, with a fixed plan in which the robot inserts verbal communication after-
wards when needed. The communication can be used to share and negotiate
plans [Sebastiani 2017], to ask for or give specific information [Shah 2011], to repair
errors [Tellex 2014], align knowledge [Devin 2016], or increase trust [Schaefer 2017]

In the work [Devin 2016] the robot is provided with a shared plan for both
itself and its human partner. On top of that, they use a theory-of-mind enabled
framework to estimate, throughout the interaction, the partner’s mental state about
the current state of the environment and the performed actions. When the robot
performs an action while its partner performs another one in a different room,
the robot can detect a belief divergence due to the fact that the partner can not
know if the robot has acted or not4. When such divergence is detected, if it can
endanger the overall plan, leading the human to perform a wrong action, or block
the interaction, verbal communication can be inserted at execution time. It goes
the same if the human wait for an action already performed by the robot. The
content of the communication is determined with regard to the divergences that
can break the shared task.

However, in most cases, deciding communication at execution time is not enough
and more recent works deal with communication actions at the planning level. Niko-
laidis et al. [Nikolaidis 2018] identify two types of communication: commands, where
the robot ask for an action to be performed by its partner and state-conveying to
inform about its internal state. They use a Mixed Observability Markov Decision
Processes (MOMDP) to determine the need for communication and its type, return-

4This is the case when the action performed by the robot has no observable effects on the
environment like scanning object.

5.2. RELATED WORK 105

ing a policy capturing the probability of the human to take a given action based on
the performed communication. A comparable approach is presented by Roncone et
al. [Roncone 2017] with three types of verbal communication action: command to
provide instruction to the human to perform an action, ask to be informed if the
human current action is over, and inform to communicate an intent. These com-
munications are integrated with others actions into a Partially Observable Markov
Decision Process (POMDP) which returns a policy integrating communication ac-
tions. However, for both presented approaches, the communication complexity and
thus costs are not taken into account. Moreover, while for the first the content
is pre-generated, for the second it is not specified at the planning level. This can
cause non-achievable communication in some situations.

A similar approach is proposed by Unhelkar et al. [Unhelkar 2020] with more
communication types considered: command, ask, inform and answer. This time,
a communication cost is explicitly considered. However, the cost is related to the
when to communicate and not on the what. It is represented by a function penal-
izing temporally close communication actions. Concerning the content, it is in the
form of patterns including parameters replaced at execution time. For example, in
the sentence “Please make the next sandwich at -landmark-.” the sentence repre-
senting landmark will be resolved at execution. In their examples, every landmark
is assumed to be easily referred to the human, but this is not always the case. Using
the REG at task planning, our approach addresses two of the five challenges iden-
tified by Unhelkar et al.: “estimating benefit of communication” and “quantifying
cost of communication” [Unhelkar 2017].

Figure 5.2: Illustration from [Tellex 2014]. A robot engaged in assembling a table
requests help using natural language with targeted requests such as “Please hand
me the white table leg."

To better understand the difference of our approach regarding existing works,
we use the example depicted by Tellex et al. [Tellex 2014] and illustrated in Fig-
ure 5.2. In this situation, robots, following a precomputed plan, are assembling

106 CHAPTER 5. ESTIMATING COMMUNICATION AT TASK PLANNING

furniture. During the task, the robot assembling the white table encounter a failure
because it can not reach the needed table leg (on the other white table). When
such a failure occurs, the robot asks a human for help by referring to the object at
the origin of the failure. By doing so, the robot performs a plan reparation with
the help of the human and thanks to an object referring communication action.
However, if the leg has not been move since the beginning of the task, the non-
reachability of the leg could have been known by the robot during the planning
process. The non-reachability is not really of failure and such reparation could be
avoided. Considering the task as a shared task, the assembly of the leg could be
assigned to the human. Keeping the human in the role of a helper, verbal commu-
nication still could be planned either to group multiple communications reducing
the human disturbance or to perform it in order to make the communication easier.
The robot would have assembly the other white leg to only refer to the last one as
“the white leg” not leading to any ambiguity with the other ones.

5.3 The involved components

The type of communication actions we want to manage in this chapter is commands
using Referring Expression presented in the previous chapter. Typical commands
will be composed of a static part and a situation-dependent one like “Take X”, “Put

it in Y”, or “Take X and put it in Y”. The variable part depends on the state of
the situation when the communication is performed and must be solved by a REG.
The communication feasibility and cost thus depend on this variable part and by
extension of the moment where it is used.

As explained previously, the REG aims to be run on the human partner es-
timated knowledge base to ensure that all the concepts and relations used in the
generated RE are known to him. To be able to estimate communication about the
future states of the environment and keeping this principle to run on the estimated
KB, we need a symbolic task planner already suitable for HRI. It has to be able
to distinguish between the different agents involved in the task and to maintain an
independent representation of the environment for each of them.

To resolve a specific task, a planner does not necessarily need to be aware of all
the elements present in the current environment. It simply needs a representation
of the entity that can be used to solve the task. To solve the task of assembling
a table, it only needs the table elements for this particular one even if others are
present in the environment. Even if we could represent all the elements, it would
be counterproductive by not helping to solve the task but adding exploration com-
plexity. In the same way, it does not need a fine representation of these elements.
Even if the task is to create a cube tower with alternating colors, the color in-
formation is not necessarily useful. In the introduction example (Figure 5.1) the
color of the RFID tags do not matter for the task and the type of the objects are
also useless. Representing them as movable objects5 could be sufficient. Moreover,

5To not move the areas around the tags instead of moving the tags.

5.3. THE INVOLVED COMPONENTS 107

doing so makes the planner more generic as not being restricted to arrange RFID
tags. However, we saw that for the REG, the more the situation will be described
precisely (both in terms of types and relation), the more accurate the solution will
be. Furthermore, if another tag, which is not part of the task and thus not part of
the planner internal representation, is present on the table, it will also impact the
REG and thus the complexity and feasibility of the communication action.

This difference of representation requirement between the task planner and the
REG lead to the fact that the REG can not be performed on the planner internal
representation. To solve this issue, we have to endow the planner with the ability to
maintain a semantic KB that is used by the REG. Before going further in the way
to solve this challenge, we will first present the newly introduced component as a
task planner. We then give more detail about the knowledge base we will consider
for this application.

5.3.1 The Hierarchical Task Planner

To implement our approach, we just see that we need a task planner able to main-
tain an independent estimated knowledge base for each agent involved in the task.
We chose the Hierarchical Agent-based Task Planner (HATP)6 [Lallement 2014].
HATP extends the classical Hierarchical Task Network (HTN) planning by being
able to produce shared plans to reach a joint goal. A HATP planning domain
describes how to decompose tasks into subtasks down to atomic symbolic actions.
Both the robot and human feasible tasks and actions are described in the domain.
A context-dependent cost function is associated with each action.

During the task decomposition, HATP will explore several applicable sub-tasks
until the global task is totally refined into feasible actions, and will return the
minimal cost plan. HATP also supports social rules, allowing to balance the effort
of involved agents depending on human preferences and to penalize plans presenting
certain undesirable sequences of actions. We will not use these social rules in what
follows, but our approach stays compatible with them.

Moreover, during the exploration of the task tree, HATP will assign actions to
available agents, the robot or the human (when an action can be done by both). By
doing so, HATP can elaborate one action stream per agent, together with causality
and synchronization links. Besides, HATP domain syntax supports Multiple Values
State Variables (MVSV) [Guitton 2012] which is used to represent and reason about
each agent mental state. In this way, a given variable can have different values
depending on the represented agent. This allows to represent action preconditions
depending on the knowledge of the agent performing the action and also to represent
their effect on each agent mental state which can depend on the agent perspective.

Finally, the last argument which motivated our choice was the use of HATP in
previous work: the Geometrical Task Planning (GTP) [Gharbi 2015]. This work
aimed at refining into motion planning requests the symbolic motion actions ex-
plored by HATP during the task planning process. The motion planner would then

6Also called Human-Aware Task Planner

108 CHAPTER 5. ESTIMATING COMMUNICATION AT TASK PLANNING

returns the feasibility and the cost of the action, but was also able to inform HATP
about why the motion action would not be possible (e.g. the object with which col-
lision would occur). The task planner would then, backtrack to choose a different
action to remove the colliding object. This method also shows how to update the
geometrically planned environment to match the symbolic one to run the motion
planning phase. This approach also needs to update the geometrical planned world
to match the symbolic planned knowledge base before running the motion planning
phase. This work greatly inspired us, and our approach is similar at the difference
that we run a REG when a communication action is explored, instead of a motion
planning request on a symbolic motion task exploration.

5.3.2 The Semantic Knowledge Base

In the previous applications of this thesis, we could use only one knowledge base
representing both the robot’s and human’s knowledge about the environment. This
time, because the task planner explicitly manages an independent world state for
each agent, we will fully take advantage of Ontologenius to manage several ontology
instances at the time. We will thus note the robot’s semantic knowledge base KR

S

and, considering only one partner, the human estimated knowledge base KH
S . Both

will be kept up to date at the same frequency. This means that both represent
the knowledge of each agent at the current time. However, as explained in the
introduction of this section, we need to run the REG on a knowledge base that will
represent what the robot believes that its partner will know about the future states
of the environment. Let us consider the initial state of the introduction example
of Figure 5.1. The robot plans to remove the tag o1 from the table and wants to
estimate the feasibility of referring the tag o2 once the first action is performed.
It thus has to remove o1 from the table in the estimated knowledge base of the
human to evaluate this future communication. Nevertheless, it can not modify KH

S

as it represents the current estimated knowledge of its partner. Performing such
modifications could have side effects on the entire robotic architecture. To deal with
that we will use the Ontologenius feature that consists of the copy of an existing
ontology instance. As a reminder, a copied instance then become independent from
the original ontology. The instances representing a future possible mental state of a
human will be noted KHi

S . In this way, the REG can run on a KHi

S for the planning
process and on KH

S at execution.

5.4 Integrating task and communication planners

The general scheme of our approach to enable a symbolic task planner to estimate
the feasibility and cost of future communication is the one presented in Figure 5.3.
On the top of the figure, we have large, complete semantic knowledge bases rep-
resenting the robot knowledge and the other agents estimated knowledge. At the
bottom of the figure, we have the planning process with reduced knowledge bases
dedicated to task planning. As explained earlier, because the planning process will

5.4. INTEGRATING PLANNERS 109

need to represent the future estimate mental state of its partner without altering the
original estimation, we first perform a copy of the human estimated ontology. From
there, it becomes an independent knowledge base, capturing the human knowledge
about the environment at a given instant. We call this new ontology the human
planned ontology and denote it KH0

S . At the initialization of the planning process,
once the copy is performed, the planner extract from the robot ontology and the
human planned ontology the symbolic facts it needs. To do so, every entity type de-
clared in the planning domain are retrieved from the ontologies by their name, and
entities inheriting from these types in the ontologies are created in the planning
knowledge base. Then, each attribute (both static and dynamic) of every entity
declared in the domain has its value updated. If the attribute is a set, multiple
relations with the same name originating from the same entity and pointing to dif-
ferent ones can be found in the ontologies. If so, all the pointed entities are added
to the set.

Figure 5.3: A representation of the planning process with the estimation of future
human mental states to perform REG. The ontology representing estimated human
knowledge is first copied to plan it without altering the original one. The human
and robot planning symbolic facts are extracted from their respective ontologies.
During the HTN decomposition, for each verbal communication action encounter,
the planned human ontology is updated with the current explored state and the
REG is executed on it.

During the task network decomposition, the general workflow executed for each
communication action encountered consists of 1) updating the human planned on-
tology with the expected world state 2) identifying the objects involved in the
communication 3) executing the REG for each of these objects 4) calculating the
feasibility and the cost of the communication action according to the feasibility and

110 CHAPTER 5. ESTIMATING COMMUNICATION AT TASK PLANNING

the cost of each individual RE involved in the planned communication. Note that
if multiple objects have to be referred to in single communication (e.g. “give me X

and Y”), the human planned ontology is only updated once as the estimated state
in the same for both REG.

In this section, we explain how a communication action is represented in the
HTN and how the task planner can easily update the human planned ontology. We
will even go further with an unimplemented update solution that could reduce the
number of updates to be performed.

5.4.1 The representation of the communication action

To focus ourselves on communication actions, we have thus designed simple planning
problems where only the robot knows the goal of a joint task and issues command to
its human partner one at a time when the human has to do an action. Communica-
tions related to entities of the scene are thus needed in each step of the plan because
the human has no way to guess the actions he/she has to perform. Even if these
problems present major limitations regarding the when to communicate it allows
us to simply present our approach. However, the method is still applicable to more
general problems which need to estimate the what of communications and ensure
their pertinence in future states. Moreover, the presented method is compatible
with others, focused on the estimation of the when to communicate [Devin 2016],
[Unhelkar 2020].

In the HATP domain it is represented in the way that when an abstract or
a primitive task is only feasible by a human and requires to designate a specific
entity, a decomposition is added. In this decomposition, we specify that if the task
is assigned to a human, a referring communication action must be done before by
the robot in the direction of this human. This kind of decomposition is needed
because we place ourselves in cases where the human partner does not know the
global objectives of the task, and thus, all the instructions must be given by the
robot. With this approach, we consider that the human needs communication
from the robot to act, and does not plan by himself. In a more general case, the
communication action from the robot would only appear if humans do not have
the necessary information [Devin 2016]. An example of a plan is represented in
Figure 5.4.

Figure 5.4: An example of a plan generated by HATP where the robot instructs to
take an object then place it in an area. Green actions are performed by the human
while the bicolor actions involve both agents.

5.4. INTEGRATING PLANNERS 111

The communication action feasibility is then determined by both symbolic pre-
conditions (e.g. the human and the robot are in the same room) and REG result
(whether a solution is found or not). If the communication action is feasible, the
cost of the communication action is then computed as the sum of a fixed cost de-
pending on the type of communication and the REG solution cost. If multiple
entities would have to be referred in a single communication, the cost would be the
sum of each REG solution cost and the fixed cost.

5.4.2 Maintaining the right knowledge base, at the right time

We previously saw the need to keep an ontology updated with the estimated beliefs
at the time of the communication to run the REG on it and the necessity to create
the human planned ontology with a copy of the human estimated one to not create
side effect on the rest of the architecture.

Since maintaining this external representation can be a heavy process, we first
choose to only update it when a communication action has to be evaluated. How-
ever, having a single planned ontology, knowing the update to perform on it to
reflect the current explored state can be an intractable problem. The planner could
perform backtracking during the exploration in order to determine the modifica-
tions to perform to represent the state of the currently evaluated communication.
Consequently, the modifications would depend on the previous communication ac-
tion explored. Because the previous communication could come from a side de-
composition, the planner would have to either compare each relation between its
representation and the ontology or keep a trace of all the modifications between
two successive evaluations.

A first solution would be to create a copy of the planned ontology representing
the initial state in order to have one ontology for each communication evaluation, all
created from the initial state. Such a solution would reduce the planner complexity
but as the ontology represents a superset of the planner facts base, it would be
too time-consuming for the ontologies manager. For huge ontologies, analyzing the
modification between two updates would be faster than an entire copy.

To solve this problem we thus choose to use a versioning system on the ontology.
This versioning system is the one proposed by the software Ontologenius presented
in Chapter 27. We thus keep the first step that is to create the planned ontology
with a copy then perform a commit on it to mark this initial state. From there,
when a communication action is found, the planner goes back to the initial commit
and update the ontology with the difference from the initial state. However, HATP
is not adapted to keep such trace and it would require too many modifications in its
internal structure. To pass over this problem, the planner performs a first commit
to represent the initial state and extract the necessary knowledge from it. It then
removes all the dynamic relations from the ontology and performs a second commit.
It will represent a kind of pattern for each state involving a communication action.

7For the story of this thesis, this functionality was initially developed especially for this appli-
cation.

112 CHAPTER 5. ESTIMATING COMMUNICATION AT TASK PLANNING

For each of them, the planner just has to go back to the commit representing this
pattern and update all the dynamic relations with their values in the evaluated
state. An example of a commit-graph related to this solution is represented in
Figure 5.5. Each commit thus represents a KHi

S on which a REG can be performed.
The advantage here is that the knowledge backtracking is internally managed by
Ontologenius and thus optimized.

Figure 5.5: The commit-graph generated by Ontologenius for a plan with three
communication action evaluated. Each evaluation generates a specific commit rep-
resenting the state of the world at the moment of the communication.

5.4.3 Reducing the number of updates

A major limitation of the previous solutions is the need to update all the dynamic
relations even if few changes have been made between communications. An unim-
plemented but feasible solution would be to update the ontology for each explored
state during the planning process and create a commit for each of them. The ad-
vantage is that the backtracking has not to be managed by the task planner and
only the modified relations have to be updated in the ontology. A commit-graph
of such solution is represented in Figure 5.6. Assuming this graph to represent the
same task decomposition of the previous one, we see however that more commits
have to be performed even if fewer modifications are performed between the two.
For tasks with many communication actions, it could lead to a performance gain
but for tasks with less communication, it would require more updates than needed
as even decompositions without communication have to update the ontology.

From the planner point of view, it would just have to assign UID to each state
and created a commit using these UIDs. When backtracking, it would just have to
checkout the ontology with the UID of the state to explore.

5.5. RESULTS 113

Figure 5.6: The commit-graph generated by Ontologenius for a plan with three
communication action evaluated. Each explored state, with ou without communi-
cation action, generates a specific commit representing the state of the world at the
moment of the action.

5.5 Results

In this section, we present three case studies. The two first ones are run in simulation
with only minimalist setups. They respectively show that the estimation of the
communication content during the task planning 1) can prevent execution dead-
end and 2) can reduce the global communication complexity during the task. The
third case study is run on a PR2 robot. It shows that our method makes it possible
to compare different means of communication and to choose the most appropriate.
The integration in the robotic architecture is presented in the next section.

All three cases studies are based on a cube arrangement task in the same prin-
ciple of the RFID tag arrangement presented in the introduction. The human can
only distinguish the cubes by their color and the digit written on them (one or two)
if there is one. Three colored storage areas cover the entire surface of the table.
An object is thus always in one of the areas. The area in which the cube is, is an
additional piece of information usable for communication. The most complete RE
is of the kind of: “the green cube with the number 2 which is in the black area”. For
the three cases, only the robot knows the goal configuration but can not manipulate
the cubes. It thus has to guide the human in the arrangement task. The robot can
only point the cubes in the third case study. In the first two, it can only use verbal
communication.

5.5.1 Prevent execution dead-end

In this first case study, we consider the introduction example recall in Figure 5.7
with the initial state (left) and final state (right). The cube C1 has to be moved

114 CHAPTER 5. ESTIMATING COMMUNICATION AT TASK PLANNING

from the red area to the black area. The cube C2 has to be moved from the black
area to the white area. The cube C3 does not have to be moved.

Figure 5.7: The initial state (left) and final state (right) of a task where the robot
has to explain to the human partner how to move the cubes to complete the task.
In this situation, explaining C2 first then C1 avoids a dead-end.

Taking into account the cost and the feasibility of the communication, we found
with our method the plan of Listing 5.1. Cube C2 is moved first then cube C1.
Doing the inverse order, after moving C1, the two cubes would be in the black area
at the same time. Such a situation would cause a dead-end during the execution of
the plan or at least require complex communication. Actions prefixed with HR are
performed simultaneously by the robot and the human while the actions prefixed by
H are only performed by the human. As a comment of each action are the relations
to communicate.

HR - TellHumanToTake(C2) // (C2, isA, Cube), (C2, isIn, area_black),

// (area_black, isA, Area),

// (area_black, hasColor, black)

H - Take(C2)

HR - TellHumanToPlace(C2, area_white) // (area_white, isA, Area),

// (area_white, hasColor, white)

H - Place(C2, area_white)

HR - TellHumanToTake(C1) // (C1, isA, Cube), (C1, isIn, area_red),

// (area_red, isA, Area), (area_red, hasColor, red)

H - Take(C1)

HR - TellHumanToPlace(C1, area_black) // (area_black, isA, Area),

// (area_black, hasColor, black)

H - Place(C1, area_black)

Listing 5.1: The obtained plan for the first case study where cube C1 must be
moved from the red to the black area and cube C2 moved from the black to the
white area. The lines beginning with H represent the actions of the human and
the lines beginning with HR represent actions involving the human and the robot
(communication actions). In green are the REG results for each communication
action.

Considering once again the same initial state but with the goal to invert the
positions of the two cubes, if the communication cost and feasibility are not taken
into account during planning, both actions directly leading to the goal state (i.e.

cube C1 moved to the black area or cube C2 to the red area) will lead to a dead-
end at plan execution. To solve this situation, the task planner chooses to add a
supplementary action. It consists of putting cube C1 in the white area that then
leads to a problem similar to the previous one. This additional action avoids a dead-

5.5. RESULTS 115

end by making communication about cube C2 feasible. Another solution could have
been to move C2 in the white area first, leading once again to a situation comparable
to the previous one.

5.5.2 Reduce the overall communication complexity

Figure 5.8: The initial state (left) and final state (right) of a task where the robot
has to explain to the human partner how to move the cubes to complete the task.
In this situation, explaining C2 first then C3 is easier than the inverse.

In this second case study, we show how the estimation of communication can
be used to reduce the complexity of global communication. We consider the initial
state and the goal state represented in Figure 5.8. Only cubes C2 and C3 should be
moved. Our method finds the solution consisting of moving cube C2 first, then cube
C3. With this order, cube C2 is referred by three relations: its type (i.e. cube),
the number on it, and the colored area in which it is located. After that, cube C3
can also be referred to using only three relations being its type, its color and the
colored area in which it is located. Considering the reverse order, this would have
generated a more complex RE first for cube C3 with four relations: its type, its
color, the number on it and the colored area in which it is located. The solution
chosen by our method communicates a sum of six relations rather than seven with
the reverse order.

5.5.3 Compare with other communication means

In this last case study, we show how the estimation of verbal designation commu-
nication cost can be used to compare it with other communication means, here
pointing. Now, we consider twelve cubes. The initial state and the goal state are
represented in Figure 5.9. Such a number of similar objects leads to long expla-
nations to refer to certain cubes. Therefore, we aim the task planner to choose
another means of communication to refer to cubes too difficult to explain verbally.
The pointing action has a constant cost which is higher than simple verbal commu-
nication but lower than a complex one (with three or more relations to verbalize).
To exemplify the comparison with other communication means, the arrangement
order is predefined in this setup.

The generated plan is available in appendix B.2. The cubes C5 and C7 are
chosen to be pointed instead of verbalized. Indeed, in the world states where these
cubes need to be moved, verbal referring is considered to be too costly, thus a

116 CHAPTER 5. ESTIMATING COMMUNICATION AT TASK PLANNING

Figure 5.9: The initial state (left) and final state (right) of a task where the robot
has to explain to the human partner how to move the cubes to complete the task.
In this situation, some cubes are too complex to explain. Pointing them could help
in some cases.

pointing motion is preferred. For example, the cube C5 in the initial situation
needs a long and complex explanation that is: “take the black cube with the number

two which is in the black area”. Even in the cases where the pointing action takes
more execution time, it could require less cognitive load for the human partner and
so make the human action faster.

Here, we see another benefit of our approach, it allows the planner to balance
between the use of verbal communication actions, which can become complex in
some states (hard to predict without a task planner), and other communication
modalities. Here, balancing was done with other means of communication, but it
could also be done with other actions such as a pick and place by the robot. In the
task presented here, this has no advantage, because a pick and place by the robot
would be slower than an explanation or a pointing and is more likely to fail.

5.6 Integration in a robotic system

The third case study has been implemented and integrated on a PR2 robotic plat-
form. We extend the previously used architecture and integrate two new compo-
nents as illustrated in Figure 5.10. The execution of the third case can be found in
the video available at https://youtu.be/3YnGh_t-UpY.

The Symbolic task planner is HATP. It is requested by the supervision compo-
nent which is able to manage the execution of the generated shared plan. The task
planner can recover the initial state from the semantic knowledge base and update
an ontology instance to represent the human future estimated knowledge base. In
addition, it can request the generation of referring expression on a human planned
ontology.

The second newly integrated component is a motion planner and execution
component. For now, it only provides to the supervision a pointing service and
automatically chooses the arm to point with. However, it does not consider the
obstacles.

https://youtu.be/3YnGh_t-UpY

5.6. INTEGRATION IN A ROBOTIC SYSTEM 117

Figure 5.10: The architecture used to validate the method. The knowledge bases
are continuously kept up to date through the situation assessment. The task planner
can query the REG to estimate the feasibility and cost of future communications.

The geometrical situation assessment component has been changed from Ro-
bosherlock to a custom version of Toaster8. It is the successor of the software
SPARK [Milliez 2014]. It can take as inputs several perception modalities and
merge them in a coherent geometric representation. For our implementation, we
simply use AR-tags which give precise enough position and allow us to identify
objects with UIDs. The table and other static elements of the environment are
not perceived and provided as static elements. The three storage areas are neither
perceived and described as 3D virtual areas. Thanks to these areas, Toaster is able
to compute the fact isIn for each of the cubes. From there, Toaster has been linked
to Ontologenius to update the ontologies continuously. A representation of Toaster
geometric environment is represented in Figure 5.11.

A major limitation of the current situation assessment component is that it
can not perform perspective-taking. This means that even if it can represent the
human as a particular entity, it can not estimate the state of the world from
the human point of view9. It is not a problem for our application since all the

8https://github.com/sarthou/toaster
9We can compute if an object is in the field of view of the human but not working with a

118 CHAPTER 5. ESTIMATING COMMUNICATION AT TASK PLANNING

Figure 5.11: A visual representation in Rviz of the geometric state of the managed
by Toaster. While the cubes are perceived with tags, the other elements are static.

elements are visible for both agents and the entire interaction is performed around
the table. Toaster thus updates the robot and human ontologies with the same facts.

With this integration, the robot is thus able to analyse the current situation,
and then to generate a plan to choose the more adapted communication mean for
each cube to be moved. Consequently, at execution, at each step of the plan, the
robot either verbally explains the cube to take or point to it.

graphical engine, it can not take into account the occlusions.

Chapter 6

Extending the REG with
knowledge about past activities

Contents
6.1 Introduction . 120

6.2 Related work . 122

6.2.1 Interaction based Referring expression 122

6.2.2 HTN-based tasks representation in ontology 123

6.3 Structuring and gathering the knowledge 124

6.3.1 The three knowledge representations 124

6.3.2 The knowledge gathering scheme 126

6.3.3 Building the ontology . 128

6.4 REG algorithm modifications 132

6.5 Results . 134

6.5.1 One execution trace for five referring expressions 134

6.5.2 Impact of the extension on the performances 138

6.6 Discussion . 139

Taking advantage of the link previously made between the ontology, the human-
aware symbolic task planner, and the REG solver, we propose in this chapter a
new way to generate Referring Expression based on agents past shared experience.
Among this chapter, we first propose a representation of HTN as well as execution
trace using an ontology. Then we extend the UCS-based REG algorithm to con-
sider this new knowledge as a piece of information, usable to generate Referring
Expression.

The contribution presented in this chapter is excerpted from our work, published
in the proceedings of the IROS 2021 conference [Sarthou 2021b]. In this manuscript,
the contribution is more detailed and discussed. In the continuity of the two previ-
ous, the presented work has been achieved in collaboration with Guilhem Buisan.
He brought his expertise on HTNs to allow the best possible representation in an
ontology.

120 CHAPTER 6. REG WITH KNOWLEDGE ABOUT PAST ACTIVITIES

6.1 Introduction

When two or more agents perform a collaborative task, although they may have a
different perception of their shared environment, they can estimate the information
they share and can thus use it to communicate about entities they estimate to
be known by the others. This assumption is the one commonly used to develop
and evaluate Referring Expression Generation (REG) methods through the use of
caption of the environment[Duboue 2015]. These captions are images always taken
from the hearer point of view. The image, or the related knowledge representation,
is provided to the algorithm which has to generate a referring expression. This
assumption has also been used when the REG has been applied to Human Robot
Interaction (HRI) and can be compared to a robot spawning in an environment
and having to designate an object. However, this designation occurs during a joint
activity between a robot and a human partner meaning that the designated objects
may have been used, moved, or already talking about. All of this information about
the performed task can be seen as additional knowledge shared by the involved
agents. We can thus refer to the entities through these past actions in addition to
their attributes and relations with each other.

Figure 6.1: Referring to knife k2 in the current situation (t3) is impossible if the
robot is performing an action that does not allow it to see what is in front of the
human. Considering previous steps of the human’s task, the robot can refer to the
knife through the action to cut a tomato (t2) or to cut a cucumber (t1).

Consider the caption of the interaction represented in Figure 6.1 at the current
instant t3. The robot, in the back of the kitchen, has to ask the human for the
knife k2. Since the robot is performing another action of the joint task, it cannot
see what is in front of the human. Consequently, it cannot know and thus use
any spatial relations about k2 1. Therefore, the robot can only use k2 attributes

1We could also consider an object known by the robot but for which it does not have any

6.1. INTRODUCTION 121

(i.e. only its color) to generate an expression referring to it. Still considering only
the current instant t3, two other blue knives hold in the kitchen being k1 and k3.
The knife k1 is fixed to the wall in front of the robot meaning that it is already
accessible to it and not to the human. This knife can thus be considered as being
out of context and not leading to any ambiguity with k2. The other blue knife k3

remains ambiguous since it has no perceptible attribute that differs from the one
the robot has to refer to.

Until now, we have only considered the current situation t3 and not the human-
robot shared experience about the task they perform. At the previous instant t2

the human was cutting a tomato with the knife k2. It was manifest to the human
that the robot was observing the scene while he acted. This new information about
the performed action could thus be used by the robot to generate a reference to
the wanted knife in the current situation. A possible RE would be “the knife with

which you cut the tomato”.
Consider now the action a step before cutting the tomato at instant t1. The

human was cutting a cucumber with this same knife. The combination of these two
past actions can be seen as the task of preparing vegetables. The robot can thus
also use this knowledge to refer to the knife. A possible RE considering the totality
of the interaction would be “the knife with which you prepared the vegetables”. The
exploitation of shared knowledge about past activities in addition to the usual
attributes and properties could lead to the generation of richer RE that could be
easier to understand by the human partner. Besides, it allows to generate REs in
contexts where the previous method was not effective.

This chapter is an extension of our previous work [Buisan 2020b] presented in
Chapter 4. It has been integrated within a cost-based Hierarchical agent-Base
Task Planner to estimate the feasibility and cost of REs during the planning pro-
cess [Buisan 2020a], presented in Chapter 5. In this chapter we will thus aim to
create the inverse link, making the REG able to use execution traces resulting from
the execution of hierarchical plans generated by HATP. Like the previous chapters,
we only focus on the content determination of the REG problem but continue to
consider the need to have names in natural language to enable linguistic realization.

The main contribution of this chapter is an extension of the ontology-based
REG algorithm by considering past agents’ activities. A side contribution of
this chapter is a proposal of a formalism to represent Hierarchical Execution
Traces (executed HTN-based plans) in an ontology. Our previous contribution
considered cost functions based on the properties of the used relations to represent
the cognitive load required for a human to interpret the RE. In this extension, we
propose to add customizable cost functions based on time, to represent the cognitive
load required for a human to remember referred activities.

First, we review the literature concerning HTN representation in ontologies and
discuss REG-related works that not only consider caption of situations. Then, we

information regarding its new location and searching for it. It would have to refer to it, to ask for
the human help, without the possibility to use spatial relations.

122 CHAPTER 6. REG WITH KNOWLEDGE ABOUT PAST ACTIVITIES

describe the used knowledge bases and the usual structure of HTN and shared Hi-
erarchical Execution Trace (HET). We then give an overview of how the knowledge
bases should be updated and we describe the content of these updates in terms of
how a shared Hierarchical Execution Trace (HET) is represented in an ontology.
The extension of the algorithm is then detailed before ending with an efficiency
comparison regarding the original version (see Chapter 4) and a discussion around
five illustrative cases to show the solutions found by our algorithm depending on
the agent’s knowledge about past activities.

6.2 Related work

In the previous chapter about Referring Expression Generation we already gave
a good overview of the literature of the field. In this chapter, we thus briefly
discuss few works trying to consider an interaction. We then move on to a wider
part about the representation of HTN and execution traces in ontology to see the
kind of information our algorithm could use to generate a new kind of referring
expression.

6.2.1 Interaction based Referring expression

In all the previously presented works, the REG is only performed on the current
environment state. Williams in [Williams 2020] is the first to add a temporal aspect
by considering a sequence of REG. Like others before, he starts from the idea that
to designate an entity it is preferable to use properties known by the hearer and that
he/she will easily identify. Where other works, our included, represent that with
cost on properties that we assume to be representative for the hearer, Williams tries
to take advantage of an entire interaction. During such interaction, two partners
will generate RE. The presented algorithm thus try to re-use properties used in
previous descriptions made by the partner. In addition, he has implemented a
forgetting model based on decay or interfering to avoid the use of properties used
too long ago. This method has been tested on a “Guess Who”-style game. This
kind of game has the advantage that the used properties hold between the REG
and thus can be re-used. However, this assumption can no longer be maintained
in a real dynamic interaction where objects are manipulated and their properties
modified all along the interaction.

Early in the field, Oberlander and Dale already showed that generating refer-
ences to eventualities (i.e. to past activities or past events) can be done in the
same way as generating references to physical entities [Oberlander 1991]. However,
they never generate references to entities through the use of past actions. To close
this short tour, Wiriyathammabhum et al. in [Wiriyathammabhum 2019] use RE
involving past actions to identify a referred entity in videos but does not generate
them.

6.2. RELATED WORK 123

6.2.2 HTN-based tasks representation in ontology

In robotic and even more in HRI, storing semantic information about past ac-
tivities is needed to generate training data [Diab 2020] and learn from expe-
rience [Petit 2016], or to speak about what happened [Mealier 2017]. Some
approaches represent the past actions using only structured sets of SQL ta-
bles [Mealier 2017], but such a representation lacks semantic information both on
the involved entities (e.g. a robotic agent is a specific type of agent) and on the ac-
tions (e.g. a cut action is part of a salad preparation task). Since ontologies are fully
suitable to represent semantic information about entities and their relations, they
have been used to represent task planning knowledge. In [Sun 2019], a Robot Task
Planning Ontology (RTPO) is proposed but the model does not consider the rich
semantics involved by the hierarchical nature and intricacies of human-robot joint
activities. For example, they represent the fact that the action “ChargeAction” is
a “ChargeTask” while a more correct semantic would be that the “ChargeTask” is
composed of a “ChargeAction”. However, their representation does not allow such
a correct semantic representation.

To represent episodes, the EASE-CRC has put forward the concept of
narratively-enabled episodic memories(NEEMs) [Diab 2020]. Build from annotated
perception events and sensor data, they provide comprehensive logs of tasks per-
formed by the robot. The annotations are based on the terminology provided by
the Socio-physical Model of Activities(SOMA) [Beßler 2020]. It proposes a high-
level description of what is an event or an object in addition to the notion of plan.
However, a plan is just a succession of actions and this terminology thus does not
support the use of HET for the moment. A design pattern for the representation
of such NEEMs in ontology has been proposed in [Krieg-Brückner 2020]. However,
this pattern is too cumbersome for ontology developers and not practical to use in
side-fields for which the safety of data input is not mandatory for the moment.

HTN is a very popular way for representing, planning, and controlling au-
tonomous agents’ activities [Ghallab 2004, Ingrand 2017]. It is a tree representing
how to decompose abstract tasks into primitive tasks directly applicable by an agent
[Erol 1994]. They are widely used for robotic planning as they allow to efficiently
find complex plans by choosing between different task decompositions depending on
the world state. Unlike more classical state-space search-based planning algorithms
like STRIPS [Fikes 1971], HTN planning does not explore applicable actions until a
goal is reached, but rather tries to fully decompose an abstract task into applicable
primitive tasks. Moreover, HTN planning is often quicker as domains (HTN repre-
sentations) are provided with expert knowledge through the hierarchical structure
and task decomposition alternatives. In HRI scenarios, their usefulness is even more
apparent. In [Lallement 2014], an HTN is used to generate human-robot joint plans.
Furthermore, the hierarchical structure can be used to negotiate or communicate
about high-level plans when details about realisation do not matter [Milliez 2016].
As an example, for a robot equipped with a charge plug and solar panels, an HTN
may represent the abstract task of “ChargeTask” as being decomposed into either

124 CHAPTER 6. REG WITH KNOWLEDGE ABOUT PAST ACTIVITIES

“GoToChargeStation” primitive (or abstract) task or “GoOutside” task. An HTN
planner would then explore these alternatives and generate the most appropriate
plan depending on the current world state, here, the current weather.

To the best of our knowledge, few works exist on the representation of an
HTN and their Hierarchical Execution Trace (HET) in ontologies. Umbrico et al.
in [Umbrico 2020] describe the notion of complex tasks composed of simple tasks
but do not go further in the representation. In [Freitas 2014] only the planning
domain is represented. The major issue is that the ontology classes are used to de-
scribe the general HTN concepts (i.e. action, method) while the field concepts (e.g.
the cut task in our example) are described using the ontology individuals. Hence,
this representation does not make it possible to represent instantiations of abstract
or primitive tasks. This distinction between the domain as a high-level knowledge
and thus represented in the ontology classes and properties on one side, and the
HET representation as an instantiation of this domain on the other side is impor-
tant to us. It allows to both represent how a given task could be done and how it
has been done during execution. Our work is closer to BOWL [Ko 2011], an HTN
ontology for business process representation. Even if they have defined some spe-
cific relations for the Business-to-Business field, the general tasks, decomposition,
and tasks links representation are interesting. However, BOWL only represents the
HTN and not HETs, but does not preclude it.

6.3 Structuring and gathering the knowledge

In this section, we first present the main knowledge structures necessary to perform
the extended REG through shared knowledge about past Human-Robot collabora-
tive activity. We continue with an overview of the robotic architecture allowing us
to acquire this knowledge, to understand the knowledge to be acquired offline and
those to be acquired during the interaction. We end this section with the proposed
terminology to represent HTN and HETs in the ontology.

6.3.1 The three knowledge representations

Three knowledge representations are used and can be grouped into two categories:
the dynamic and static ones. The dynamic part is updated all along the course of
the interaction. It is defined as K = 〈KS , KE〉 with KS the semantic part already
presented (see Section 2.1.3) and KE the episodic part. The static knowledge base
represents the planning domain as a Hierarchical Task Network (HTN).

6.3.1.1 The Hierarchical Task Network

In the previous chapter, we saw that an HTN is a way of representing a task to be
planned, meaning to be fully refined and instantiated. In the present section, we
go deeper into the HTN and give a more formal definition based on [Erol 1994].

6.3. STRUCTURING AND GATHERING THE KNOWLEDGE 125

An HTN, noted Pl, is defined as a set of tasks N . A task n is represented by a
task name associated with a list of typed arguments. Taking the HTN illustrated
in Figure 6.2, the task cut has the arguments A, V, K, which are respectively an
agent, a vegetable, and a knife. The general term task can be refined into primitive
task (n ∈ Pt with Pt the set of primitive tasks) or abstract task (n ∈ At with
At the set of abstract tasks). A task is said to be primitive if it does not need
refinement meaning that it can directly be executed by the robot or by a higher-
level component2. An abstract task needs further decomposition and can not be
executed by the robot as it is. In Figure 6.2, PrepareSalad() is an abstract task
while cut(A,V,K) is a primitive task.

Then, we define the set of decompositions D. A decomposition is a pair (υ, N) ∈
D where υ ∈ At is an abstract task and N a set of tasks describing one way of
decomposing υ. In Figure 6.2, the abstract task PrepareVegetable(A,K,V) has two
decompositions d8 and d9. Moreover, among the tasks set of a decomposition (i.e.
the tasks used by the decomposition), can be enrich with a precedence order in
which the tasks have to be performed. For example, in Figure 6.2, the tasks peel(A,

V, K) and peel(A, V, K) are totally ordered under the decomposition d8.

Figure 6.2: The domain of the high-level task PrepareMeal. It is used by the
planner (HATP) to elaborate a Human-Robot shared plan through a context-based
decomposition and parameter instantiation process (which vegetable V, which knife
K, ...) including the selection of the agent A (Tony the human, or PR2 the robot)
to which the abstract tasks and/or the primitive tasks will be allocated.

Given an initial world state and an initial task to decompose, a planner such

2Primitive tasks usually have preconditions and effects. We do not describe them in this thesis
as they are not used.

126 CHAPTER 6. REG WITH KNOWLEDGE ABOUT PAST ACTIVITIES

as HATP elaborates a plan through successive decompositions from the initial task
and respecting the constraints issued by the initial world state. A resulting plan
is a sequence of primitive tasks. The planner thus tries to recursively select a
decomposition for each abstract task encountered until it reaches primitive tasks.
Besides, the planner has to ground every argument of the tasks into entities of A
(the ABox of the knowledge base KS) while respecting constraints regarding their
types.

6.3.1.2 The semantic and episodic knowledge bases

The semantic knowledge base KS is an ontology as described earlier. The episodic
knowledge base KE is a timeline also called datebase [Allen 1983]. It maintains
temporal reference for every fact that varies in time. Representing only the changes,
we can assume that a fact holds between two changes.

We defined it as a pair KE = ({〈r, τ〉}, {〈α, T 〉}). The first element is a set
of time-stamped relations like a classical datebase. The second element aims at
representing the performed tasks. It is a set of pairs with α an instance of a task
and T a temporal interval composed of two numerical values. The tasks defined
in KE are also represented as entities of KS (α ∈ A). Since they are semantically
represented in KS we can, inter alia, retrieve their types or arguments.

Figure 6.3: An example of timeline: On the upper part of the arrow are the tasks
performed with their intervals. On the lower part are the relation changes.

Since we address HRI applications, in the same way, it has been done previously
with the semantic knowledge base, we consider that the robot maintains a semantic
and episodic knowledge base per human it is interacting with (KHi

S and KHi
E) in

addition to its own (KR
S and KR

E). While the robot’s own knowledge base is its per-
sonal truth, the agents’ knowledge bases represent its estimation of the knowledge
of its human partners.

6.3.2 The knowledge gathering scheme

We give now an overview of how the three knowledge bases are interconnected and
how the semantic and episodic ones are updated. A minimal robotic architecture
allowing the gathering of the necessary information is represented in Figure 6.4.

6.3. STRUCTURING AND GATHERING THE KNOWLEDGE 127

Figure 6.4: A “minimal” robotic architecture (based on the architecture presented
in Figure 5.10) allowing to acquire and store the knowledge necessary to perform a
REG using the past human-robot activities. The dotted arrow represents an offline
acquisition, meaning knowledge acquired before powering on the robot. The other
arrows are online interactions between the components. The numbering represents
the execution order during the execution of a task. The robot knowledge bases (KR

S

and KR
E) and the estimated mental states of its human partners (KHi

S and KHi
E) are

updated permanently by the Situation Assessment component which tracks changes
in the environment and by the robot supervisor which controls robot planning and
execution activities and monitors humans actions.

First of all, the task decomposition description stored as an HTN is parsed
offline. We aim at extracting from it a semantic description of the tasks composing
it (abstracts and primitives), their parameters, and their hierarchical links through
the decompositions. All these descriptions are then stored into the ontology as
classes and properties (dotted arrow on Figure 6.4) in order to ground future traces
of execution.

Once the ontology is initialized with a common ground, containing the descrip-
tion of the planning domain, we can start the interaction. During the interaction,
the situation assessment updates the semantic KB of each agent with relations to
the entities of the environment. Upon receipt of these facts, the semantic knowledge
base temporally stamps them and stores them in the episodic knowledge base. It
can also infer new facts thanks to the reasoning mechanisms. These inferred facts
are also temporally stamped and stored in the episodic knowledge base3.

On request of the supervision module, the HTN planner takes its initial world
state from the ontologies of the involved agents (1A) and generates a shared plan
(1B). During the execution of the shared plan, the supervision describes the per-
formed tasks semantically (detailed in the following subsection) (2A) and stamps
them in the timeline (2B) with their respective start and end times. While it knows

3For now, only the performed tasks will be used to generate the REs but we still wanted to
have a more general scheme to understand the context in which we want to use it.

128 CHAPTER 6. REG WITH KNOWLEDGE ABOUT PAST ACTIVITIES

the tasks performed by the robot, it needs to gather data from the episodic knowl-
edge base of the human partner (2C), to monitor their tasks. Descriptions of the
tasks are not stored in the episodic knowledge bases as not having any temporal
mean. It would be nonsense to say that a task has a given parameter at a given
time. We first describe it as having parameters on one side (2A) and then we
describe when the task has been performed on the other side (2B).

Upon a REG request from the supervision, the REG component explores the
listener’s both semantic and episodic knowledge bases (3) and returns the generated
RE (4).

When the supervision component inserts the executed tasks in the semantic
knowledge base, it thus creates a Hierarchical Execution Trace (HET). The execu-
tion trace can differ from the initial plan since it can be the result of plan repair or
re-planning steps within the same global task achievement. The HET thus contains
the actions which have been performed and their link to the higher level of abstrac-
tion. No forgetting mechanism is considered since we focus on “short” interactions
(few hours) but adding one would avoid the knowledge bases to grow indefinitely
and could also be used to represent the human forgetting mechanism. This could
be for future work.

6.3.3 Building the ontology

The aim of the following representation is not for planning per se (since this is
done by the human-aware task planner) but rather to allow to store and manipu-
late a description of the execution of the human-robot shared plans together with
their hierarchical structure and the information provided by the situation assess-
ment component. What is provided is the hierarchical task decomposition together
with a semantic description of the entities used as tasks parameters, their proper-
ties, and relations to other entities in the environment. Moreover, the descriptions
presented below are automatically generated from a HATP domain and plan de-
scription [Lallement 2014].

6.3.3.1 HTN in ontology

An HTN represents the general knowledge about how to decompose high-level ab-
stract tasks into executable primitive tasks. Since it is a piece of general knowledge,
we represent it in the TBox and the RBox of the ontology. It allows instantiating
the executed plan as individuals of the ontology. As a reminder, the list of the sym-
bols used to describe an ontology, and thus used in this section, are summarized in
Table 2.1.

We first define the classes and properties common to any HTN representation.
As shown in Figure 6.5, the upper class in the TBox to describe an HTN is Ht-
nConcept from which the HtnDecomposition and HtnTask classes inherit.
The HtnTask class is then refined into HtnAbstractTask and HtnPrimitive-
Task. The RBox is composed of the properties hasDecomposition, hasSubtask,

6.3. STRUCTURING AND GATHERING THE KNOWLEDGE 129

Figure 6.5: The upper classes used to decribe an HTN.

hasParameter, and their inverse (e.g. (hasParameter, isParameterOf) ∈ Inv).
The property hasDecomposition links an abstract task to its decompositions. The
property hasSubtask links a decomposition to the tasks (primitive or abstract)
composing it. The property hasParameter links a task to any other entity.

To represent an HTN Pl we thus create in the ontology a new class t for each :

1. primitive task n such as n ∈ Pt⇔ t ∈ T ∧ (t, HtnPrimitiveTask) ∈ H.

2. abstract task υ such as υ ∈ At⇔ t ∈ T ∧ (t, HtnAbstractTask) ∈ H.

3. decomposition d such as d ∈ D ⇔ t ∈ T ∧ (t, HtnDecomposition) ∈ H.

For each decomposition d we describe the following relations using annotation
properties:

1. A decomposition comes from an abstract task such as υ ∈ N ⇔

(υ, hasDecomposition, d) ∈ E

2. A decompositions has sub-tasks such as d ∈ D ⇔ (d, hasSubtask, n) ∈ E.

To put it into practice, let us consider the abstract task PrepareVegetable of the
domain illustrated in Figure 6.2. The generated OWL representation of Listing 6.1
is first composed of the PrepareVegetable class inheriting from the HtnAbstractTask

concept. Through the use of the property hasDecomposition, we state that the task
has two decompositions being PVDecomp_A and PVDecomp_B. To refine these
decomposition, we then create the PrepareVegetableDecomp class inheriting from
the HtnDecomposition concept. It will be used to group all the decompositions
of the PrepareVegetable abstract task. Considering the first decomposition (d8 on
Figure 6.2), we create a new class for it. The class PVDecomp_A thus inherits
of PrepareVegetableDecomp. This decomposition is composed of two sub-tasks Cut

and Peel. However, to keep track of the fact that they have to be executed in
the context of a decomposition we refine them. We define Cut_PVDecomp_A and
Peel_PVDecomp_A respectively inheriting of the primitive tasks Cut and Peel.
With the property hasSubtask we then describe that PVDecomp_A has two sub-
tasks Cut_PVDecomp_A and Peel_PVDecomp_A.

130 CHAPTER 6. REG WITH KNOWLEDGE ABOUT PAST ACTIVITIES

Even if a task is used several times in the same HTN, it will be described only
once.

:PrepareVegetable rdf:type owl:Class ;

rdfs:subClassOf :HtnAbstractTask ;

:hasDecomposition :PVDecomp_A ;

:hasDecomposition :PVDecomp_B .

:PrepareVegetableDecomp rdf:type owl:Class ;

rdfs:subClassOf :HtnDecomposition .

:PVDecomp_A rdf:type owl:Class ;

rdfs:subClassOf :PrepareVegetableDecomp ;

:hasSubtask :Cut_PvDecomp_A ;

:hasSubtask :Peel_PvDecomp_A .

:Cut_PvDecomp_A rdf:type owl:Class ;

rdfs:subClassOf :Cut .

Listing 6.1: Description of the abstract task PrepareVegetable and one of its de-
compositions in the OWL language using the Turtle syntax.

In the latter description, we have only represented the hierarchy of the tasks.
We now need to specify the parameters of each task. They are represented using the
upper property hasParameter. Unlike the properties used to describe the hierarchy,
these are intended to be used to instantiate the executed tasks. Indeed, this property
is first refined into several ones, being hasParameter.i with i ∈ N. This level of
refinement describes the position of each parameter in the list of task arguments.
We thus have hasParameter.0 the property for the first parameter of an argument
list, hasParameter.1 the property for the second one, etc. These refinements are
independent of the translated HTN.

Figure 6.6: The properties hierarchy for the parameters of the Cut task.

Each of these properties is then refined and specified for every task of the HTN
to describe. This second specification aims at representing the parameters with
their name in the list of task parameters, their position in the parameters list, and
the type of entities they can be bounded to. Taking the example of the primitive
task Cut of Figure 6.2, the generated description is presented in Listing 6.2. The
parameter A of the Cut task is at position 0 of the list of parameters. We thus
define the property Cut_hasParameter.A as a refinement of the property hasPa-

rameter.0. The resulting hierarchy is illustrated on Figure 6.6 for the parameters of
the Cut task. The parameter Cut_hasParameter.A aims at representing the agent
performing the task. Consequently, the property has to link a Cut task to an agent.

6.3. STRUCTURING AND GATHERING THE KNOWLEDGE 131

We represent it respectively with the domain and the range of the property. The
same process is performed for every parameter of each task.

:Cut_hasParameter.A rdf:type owl:ObjectProperty ;

rdfs:subPropertyOf :hasParameter.0 ;

rdfs:domain :Cut ;

rdfs:range :Agent .

:Cut_hasParameter.V rdf:type owl:ObjectProperty ;

rdfs:subPropertyOf :hasParameter.1 ;

rdfs:domain :Cut ;

rdfs:range :Vegetable .

:Cut_hasParameter.K rdf:type owl:ObjectProperty ;

rdfs:subPropertyOf :hasParameter.2 ;

rdfs:domain :Cut ;

rdfs:range :Knife .

Listing 6.2: Description of the hasParameter property specifications for the param-
eters (resp. the agent performing the task, the cut vegetable, and the used knife)
of the Cut primitive task in the OWL language using the Turtle syntax.

6.3.3.2 HET in ontology

As explained with the gathering scheme, the HTN planner (here HATP) generates
a hierarchical plan for a given human-robot collaborative task that is then executed
by the robot and its human partner. Whenever a task (abstract or primitive) is
executed by the robot or its execution by the human is perceived, its description is
inserted in the agents’ KBs. These executed tasks are thus instances of tasks and
have to be grounded to the HTN described in the ontology.

:pv_3 rdf:type owl:NamedIndividual ;

rdf:type :PrepareVegetable ;

:hasDecomposition :decomp_pv_3 .

:decomp_pv_3 rdf:type owl:NamedIndividual ;

rdf:type :PVDecomp_A ;

:hasSubtask :peel_5 ;

:hasSubtask :cut_7 .

:cut_7 rdf:type owl:NamedIndividual ;

rdf:type :Cut_PVDecomp_A ;

:Cut_hasParameter.A :tony ;

:Cut_hasParameter.V :c1 ;

:Cut_hasParameter.K :k2 .

Listing 6.3: A partial description of the initiation of a decomposition of a Pre-
pareVegetable task and its primitive Cut task resulting from a plan and linked to
the description of the domain. The description is provided in the OWL language
using the Turtle syntax.

To explain how the task instances are described in the ontology, let us take the
example of an agent executing a decomposition of the abstract task PrepareVeg-

etable. A partial representation of this instance is represented in Listing 6.3 and
drawn on Figure 6.7.

132 CHAPTER 6. REG WITH KNOWLEDGE ABOUT PAST ACTIVITIES

The human partner has performed decomp_pv_3, an instance of the decompo-
sition PVDecomp_A being the first decomposition of the abstract task pv_3 that
is a PrepareVegetable abstract task. pv_3 is thus an instance of the class Pre-

pareVegetable and decomp_pv_3 an instance of the class PVDecomp_A. We use
the property hasDecomposition to state that pv_3 has been achieved with the de-
composition decomp_pv_3. Then, with the property hasSubtask, we describe that
decomp_pv_3 is composed of two instantiated sub-tasks peel_5 and cut_7.

The primitive task cut_7 is a Cut task but has been achieved in the context
of the first decomposition of the abstract task pv_3. The individual cut_7 thus
inherits of the class Cut_PVDecomp_A. Because the Cut task has three parameters,
they have to be instantiated. To do so, we use the refinements of the property
hasParameter. Here the task has been performed by the human tony who has cut
the cucumber c1 with the knife k2. The instance cut_7 is linked with tony through
the property Cut_hasParameter.A, with c1 the property Cut_hasParameter.V, and
with k2 the property Cut_hasParameter.K. All these instances correspond to the
range of each property being respectively an agent, a vegetable, and a knife. The
same process should be done for the primitive task peel_5. Moreover, the abstract
task PrepareVegetable having also three parameters, we should also link pv_3 with
its instantiated parameters.

Figure 6.7: A graphical representation of the instance of a decomposition of the
abstract task PrepareVegetable.

6.4 Modifying the REG algorithm to support the past
experiences

Now the Hierarchical Execution Traces are described in the ontology, we present
in this section how we have modified the original Uniform-Cost Seach (UCS) REG
algorithm to make it able to use this new knowledge.

The first assumption we made to use tasks in a REG solution is that for each

6.4. REG ALGORITHM MODIFICATIONS 133

task involved in the solution, all its parameters must be part of the solution. This
constraint to get all the parameters of a task is important for linguistic realization.
If this constraint were not satisfied, we could have results where even the agent
having performed the task would not be referred4.

Theorem 5 (The complete instantiation) For any task n appearing in a RE,

all its parameters p ∈ P |(p, hasParameter) ∈ Incl ∧ (p, n) ∈ Dom must exist in

the solution.

The GoalTest function which assesses if a node is a goal is modified according
to this constraint. In addition to test if M(xt) = at, it checks if every past tasks
used in T are assigned with all their parameters.

Now we can test if a goal node involves all the parameters of a task, we expand
the function finding new actions for the UCS algorithm. To not confuse the reader
between the actions of the UCS and the actions that a robot can perform, we will
rather use the term “addition” to speak about relations that can be added to a
candidate RE in order to find a solution. We thus adapt the CreateAddition

function to explore past tasks and their parameters (Alg. 7).

Algorithm 7 The modified CreateAddition function with the two newly intro-
duced sub-functions

function CreateAddition(node)
sucess, additions← TypingAdditions(node)
if sucess = True and additions 6= ∅ then return additions

additions← CompletionAdditions(node) ⊲ new introduced function
if additions 6= ∅ then return additions

additions← ActingAdditions(node) ⊲ new introduced function
additions← additions ∪ DifferentiationAdditions(node)

return additions

While the DifferentiationAdditions aims at exploring relations that differ
from other ambiguous entities, the ActingAdditions complements it by exploring
the tasks in which the ambiguous entities involved in the candidate RE are part
of. In the latter, for each variable xi of M having several substitutions, we search
in KS all relations involving the anonymous entity ai and an abtract or primitive
task. This means that we are looking at all the relations r = (ai, p, atask) ∈
R | (p, isParameterOf) ∈ Incl ∧ (atask, HtnTask) ∈ C.

The second added function, CompletionAdditions, aims at making the RE
valid. It ensures that any task used in a candidate RE has all its parameters
inserted in that RE. For every task atask used in a relation of T we search in R all
the relations having for subject atask and for predicate a property inheriting from
hasParameter. Among all these relations, the ones not present in T are added as
possible additions of the current node.

4This constraint could be an important limitation. It will be discussed in an exploratory work
in the next chapter.

134 CHAPTER 6. REG WITH KNOWLEDGE ABOUT PAST ACTIVITIES

Regarding the order in which the addition functions are performed, we always
start with the ones aiming to make the candidate RE valid. First, we try to type
any anonymous entity. If typing additions have been found or some should have
been found but were not, the function stops here. In the case where some have been
found, we thus type the anonymous entities. In the other cases, no additions will
be generated and the explored branch will be disused. If every anonymous entity
is already typed, we try to complete the tasks involved in the candidate RE. If
additions have to be done, we stop here and return them. By the way, this means
that at the next evaluation of this candidate RE, the newly introduced entity will
be typed first before continuing to complete the involved tasks. If every involved
task has all its parameters, then and only then, we try to find new actions based
on differences or on past tasks.

The cost of an addition representing a task (i.e. an addition involving the prop-
erty hasParameter or isParameterOf) is the cost of the task itself divided by the
number of parameters. We chose to process in this way to avoid zero-cost addition
and because every inserted parameter will already have a cost due to at least their
typing. Thanks to the episodic KB, the cost of these additions can also be weighted
depending on the amount of time passed since the task has been performed. This
meets the decay theory used in [Williams 2020] and makes a preference over the
more recent which could be easier to remember for the RE receiver. The determi-
nation of the properties’ costs and tasks’ costs will not be discussed here but we can
mention [Belke 2002] and [Koolen 2012] which use learning techniques to estimate
them.

Using the presented algorithm, a reference solution to refer to a knife through the
primitive task peel(A,V,K) of the HTN of Figure 6.2 could be : (?0 isA Knife), (?0

isParameterOf ?1), (?1 isA peel), (?1 hasParameter Tony), (?1 hasParameter ?2),

(?2 isA Cucumber). The variable ?0 represents the referred knife and the variable
?1 represents the task to which the knife is associated. It could be verbalized as
“The knife with which Tony has peeled the cucumber”.

6.5 Results

We present hereafter the solutions found by our algorithm on an illustrative example
and show how the tasks estimated to be known by the RE hearer can impact the
algorithm solution. Then, we discuss execution time measures to analyze the impact
of such an extension regarding the original version of our UCS-REG algorithm.

6.5.1 One execution trace for five referring expressions

Let us take activities of the introduction example where PR2 and Tony were prepar-
ing a meal (Figure 6.1). We introduce a third agent, the human Bob, as illustrated
in Figure 6.8. He is a spectator of the shared activity.

The shared activity is related to the HTN of Figure 6.2. With this HTN, a
planner has elaborated a shared hierarchical plan illustrated in Figure 6.9. The

6.5. RESULTS 135

Figure 6.8: A PR2 robot and its human partner Tony, preparing a meal. Bob, a
third agent, is looking at them.

primitive tasks are listed and organized according to a timeline. The abstract tasks
hierarchy is shown on the right. The planner has assigned the tasks to two agents:
a robot (PR2) and a human (Tony).

We define five cases depending on when Bob (the spectator) is in the kitchen
where PR2 and Tony are collaborating for the meal preparation. The colored
lines, next to the timeline, represent the moments where Bob is in the kitchen
for each case. For example, in case 1 (black line), Bob is only aware of the prim-
itive tasks Cut(tony,t2,k1) and CookSauce(pr2, t2). The primitive tasks the robot
estimated Bob to be aware of are thus added to his knowledge bases, both se-
mantic and episodic. Moreover, if an agent is aware of all the tasks (primitive or
abstract) composing an abstract task, he is also aware of the abstract task. In
the first case, Bob is thus aware of the abstract tasks PrepareVegetable(tony, t2,

k1),PrepareVegetableForSauce(tony, k1), CookSauce(pr2), and PrepareSauce().
In all five cases, the goal is for PR2 to refer to the knife k2 to Bob. We assume

that the communication about it occurs out of the kitchen. This means that no
spatial knowledge is available to generate the RE. We present hereafter the solutions
found for each of the cases and detail how they have been found.

Case 1: The algorithm first types k2 as being a Knife with the function
TypingAdditions. Since no task is involved for now in the candidate RE,

136 CHAPTER 6. REG WITH KNOWLEDGE ABOUT PAST ACTIVITIES

Figure 6.9: The hierarchical execution trace to prepare the meal and a trace
for another subsequent high-level task, organized according to a timeline. In the
current instant, PR2 is asking Bob, a second human, for knife k2. The five cases
are represented by five colors at the left of the tasks and correspond to tasks seen
by Bob, the human spectator. In case 1, Bob did not see any tasks involved in
the preparation of the salad but was present during the sauce preparation. In the
second case, he observed all the activities.

the CompletionAdditions does not find any additions. Then, because Bob
is not aware of any past task involving k2, the ActingAdditions does not
find addition either. Other relations, such as its color, can be added by the
DifferentiationAdditions but none allow to solve the ambiguity. As a result,
no solution can be found in this case.

Case 2: The TypingAdditions function first types k2. Then, the
CompletionAdditions function has nothing to complete. This time all the
tasks (primitive and abstract) performed by PR2 and Tony are known by
Bob. Among them, three primitive tasks and three abstract tasks involve
k2. The ActingAdditions function thus propose six additions of the form
(k2, isParameterOf, at) with at being the instances of the tasks. The
DifferentiationAdditions function has only one possible addition being the
color of k2. However, it does not help to solve the ambiguity and will give the same
solutions as the other candidate RE, with one more relation making it more costly
than the others at each step. In the five new nodes to explore involving tasks, the
tasks are not labelled and are thus typed. At the next loop, because every candidate
RE under exploration involves a task, the CompletionAdditions function adds
one new parameter for each using relation with the hasParameter property. Con-
sidering the addition of the agent having performed the tasks, they both have a label
and do not need to be typed. Because the abstract task PrepareVegetableForSalad

has only two parameters while the five others have three parameters, the node ex-
ploring it is found to be valid at this step while the others are not. The parameter of
the knife has been added by the relation (k2, isParameterOf, at) and the param-
eter of the agent has been added by the relation (at, hasParameter, tony). The
solution RE is: (?0 isA Knife), (?0 isParameterOf ?1), (?1 isA PrepareVegetable-

6.5. RESULTS 137

ForSalad), (?1 hasParameter tony). Matching it in the knowledge base gives only
one substitution for the variable ?0 being the target entity k2. The verbalization5

would be “the knife with which Tony prepared the salad vegetables”.

Case 3: In this situation, Bob is only aware of two primitive tasks involving k2

being cutting tasks and one abstract task being a PrepareVegetable. Because all
have three parameters, at the difference of the previous case, the third parameter of
each task is also explored and typed in a second time. At this step, all active nodes
are valid. Because all have the same number of parameters, their cost difference
depends on the time. The node with the lowest cost is the one with the more
recent task. It could be the second cut task of the abstract task of the vegetable
preparation. We could prefer the most precise one being the cut task. The solution
RE is: (?0 isA Knife), (?0 isParameterOf ?1), (?1 isA Cut), (?1 hasParameter

tony), (?1 hasParameter ?2), (?2 isA tomato). Only one substitution exists for
the variable ?0 being the target entity. The verbalization would be “the knife with

which Tony cut the tomato”.

Case 4: Previously, even if Tony had cut another tomato with another knife, it
did not lead to any ambiguity since it was estimated as unknown by Bob. This time,
Bob knows that Tony cut two different tomatoes with two knives so the previous
solution is not a goal node anymore since two substitutions exist for the variable
?0. The algorithm thus refers to the knife through the cut task on the cucumber
c1. The verbalization would be “the knife with which Tony cut the cucumber”.

Case 5: In this last case, the only task involving the knife k2 estimated to be
known by Bob is Alex cutting the tomato t1. However, Bob knew another cutting
task with the tomato t2 but with the knife k1 which leads to ambiguity. The
algorithm chose anyway the cut task as it is the only possibility. Despite this,
our algorithm is able to find a solution by specifying the diverging argument that
is the tomato. The tomato t1 being involved in the MixSalad abstract task, the
algorithm is able to use this second task to specify the argument of the first one.
The solution RE is: (?0 isA Knife), (?0 isParameterOf ?1), (?1 isA Cut), (?1

hasParameter tony), (?1 hasParameter ?2), (?2 isA tomato), (?2 isParameterOf

?3), (?3 isA MixSalad), (?3 hasParameter pr2), (?3 hasParameter ?4), (?4 isA

Cucumber). Matching it in the knowledge base gives only one substitution for the
variable ?0 being the target entity k2. The verbalization would be “the knife with

which Tony cut the tomato that I mixed with the cucumber”.
Over these five case studies, we saw that the algorithm is able to use either

primitive or abstract tasks, to consider the moment where the tasks have been
performed to choose the most appropriate one, and to use several tasks in a single
RE.

5The proposed verbalization is automatically generated as proof of usability but the algorithm
is not presented here.

138 CHAPTER 6. REG WITH KNOWLEDGE ABOUT PAST ACTIVITIES

6.5.2 Impact of the extension on the performances

With the previous results, we saw the kind of solution the algorithm can generate.
With this new test, we want to assess the impact of the proposed extension, in
terms of execution time, regarding the original version. To do so, we have cho-
sen the realistically-sized knowledge base (101 entities, 36 classes, 40 properties,
and 497 relations) used to evaluate the original version. For recall, it describes an
apartment with three rooms including several pieces of furniture (tables, shelves)
and objects (cups, boxes) linked through spatial relations (isAtLeftOf, isOn) and
attributes (hasColor, hasWeight). Both the original algorithm and its extended
version have been run over all the 77 entities inheriting from the “Object” class,
representing physical entities. The knowledge base is still managed using the On-
tologenius system and we do not pass by the ROS services to not be impacted by
the communication time in our measures.

On this ontology, not having tasks described in it, the extension has a negligible
impact. The average execution time is about 1.04ms for the original algorithm
versus 1.16ms for the extension. Even for the most complex case, we pass from
6.25ms to 6.86ms. This difference can be due to the search of tasks even if none is
present in the ontology. Indeed, for each encountered individual, the algorithm has
to perform a query to the ontology to check if tasks exist or not.

To estimate the impact when tasks are present in the ontology, we chose to
put ourselves in the worst case where tasks are described but can not be used to
find a solution. To create this worst case, we add two actions, each having three
parameters, to each object described in the apartment. Even if each action is unique
(an individual per action), all are of the same type and have the same entities as
parameters. In this way, the tasks will be explored but will lead to ambiguity,
creating only an overload for the extended algorithm. Consequently, the solutions
of both algorithms should be the same. The tasks description leads to an addition
of 144 entities to the ontology (the 144 tasks) and 432 relations (three parameters
per task). We estimated that such an amount of tasks could be the result of several
hours of interaction. With this new setup, the impact of the extension is much more
noticeable. For the most complex entity needing six relations in its solution, we pass
from 6.40ms to 70.57ms. We note that 75% of the entities are solved under 5.96ms
versus 1.32, 50% under 1.53ms versus 0.51ms, and 25% under 0.50ms versus 0.19ms.
In addition, we observe that the longer the RE is to compute with the original
version, the more noticeable the impact of the extension is. Moreover, because the
more relations is needed, the longer the RE is to compute, we find here a part
of the explanation. For each node coming from a difference addition (i.e. coming
from the function DifferentiationAdditions), two additions representing tasks
are proposed at the next step. We thus add two to the original branching factor,
having an exponential impact on the number of generated nodes and thus on the
execution time. However, in an HRI context, even the worst case is still acceptable
and will not spoil the interaction. Moreover, we have put ourselves in the worst
case where the added tasks can not be used to generate the RE. In more realistic

6.6. DISCUSSION 139

cases, we would have a diversity of tasks and their use in the REG may allow us to
reduce the solution length for the most complex cases and hence reduce the average
execution time.

6.6 Discussion

The contribution presented in this section allows the generation of a new kind of
Referring Expression but at the cost of a longer computational time and with the
constraint of a precise task description. Moreover, due to the need to use all the
parameters of a task, the HTN has to be designed with the goal to be used for
REG.

We can identify three major limitations of the current contribution:

• Because we consider the linguistic realization without any consideration of
the combination of parameters allowing the generation of a sentence, all the
parameters have to be used.

• Because the additions consist of the addition of a single relation at a time, all
the parameters can not be inserted in a single addition. The consequence is
an increase of the branching factor and thus of the execution time.

• Because the algorithm search for relations with precise properties in it,
the method can not be applied to any task description such as the
SOMA [Beßler 2020] one.

These limitations will be discussed in detail in the next chapter through a prelim-
inary work aiming to generalize the Referring Expression Generation that supports
the use of past shared tasks.

Chapter 7

Beyond binary relations in the
REG

Contents
7.1 Introduction . 142

7.2 Related work . 143

7.3 Through the use of compound relations 145

7.3.1 Defining a compound relation 146

7.3.2 A lightweight representation of the verbal link 147

7.3.3 A strategy to explore compound relations 148

7.4 REG with compound relations 152

7.4.1 Exploring the compound relations 152

7.4.2 Determining a referring expression validity 154

7.4.3 From tree to radix tree . 155

7.5 Results . 155

7.5.1 The actor playing James Bond 155

7.5.2 The description of past activities as compound relations . . . 157

7.5.3 Assessing compound relations impact on performance 159

A number of works trend to semantically represent and describe robots’ actions
and tasks using ontologies. However, each representation has its own specificities,
depending on the system it is used on and the exploitation it aims to enable. While
our description of past activities fits our needs and our task planner, having a REG
algorithm constrained by this latter is problematic. In this chapter we explore the
use of n-ary relation, a common, even not yet standard, way to represent complex
knowledge as actions. With the analysis of such a pattern, we present a novel REG
approach, supporting the use of past activities, but also any complex knowledge
represented through n-ary relations.

The contribution presented in this chapter is a preliminary work aiming to
consider the limitations encountered by the contribution of the previous chapter.
The proposed algorithm remains fully compatible with the previous one and hence
we directly compare their performance. While it has not been the subject of direct
experimentation on the robot, it should be usable as a drop-in replacement of the
previous one. This section deviates a little from the field of HRI to be more anchored

142 CHAPTER 7. BEYOND BINARY RELATIONS IN THE REG

in artificial intelligence. However, the ability to generate entity referencing in a more
generic way is paramount for a robot to interact with humans.

7.1 Introduction

Representing the whole complexity of the knowledge composing our world into a
machine-readable language is a central issue in artificial intelligence. Coming from
the Semantic Web, we saw that the use of an ontology through RDF-based languages
succeeded in establishing itself in the field of artificial intelligence and therefore
robotics. However, what is often viewed as a limitation of ontologies is its capa-
bility to only represent unary and binary relations. Binary relations such as “Sean

Connery has the British nationality” are described through the form of triplets
(sean_connery, hasNationality, british). Unary relations such as “Sean Connery is

an actor” can then be transformed into binary relations through the addition of
dedicated predicates (sean_connery, isA, Actor). However, the description of more
complex relations involving more than two entities is much more challenging using
this kind of representation.

Taking the example of Sean Connery1, if we want to refer to him2, we could state
that he is the actor playing the role of James Bond (sean_connery, hasPlayedRole,

james_bond). However, other actors played this role. We could also say that he
is the actor playing in the film Goldfinger (sean_connery, hasPlayedIn, goldfinger)

but once again others do. We could finally explain that he is the actor playing
the role of James Bond and playing in the film Gold Finger. However, limiting
us to the use of binary relations modify the exact information. A more accurate
description would be that he is the actor playing the role of James Bond in the
film Gold Finger. Here we see the necessity of relations involving more than two
entities. In our example, we need to link the three entities that are the actor
“Sean Connery”, the role “James Bond”, and the film “Gold Finger”. Together,
they describe a performance. Without being explicitly linked, these three pieces of
information would not represent the performance. Moreover, without these links,
we could give an explanation such as the actor playing the role of James Bond and
playing in the film Rising Sun. Both pieces of information are true but do not make
sense together.

To refer to an entity, being an object or an agent, such complex relations could
be useful but have to be managed carefully to keep the link between each binary
relation composing it. In the light of this consideration, we can observe that the
description of past agent tasks used in the previous chapter is based on the same
principle. Where we refer to Sean Connery through his role and the film he plays
in, we have described the knife through the vegetable it was used to cut and the
agent who used it. However, depending on the context of the conversation, it is

1In the case you do not know who is Sean Connery feel free to take another actor that you like
but you will have to adapt the entire example.

2Obviously we want to refer to him without his name since we consider a person having recog-
nized himself in the previous note.

7.2. RELATED WORK 143

not always necessary to use all the binary relations of such a complex relation. We
may need only one. Trying to list the actors having the honorific title of “Sir”, the
referring expression “The man having played James Bond” could be sufficient. In
the same way, to designate the knife, the sentence “The knife you cut with” could
also be sufficient in some context.

In this chapter, we will try to generalise the REG algorithm to deal with non-
binary relations and pass over the limitations of the previous chapter. The algo-
rithm has to be more generic and should no more have any apriori of concepts and
properties of the used ontology. First, we review the literature concerning the rep-
resentation of non-binary relations in ontology. Then, we define what we will call a
Compound Relation and how we can represent it. The modified algorithm is then
detailed before ending with an efficiency comparison regarding the original version
and the extended one.

7.2 Related work: A richer knowledge representation
with n-ary relations

A fundamental feature of relations is their arity. It is the number of individuals they
involve [Giunti 2019]. In this sense, unary relations involve only one entity while
binary relation involves two entities3. What interests us here is n-ary relations with
arity n > 2.

Well before being treated for ontology usage, that it is in RDF or OWL, sev-
eral approaches have been proposed in the field of Artificial Intelligence through
the use of semantic network4 [Brachman 1979, Sowa 2014]. Deliyanni and Kowal-
ski [Deliyanni 1979] were the first to explicitly treat the representation of n-ary
relations with arity n > 2. They propose a semantic network composed of an
element representing the relation itself. In this way, they have represented the as-
sertion “John gives the book to Mary” with five nodes and four arrows as illustrated
in Figure 7.1. The central node el allows linking the four elements of the assertion
using only binary relations. The approach is today know as relation reification
and has been used in many applications [Gangemi 2008, Welty 2006].

The general idea used in all the proposed approaches since Deliyanni is thus
the creation of a relation-class. From this class, we create an instance of it that
represents a specific n-ary relation. Then n binary relations are created to link the
n entities to the relation-class instance. For example, in Figure 7.1, the instance
of the relation-class is el and the n-ary relation is the set of the four relations el

is involved in. For a more global view of the different proposed patterns, you can
refer to the survey [Gangemi 2013].

For the use in an ontology, no standard pattern has been approved so far by the

3The entities involved in a relation do not have to be distinct. If the same entity is used twice
in the same relation the relation is still a binary relation

4Here we close the loop with the hypothesis by Collins and Quillian of the structure of the
semantic memory to be like a semantic network.

144 CHAPTER 7. BEYOND BINARY RELATIONS IN THE REG

Figure 7.1: The semantic network used to represent the assertion “John gives the
book to Mary”. The element el is used to represent the global event.

W3C. However, a Working Group Note has been proposed for the standardisation
of such relations in RDF and OWL [W3C 2006]. In the note, two patterns are
introduced with two variants for the first one.

Pattern 1 (without subject): The first pattern is based on the introduction of
a new class for relation and is illustrated by the relation reification in Figure 7.2.
The class Purchase is a relation-class and its instance purchase_1 is linked to the
entities of the relation. This pattern is said to be without subject as all the
relations are oriented from the relation-class instance to the other entities.

Figure 7.2: Ontological pattern 1 without subject proposed by the W3C Working
Group. The described assertion is “John buys ”I, robot“ from books.com for $15”.

Pattern 1 (with subject): A variation of the first pattern is illustrated in Fig-
ure 7.3. This variation is said to be with subject. The assertion described here
is “Christine has a tumor with high probability”. Here the subject of the relation
is Christine. It is represented in the pattern by a relation oriented from Christine
to the instance of the relation-class while the others are in the usual orientation.
Such variation can be reproduced with the previous one by defining inverse rela-
tions. Defining the relation isBuyer and isObject, either John or the book can be
the subject of the relation represented by purchase_1.

7.3. THROUGH THE USE OF COMPOUND RELATIONS 145

Figure 7.3: Ontological pattern 1 with subject proposed by the W3C Working
Group. The describe assertion is “Christine has tumor with high probability”.

Pattern 2: The second pattern aims at representing lists, which was not possible
with the first pattern. With the previous pattern, it is assumed that the properties
involved in the binary relation are only used once to identify uniquely each element
of the relation. Wanting to represent the assertion “United Airlines flight 3177
visits the following airports: LAX, DFW, and JFK” the first pattern would not
be adapted. With this other pattern, we create several instances of the relation-
class each linked to the next and to an entity of the n-ary relation as illustrated in
Figure 7.4. Because one of the binary relations go from an entity of the relation to
an instance of the relation-class, it is said to be with a subject. This second pattern
is dedicated to the description of lists.

Figure 7.4: Ontological pattern 2 with subject proposed by the W3C Working
Group. The describe assertion is “United Airlines flight 1377 visits the following
airports: LAX, DFW, and JFK”.

7.3 Through the use of compound relations

In the rest of the chapter, we consider the n-ary relations with arity n > 2 under the
name Compound Relation (CR) because of the composition of binary relations
to represent them on the principle of reification. The term relation will be used to
speak about binary relations. We first define what is a CR with respect to ontology

146 CHAPTER 7. BEYOND BINARY RELATIONS IN THE REG

definition and based on the first pattern without subject, proposed by the Working
Group Note. Then, we present an algorithm to pre-process Compound Relation
(CR)s with the objective to facilitate their use in the REG algorithm.

7.3.1 Defining a compound relation

To define the structure of a Compound Relation we take the example of the pur-
chase made by John on the website book.com to buy the book “I, Robot” at 15$,
illustrated in Figure 7.2. This statement is graphically represented in Figure 7.5a
and the underlying pattern in Figure 7.5b. To represent the compound relation, we
start by creating a virtual entity (the instance of the relation-class) that will be the
common link for all the relations involved in the compound relation. We call this
entity the Compound Entity (CE). It is the dotted entity on Figure 7.5, respec-
tively purchase_1 and ac. We consider as being part of the CR all the relations
for which the CE is the subject: (purchase_1, has_buyer, john).

Definition 7 (Compound Relation) For any ac being a Coumpound Entity, a

Coumpound Relation is defined by Rc = {ri | ri = (ac, pi, ai) ∈ R} meaning the set

of relations composing it.

Figure 7.5: The graphical representation of compound relations. The dotted
entity at the center of each representation is the so-called compound entity. The
outgoing edges are the properties involved in the compound relation. The entering
and faded edges are the corresponding inverse properties if any. The compound
relation a) describes the purchase made by John on the website book.com of the
book “I, Robot” at 15$. The compound relation b) is the underlying pattern of the
previous example.

Regarding the previous definition, because any entity of an ontology could be
considered as a CE, many sets of relations without a real link could be considered
as a CR. To solve it, we could define an upper class common to all the CE, meaning
the upper RelationClass. However, in the context of the REG, what better defines
a CR is that to speak about one of its involved entities using the CR, we have to use
other relation of the CR. In other words, to speak about Sean Connery using the role
of James Bond, we have to speak about “Gold Finger” rather than “Murder on the

7.3. THROUGH THE USE OF COMPOUND RELATIONS 147

Orient Express” because even if he played in both films, he played the said role only
in the first-mentioned film. Conversely, the relation representing his nationality can
be used independently to other relations. To represent this verbal link, Giunti et .al
[Giunti 2019] introduce a parametric pattern on top of n-ary relations (Compound
Relations). Their parametric pattern for the purchase example is the following :
“() bought () from () for ()”. While as humans we easily identify the place of each
entity in the pattern, it is a more complex task for machines. This choice of pattern
is explained by their complex representation where they assign a position to each
involved relation. Regardless of the representation complexity, this kind of pattern
raises two issues. First, the pattern describes the entire CR and does not aim to
describe one of the involved entity through the CR (e.g. “() who bought () from ()

for ()”). Second, the pattern necessarily involves all the relations composing the
CR, while in the context of the REG, we could only need a part of them (e.g. “()

who bought ()” if John is the only one who bought this book in the present context).

7.3.2 A lightweight representation of the verbal link

To represent the verbal link, we also choose to use parametric patterns, patterns
for short, defined as labels in the ontology. However, to know the position of
each binary relation among the place-holders, we choose to integrate into the pat-
terns the properties which can be used to form the relations composing the CR.
Considering the example of Figure 7.5, our patterns have the following form :
{?hasObject} bought on {hasSeller} by {hasBuyer}. In the following, we will
prefer the more generic patterns {?p4} bought on {p3} by {p1}.

Given a compound entity ac with the previous label, to generate a referring ex-
pression using it, the place-holder {p3} should be replaced by a referring expression
of an entity ai where ai is the object of a triple (ac, p3, ai). Because we assume
that a property can only appear once in a CR, we know that there is only one such
object ai. In our example, we have ai = a3 for the ac CE. In this way, without
predefined order, an algorithm can easily replace the place-holders by the RE of
the entities ai of the relations (ac, pi, ai) of the CR. With the example pattern, the
resulting sentence would be: “The book bought on book.com by John”.

Since we are in the context of REG, the CR will be used as a reference to one of
the entities involved in it. This specific entity is called the subject entity of the
CR. In our example pattern, the subject entity is a4, meaning the bought book. A
CR can thus have multiple labels (i.e. patterns) depending on the subject of the
pattern and the involved relations in the verbal link. With our example, we might
also want to refer to the website or the buyer. Moreover, if John purchased multiple
books on the given website, we might need to refer to the book’s price to refer to
the book.

For a subject entity to exist, an inverse property pi must exist in the way that
(pi, pi) ∈ Inv and ri = (ai, pi, ac) ∈ R. If ai is the subject entity, pi is thus the
subject property of the CR and is prefixed with a question mark in the pattern.
In the example of Figure 7.5, only a1 and a4 (resp. John and the book) can be

148 CHAPTER 7. BEYOND BINARY RELATIONS IN THE REG

subject of the CR. In other words, only these entities can be referred through the
use of this CR. Among all the labels available to speak about the CR, the usable
ones to speak about an entity are the ones for which the corresponding property
is the subject property (i.e. prefixed by a question mark in the patterns). This
choice to not consider the first in the pattern has been made to be adapted to any
language. Among the possible labels of Listing 7.1, the patterns L1 to L5 could
thus be used as a reference for a4 (the book in our example) while the patterns L6
and L7 could be used as a reference for a1 (John in our example).

L1 - {?p4} bought on {p3} at {p2}

L2 - {?p4} bought by {p1}

L3 - {?p4} bought on {p3} by {p1}

L4 - {?p4} bought at {p2} on {p3} by {p1}

L5 - {?p4} bought at {p2} by {p1}

L6 - {?p1} who bought {p4}

L7 - {?p1} who bought {p4} on {p3}

Listing 7.1: A part of the label set of the purchase compound relation.

The labels are not directly applied to the CE but to the class it inherits. This
means that all the entities inheriting from a class having at least one label of the
form of the previously introduced pattern, are CE. In a way, we define here a
relation-class but only through the use of labels.

Definition 8 (Compound Entity) Given a pattern ω, an entity ac is a Com-

pound Entity iff ∃t ∈ T |(ac, t) ∈ C ∧ ω ∈ Lt(t)

An advantage of this solution is that we do not define any new specific concepts
or properties in the ontology meaning that any pre-existing ontology can be updated
to be used in the REG process with CR only by adding labels, as n-ary relations
are already used.

7.3.3 A strategy to explore compound relations

To use Compound Relations in the generation of Referring Expressions, the REG
algorithm will have to explore each binary relation composing it. Moreover, to
create a valid RE, the algorithm will have to find a combination of binary relations
usable in one of the patterns of the CR. However, such a number of possibilities
to test with the original algorithm can engender combinatorial explosion. In a
graph exploration, an important parameter to avoid a combinatorial explosion is
the branching factor. For the REG problem, an advantage of CR is that once we
introduce a CR in the search algorithm we can directly know the relations involved
in it. In this sub-section, our goal is thus to analyze the labels in the way to define
the order in which the relations of the CR will be explored by the REG algorithm.
By doing so, we will reduce its branching factor and thus avoid any combinatorial
explosion of the REG algorithm.

7.3. THROUGH THE USE OF COMPOUND RELATIONS 149

7.3.3.1 A naive strategy to explore compound relations

The general strategy we want to adopt is to create a sub exploration tree, repre-
senting the exploration of a CR, that we will graft to the original REG exploration
tree. The resulting constraints we will see in the following, are that we have to
insert only one relation a the time (like the REG algorithm) and that the terminal
nodes of the sub-trees have to be verbalisable.

Suppose we want to refer to the entity a4 using the compound relation embodied
by the compound entity ac of Figure 7.5. This is made possible by the triplet
(ac, p4, a4) in the knowledge-base and its inverse (a4, p4, ac). Listing 7.1 presents
some alternative ways in which we can verbalise entities through the CR. In order
to refer to a4, we can only use the ones where p4 is the subject property. Thus the
labels L1 to L5 are the only ones that we can use. The subsets of the compound
relation used by labels L1 and L3 are illustrated in Figure 7.6.

Figure 7.6: The parts of the compound relation used in the label patterns L1 (a)
and L3 (b).

What interest us in these labels are the involved properties. Indeed, these
properties will inform us about the relations to explore. From the patterns in
Listing 7.1, we know that we can use label L1 to verbalize the triple set {(ac,p4,a4)

(ac,p3,a3) (ac,p2,a2)} and label L2 to verbalise the triple set {(ac,p4,a4) (ac,p1,a1)}.
On the other hand, other combinations of triplets involving ac cannot be used to
refer to a4. Therefore, we can see each label usable to refer a4 as a set of properties
and the collection of usable labels as a family of sets. In our example, the family
of sets over S is the collection:

F = {{p2 p3 p4}, {p1 p4}, {p1 p3 p4}, {p1 p2 p3 p4}, {p1 p2 p4}}

From there, our goal is thus to create a search-tree that will conduct the ex-
ploration of the different labels of a CR through the exploration of the properties
composing them. This search-tree has few constraints and optimisation criteria:

150 CHAPTER 7. BEYOND BINARY RELATIONS IN THE REG

1. The tree must be composed of a single root.

2. All the descendants of a node have a common prefix of the property associated
with that node. In this way, the search-tree is more precisely a trie, also called
prefix tree.

3. Walking through the tree from its root, we recompose all the subsets of the
family F .

4. The width of the tree must be as small as possible.

A naive solution not minimizing the width of the tree is represented in Fig-
ure 7.7a) for the purchase example. We consider the root p4 and create a branch
per label. The resulting width is five. In Figure 7.7b) we merge the node repre-
senting the same property at an equivalent level. It reduces the branching factor
for the beginning of the exploration by the global width is the same. Switching the
elements p2 and p3 for L4 and keeping the merging principle, we can see in Fig-
ure 7.7c) that the width of the trie can be reduced to four. An advanced algorithm
to build the graph could thus reduce the width of the trie.

Figure 7.7: Two naive trie representations of the family of subsets extracted from
properties involved in the label patterns. The trie a) considers the subject property
as the root of the tree and creates a branch for each label pattern respecting the
order of apparition of the properties. The trie b) takes the same construction rule
as the a) but merges the common children of each node. The trie c) is the same
principle of b) but the elements p2 and p3 have been switched for L4. While the
two first tries have a width of five, the last has a width of four.

7.3.3.2 Advanced strategy to explore compound relations

To find a strategy to create a trie minimizing the width, we first have to study the
characteristics of the family of sets. The first axiom that we can do on the subsets of
our family is that they are neither totally ordered, as we can explore their element
in any order, or partially ordered, as we can not compare their members. Therefore,
we cannot use the tools of the order theory such as the Hasse diagram. Taking a look
at mathematical approaches of tree-representation of set families [Bui-Xuan 2008],
we face the problem that our set family does not respect some essential properties.

7.3. THROUGH THE USE OF COMPOUND RELATIONS 151

For each pair (A, B) of sets of S, we can not ensure that one of the following rules
is true : A ∩B 6= ∅, A ∩B 6= A, or A ∩B 6= B. This means that we cannot ensure
that each pair of sets are either disjoint or related by containment. Wherefore, our
family F is not a laminar set family. Moreover, for each pair (A, B) of sets of S,
we can not ensure that their intersection is non-empty (A ∩ B 6= ∅), neither that
their differences are non-empty (A \B 6= ∅ and B \A 6= ∅). Wherefore, our family
F is not a cross-free or an overlap-free family but it does not mean that it is an
intersecting and crossing family.

To limit our problem, we do a first assumption. Because the subject property ps

is the one having introduced the CR, we can assume that this property has already
been selected among the others. Moreover, it will always be the common element
of all the sets of the family. We thus consider it as the root node of the exploration
tree and remove it from every set of the family S giving a new family:

S′ = {A | A = X \ ps, ∀X ⊆ S}

From there, we need to find the child nodes of the root in a way to minimize
their number and that every subset of S′ has at least one of their element attached
to one of the child nodes. This sub-problem is a specification of the Hitting Set
problem. It is defined as follows. Giving F = {S1, S2, ..., Sm} the collection of
subsets of S (i.e. Si ⊆ S,∀i) and a natural number k ∈ N, we want to know if
exists S′ ⊂ S where |S′| < k such that Si ∩ S′ 6= ∅, i = 1, 2, ..., m. In our case, we
are searching k as to be as small as possible. In some way, the Hitting Set problem
can be seen as a Set Covering problem, shown to be NP-complete [Karp 1972]. To
avoid any combinatorial explosions, we thus propose a greedy algorithm.

Given a node ni of the tree and its related family of set S, the quantity |{Sj ∈

S | xi ∈ Sj}| is the frequency of the element xi in S. Among the elements of
the universe of the current node n, we select xmax, the element with the highest
frequency and create a child node with it. The family related to this new node
is computed with the equation (7.1) and the family related to the current node is
updated with the equation (7.2). These steps are repeated while S is non-empty
to create all the children of the current node and this process is repeated for each
created child node until it is possible.

S′ = {Sj \ xmax, Sj ∩ {xmax} 6= ∅,∀Sj ∈ S} (7.1)

S ← {Sj , Sj ∩ {xmax} = ∅,∀Sj ∈ S} (7.2)

The tree resulting from this process is represented in Figure 7.8 for the purchase
example. In the root node with the property p4, the element with the highest
frequency is p1. We thus create a child node with this property and create its
family. Updating the family of the root node, the family only contains the set
{p2, p3}. Both having the same frequency, one is chosen over the other, here p3,

152 CHAPTER 7. BEYOND BINARY RELATIONS IN THE REG

and we create a new child node. After an update of the family of the root, it will be
empty and all the children of the root have been created. The process is repeated
for the two created nodes.

Figure 7.8: The trie with reduced width, representing all the labels of a compound
entity in terms of involved properties. Each node is a property to explore. Attached
to each node is the family of subsets that has to be decomposed. An empty set
in a family related to a node (in red) signified that one of the initial subsets is
fully represented in the trie, meaning that all the properties of a pattern will be
explored by reaching this node. The width of the trie is three against five for the
naive version.

In the following, such search-tree will be referred to as a Compound Tree (CT).
Taking a part of it (i.e. taking one of its nodes as a local root) gives a sub-CT.

7.4 REG with compound relations

Thanks to the CE labels analysis, we have created a search-tree to lead the explo-
ration of CR in the REG algorithm. In this section, we present the modification
we made to use CR in the REG algorithm. The core of the algorithm based on the
Uniform Cost Search algorithm is unchanged and is recalled in Algorithm 8.

7.4.1 Exploring the compound relations

At the difference of the tasks descriptions of the previous chapter, the current
algorithm can not have any prior knowledge about the relations leading to the use
of CR. A CR can only be discovered if a relation introduces a CE. However, an entity
can be said to be a CE only thanks to the labels of one of its upper class. With
regard to this information, we cannot have any function dedicated to the addition
of CR and each newly introduced entity in a candidate RE has to be tested to assess
if it is a CE or not.

The analysis of the labels of entities and their usable classes (i.e. their upper
classes having labels) is a process already existing in the REG algorithm. It is
performed by the function TypingAdditions of Algorithm 5. It initially aims at
satisfying the naming need constraint (theorem 1). With some modifications, the
TypingAdditions will be used to detect any newly introduced CE by testing if the

7.4. REG WITH COMPOUND RELATIONS 153

Algorithm 8 Uniform-Cost Search algorithm for Referring Expression Generation
function UCS_REG(problem)

node← a node with RE = create-initial-re(problem.context), cost = 0
frontier ← a priority queue of nodes ordered by their cost
frontier ← INSERT(node, frontier)
explored← an empty set
loop

if empty(frontier) then
return failure

node← pop(frontier)
if GoalTest(problem, ToQuery(node)) then

return SOLUTION(node)

add node.RE to explored
for all addition in CreateAddition(node) do

child← CreateChild(node, addition)
if child.RE is not in explored or frontier then

frontier ← INSERT(child, frontier)

labels of the usable classes are in the form of a pattern. If they are, it returns the
detected CE. To do so, the additions are now composed of a relation to be added
and a CE if one has been found.

Once CEs have been detected, we have to create a Compound Tree (CT) for each
one in order to lead the REG search process. To each node of the REG algorithm,
in addition to the candidate RE and its associated cost, we introduce a map of CTs.
This map links a CE involved in the candidate RE related to the node to its CT
or one of its sub-CT. The management of these trees is done by the CreateChild

that has been modified (see Algorithm 9). If the addition introduces a new CE, we
create its related CT5. Otherwise, with the function getSubTrees we test if the
new relation corresponds to one of the branches of one of the CTs of the parent
node. If it is, we take the sub-CT corresponding to the relation. Taking the entity
ac as introduced CE through the relation (a4, p4, ac), the CT of Figure 7.8 is first

Algorithm 9 Child node function modified to use compound relations.
function CreateChild(addition, parent)

return a node with
RE = parent.RE ∪ addition.relation
cost = parent.cost + C(addition.relation)
if addition.CE then

CTs ← INSERT(CreateTree(addition.CE), parent.CTs)
else

CTs ← getSubTrees(addition.relation, parent.CTs)

5For performance gain, all created CT can be stored in a collection of CT in order to compute
them only once even if the same CE is introduced in two distinct branches of the UCS.

154 CHAPTER 7. BEYOND BINARY RELATIONS IN THE REG

created. If in a second step the relation (ac, p1, a1) is inserted, CreateChild would
take the sub-CT having p1 as root.

At this stage, we detect the introduction of CR and manage the
CTs. The CreateAddition can now use the CTs to propose new ad-
ditions. As describe with Algorithm 10, we keep the two functions
TypingAdditions and DifferentiationAdditions. We introduce a new func-
tion CompoundAdditions aiming to complete the CR having been started. For
each CT of the node, it proposes the relation of the form (ac, pi, ai) ∈ R such that
the properties pi are the branches of the root of the CT related to ac. With the CT
of Figure 7.8, the CompoundAdditions function would generate two additions
(ac, p3, a3) and (ac, p1, a1).

Algorithm 10 The CreateAddition function modified to use compound rela-
tions.

function CreateAddition(node)
success, additions← TypingAdditions(node)
if success = True and additions 6= ∅ then return additions

additions← CompoundAdditions(node) ⊲ new introduced function
additions← additions ∪ DifferentiationAdditions(node)

return additions

7.4.2 Determining a referring expression validity

Going back to the original definition of the REG problem, a RE is valid if the
naming need is satisfied (theorem 1), all the introduced variables can be intantiated
(theorem 2), and the variable representing the target entity can only be bound to
the target entity (theorem 3) for a minimal validity.

For the compound relations, their validity criterion is that we can use one of
their labels to speak about them. In other words, taking all the relations involving
a given CE, we must be able to rebuild one of its family’s sets. Each of its CR thus
has to be complete (see theorem 6).

Theorem 6 (The CR completion) A CR of family S is said to be complete iff

given its CE ac we can create, from the set of relations T representing a candidate

RE, a set v = {pi | (ac, pi, ai) ∈ T ∨ (ai, pi, ac) ∈ T } such that v ⊂ S.

From a technical point of view, such a constraint can be hard to compute for
each node to be tested. However, during the creation of a CT, this information can
already be known. During the CT creation, each time a child node is created with
an empty set as family of sets, this means that a label of the CR is represented in
its entirety at this node. In Figure 7.8, the completed labels are represented by the
red arrows. We can thus store this information in the CT nodes. Because during
the REG search process we cut down these trees taking each time a sub-CT, we
just have to test if each current root of the CTs of the node to test can represent

7.5. RESULTS 155

a label or not. If all of them can, the candidate RE of the current node is valid
regarding the CR completion.

7.4.3 From tree to radix tree

A limitation identified from the previous chapter was the addition of a single relation
at each step while we can know that the candidate RE will not be valid because
of the completion constraint. With the present method using multiple labels not
involving all the relations, the limitation has been partially solved. In addition,
thanks to the CT, the branching factor is limited and even if an addition does not
lead to a valid RE, it will be used for several labels. However, in some cases, this
limitation still appears. Considering the Compound Tree of Figure 7.8, starting
from the root node p4, we can go to the nodes p3 and p1. While the node p1 creates
a complete CR and makes a step toward another complete CR, the node p3 does
not. It makes a step toward the single label L1 but does not complete it.

To solve this issue, we can use the radix tree structure, also called compact
prefix tree. It consists of merging each node that is the only child with its parent if
the parent node does not represent a valid label. In the example of Figure 7.8, the
node with the property p2 could thus be merged with its parent p3.

The major consequence of such modification is that the additions have no more
to represent a single relation but a set of relations. Even if it makes the additions
comparison harder to compute it reduces the overall branching factor. Keeping our
example, if we add at once the relation involving p2 and p3 and that both introduce
an anonymous entity, this means that at the next step the TypingAdditions

function could type both in one step. Where previously these additions would
require four steps, and thus branching at each, with this solution it only requires
two.

7.5 Results

In this section, we present some results of the REG with compound relations. We
start with the introduction example of Sean Connery’s performance. Then we give
performance measures using the setup of the previous chapter in order to assess the
impact of the proposed modifications.

7.5.1 The actor playing James Bond

For this simple test, we describe actor performance using the pattern of Figure 7.9.
Both the actor and the film can be used as a subject of the CR thanks to the
presence of inverse properties. The set of labels attached to the Performance class
is listed in Listing 7.2. Three are available to describe the actor and two (equivalent)
for the film.

156 CHAPTER 7. BEYOND BINARY RELATIONS IN THE REG

Figure 7.9: The compound relation pattern used to describe a performance of an
actor with a role and a film.

L1 - {?perfHasActor} who played {perfHasRole} in {perfHasFilm}

L2 - {?perfHasActor} who played {perfHasRole}

L3 - {?perfHasActor} who played in {perfHasFilm}

L4 - {?perfHasFilm} in which {perfHasActor} play {perfHasRole}

L5 - {?perfHasFilm} in which {perfHasRole} is played by {perfHasActor}

Listing 7.2: The set of labels usable to describe the performance compound relation.

We first create an ontology describing two performances. The performance
perf_sean link the actor sean_connery with the role of james_bond and the film
gold_finger. The second is perf_craig with daniel_craig in the role of james_bond

and in the film casino_royale. The individuals representing the films and the roles
have labels while the others do not. Running our algorithm on this ontology we get
the result:

(?0, isA, Actor),

(?0, isActorOfPerf, ?1),

(?1, isA, Performance),

(?1, perfHasFilm, gold_finger)

Matching it in the ontology, the variable ?0 matchs sean_connery and the
variable ?1 matchs the performance perf_sean. Adding the performance perf_gert

linking the actor gert_frobe with the role of auric_finger and the film gold_finger

the previous solution is no more valid. Running the algorithm on the new ontology,
we get the result:

(?0, isA, Actor),

(?0, isActorOfPerf, ?1),

(?1, isA, Performance),

(?1, perfHasFilm, gold_finger),

(?1, perfHasRole, james_bond)

7.5. RESULTS 157

With this simple example we see that with a single compound relation, the
algorithm is able to find a solution by selecting the necessary information in it
depending on the situation, while keeping the link between each of them.

7.5.2 The description of past activities as compound relations

From now, we see that Compound Relation can be used to represent complex knowl-
edge with various entities linked together. Considering now the representation of an
agent’s past activities, presented in the previous chapter, such a complex knowledge
could thus be represented using CRs. Figure 6.7 represented a part of an ABox of
an instance of a decomposition of the abstract task PrepareVegetable. Focusing on
the primitive task Cut and its instance cut_7, we can observe that the underly-
ing pattern already was a CR. The graphical representation of this description is
reported in Figure 7.10.

Figure 7.10: The underlined Compound Relation pattern used to describe a past
activity. The entity cut_7 can thus be considered as a Compound Entity.

At the light of the presentation of the CR, we see that the entity cut_7 is the
Compound Entity of the Compound Relation and that the class Cut is a relation
class. Moreover, due to the presence of the inverse property isParameterOf, common
to all the used properties, the three involved entities could be used as a subject
entity. The only element to add to the previous representation is the labels, in the
form of patterns. For the cut task, the proposed labels are listed in Listing 7.3.
Among these labels, we see that for all the possible subject entities, two labels are
available, involving one or two additional entities.

L1 - {?Cut_hasParameter.A} who cut {Cut_hasParameter.V}

L2 - {?Cut_hasParameter.A} who cut {Cut_hasParameter.V}

with {Cut_hasParameter.K}

L3 - {?Cut_hasParameter.V} cut by {Cut_hasParameter.A}

L4 - {?Cut_hasParameter.V} cut by {Cut_hasParameter.A}

with {Cut_hasParameter.K}

L5 - {?Cut_hasParameter.K} with which {Cut_hasParameter.A} cut

L6 - {?Cut_hasParameter.K} with which {Cut_hasParameter.A} cut

{Cut_hasParameter.V}

Listing 7.3: The set of labels usable to describe the compound relation representing
an instance of a cut primitive task.

158 CHAPTER 7. BEYOND BINARY RELATIONS IN THE REG

To assess the utility to consider the past activities representation as Compound
Relation, we take again the execution trace of Figure 6.9 and propose three new
cases. The trace and the new cases are illustrated in Figure 7.11. As a reminder,
the plan was executed by two agents, Tony, a human, and PR2, a robot. A third
agent, Bob, saw part of the execution. Each case corresponds to a set of tasks, seen
and thus known by Bob. The goal here is still to refer to the knife k2. The usable
labels are thus L5 and L6, both referring to the knife used in the task.

Figure 7.11: The hierarchical execution trace to prepare the meal and a trace
for another subsequent high-level task, organized according to a timeline. In the
current instant, PR2 is asking Bob, a second human, for knife k2. The three cases
are represented by three colors at the left of the tasks and correspond to tasks seen
by Bob, the human spectator.

Case 1: Bob only saw two tasks involving the knife k2. Both are cut tasks but on
different vegetables. The algorithm can try to use the label L5, being shorter than
L6. However, both tasks have been achieved by Tony. Consequently, the algorithm
selects a RE using L6. The solution RE is: (?0 isA Knife), (?0 isParameterOf ?1),

(?1 isA Cut), (?1 Cut_hasParameter.A tony), (?1 Cut_hasParameter.V ?2), (?2

isA tomato). The algorithm not based on CR, would have given the same solution.
The only difference is in its form. Here, the triplets representing the parameter use
the properties really used to describe the CR, where the previous algorithm would
have used the more abstract property hasParameter.

Case 2: In the second case, Bob only saw two tasks involving the knife k2. This
time, it is two different tasks as one is a cutting task while the other is a peeling
task. In this situation, the algorithm can use the label L5 and provide the solution:
(?0 isA Knife), (?0 isParameterOf ?1), (?1 isA Cut), (?1 Cut_hasParameter.A

tony). We note that the cut vegetable is not present in the solution since it does
not provide discriminative information. Bob saw Tony cut only a cucumber so
specifying the vegetable would be useless. The algorithm not based on CR would
have provided all the parameters, even if some are useless. The CR-based algorithm
is thus able to find shorter RE when the current situation allows it.

7.5. RESULTS 159

Case 3: In the third case, Bob saw three tasks. Two of them are cutting tasks
while the other is a peeling task. Even if one of these tasks is different from the oth-
ers, for the previous algorithm all of them involved three parameters. Consequently,
they would have had all the same cost. The selection would have been based on the
time, selecting the most recent one. For the CR-based algorithm, the two cutting
tasks need all of their parameters to be referred to but the peeling task can be used
without reference to the peeled vegetable. Using the latter task allows to generate
a shorter RE. Considering the peel task as having the same kind of labels than the
cut task, the final solution RE is: (?0 isA Knife), (?0 isParameterOf ?1), (?1 isA

Peel), (?1 Peel_hasParameter.A tony).
Over these three cases, we saw the CR-based algorithm is suitable to be used

with descriptions of past activities. The advantage of this algorithm regarding the
previously made is the form of the generated RE with the use of precise properties,
and the ability to generate shorter RE in some situations. The most important
point is that the algorithm is less dependant on the knowledge representation. It
does not need a priori information about the properties of the representation. By
simply adding labels to the existing representation, the current algorithm can be
used with other task representations.

Finally, even if we will not illustrate it, the use of CR to represent past activities
could allow us to be restricted by the information provided by a task planned.
Taking the example of the cut task, it is performed on a support, a work plan.
Even if this piece of information is not necessarily provided by a task planner,
when the task is performed, the work plan on which the task is performed can be
perceived by the robot. This additional information could be used to generate RE.
To support this new information, we could add a label L7:

{?Cut_hasParameter.K} with which {Cut_hasParameter.A} cut on
{TaskHasPlace}

With this new label, when a relation involving the property TaskHasPlace exists,
it would be explored and when it does not exist it would simply be discarded. This
means that we can add additional and optional information to any CR, and thus
task representation.

7.5.3 Assessing compound relations impact on performance

Since the presented algorithm is able to manage the past tasks description, we
present a comparison in terms of execution time with both the original algorithm
and the one using past tasks. To do so, we take the Knowledge Base of the previous
chapter (see Chapter 6) containing two tasks descriptions per entity inheriting from
the Object class. To be used with compound relations, we add a label to each class
representing a task. The label involves the three parameters of the task. In this way,
we reproduce the constraint to use all the parameters and at the same time take
advantage of the radix-tree optimisations. The knowledge base is still managed

160 CHAPTER 7. BEYOND BINARY RELATIONS IN THE REG

using the Ontologenius system and not passing by the ROS services to not be
impacted by the communication time in our measures.

Figure 7.12: Comparison of the three algorithms regarding the percentage of
successfully referred entities over time using a logarithmic timescale.

The original algorithm has been run without the possibility to use relations
toward task since it is not designed for this use. Its performance is our point of
comparison as we expect all algorithms to find the same solutions. For the recall,
the described tasks are designed in such a way to not help in the RE generation and
but ourselves in the worst case. The measures of the percentage of entities referred
over time for all three algorithms are represented in Figure 7.12 and reported on
appendix B.3.

With this setup, the current version performs slightly better than the previous
one with an average resolution time of 4.17ms versus 5.53ms. It is however more
than the original version having an average resolution time of 1.08ms. This
difference must be tempered by the exploration of CRs that the original one does
not do. While the majority of the entities are referred in a comparable time with
the previous version, we can still note that the more complex entity requiring six
relations is now solved in 45.71ms versus 70.57ms previously.

Here we have shown that the exploration of CR has an impact, even if being
acceptable with regards to HRI applications. However, the major advantage of this
solution is that in case no CRs are described in the KB, no extra exploration is
needed. This is a difference with the previous solution (see Chapter 6) where even
if no tasks were described, the algorithm was trying to find some at each step. This
means that, unlike the previous solution, if no CRs are described in the KB, the
current solution has the same performance as the original version.

Chapter 8

A robot in the mall: The
MuMMER project

Contents
8.1 Introduction . 162

8.2 Related work . 162

8.3 Learning from exploratory studies 163

8.4 The deliberative architecture 164

8.4.1 Environment representation 165

8.4.2 Perceiving the partner . 168

8.4.3 Managing the robot resources 168

8.4.4 Describing the route to follow 170

8.4.5 Planning a shared visual perspective 170

8.4.6 Navigating close to human 173

8.4.7 Executing and controlling the task 173

8.5 Embody architecture in a physical robot 174

8.5.1 Pepper in Ideapark . 174

8.5.2 Pepper “in the wild” . 175

Algorithms, representations, or pieces of software allow to study and exhibit
precise features for robotic applications. It is however through their integration into
a more global system and their application to a realistic task that we can assess their
usefulness, their limits, and their possible extensions. In this chapter, we present
the MuMMER project, aiming to develop a robot guide in a mall, and the resulting
robotic architecture. We show how the semantic Knowledge Base (KB) and the
route description contribution have been integrated and used by other components.

This chapter is a sum-up of an article submitted to the User Modeling and User-
Adapted Interaction (UMUAI) Journal. This work has been achieved in collabo-
ration with Amandine Mayima, Guilhem Buisan, Phani-Teja Singamaneni, Yoan
Sallami, Kathleen Belhassein, and Jules Waldhart. In this chapter, we first give an
overview of the European H2020 Project MultiModal Mall Entertainment Robot
(MuMMER)1, in the context of which the contribution of Chapter 3 was made.
We then present the components developed by the LAAS-RIS team with a focus

1http://mummer-project.eu/

http://mummer-project.eu/

162 CHAPTER 8. A ROBOT IN THE MALL: THE MUMMER PROJECT

on the components in which I participated as well as their integration in a robotic
architecture.

8.1 Introduction

In large scale indoor environments, like museums, shopping malls, or airports, the
presence of large interactive screens, maps, or signs underline the importance of pro-
viding information on itineraries. However, reading such maps can be challenging
and some information can be missing like the location of the shops selling a given
product. To bring such new information and help people to find their itinerary in
large indoor environments such as shopping malls, robots can be used.

To study this challenge and the underlined Human-Robot Interaction require-
ment, in the context of the European H2020 Project MuMMER [Foster 2016], we
have developed and deployed a social service robot in one of the largest malls of
Finland, Ideapark in the city of Lemp̀‘á’alä. The resulting robot was able to chat

with customers and guide them. The chatting has been brought by a partner of the

project [Papaioannou 2018]. The contribution of the LAAS-RIS team, and thus the

focus of this chapter, was on the direction-giving task.

With a mall having approximately 1.2 kilometers of pedestrian streets and more

than 150 shops, having a robot accompanying customers would be time-consuming.

Taking inspiration from the mall employees, we chose to verbally describe the route

while grounding it with pointing gestures. The robot can however move a few

meters if needed. The output of this project is a complete robot architecture that

integrates a number of components. Each of them makes use of various models and

decisional algorithms, all integrating explicitly human models.

First, we provide background information about robot guides and discuss how

the human partner has been considered. Then, we present the human-human ex-

ploratory studies used to identify the required abilities for a guide robot. We then

present the developed architecture and its components. We end this chapter with

integration on a real robotic system with some details on its deployment “into the

wild”.

8.2 Related work

A number of contributions have proposed robot guides, from the first museum guides

[Burgard 1999, Siegwart 2003, Clodic 2006] to more recent robot guides in large

areas [Bauer 2009, Triebel 2016]. A recent example is presented in [Chen 2017].

The developed robot is able to accompany the customer to its destination, then to

point at it. Another robot presented in [Gross 2009] can help the customer to find

specific products among all the shops of a mall. Most of these works are focused on

the navigation aspect of the task. It requires environment mapping, localisation,

and social navigation to take into account the presence of many humans.

Where previous contributions were mostly focused on navigation, others have

8.3. LEARNING FROM EXPLORATORY STUDIES 163

investigated the direction-giving task, meaning the fact to not accompany the cus-
tomer but to describe the route to the goal. For example, [Cassell 2007] describes an
embodied conversational agent giving route directions using deictic gestures. Within
the Robovie project, the ATR-IRC laboratories have developed a robot providing
route description through the use of utterances and gestures, and have highlighted
the importance of their timing [Okuno 2009]. Kanda et al. in [Kanda 2009] and
[Kanda 2010] have divided the direction giving into two steps. First, the robot
points toward the direction to take, then it explains the full route. In addition, the
robot can give recommendations for restaurants and shops. Finally, [Satake 2015b]
showed a complete architecture of an information-providing robot able to move
around a square in a mall. It embedded a map, an ontology, a speech recognition
system, a dialog manager, a localization module, and a people tracker. As in their
previous works, the robot verbalized utterances and used deictic gestures to give
route directions. Numerous other contributions can be found but, only a few of
them propose full architectures for an autonomous direction-providing robot, the
most complete one being the Robovie robot presented above.

To the best of our knowledge, no system tackles the guiding-task by reasoning
about the shared perspective. We mean that if the robot has to point a landmark
not visible by the human at its current position, we want the robot to pro-actively
propose to the human a pertinent placement. This is one of the basic bricks of our
system and it is strongly linked to the key principles of Joint Action which involve
the ability to establish and monitor joint attention [Pacherie 2012].

8.3 Learning from exploratory studies

To lead to robot abilities design and implementation, two human-human exploratory
studies were conducted in collaboration with VTT Technical Research Centre of
Finland. In addition to the current literature, it allows us to enrich our knowledge
with effective route descriptions in the robot deployment environment.

The first pilot study consisted of a human guide providing route information.
It consisted of one participant asking for shop directions to a guide working at the
mall information booth. The analysis focused on gestures used to give guidance, the
positions of the two protagonists in relation to the target shop and their interlocutor,
and the gazes alternation. [Belhassein 2017] gave the first indications to consider
resulting from this pilot study. Among these results, we can note a preference
over the ipsilateral hand to the visual field of the target. This study also provides
numbers of dialogue transcriptions use to study how guides effectively provide route
descriptions and give examples of description.

A second exploratory study was then carried out to focus on more complex
situations. Among them, we can note situations with two customers requesting di-
rections simultaneously, a customer requesting for two shops at the time, or someone
interrupting an ongoing interaction. Once again the formations formed by the guide,
the customer, and the landmark were analyzed. An example of such a formation

164 CHAPTER 8. A ROBOT IN THE MALL: THE MUMMER PROJECT

Figure 8.1: Picture from the second Human-Human study [Belhassein 2017]. Here,
the guide is giving the route description to reach a given shop by pointing at it.
The formation formed by the guide, the customer, and the target was analyzed.

seen during the study can be seen in Figure 8.1. The full results can be found
in [Heikkilä 2018] and [Heikkilä 2019]. Among these results, the study has shown
that the guide usually points to the location of the target first and in a second step
explains and points the different stages of the route.

8.4 The deliberative architecture

In this section, we present the robotic architecture developed to handle the
direction-giving task. This architecture relates to Beliefs, Desires, Intentions (BDI)
architectures. As explain by [Wooldridge 1999], such a kind of architecture is pri-
marily focused on practical reasoning, meaning the process of deciding step by step
which action to perform to reach a goal.

Figure 8.2 represents the architecture, its components, and their interconnec-
tions. Communication between components relies on ROS. In this chapter, we
only present the components developed by the LAAS-RIS team, represented by the
colored blocks on the architecture. First, we present the two knowledge represen-
tations in the form of geometric and semantic representations. Next, we introduce
the components related to the sensorimotor layer. It is the situation assessment
and the physical resource manager. Then, we present the components related to
the deliberative layer. They are the Human-Aware Navigation, the SVP (Shared
Visual Perspective) planner, the Route Handler, and finally, the one linking all the
components, the Supervision. The Route Handler, part of the deliberative layer,
having been presented in detail in Chapter 3, will not be detailed in this chapter.

8.4. THE DELIBERATIVE ARCHITECTURE 165

Figure 8.2: The general architecture developed for the robot guide. The compo-
nents presented in this chapter are the colored blocks. The red components with
the symbol * are the ones on which I participate. The visual perception and dia-
logue components have been respectively developed by IDIAP and HWU and are
described by [Foster 2019]. Naoqi is a Softbank Robotics software.

8.4.1 Environment representation

For a service robot providing directions to people, we need information to under-
stand humans’ needs, information to compute the route to the goal, and information
to compute the visibility of both agents to plan the pointing position. To under-
stand the needs of a human wanted to be guided, we need information about the
type of stores and the sold items. To provide so, [Satake 2015a, Satake 2015b] used
an ontology. To compute the route to the final destination, [Matsumoto 2012] or
[Okuno 2009] used a topological map. Each node of the graph is related to a 2D
position of the environment. To estimate the human visibility of elements anywhere
in the environment, [Matsumoto 2012] used a simplified 3D model where shops are
represented by 3D polygons. In our implementation, we only used two types of
representation of the environment: a geometric and a semantic.

Since the final deployment of the robot was in a Finland mall, we have built a
mockup mall in our lab for development purposes. By mockup, we mean that shops
signs have been displayed in the laboratory to create configuration similar to the
real mall. The representations describe hereafter have thus been created both for
the real mall and the mockup one.

8.4.1.1 Geometric representation

The geometric representation is used to compute the visibility of elements of the en-
vironment from different positions needed for the pointing of landmarks. However,
because the robot does not accompany the person to the final destination and there-

166 CHAPTER 8. A ROBOT IN THE MALL: THE MUMMER PROJECT

fore does not move much, the possible visibility of the two agents is limited to their
immediate environment. For this reason and due to the large scale of the Finland
mall, we chose to geometrically describe only the subpart of the global environment
that could be visible from the interaction area. For the rest of the environment,
we represented the shops with 3D points only. These points are enough to point in
the right direction. The resulting geometrical representation is a three-dimensional
mesh model, as shown in Figure 8.3 for the mockup mall and in Figure 8.4 for the
real one. We have represented in the 3D model all the elements that could hinder
visibility, such as poles or panels. In this way, we can precisely emulate human
visibility. The model was created from the architectural plans first and then refined
with measurements in the mall.

Figure 8.3: The 3D mesh model of the mockup mall at laboratory. The red
square represent the interaction area as a square of 4 meters per 4 meters. Signs
representing the shops have been place all around the environment.

Figure 8.4: The 3D mesh model of the real mall in Finland. The entire mall having
a size of 528.6 meters per 247.5 meters on two levels, we have only modelled the
part which can be visible from the interaction area. It results in a model of 150
meters per 69 meters.

8.4. THE DELIBERATIVE ARCHITECTURE 167

In order for the pointing planner to compute the visibility of the landmarks used
for the route description, stairs, escalators, elevators, and store signs are represented
each by a single mesh while the rest of the building is a unique 3D mesh. This means
that a store is said to be visible if we can see its sign, which we think to be the
most relevant element to see to recognize a shop.

The 3D model is also used to generate a navigation map, constraining the robot
to move in the interaction area while avoiding obstacles in it.

8.4.1.2 Semantic representation

The environment semantic representation is oriented toward communication and
human navigation in a mall. It makes use of the terms, affordances and actions
that are needed to walk around in the mall. It represents the needed human-
robot common ground knowledge and is used by the robot to perform dialog acts
concerning shop names and categories a well as the types of products sold.

This representation takes the form of an ontology. It uses the Semantic Spatial
Representation (SSR) (see Chapter 3) to describe the environment topology. The
notion of place is then extended to represent information about the stores. It allows
to define and refine the shared goal of the task by understanding the client’s desired
destination. We thus represented in it the stores’ types, their names, and the items
they sell with a richer semantic. It allows for example to represent that both soda
and hamburgers are sold in fast-foods, which are types of restaurants, but that
soda can also be found in a supermarket. Thanks to Ontologenius, the names of
concepts are defined in different languages and with synonyms for these names. It
allows the robot to adapt itself to the human partner language. Moreover, with
Ontologenius, we endow the robot with the ability to recognize a set of names in
natural language but that it will be prevented to use. For example, the robot can
understand a reference to “bank” when a human says it but only refers to it as
“ATM” or “cash machine” since there was no bank office in the mall. In addition,
we used the provided fuzzy matching service to help the supervision system to
handle ambiguities coming from the speech-to-text component. For example, if
the language recognition module catches the word “Juwelsport”, we can match it
with “Juvesport”, being a shop in the mall. This set of functionalities around the
concepts’ names facilitates the understanding of the partner’s need and thus helps
at increasing the quality of interaction.

An example of the final semantic knowledge represented in the ontology for a
given shop is presented in Figure 8.5 for a clothes shop called “H&M”. We find in
this description the identifier of the shop, the category to which each store belongs,
the topological information, the items sold and the names and synonyms in natural
language and that for different languages.

168 CHAPTER 8. A ROBOT IN THE MALL: THE MUMMER PROJECT

Figure 8.5: Representation of the knowledge about the shop H&M stored in the
ontology. We have both purely semantic knowledge and topological information.

8.4.2 Perceiving the partner

The situation assessment component is based on the Underworld frame-
work [Lemaignan 2018]. It aims at gathering perception information in the form of
3D position and orientation of human faces, with the 3D model and the robot state.
With this information, it is able to generate the symbolics facts listed in Table 8.1.

Predicate Description

isPerceiving The robot is perceiving a human
isCloseTo The human is within a distance of 0 to 1 meter of the robot
isLookingAt The human is looking at the robot

isInArea The human is in the interaction area
isEngagingWith The human is close to the robot and is looking at it

Table 8.1: Facts computed and monitored during the direction-giving task.

8.4.3 Managing the robot resources

A humanoid robot such as Pepper can be seen as a composition of multiple physical
components that can act independently of each other. For the pointing task, we
identified four resources: the head, both arms, and the base. If we consider the head
for example, at the beginning of the interaction, it is used to find people to interact
with, but later it is used to track the human with the gaze. It means that during
an interaction, several components would need to grant access to this resource. We
thus need to manage the global picture of the ongoing task to enable this access in
a safe way and to avoid failures (whenever two components would try to use the
very same resource at the same time).

Moreover, in some cases, several resources have to be used simultaneously to
perform a high-level action. To point to a landmark, one arm is selected to point

8.4. THE DELIBERATIVE ARCHITECTURE 169

while the other has to be lowered. The base is then rotated if the arm reaches the
joint limit to point a target on its back. If at least one of the involved resources
is simultaneously used to perform another action, the overall high-level action will
fail as the global posture will no more be clear. For example, if the human gets too
close to the robot and a component tries to move away from a little, the arm would
no more point in the right direction.

Thus, the correct handling of all the resources is critical for performing the task,
but it can be cumbersome for a deliberative component, such as the Supervision, to
do all the micro-management required. To tackle this issue, we designed a physical
resource management system to provide an abstraction of each resource. For each of
the identified resources, we instantiated a component called Resource Manager
(RM), having multiple inputs. It is endowed with a low-level decision-making
ability allowing it to vote for the next command from a given input to be executed.
Its choice is based on events, priorities, and commands importance. Inputs are
divided into two types: atemporal inputs and finite state machine inputs.
Atemporal inputs are unit overwriting buffers receiving commands which can be
run continuously and preempted at any time. Each atemporal input has semantic
meaning. For example, the head manager has an atemporal input dedicated to
the monitoring of the interacting human. This input thus receives permanently a
command to look at the head of the human to be monitored, even if we do not have
to look at him. When this input is voted, the robot looks at this point. Finite state
machine inputs are prioritized queues of state machines. Each state corresponds to a

Figure 8.6: Representation of the resource management system with four resource
managers and a synchronizer. The red arrows represent the state machines inputs
and the blue arrows represent the atemporal inputs.

170 CHAPTER 8. A ROBOT IN THE MALL: THE MUMMER PROJECT

command to be executed. Transitions can be events received from other components
or durations. In this scheme, a state machine cannot be preempted, as it is seen as
a set of commands being part of the same high-level action, like a pointing.

To deal with high-level actions requiring multiple resources, we created a Re-
source Synchronizer. It does not have atemporal inputs but only one finite
state machine inputs. It can thus receive finite state machines handling multiple
resources, so-called coordination signals. The synchronizer checks if the needed re-
source managers are free or preemptable, if so, it dispatches the state machines to
the proper resource managers and ensures their synchronicity when needed. The
synchronizer also reports the status of the ongoing coordination signal to the Su-
pervision component to monitor the progress of the action. The global resource
management scheme is illustrated in Figure 8.6 with four resource managers and
one synchronizer.

8.4.4 Describing the route to follow

The route description process has already been presented in Chapter 3. However,
in the context of the MuMMER project, the robot has to be deployed in a Finnish
mall. Consequently, the description of the route to follow has to be in Finnish.

The Finnish language is not suitable for pattern-based solutions with placehold-
ers to fill. Indeed, nouns and verbs have a large number of inflection types, some
of which are more common than others. Since it would be too difficult to build
sentences as we did for the English version, we chose to generate the explanation
in English and then translate it using the Google Translate API. An issue with
this solution is that even the names of the stores are translated by giving incorrect
sentences. We could think to fill the placeholders after the translation but in some
types of sentences, store names would have to be declined. To pass over this later
issue, we have limited the variety of sentences to only keep the ones for which it is
not necessary to decline store names. This gives less diversity in the way the robot
expresses itself but allows more reliable translations. Finally, in some cases, we had
to degrade the English quality, creating syntactically incorrect English sentences,
so the Finnish translation can be right.

8.4.5 Planning a shared visual perspective

When the robot has to point to a target, two criteria have to be respected. First,
the human has to be able to see the target. Second, the human has to be able to
look at the pointed target and at the robot without turning the head too much.
It goes the same for the robot as it has to see the pointed target, meaning not to
point toward a wall and be able to simultaneously point at the target and look at
the human. Consequently, to point a target in its back, it has to move. The robot
and the human can thus move in the interaction area during the direction-giving
task, to move to a better position for pointing at the target. To find the robot
and human possible positions we designed a component called the SVP (Shared

8.4. THE DELIBERATIVE ARCHITECTURE 171

Visual Perspective) Planner, presented in [Waldhart 2019]. For the purpose of the
deployment, the presented version is an adapted and slightly simplified version.

To compute the visibility of both agents, the planner has access to the geometri-
cal representation of the environment and the agents current positions. In addition,
it considers an estimated agent’s maximal speed to move and a visibility threshold.

When the robot explains the route to the human and points to a landmark,
they form what is called an F-formation. Kendon explains that “An F-formation

arises whenever two or more people sustain a spatial and orientational relationship

in which the space between them is one to which they have equal, direct and exclusive

access” [Kendon 1990]. This F-formation has been decomposed in [McNeill 2005]
into two types: the social formation and the instrumental formation. While the first
type corresponds to the original definition, the instrumental formation includes a
physical object that all the agents can gaze at. This means that once the robot
will have moved, the human will come in front of it creating a social formation in
the form of a vis-a-vis (each facing the other) and when the robot will point they
will change for an instrumental formation. Indeed, when both agents will reach
their position computed by the planner, we want them to be able to go from one
formation to the other with only a rotation; the human will not need to move again

Figure 8.7: Visibility grid for a target located at the top right. The uncoloured
areas represent an absence of visibility and the others represent the cost of visibility
ranging from yellow for low visibility to purple for good visibility. The robot and
the human in transparency on the image represent the final calculated positions
while the others are the initial positions.

172 CHAPTER 8. A ROBOT IN THE MALL: THE MUMMER PROJECT

from their arriving position to see what the robot will point.
To search for better positions to reach in order to point a landmark, the planner

takes three main parameters into account:

• Visibility constraint: The two agents can see either the target shop (when it
is the only element of the route) or the passage.

• Navigation distance cost: The agents do not have to move too much.

• F-formation cost: The human-robot-target angle and a robot-human-target
have to be less than 90◦.

To compute the positions, the interaction area is firstly decomposed into a
weighted three-dimensional (x,y for the possible positions in the area and z for
the human height) grid representing the estimated human visibility of the target.
The target visibility is computed offline for each position of the grid. It is based on
the part that the target takes in the 360◦ field of view of the environment. Such
grid is represented in Figure 8.7 for a given human height. The white cells are
positions from which the human cannot see the pointed target. The other colored
cells represent the degree of visibility from the poor in yellow to the good in purple.

Figure 8.8: Human and robot positions computation flow. The purple blocks
represent the initial positions while the blue ones represent the planned positions.

8.4. THE DELIBERATIVE ARCHITECTURE 173

Having the human visibility grid, the goal position is computed using a weighted
cost function between good visibility and restricted distance to cross. In the exam-
ple of Figure 8.7, the transparent human head is the human goal position while the
other is the initial position. From the initial position, the human was not able to
the pointed target.

The overall computation flow is illustrated in Figure 8.8. The robot position is
computed in a second time, according to the human planned position. Divided the
search into two steps allows reducing the search complexity. The robot position is
thus constrained by the human one. It has also to respect a minimal and maximal
distance to the human and minimal visibility of the target from it. Finally, the robot
position is also determined regarding a cost preferring an F-formation limiting the
robot reorientation, meaning that it can point to the target keeping its torso and
its chest oriented towards the human.

8.4.6 Navigating close to human

The Human-Aware Navigation component aims at moving the robot while avoiding
dynamic and static obstacles in addition to proposing a socially acceptable naviga-
tion solution for the robot. For example, the robot should not pass too close to the
human and should not show its back while navigating around the human. A full
presentation of the planner is available in [Singamaneni 2020].

8.4.7 Executing and controlling the task

The Supervision component aims at implementing the joint action guidelines to
manage the direction-giving task as a human-robot joint activity. It makes use of all
the other components of the architecture to step-by-step establish the shared goal,
plan by considering the human preferences, adapt to the human perspective of the
scene, and monitor human commitment. The action sequencing and the incremental
task-refinement process follows the steps and the main decisions exhibited in human-
human studies.

First, when the Supervision receives for example a request for a restaurant from
the Dialogue, it asks Ontologenius for all the existing restaurant types. This list of
restaurant types is sent to the Dialogue whose role is to return to the Supervision
with the type selected by the human. It then continues to obtain a more precise
restaurant type from the human to finally get a restaurant name. It goes the same
if the human asks for a product. The Supervision gets from Ontologenius a list
of shops selling the requested item and passes it to the Dialogue. The Dialogue
returns the name of the shop chosen by the person. When it directly receive as a
goal a shop name, it queries the ontology to know if the given shop exists in the
mall. If it does not, it can be misunderstood. To test it, the Supervision can query
the Ontologenius using the fuzzy match feature. For example, when a person asks
to go to “jewelsport”, the system can make the assumption that the person actually
asked for “Juvesport”.

174 CHAPTER 8. A ROBOT IN THE MALL: THE MUMMER PROJECT

Once the shared goal is determined, the Supervision queries the Route Handler
which returns a list of routes of the form place− path− place− ...− place. Among
these routes, it selects the one with fewer elements. If it is composed of only one
path, it means that the goal place can be visible from there, since it is along the
same path as the robot. Otherwise, the robot will have to explain the route. Before
that, it tests if the route has stairs along with it, getting the types of the elements
with the ontology. If so, the supervision is in charge of ensuring the human is able
to climb stairs. If he/she cannot, the supervision selects another route, without
stairs if any.

The robot’s role is not only to give verbal route directions but also to point to
the target or the passage the person should take. We call the passage the third
element of the route. It is the first element the human has to go through to start
the route2. Pointing increases the chances to find the destination as it helps to
orient oneself in space. Before pointing, the supervision requests the SVP planner
for a new position for itself and the human. If the current positions do not fit
the visibility and formation constraints, the supervision uses the Human-Aware
navigation module to go to its new position. We expect the human to come in
front of it. If he/she does not, the supervision is able to verbally inform him about
movements to do (i.e. to come in front of it, to move a bit aside, etc).

Finally, once the human is at the desired position, the supervision requests the
Physical Resource Manager for pointing and simultaneously explains the route to
take.

In addition to the management of the direction-giving task itself, the supervision
component is also in charge of the beginning of the interaction, the greeting, and
its end, the goodbyes. All along with the interaction, it also ensures the human
understanding of the instructions, and adapt itself if needed.

8.5 Embody architecture in a physical robot

The architecture presented in the previous chapter has been embedded in an up-
graded, custom version, of the Pepper platform [Caniot 2020], which is equipped
with an Intel D435 camera and an NVIDIA Jetson TX2. It has been deployed
multiple times in a mall in Finland, Ideapark.

8.5.1 Pepper in Ideapark

For availability for as many customers as possible, the robot was contained in a
defined place in the mall as shown in Figure 8.9. A home base was designed with
the participation of all the project partners. It was a 4 per 4 meters area with a
2.5m high frame structure on it. The home base included a non-reflecting carpet
on the floor and an acoustic ceiling surface on the roof.

2The first element of the route returned by Route Handler is their current location.

8.5. EMBODY ARCHITECTURE IN A PHYSICAL ROBOT 175

Figure 8.9: The pepper robot in its interaction area in the Finalnd mall, Ideapark.

During the first deployment in the real mall, we have updated both the Geo-
metric Representation with actual measurements and the Semantic Spatial Repre-
sentation (SSR) by making sure the regions, interfaces, corridors and intersections
were represented reflecting the actual mall topology. To ensure the correctness of
the instructions given by the route handler, we generated routes from the deploy-
ment location to several shops in the mall and followed them to the destination.
Inaccuracies, as well as algorithmic flaws, have been fixed using this method. We
also tested the interaction in the Finnish language with our native Finnish partners
and corrected some mistakes in the route verbalization.

8.5.2 Pepper “in the wild”

The robot has been installed for a long-term 14 weeks deployment from September
2019 to December 2019. During this period, the robot interacted with everyday
clients of the mall, who may never have had the chance to interact with a robot
before. The robot was active for 3 hours per day, three days a week. In total, the
robot ran the direction-giving task for approximately 96 hours “in the wild”. Out
of these 96 hours, it was interacting with customers for 45 hours.

Chapter 9

The Director Task: Assessing
cognitive architectures

Contents
9.1 Introduction . 178

9.2 From psychology to Human-Robot Interaction 180

9.2.1 The original task . 180

9.2.2 The Director Task setup . 182

9.2.3 The adapted task . 184

9.2.4 Additional rules for the first implementation 184

9.2.5 Additional abilities . 186

9.3 The cognitive architecture . 187

9.3.1 Storing and reasoning on symbolic statements 188

9.3.2 Assessing the world: from geometry to symbols 188

9.3.3 Planning with symbolic facts 191

9.3.4 Managing the interaction . 191

9.3.5 Speaking and understanding 192

9.4 Experiments . 194

9.4.1 PR2 as the director . 195

9.4.2 PR2 as the receiver . 196

9.5 Open challenges for the community 198

9.5.1 Challenges to take up . 199

9.5.2 User studies to perform . 201

In this chapter, we propose a new psychology-inspired task, gathering
perspective-taking, planning, knowledge representation with theory of mind, object
manipulation, and Human-Robot communication. Along with a precise description
of the task allowing its replication, we present a cognitive robot architecture able
to perform it in its nominal cases. In addition, we suggest some challenges and
evaluations for the Human-Robot Interaction research community, all derived from
this easy-to-replicate task.

The contribution presented in this chapter is excerpted from our work, published
in the proceedings of the RO-MAN 2021 conference [Sarthou 2021a]. This contri-
bution closes this thesis and has been achieved in collaboration with other PhD

178 CHAPTER 9. THE DIRECTOR TASK

students of the HRI team. Guilhem Buisan was concerned about the task planning
part. Amandine Mayima worked on the supervision component. Kathleen Belhas-
sein has designed the presented task with us giving her psychologist point of view to
create a task on which user studies could be performed. The engineer Yannick Riou
worked on the motion planning component allowing us to develop a task where
the robot acts on its environment. My responsibility for this task has been the
integration of my previous contributions about Ontology and the REG. It has also
been the opportunity to create an entire architecture extending the ones presented
all along with this thesis and linked with the contributions of the team. Finally,
I have contributed to the Situation Assessment component and on the Language
understanding part.

The components related to my teammates will be briefly described to give an
overview of the architecture. The newly introduced capabilities on which I work
will be more detailed to explain the links I make between all my contributions,
centred on the knowledge representation.

9.1 Introduction

Developing robotic architectures adapted to Human-Robot Interaction and thus
able to carry out interactions in an acceptable way is still today a real challenge.
The complexity comes, among other things, from the number of capabilities that the
robot must be endowed with and therefore from the number of software components
which must be integrated in a consistent manner. Such architectures should provide
the robot with the capability to perceive its environment and its partners, to merge
and interpret this perceptual information, to communicate about it, to plan tasks
with its partner, to estimate the others’ perspective and mental state, etc. Once
developed, the evaluation of these architectures can be difficult because all these
components are grouped into a single system. The tasks we usually want the robot
to handle must highlight a maximum of abilities, while still being simple enough
to be reproduced by the community. Moreover, we should be able to conduct user
studies with it to validate choices regarding naive users.

Since a long term goal of the robotic field is to see robots acting in our daily life,
many tasks and scenarios have been inspired by everyday activities. Even if these
tasks offer a large variety of situations to be handle, since the human partner is not
limited in his actions, they have the disadvantage of not highlighting some subtle
abilities which are nevertheless necessary for good interaction. The robot guide task
[Satake 2015b] in mall, museum, or airport, requires high communication skills to
understand free queries (possibly involving chatting) and respond to them, whether
to indicate a direction or to give advice. However, the perception needs can be
limited due to the vast environments, as well as the perspective-taking needs due to
the same perception of the environment by the robot and the human1. Finally, even

1For sure we can find some tricky cases where it could help but they do not reflect common
situations.

9.1. INTRODUCTION 179

if the human should contribute to the problem, with such a task the human partner
is not necessarily an actor of the task and can just listen to the robot once their
question is asked. Even if being in more constrained environments, bartender-like
tasks [Petrick 2012] have the same disadvantages. Indeed, the human is considered
as a customer, and as such, the interaction with the robot is limited. The robot
will never ask the human to help it for performing a task and its actions do not
require coordination either full collaboration.

To involve the human partner in the task and requiring him to act with the
robot, assembly-like tasks [Tellex 2014]2 can be used. Nevertheless, in most cases,
the human acts as an assistant rather than as a partner as full collaboration can
be challenging to perform. The robot thus elaborates a plan and performs the
assemble, then asks for help when detecting errors during the execution (e.g., when
it cannot reach some pieces). Here the task leads to unidirectional communication.
Moreover, because in such a task both the robot and the human have equivalent
knowledge about the environment, it can be hard to design situations where belief
divergence appears and thus perspective-taking would be required.

Scaling down an everyday task to transform it into a toy task around a table can
reduce the task complexity and allow easy reproducibility. Moreover, it allows the
robot and the human to work in the vicinity of each other, with smaller robots for
example. With the toy version of the assembly task presented in [Brawer 2018], the
human is more involved in the task. They ask the robot to take pieces and to hold
them to help them assemble a chair. Even if the communication is unidirectional,
we could imagine inverting the roles to test different abilities. Moreover, commu-
nication implies objects referring with the use of various visual features about the
entities. Even if both agents have the same knowledge about the environment, the
communication is grounded according to the current state of the world. In this
task, no decision has to be made by the robot but once again, inverting the roles
could open other challenges.

To focus studies around perspective-taking and belief management, the
Sally and Anne scenario, coming from a psychology test, has been studied in
robotic [Milliez 2014]. In this scenario, the robot is an observer of a situation
where two humans come and go from a room, and move an object from a box to
another. Since a human is in the room when the other is acting, a belief divergence
appears between the two humans and the robot has to understand it. While the
task highlights the belief management, it is first limited regarding the perspective-
taking since the human presence or not could be sufficient to estimate the humans
beliefs3. Moreover, the humans do not act with the robot since it is just an observer
of the scene. In addition, no goal is formulated and the human neither interacts
with one another. Finally, no communication is needed in the task. The scenario
is thus focussed on the analysis of a situation.

2This task is not explicitly intended to be replicated by the community.
3When both humans are in the room they have the same perception of the scene but have

different beliefs about hidden objects. Perspective-taking would be required if the humans could
lean over the boxes to check what is inside.

180 CHAPTER 9. THE DIRECTOR TASK

In this chapter, we first propose a new psychology-inspired task that we think
to be challenging for the Human-Robot Interaction community and rich enough to
be extended: the Director Task. Inter alia, it requires perspective-taking, planning,
knowledge representation with theory of mind, manipulation, communication, and
decision-making. Then, we present the robotic cognitive architecture that we de-
velop to perform the task in its nominal cases. Finally, on the basis of the presented
task and what has been developed, we present a discussion about the possible future
challenges and evaluations for the research community, with possible extensions of
the task.

9.2 The Director Task: From psychology to Human-
Robot Interaction

In this section, we present the origins of the Director Task and the needs it aims to
respond to regarding other tasks from the psychology. We then detail the setup we
have designed in terms of objects characteristics and organisation in the environ-
ment. We end this section with our adaptation and the required abilities we have
identified.

9.2.1 The original task

The Director Task has been mainly used in psychology as a test of the Theory-of-
Mind usage in referential communication. This task originates from a referential
communication game from [Krauss 1977]. In this game, two participants are one in
front of the other with an opaque panel between them. A speaker has to describe
odd designs to a listener, either to number them for the adults or create a stack of
cubes for the children. To refer to the odd figures, participants have to use images
(e.g. “it looks like a plane”).

This game was then adapted by Keysar et al. [Keysar 2000] and became the
Director Task. It has been used to study the influence of mutual knowledge in
language comprehension. In this task, two people are placed one in front of the other
but instead of an opaque panel between them, they place a vertical grid composed of
different cells and objects in some of them. The director, a participant or in most
cases an accomplice, instructs the receiver, a participant, about objects to move
in the grid. The receiver thus follows the director’s instructions about objects to
move. The particularity of the task is that some cells are hidden from the director,
meaning that the receiver, being on the other side of this grid, does not have the
same perspective as the director. He/she thus knows the content of more cells than
the director and consequently sees more objects. When the director instructs the
receiver to move an object, for a successful performance, participants must take the
shared perspective of the director to move the right one. Because the configuration
varies all along with the task, he/she has to update this estimated perspective all
along with the interaction.

9.2. FROM PSYCHOLOGY TO HUMAN-ROBOT INTERACTION 181

Figure 9.1: Sample display from the director’s and the receiver’s perspectives.
The asterisk indicates the target object. Giving the sentence “the smallest apple”
the receiver should find the good one even if he/she can see a smaller one in its
perspective.

Taking the example of Figure 9.1, if the director instructs the receiver to take
the smallest apple, the target object in its perspective is the one marked with the
symbol *. However, for the receiver, in its perspective, the target object is not
the smallest apple since the smallest one (called the distractor) is only visible by
the participant and not by the director. The participant then must understand
the director’s perspective to take the target apple and not the distractor. Some
studies showed that for their first attempt, participants took the smallest apple
from their own point of view and only after, the target one. These results were
interpreted in [Keysar 1994, Keysar 1998, Keysar 2002, Keysar 2003] as the partic-
ipants understanding language in an egocentric way. Some social cognition studies
used a computer-version of the Director Task [Dumontheil 2010] whose results are
consistent with the ones mentioned previously, namely that participants do not use
Theory-of-Mind inferences in language interpretation.

Although Theory-of-Mind and perspective-taking both require the attribution
of mental states to others, some authors trend at distinguishing Theory-of-Mind
tasks and perspective-taking tasks as involving distinct although related mecha-
nisms. In [Santiesteban 2012], they consider that perspective-taking abilities were
measured by the Director Task whereas Theory-of-Mind usage was investigated
through another task called “strange stories” [Happé 1994]. This Theory-of-Mind
task requires the attribution of mental states to a story protagonist, meaning to
maintain an estimation of others’ mental states. At the difference, the Director
Task requires the adoption of the perspective of the director in order to follow the
instructions, meaning to use this knowledge in order to execute the task properly.
In this way, the authors estimated that the Director Task requires a higher degree
of self-other distinction by continuously isolating our own perspective from the di-
rector one, in order to use it to act. In addition to perspective-taking abilities, the
Director Task makes use of executive functions [Rubio-Fernández 2017] (i.e. vary
the processing of information according to current goals in an adaptive manner)
and attentional resources [Lin 2010].

182 CHAPTER 9. THE DIRECTOR TASK

To summarize, the Director Task has been used to study referential communi-
cation, language comprehension, and perspective-taking abilities. However, to our
knowledge, it has never been exploited in the context of a HRI although this task
presents interesting challenges for this field. More than technical challenges, it pro-
vides a way to investigate the different cognitive and behavioral processes involved
in such a cooperative Human-Robot task.

9.2.2 The Director Task setup

The material used in this task has been chosen to be easily acquired and can be
hand-built. It is composed of blocks, compartments, and a storage area. Each
element is equipped with AR-tags allowing the robot to perceive them without
advanced perception algorithms.

Figure 9.2: Part of the material used for the Director Task. Each element is
equipped with AR-tags allowing their detection by the robot. Each block has four
visual characteristics: a main color, a border color, a geometric figure and a figure
color.

Three types of compartments exist and are illustrated on the right part of Fig-
ure 9.2. The basic ones are open on two of their opposite sides (d). They allow
both the receiver and director to see the content and to reach it for manipulation.
Others are open only on one of their sides (e). With such a compartment, only
one of the participants can see and take what is inside. The other participant can
neither know if a block is inside or not. The last compartment type (not used in
the implemented version) has an open side and the opposite one equipped with a
wired mesh (c). Thanks to the wire mesh, both participants can see what is inside
but only one of them can take it. Thanks to these three types, we will be able
to vary the awareness of the blocks (e.g., a block is known to be present but not
necessarily visible), the visibility of the blocks, and their reachability (e.g., a block
can be visible but not reachable). While the original Director Task uses a vertical
grid, we prefer here to use several compartments to create the grid. Compartments
can be stacked one on top of the other, allowing more modularity to create different
situations.

While the tasks used in psychology use everyday objects, we rather choose blocks

9.2. FROM PSYCHOLOGY TO HUMAN-ROBOT INTERACTION 183

that can easily be manipulated by robots and on which we can fix tags for their
localisation and identification (a-b on Figure 9.2). The blocks have a primary color
covering them all. On two opposite faces, additional visual features are drawn. The
top part of these faces is dedicated to the robot’s perception with a unique AR-tag
on each face4. The bottom part is the same on both faces and is dedicated to human
perception. In addition to the primary color, three visual features are available for
the human to distinguish them: a colored border, a colored geometric figure (both
the color and the figure can change making two features). Every visual feature (the
colors and the forms) has exactly two variants. The colors are either blue or green
and the figures are either a triangle or a circle. We can thus have 16 unique blocks.

The agents can use the four visual features to refer to a specific block and the
complexity of the description depends on the used features. While the main color
is directly related to a block, the other colors are respectively related to the border
and the figure. In this way, for two blocks for which the only difference is the color
of one of these elements, the said element has to be referred to in order to refer to
the divergent color. A description of a block involving all its four features would be
“the [color] block with the [color] border and the [color] [figure]”.

The figures and colors have been chosen in such a way to allow the emergence of
“coded words” between the participant to identify a block. With a bit of imagina-
tion, some could refer to the left-most block (a) through the sentence “the mountain
in the sea” or the other (b) by “the puddle”5.

Figure 9.3: The Director Task setup with the robot and the human partner one in
front of the other and a piece of furniture between them. Compartments are placed
on top of the furniture and blocks are placed in the compartments. Next to the
agent having the receiver role, here the human, a storage area is placed to drop the
removed blocks.

Regarding the configuration, the compartments are stacked on a piece of fur-

4Since the tags are different on each side, the director cannot refer to them as the receiver does
not see the same ones

5This is not generated or understood by the robot in the current version.

184 CHAPTER 9. THE DIRECTOR TASK

niture to create a kind of grid. The blocks can be put inside a compartment. As
illustrated in Figure 9.3, the two agents are placed one in front of the other with
the furniture and thus the compartments between them. Finally, one storage area,
corresponding to the place where the receiver has to store the blocks, is delimited
by a rectangle on a shelf next to the receiver. In Figure, the human would be the
receiver since he/she has the storage area on his right.

9.2.3 The adapted task

Now we explained the Director Task setup and the available material, we present
the rules we have adapted for HRI applications. First, the high-level goal of the task
is known by both agents: to put a set of blocks away. The precise goal is given by
the experimenter to the director, either the robot or the human. It corresponds to
a subset of the blocks presents in the compartment that the receiver should remove
from and put in the storage area. This choice, to remove the objects instead of
moving them in the grid, induces changes in the situation over time. It thus requires
a constant adaptation during the interaction. The goal can be given on a sheet of
paper, a screen behind the receiver, or marks on the blocks on the director side. No
block order is required in the formulation of the goal. The director is thus allowed
to elaborate a strategy if needed.

As mentioned previously, the Director Task characteristics bring a number of
interesting challenges for a collaborative robot to solve. Because this is a task with
roles, one of the first challenges is to build a robotic architecture that gives the
robot the ability to play both roles. Then, each role brings some specific problems
to solve from a robotic point of view.

In order to enrich the task with perspective-taking, we adapted the task so that
both the director and the receiver have to use perspective-taking. Since in the
original task, the director knows he/she has a subset of the receiver’s perspective,
he/she can consider all the objects when communicating. Thus, only the receiver
has to reason about the other’s perspective, taking into account that some objects
are not visible by the director. For HRI applications, we use the one side hidden
compartments in a way to also have objects hidden from the receiver and visible
by the director. Therefore, both roles have to perform perspective-taking, whether
to give instructions or to understand them. On the illustration of Figure 9.4, the
director (left image) can instruct the receiver to take the blue blocks as the other
blue blocks in his perspective is hidden from the receiver. From the receiver point
of view (right image), he/she can find the instructed block as the other blue block
is hidden from the director.

9.2.4 Additional rules for the first implementation

To be able to study precise skills, such as verbal communication, perspective-taking,
and adaptation, we defined a set of rules for both roles. First, the agents are not
allowed to point to objects, either with their hands or gaze. They thus have to

9.2. FROM PSYCHOLOGY TO HUMAN-ROBOT INTERACTION 185

Figure 9.4: A director task setup adapted to the HRI with the director’s and
receiver’s perspectives. For the material, each element (blocks and compartment)
is equipped with AR-tags allowing their detection by the robot. Each block has
four visual characteristics: a main color, a border color, a geometric figure, and a
figure color. Compartments can be hidden for the director or the receiver. For the
director to designate the block marked with a red circle, estimating the receiver’s
perspective, he/she can refer to it by its main color (blue) because he/she estimates
the other blue block is not visible by the receiver. For the receiver, by taking
into account the director’s perspective, he/she can understand the referred block
as he/she estimates the other blue block to not be visible by the director.

verbally describe the objects, focusing the task on verbal communication. However,
to avoid too easy description of the kind “the fully green block”, we remove the
four uni-color variants6. In addition, to not fall into a simple referential commu-
nication task, participants are not allowed to use spatial relations in their verbal
communications. They cannot, for example, say “the leftmost block” or “the block
to the right of the green one”. In this way, they are limited to few visual features,
with high ambiguity. Since a description of a block using its four visual features
can be hard for the human to process, we first expect the participants to minimize
the complexity of their communication by referring to the blocks only using the
features distinguishing them from other blocks. Moreover, we also expect the par-
ticipant to take into account the other perspective allowing once again to minimize
the complexity of the communication.

Over these elements, we can see that the task can easily be replicated and offer
a controlled setup, making it a good task for human-robot user studies. Moreover,
due to the number of involved processes and the number of situations that can be
made, there are a lot of elements that can be analyzed and explored. Also, with the
same setup, it is possible to perform human-human studies or human-robot studies
which can be interesting to compare.

6When we said too easy it is from the human point of view, generating and understanding such
description can be challenging for a robot.

186 CHAPTER 9. THE DIRECTOR TASK

9.2.5 Additional abilities

More than being an easily reproducible scenario to perform user studies on human-
robot interactions in a controlled environment, the Director Task allows to demon-
strate the abilities of a robotic system. We discuss here some additional abilities
for which the task has been designed.

Planning When a large number of blocks have to be considered to achieve the
goal, it quickly becomes complicated to communicate about some of them as the
director would have to add a lot of adjectives to be able to refer to one block.
Therefore when the robot is the director, it becomes interesting to integrate the
communication and the task planning. Indeed, depending on the order in which
the blocks are designated, the complexity of instructions, and thus their ambiguity,
can decrease or increase over time. Then, the planner can provide an optimal order
in which the robot has to give the instructions to the human.

Contingencies handling While performing the Director Task, errors can eas-
ily happen. Either because the director gives a wrong instruction or the receiver
misinterprets the instruction and takes the wrong block. In both cases, it can be
because of a wrong consideration of the other agent’s perspective or simply inatten-
tion. Moreover, because some instructions might be right but hard to interpret by
the receiver leading also to an error from them. Finally, errors can happen because
of failures of the robotic system, as a failed action execution leading to a block to
fall on the floor. A robot with a robust decision-making system will be able to
analyze, try to determine their origin, and handle a number of these contingencies.
For example, if the human takes the wrong block, the robot can react in different
ways, either by asking the human to put it back if this block is not part of the
goal, or saying nothing and re-planning if this block was among the ones to take.
If errors happen repeatedly, the robot can also react differently than for a punctual
error and maybe try to modify its behavior.

Communication We saw that the task requires to put a focus on communica-
tions. Communication about an object can be more or less efficient, depending
on the number of characteristics given about the object or the pertinence of these
characteristics. Instructing for the blue block with a circle in Figure 9.4, the ge-
ometrical figure information is not mandatory. Thus, the robot needs to be able
to give proper instructions but also to understand the human ones. Moreover, in
complementarity with the error management, the robot can communicate to help
to solve the detected contingency. Taking a situation (with the configuration of
Figure 9.4) where the human as director instructs the robot to remove the green
block with a circle. This instruction matching two blocks, the robot could say that
it does not find the instructed block. A preferable reaction would be to help the
human to refine the instruction and say “the one with a blue circle or a green circle
?”.

9.3. THE COGNITIVE ARCHITECTURE 187

9.3 The cognitive architecture

In this section, we present the architecture developed to handle the Director Task in
its nominal case for both roles. The architecture aims at being extending but already
endows the robot with the abilities listed previously even if there are not mandatory
to achieve the task. This architecture is the final version of the ones presented all
along this thesis. It can also be seen as a whole new instantiation of the delib-
erative architecture for Human-Robot Interaction presented in [Lemaignan 2017].
The seven identified modules are represented in Figure 9.5 with their respective
communication links. In the rest of this section, we detail each module and how
we have refined them in terms of functionality and links to others. The modules
already presented in this thesis will be briefly recalled but not detailed in-depth.

Figure 9.5: An overview of the cognitive architecture developed to handle the
Director Task. Each block does not necessarily represent one software component
but rather an architectural module (in terms of the features it implements). The
arrows represent the type of information exchanged between the modules. This
architecture extends the ones presented all along with this thesis.

188 CHAPTER 9. THE DIRECTOR TASK

9.3.1 Storing and reasoning on symbolic statements

The knowledge representation is always a core component of cognitive architectures
as organising the knowledge allowing the robot to better understand the environ-
ment it evolves in. Moreover, it is on the basis of this knowledge that a robot
can communicate with its human partner about the current state of the world and
ground the partner’s utterance regarding this world state.

Some architectures propagate knowledge all along their compo-
nents [Hawes 2007], each of them enriching knowledge at each stage before
providing it to the next ones. Others consider their knowledge base as an active
server, activating perception processes when needed, depending on the information
we are looking for [Beetz 2018]. For our architecture, we remain on the principle of
a central, server-based knowledge base. It is refined into two distinct sub-modules,
the semantic knowledge base and the episodic one. The semantic part is in charge
of representing the environment elements: the objects’ and agents’ types, their
applicable properties, the descriptions and parameters of the actions, a part of
the language model with verbs or pronouns, and their names in natural language.
This part is common to the robot’s Knowledge Base and the human’s estimated
one. We consider it as the common ground, known a priori. Besides, we also
use it to represent the current symbolic world-state (the computed facts) and
thus the instantiation of the concepts in terms of physical (e.g. this particular
block) or abstract (e.g. this particular action instance) entities. This part can be
acquired during the interaction, through perception or communications. Among
these instantiations, we have a part used for the interaction in itself, like the
blocks’ visual features, and others for the robot programming, like the objects’
computer-aided design (CAD) models or tags ids. The episodic knowledge base
aims at keeping a trace of the symbolic transitions of the world over time. It
is strongly linked to the semantic knowledge base as it allows to semantically
interpret these transitions.

The semantic knowledge base is still an ontology managed by the software On-
tologenius. The episodic one is in the form of a timeline, managed by the software
Mementar7.

9.3.2 Assessing the world: from geometry to symbols

The role of the geometrical Situation Assessment module is first to gather different
perceptual information and build an internal geometric representation of the world,
composed of objects and agents. From this world representation, the module runs
reasoning processes to interpret it in terms of symbolic statements between the
objects themselves and between the involved agents and the objects. Doing so, the
module only builds the robot’s representation. However, it does not necessarily
reflect what the human partner believes about the world. This is the case with
the occluded compartments of the task. If a block is present in a compartment

7https://github.com/sarthou/mementar

https://github.com/sarthou/mementar

9.3. THE COGNITIVE ARCHITECTURE 189

occluded from the human perspective, this block is not visible and thus unknown
to the human. Consequently, it should not exist in the human representation of the
world. Here is the second role of the Situation Assessment module, estimate the
human’s perspective and build an estimation of their world representation. It is the
first step allowing to implement the theory of mind principles [Baron-Cohen 1985].

To implement this module, we have chosen the Underworld frame-
work [Lemaignan 2018]. Its advantage is to not be monolithic8. It works on the
principle of a set of worlds, each working at a different granularity and providing
specific features, links to create a so-called cascading structure. In the idea, it can
be compared to a perception pipeline like [Beetz 2015a]. It allows easy reuse of
existing modules and makes the core reasoning capabilities independent of the used
perception modalities. Even if we choose to use tags for objects detection in this
implementation, we could easily switch to machine learning approaches. In the
same way, we could use the module with simulations or Virtual Reality systems.

The four worlds we create for the Director Task and their connexions are rep-
resented in Figure 9.6. At the top (a), we have the perception modalities. For
the objects we use AR-tags [Fiala 2005]. For humans, we use a motion capture
(mocap) system with helmets equipped with reflectors. For now, only the head is
tracked. From each perception input, we create a dedicated world. In these worlds,
we can filter the perception data depending on the used system. For the mocap,
the data is clean enough. For the AR-tags we apply first a motion filter to discard
data acquired when the robot moves. In addition, we apply a field of view (FOV)
filter to discard data from the border of the camera because of distortions giving
wrong positions even with camera calibration. To know to which object correspond
a given tag unique identifiers (UID), the worlds have access to the ontology and can
query it to get the UID related to. In the same principle, they can get the objects
CAD model. As the output of these worlds, we ensure to have stable data with
UID related to the knowledge base.

The world of the middle (b) is the robot’s world representation. Informa-
tion from the perception worlds is merged along with the static elements, like the
building walls, and the robot model. From this world, additional perception rea-
soning processes are applied for the objects that are no more visible in the way
of [Milliez 2014]. If an entity is no more perceived in one of the previous worlds, we
first test if it should be in the robot’s FOV. If so, the robot should see it. To get an
explanation of this absence, we test if another entity could hide it. If not, the object
is removed from the world representation. Otherwise, we keep it as we have found
an explanation. Once the entities are stabilised, geometric reasoners are applied to
them to extract symbolic facts. In the current version of the system, the computed
facts are isOnTopOf, for an object on top of another with a direct contact, isInside,
for a block in a compartment, isVisibleBy, assessing if an agent could see the object
or not from his position, and isReachableBy, assessing if an object can be taken by

8It can however be a disadvantage in terms of performance but for research purposes, it allows
more flexibility.

190 CHAPTER 9. THE DIRECTOR TASK

Figure 9.6: The world cascading structure of the geometrical situation assessment
system. The two worlds at the top (a) are build from the perception systems and
filtered. The world of the middle (b) merges the different perception information
and computes symbolic facts on it. The world at the bottom (c) is the estimation
of the human world representation and is computed from perspective-taking in the
robot’s world. Like for the world of the middle, symbolic facts are computed and
sent to the semantic knowledge base.

an agent. All these facts are sent to the robot’s semantic knowledge base, where
reasoners will deduce further facts. For example, if a block is in a compartment,
thanks to inverse property hasInside the fact that the compartment has the block
inside is computed. In the same way, if this compartment is on top of the table, the
block inside is computed to be above the table (isAbove) thanks to chain axiom.

While the previous world corresponds to the robot’s representation, the human
partner cannot have the same because of the occluded compartments. The world c)

9.3. THE COGNITIVE ARCHITECTURE 191

thus aims at estimating the representation of the world from the partner’s perspec-
tive. From the robot’s world, we compute a segmentation image from the human
point of view and use it as a filtered perception world. This allows us to instantiate
the same world management process we used for the robot but this time for the
human. In this way, we emulate their perception capability and geometric reason-
ing process. Symbolic facts are thus computed and sent to the human’s semantic
knowledge base. In the world of the bottom (c) on Figure 9.6, we can see that the
two blocks in the occluded compartments are not present in the human world. Here
we make explicit the difference between an object that is unknown and an object
that is known but not visible. We could have an interaction where the human goes
to see the robot side and the robot would consequently estimate the blocks in the
occluded compartments as known to the human but not visible.

9.3.3 Planning with symbolic facts

The symbolic planners are divided into two categories: the domain-independent one,
planning high-level tasks, and the domain-dependant one, specialized in solving
precise problems. For the Director Task, the only domain-specific planner used
is the Referring Expression Generator presented all along with this thesis. More
precisely, we integrate the algorithm presented in Chapter 7.

Where we previously used HATP [Lallement 2014] as task planner, for this task
we used its next-generation presented in [Buisan 2021]. In the same way, as HATP,
the new planner aims at taking into account the human’s contribution to planning
how to perform a high-level task. To do so, it can generate a shared plan in which
parts of the task are assigned to the human partner and others to the robot itself,
depending on some criteria. However, the robot’s partner is not an agent that the
planner can directly control. Indeed, it must sometimes communicate about the
plan to inform the human about their next actions. The new planner rather trends
at emulating the human decision, action, and reaction processes to generate a shared
plan. For the Director Task, emulating the human reaction to a given instruction
enables the comparison between multiple blocks order, the communication of higher-
level instructions to the human and the balance between multiple communication
modalities.

The REG planner has been successfully integrated with the new planner allowing
it to estimate the cost and the feasibility of referring communication at the task
planning level. The initial world state is fetched from the ontology leading to a
uniformity of the knowledge among the architecture.

9.3.4 Managing the interaction

The supervision component aims at managing the overall interaction. In this ar-
chitecture, we use JAHRVIS (Joint Action-based Human-aware supeRVISor) which
constitutes the decisional kernel of this cognitive architecture. Like its predecessors,
SHARY [Clodic 2009] and its extensions [Fiore 2016, Devin 2016], it is designed for

192 CHAPTER 9. THE DIRECTOR TASK

a human-aware robot. It has to not only handle the robot’s action execution but
also to estimate the human mental state, monitoring his actions, and communicate
with him. To handle these features, several processes are needed:

Interaction sessions management: It manages an interaction session that is
first refined into tasks, themselves refine into action coming from the task planner.
Moreover, it is in charge of the greetings happening at the beginning of an inter-
action, the goodbyes at the end, and all events and exchanges happening outside
tasks (e.g., conversation, goal negotiation) or during a task but not related to it
like a human doing a parallel task on its own.

Communication management: Communications are categorized in JAHRVIS
either to: give information updating the receiver beliefs; ask a question to update
the emitter belief; ask the other agent to perform an action; discuss with dialogue
not related to a task or a goal/plan negotiation.

Human management: As the supervision system manages shared plans, it has
to make sure the human follows them. Moreover, even if some communications are
planned, it also has to make sure that the human has all the knowledge he/she
needs for what he/she has to perform and if not, it hence acts or communicates
through the other processes. To do so, it monitors the human beliefs about the
ongoing task and plan.

Task management Even if the human has also the necessary information about
the plan, contingencies can happen. The supervision can react and perform a repair
thanks to action or communication.

Quality of Interaction management Even if a task is achieved, it could be
done more or less efficiently and smoothly. All along an interaction session and a
task, the supervision system thus estimates in real-time the Quality of Interaction
(QoI) [Mayima 2020]. It measures the human engagement and the effectiveness of
collaborative task performance. This information can then be used by the decision-
making process to tune dynamically other processes such as the cost of properties
for the REG.

9.3.5 Speaking and understanding

The Natural Language Generation is made of two parts, a static one for action verbs
and communications to signify a lack of understanding and a dynamic part for the
referring expressions. The content is determined by the REG and the linguistic
realisation is done on the basis of concepts’ labels in the ontology and a simple
grammar model to know in which order the adjectives have to be sorted depending
on the language.

9.3. THE COGNITIVE ARCHITECTURE 193

Natural Language Understanding is more difficult due to the variety of ways the
same information can be communicated. Moreover, in a given communication, we
have different information. In the Director Task, we have the action to perform and
the object on which the action has to be performed. First, we use the Google Speech
To Text (STT) API to pass from an audio stream to a string of characters. Even
if such technology is now well mastered, mistakes still appear in the transcription9.
On the string, we perform a first analysis trying to match words and groups of
words with labels of the ontology. We used sliding windows limited on the length
and the fuzzy match technique available with Ontologenius. To cover a maximum of
possibilities, several action verbs are described as well as synonyms for the concepts.
We also tried to have a good hierarchy in the ontology types for the robot to better
catch the concepts depending on the abstraction level used by the human. To refer
to the blocks, some only use the terms “object” as they are the only ones involved in
the task. At the end of this analysis, we have a list of concepts. Depending on the
number of uncaught words (the words unknown in the ontology), we can already
know if the understanding is poor or not. On the concept list, we first extract the
action verb to know the instructed action (e.g. take, place, remove). The rest of
the sentence is analysed thanks to the inverse grammar model for one part but also
thanks to the properties ranges and domains. When we said “the red apple”, we
do not have any word representing the used property10. With the analysis of the
usable properties linking color to an apple (and thus to a vegetable and so on), we
are able to find the corresponding property. The result of this analysis is a sparql

query in the same way such query is used for the NLU. Depending on the number
of concepts successfully linked we can estimate the comprehension quality. The
sparql query describing the entity to act upon is then merged with the context of
the task and sent to the ontology to find the target entity. In our case, the context
would be the same as for the generation meaning that we are speaking about an
object being above the table of interaction.

In the case the human gives an accurate description, we should have only one
match for the target entity. However, we cannot consider that the human will never
do a mistake or that the robot will fully understand the instruction. In this case,
we run a REG on all the ambiguous entities. The context of these generations is
the sparql query coming from the understanding process. If we know that we are
already speaking of a green block, we do not have to recall it. We fall back into
Natural Language Generation and generate sentences like “do you mean the block
with a circle or a triangle ?”. When the human responds, we use again the sparql

query coming from the first utterance and merge it with the newly understood.
For the Natural Language Understanding part, we could use machine learning

approaches based on sequence-to-sequence (seq2seq) models like [Panchbhai 2020].
However, by doing so we duplicate the knowledge already existing in the ontology
to put it in a neural network. Unless creating a standard of concept identifier, such

9And this, even more, depending on our English accent and the quality of the microphone used
10It is often the case of the attributes where relations between entities are more explicit.

194 CHAPTER 9. THE DIRECTOR TASK

model should be trained for each used knowledge base in order to be compatible
with it and use the same symbols. Having different symbols would lead to failure,
having more symbols in the trained model would lead to failure (queries that could
not match), and having fewer symbols in the trained model would lead to a lack
of understanding. Moreover, in addition, to create the ontology, we would have to
create the corresponding training dataset that is a huge amount of work even if
artificially augmented dataset creation techniques exist.

Even if our method can be seen as being ha-doc, we ensure uniformity of the
knowledge among the architecture. Moreover, it can be easily extended and even
dynamically extended during an interaction.

9.4 Experiments

The architecture has been successfully implemented on a PR2 robotic platform. The
robot is thus able to play both roles, the director and the receiver. In this section,
we comment and analyse a video11 of two experiments. For both experiments, the
initial state is the same and are represented in Figure 9.7. The only emulated
element is the human action recognition to trigger the next actions of the robot
when it holds the director role.

Figure 9.7: Initial configuration for both case studies. The top-right block is not
visible, and thus unknown, by the human partner. The robot can not know if there
is a block in the bottom-left compartment. All other blocks are known by both the
robot and the human.

11https://youtu.be/jtSyZeqBkp0

https://youtu.be/jtSyZeqBkp0

9.4. EXPERIMENTS 195

9.4.1 PR2 as the director

We start this section with a PR2 in the role of the director (0:21 in the video).
The setup is composed of six compartments including two compartments with a
hidden face. One of these compartments is hidden from the human (the receiver)
and one from the robot (the director). One block has been placed in each com-
partment. Consequently, only four blocks are known by both the human and the
robot. Figure 9.8 is a visualization of the estimated geometric world of the human,
maintained by the situation assessment component. Even if a block is present in
each compartment, the leftmost one is not present in the estimation of the human’s
world. This absence comes from the fact that the human can not see what is in the
compartment and thus can not know this block.

Figure 9.8: A visualization of the human’s estimated geometric world from a third-
person view. Even if a block is present in each compartment, the right most one is
not present in this worls since the human can not see this block.

Figure 9.9 represents the entire interaction when the robot is the director. At
the initial state, four blocks are visible from both agents. Describing them with all
their visual features, they are:

• A blue block with a blue border and a green triangle

• A blue block with a blue border and a green circle

• A blue block with a green border and a blue triangle

• A green block with a green border and a blue circle

Thanks to the estimation of the communication cost at task planning using the
results of the REG, the robot is able to find the optimal sequence of blocks to
instruct. The overall communication is thus minimized and the RE is unambiguous
in each situation. In the initial state (a to b), the robot asks for the green block
as only one of the visible blocks is green. Since the green block has a circle on it,
removing it, only one of the remaining blocks has a circle on it. The robot can thus
use this feature to refer to the next block (b to c). Without communication cost

196 CHAPTER 9. THE DIRECTOR TASK

estimation during the task planning, such a simple situation would not necessarily
appear.

Figure 9.9: The director task handled by an autonomous PR2 robot in the role
of the director. Each picture represents a step toward the achievement of the task.
The estimated human perspective is displayed in the top left-hand corner of each
picture. On top of the arrows leading to a new state are the sentences said by the
robot to the human. The block outlined in red are the blocks referred to at each
step.

9.4.2 PR2 as the receiver

While in its previous role the robot just had to instruct the human, when the robot
is the receiver (1:33 in the video) more reasoning is needed. A retranscription of part
of the interaction is represented in Figure 9.10. In the initial state, the same four
blocks as previously are visible by both the agents. The robot is able to understand
three actions: take, drop, and remove. The latter action is a combination of the
two others.

9.4. EXPERIMENTS 197

Figure 9.10: The director task is handled by an autonomous PR2 robot in the role
of the receiver. Each picture represents a step toward the achievement of the task.
The estimated human perspective is displayed in the top left-hand corner of each
picture. On top of the arrows leading to a new state are the sentences said by the
human to the robot and for the last situation the refinement query from the robot
to the human, followed by the answer of the human.

For the first block (a to b on the figure), the human instructs the robot for
the green block. The natural language understanding module returns the sparql

query:

(?0, isA, Block), (?0, hasColor, green)

Since the robot assumes the human to speak about objects on the table, the
understood query is merged with another one representing the context of the task:
(?0, isAbove, table_1). Querying the human estimated ontology with the merged
query, only one entity matches. There is no ambiguity in human instruction. The
robot takes the instructed block then drop it. If the query was applied to the robot

198 CHAPTER 9. THE DIRECTOR TASK

ontology, two blocks would have matched since the block unknown by the human
is also green. It goes the same for, the second instruction. There is no ambiguity.
The sparql query related to this second block is:

(?0, isA, Block), (?0, hasFigure, ?1), (?1, isA, Circle)

The third instruction given by the human as the director is the most interesting
for us. The human asks for “The block with a triangle”. However, the speech to text
returns “take is about to whip a triangle”. With this sentence, the NLU module can
only extract two known concepts being “take” and “triangle”. Due to the limited
amount of words understood, it does not try to generate a sparql query. The robot
thus informs the human about its incapacity and repeat the heard sentence as a
back loop for the human. At the second try, the sentence is understood and gives
the query:

(?0, isA, Block), (?0, hasFigure, ?1), (?1, isA, Triangle)

However, matching this query to the human’s estimated ontology, we get two
results. Once again, matching it to the robot’s ontology would give three results but
the third one is not visible from the human. Since all the concepts of the sentence
have been understood and linked together to create the query, the human should
have made a mistake, providing an ambiguous referring expression.

To be proactive, we want the robot to ask precision about the block to take by
proposing visual features to distinguish them. To do so, we use the REG algorithm
on each ambiguous block. As a context for the REG, we pass the previously merged
sparql query. It represents what has already been understood by the robot. In
the current situation, the robot thus performs two REG and their results are used
to generate the disambiguation sentence:

“Do you mean the block with a green triangle or the block with a blue

triangle?”

When the human responds, for sure it does not generate a complete description
f the block to be taken. It rather answers the question. The query extracted
from his answer is thus combined with the previously understood one in case some
information is missing. Matching this last query to the human’s estimated ontology,
the robot finally get the block to remove.

With this latter case, we saw how the robot can react to a human’s mistake and
use the REG to help the progress of the task, even if it is the receiver.

9.5 Open challenges for the community

So far, we have described the main abilities a robot has to be endowed with to
perform the Director Task. Then, we have proposed a cognitive robot architecture
handling the Director Task in its simplest form, both for the director and receiver

9.5. OPEN CHALLENGES FOR THE COMMUNITY 199

roles. However, we have only tackled the regular cases that the task offers. In this
section, we now present some open challenges that we have identified around the
task. In addition, since we see that the environment of the task can be controlled,
we also propose some user studies to investigate the ways of sharing information.

9.5.1 Challenges to take up

The components or abilities related to each challenge are reported in the following
table. The list of challenges is not exhaustive. Moreover, even if some challenges
have already been mentioned among the presentation of the components, they are
here reported as requiring finer and more generic management.

Challenged abilities / components Challenges

Perspective-taking 1
Communication 4, 6, 7
Task planning 2, 3, 4
Reference generation 4, 5, 8
Contingencies handling 1, 2, 3, 4

1. Finer contingency analysis: In this task, failures can easily arise due
to the high ambiguity between the blocks and the difference of perspective.
Such failures have to be handled by the robot and to do so their origin has
to be understood to react to them in an appropriate way. In the case the
human, as the receiver, does not take the instructed block, the failure can
have different origins. First, it could come from a perspective not taken into
account. However, this lack of perspective-taking can be assigned either to the
director or the receiver. Another origin can be a description not clear enough
or correct but too complex. Finally, it can just be an error of inattention.
Each of these origins has to be handled in a different way.

2. Handling contingencies as errors: When the receiver takes another block
than the one instructed, has to fix the error through communication and nego-
tiation. First, the wrong block has to be put back in its original compartment.
Then, the robot has to adapt its original instruction to make it clearer and
improve the chances to have the receiver taking the right one.

3. Not handling contingencies as errors: When the receiver takes the wrong
block, even if it is the instructed one, it can however be part of the goal. In
this case, the robot not necessarily has to repair the plan, asking the human
to put it back as no order is required for the task. It can thus re-plan or
re-instruct the human for the same block without further information. It
may also mention to the receiver for the mistake and explain that it does not
matter because this one is also part of the goal. Rather than re-planning,
the robot could use a conditional plan, anticipating possible confusions, and
adapt according to the human’s actions.

200 CHAPTER 9. THE DIRECTOR TASK

4. Adapting to recurrent failures: In case of recurrent failures by the partner
or degradation of the Quality of interaction with a number of latencies, the
robot could try to analyse the origin of the problems and determine if a com-
mon point exists. If so, it can adapt itself to increase the QoI and reduce the
failures. For example, if the partner is found to have difficulties with certain
visual features, the robot can react through properties’ cost adaptation. If the
partner still consider the removed blocks, it can react through communication
context adaptation.

5. Allowing spatial references: As explained in section in the origins of the
task, the Director Task is originally a task to test referential communication.
Even if the present version asks the participants to not use spatial reference,
this rule could be relaxed to study perspective-corrected spatial Referring
Expression Generation.

6. Understanding the human instructions: In the current implemented
version, the robot can only understand a limited vocabulary that is restricted
to the context of the task. In this way, the robot only understands descriptions
of blocks. In a more natural interaction, humans could use a richer vocabulary,
give a single instruction in multiple steps, or have communications not directly
linked to the task. During tests for designing the task, it was common to have
instructions like “take the block with a ... triangle. No, rather the one with a
green border”. Such complex communications where the director corrects his
explanations should have to be managed by the robot.

7. Introducing code words: As presented through the design of the used ma-
terial, the visual features on the blocks have been chosen in a way to allow
the visualisation of landscapes on them, with a little imagination. Consider-
ing multiple tasks with the same robot and human, alternating the roles if
needed, the introduction of coded words could be interesting to reduce the
communication complexity and thus the overall efficiency. The robot could
thus try to negotiate some coded words. Once introduced, it would also have
to remember them and understand them as being part of a description.

8. Communicating about multiple blocks: With the currently implemented
system, the director only instructs one block at a time. It can either be
through a reference matching all of them, like “Take all the blocks with a
triangle on them”, or multiple descriptions in a raw. The latter method
could bring different kinds of communications such as “I do not remember the
instruction for the last block” when the human is the receiver. For the first
method, when the robot is the receiver, it would also be a different kind of
instructions to interpret.

9.5. OPEN CHALLENGES FOR THE COMMUNITY 201

9.5.2 User studies to perform

Some robot behaviours, mainly about the referring expression generation, have been
designed with regard to the current literature. However, the Director Task could be
used to refine them thanks to user studies. More than providing a controlled task
and environment, this task has the advantage to hide the real goal of the study.
From the participant point of view, the goal is to remove blocks from compartments.
The goal of the study can be focused on other aspects and could help the community
in the design of architectures applied to more realistic scenarios.

Currently, the references to the blocks are made in such a way as to minimize
the number of visual features used while staying discriminative. Such implementa-
tion fit Grice’s Maxim of Quantity [Grice 1975]. However, due to all the cognitive
mechanisms to use in this task (e.g., perspective-taking) and the high ambiguity
among the blocks, evaluating such behaviour compared to a full explanation could
be interesting. Indeed, giving a reference with more information than needed would
ensure to not match blocks being only visible by the receiver, which could help them
to select the right block. In a way, it could allow to not use perspective-taking at
the cost of complex communications.

During the material presentation, we have introduced a special compartment
equipped with a wire mesh. Because a block in such a compartment is visible from
the receiver but not accessible, referring to a block matching also this one could
disturb the receiver. We could expect such a situation to require a higher cognitive
load to determine the right block to take. Such behavior could also be interesting
to evaluate as even if the human receiver is able to take the right block it could also
decrease the Quality of Interaction. In the same way, a block previously visible by
the receiver and that the director moves in a hidden compartment could disturb
the receiver to interpret a description.

Conclusion: represent, store,
explore, communicate

In this thesis, we presented several contributions around the use of ontology as a
way to represent knowledge for the robot as well as to represent an estimation of
the robot’s partners knowledge. An ontology is a knowledge graph with on top a
formal and explicit specification of the shared meaning of the concepts used in it.
In robotic, the use of such a formal and explicit representation provides a unifi-
cation of the knowledge among an entire architecture. The knowledge is no more
ubiquitous among the components, each owning the part it needs without a global
consensus about who owned the truth (if any). Instead, the knowledge becomes
a shared resource taking advantage of each component’s inputs. This notion of
shared knowledge is also important in multi-robot systems. Using an ontology al-
lows all the robots to communicate using the same vocabulary. Consequently, it
can facilitate their interaction, even if they do not rely on the same architecture.

Extending multi-robot applications, we reach multi-agent applications and con-
sequently Human Robot Interaction (HRI). The knowledge an ontology represents
is the knowledge of how we, as humans, perceive our environment and how we inter-
pret it. For sure an ontology is machine-understandable but especially, at the base,
human understandable, at the difference of neural networks for example. Thanks to
all these characteristics and because it comes from the human cognition, ontology
can be suitable to represent an estimation of the human knowledge. In addition,
trying to align it with the human knowledge, a robot could use it to communicate
with a human, that it is to interpret a communication act or to produce one.

In Chapter 2, we presented Ontologenius, an open-source and lightweight soft-
ware to maintain knowledge graphs using ontology. It aims to be the semantic
memory of the robot. This software had been developed for HRI application with
the ability to maintain several Knowledge Bases at the time, one representing the
robot’s knowledge and the others being the estimation of the robot’s partners knowl-
edge. In addition, regarding the management of several instances at the time, On-
tologenious comes with a deep-copy feature to catch the state of a KB at a given
moment and to modify it freely. To represent several knowledge states of the same
agent and to avoid the creation of too many instances that could slow down the
CPU, with Ontologenius we propose a kind of versioning system, keeping a trace
of the changes. Regarding knowledge retrieval, with Ontologenius we choose to
provide a set of precise queries working at the semantic level but allowing the ex-
ploration of the structure of the knowledge rather than simply the relations between
entities.

On the basis of Ontologenius, we have presented several contributions. In Chap-
ter 3, we proposed a way to describe the topology of indoor environments using an
ontology. The resulting representation was called the Semantic Spatial Represen-

204 Conclusion

tation (SSR). In the context of a route description task and using the SSR, we
presented a combination of two algorithms able to find several routes leading to
a destination. Using the same representation, we presented a third algorithm to
generate the route explanation, in the form of a sentence, by respecting the three
good practices identified by Allen in [Allen 2000]. The way the explanation is gen-
erated allows the guided human to perform an imaginary tour of the environment,
increasing the chances to reach the requested destination.

Continuing on the knowledge exploitation and more precisely on spatial com-
munication, from Chapter 4 to Chapter 7, we presented contributions around the
Referring Expression Generation (REG) task. As explained in [Reiter 2000], it is
the concern of “how we produce a description of an entity that enables the hearer
to identify that entity in a given context”. While this task has been studied for
decades, none of the existing methods has attempted to use an ontology as KB.
In addition, because their KB are dedicated to the task, it is only composed of
relations usable to communicate with a human. However, considering a shared KB
among the architecture, some knowledge can have a purely technical use for the
robot. More importantly, none of the existing works really considered the notion of
context. Their only goal was to designate an entity in a given state of an environ-
ment. However, in HRI use, the REG is just an action of a wider task in which a
context exists. It could be already known information about the entity to refer to or
implicit restriction about the entities in concern. In Chapter 4, we thus presented a
new algorithm managing all the previously evoked issues and using an ontology as
KB. In addition, through comparisons with other algorithms, we showed that our
contribution is, to the date, the most efficient to our knowledge, solving most of the
problems in less than a millisecond. Finally, as a proof of usability, the algorithm
has been integrated into a robotic architecture with a KB continuously updated
through perception.

Taking advantage of the high performance of our REG algorithm, in Chap-
ter 5, we proposed a method integrating it with a task planner. The goal of this
method was to endow the task planner with the ability to estimate the feasibility
and the cost of communication. Such estimations thus allow to avoid deadlock at
execution and to find plans minimizing the overall communication complexity. In
this contribution, the communication was limited to the reference to entities but
could be extended to other communication contents. The used task planner was
HATP, a human-aware task planner. This means that the planner is able to plan
for the robot and its partner, estimating their future mental state and their abil-
ities in order to assigned tasks to one or another. To estimate the future mental
states, HATP has a dedicated internal representation, limited to the entities used
in the task to plan. However, to work, our REG algorithm needs an ontology as
KB and needs to take into account all the entities of the environment. To make it
works, we have thus presented a scheme allowing the planner to update an ontology,
representing the future estimated knowledge of the human partner, in order to be
able to run the algorithm. This contribution fully takes advantage of the features
brought by Ontologenius, that is the ability to maintain an instance per agent, and

205

to copy an instance at a given moment to freely modify it. The resulting method
was implemented into a robotic architecture as a proof of concept.

With the integration of the REG algorithm with a task planner, we highlight
the fact that the act to refer to an entity, appears most of the time in the context
of a task. During this task, agents act with and manipulate the entities of the
environment. On this basis, in Chapter 6, we proposed to use this additional
knowledge about the activities of the agents with the entities of the environment as
a new piece of information, usable to refer to them. Continuing to use HATP as task
planner, we had first proposed a way to represent the task planning domain into
an ontology, as well as the execution of this plan, that we called the Hierarchical
Execution Trace (HET). We had then presented modifications to our original REG
algorithm, allowing it to use the past activities representation to generate a new
kind of Referring Expression (RE).

Even if the adaptation of the REG algorithm of Chapter 6 brings new possi-
bilities, in Chapter 7 we shown that it had some limitations. The major one is
the apriori knowledge it needs about the representation. It is thus restricted to
a unique representation of past activities. However, we saw in the literature that
many representations of activities exist, each created for particular applications.
In Chapter 7, we thus explored common ontology patterns used to represent such
complex relations being in the form of n-ary relations. Adding to them a set of sim-
ple parametric patterns as labels, we created what we called Compound Relation
(CR). With this new type of relation, we had adapted our original REG algorithm
to provide a more generic way to generate RE. The resulting algorithm had been
shown to still work with a description of past activities but also any representation
using n-ary relation. In addition, we have shown that the performances of the new
algorithm are better than the algorithm of Chapter 6 and equal to the ones of the
original algorithm when no CR is used in the representation.

Through the chapters 8 to 9, we presented two robotic architectures involving
the contributions presented all along this thesis. In Chapter 8, we presented the
MultiModal Mall Entertainment Robot (MuMMER) project and the resulting ar-
chitecture. The goal of the MuMMER project was to develop a robotic architecture
allowing a robot to guide a customer in a mall and to chat with them. By guiding,
we do not mean accompanying the customer but rather to explain the route to fol-
low. To be able to find the route to explain and generate the explanation sentence,
we used the contribution of Chapter 3. To maintain the representation of the envi-
ronment and share it with other components, we used Ontologenius, presented in
Chapter 2. The resulting architecture, embodied in a Pepper, has run for 14 weeks
in a mall in Finland.

Finally, in Chapter 9, we presented an integration of the REG algorithm into a
complete robotic architecture dedicated to HRI applications. In addition, with this
new architecture, we showed how we had put the knowledge at the center of the
architecture, used by all the components. Moreover, in this chapter we introduced
a new task, inspired by psychology experiments, to assess cognitive architecture for
HRI. Taking this task as a basis and with regard to the implemented architecture,

206 Conclusion

we ended this chapter with a set of challenges we think to be interesting for the
community.

Future work

To end this thesis, we introduce some potential future work, focussing on two main
topics studied during these three years: the knowledge need for HRI and the REG.

Knowledge need for HRI

In the introduction of this thesis, we saw the main memory system that we estimate
a human to own. In this thesis, we focused on semantic memory, to endow the robot
with the meaning about the elements of its environment. While we managed the
procedural memory which could be assimilated to the task planning domain, we
have not managed the episodic memory, even if we have started to draw some of
its aspects through the description of past activities. The ability of remembering
is however a key aspect for HRI. It allows a robot to speak about it as story-
telling, as we saw to refer to entities, to learn acting policies, or to learn others
preferences. One of the actual most advanced systems managing such knowledge is
today the openEASE system [Beetz 2015b]. However, how could it be extended to
HRI application? How could we represent the estimate of the other’s experiences?
How should we make the difference between a real experience and a past situation
others tell us they have experienced?

Finally, for me, the more complex and still open question, would be: how to
make a clear distinction between the semantic system and the episodic one? How-
ever, asking this question, leads to another being: do we need a clear distinction?
On one hand, they are two different types of knowledge but on the other hand, one
is nothing without the other. We need meaning to understand the memories (in
the sense of past experiences) meaning that we need a link between them. Wanting
to create two distinct systems, in my opinion, we arrive at two solutions, which do
not seem to me to be suitable. First, we could keep in the semantic system a trace
of the experiences with their meanings (e.g. cut_7 is a cutting action) while the
episodic system would only temporally order them (e.g. cut_7 holds between t1
and t2). The second solution would be to do not keep any trace of the experience in
the semantic system but would require to keep a part of the meaning in the episodic
one (e.g. cut_7, being a cutting action, holds between t1 and t2).

Referring Expression Generation

In the last year of this thesis, we gain an interest toward the Referring Expression
Generation (REG) problem. This problem is interesting as it requires a rich rep-
resentation of an environment, a fine exploration of it, the verbal communication
of the inherent knowledge, the consideration of the problem into a task, and the
consideration of the partner. Even if we proposed four contributions around this

207

topic, we think that number of challenges has still to be investigated. In the contin-
uation of our works, we could first use the REG algorithm based on past activities
at task planning as we did for the original version. In this way, the robot could
plan communication-based on future past activities.

A second study track will be about spatial relations like left and right. During
this thesis, we tried to void such relations, even if our algorithm could manage
them. The reason is that such relations depends on the perspective and thus on
the reference frame, meaning the frame in which the relations are computed. For
example, we could say “the pen at your left” where the reference frame is the hearer.
We could also say “my car is the one at the left of the red car” where the reference
frame is the red car. However, saying “look the squirrel at the right of the tree”
is more tricky. At the difference of a car, a tree does not have any orientation.
You and the hearer being at the same place and having the same perspective, this
sentence does not lead to any ambiguity as you and the hearer could be the reference
frame. However, if you are one on each side of the tree, the used reference frame
is unclear, and the resulting RE is ambiguous. With these examples, we see that
both the perspective and the characteristics of the involved entities have to be used.
Some works start to study it [Kelleher 2006, dos Santos Silva 2015]. However, they
are mainly based on Incremental Algorithm which is not adapted and the used of
an ontology could help at generalizing the process.

Finally, another interesting study track would be the reference to sets. An
approach supporting this feature would support two new kinds of RE. First, we
could say “give me the screws that are in the red bin” or “give me the red pens”
where we ask for a set of entities. Nevertheless, we saw that the REG is a kind of
recursive process in the way that to refer to a given entity we may need to generate
a RE to another entity. With RE supporting references to sets, we could thus
generate sentences like “give me the bottle which is next to the sheets of paper”.
Here the target entity is not a set but it owns relation toward a set. Where the
few existing methods own the set representation into the Knowledge Base in a
static way [Fang 2013], it would be more interesting to compute them dynamically
depending on the current situation and the target entity. An algorithm and the
underlying knowledge representation to support such a feature could be highly
challenging, and even more if we managed to consider spatial references at the
same time.

Appendix A

Route description
supplementary material

A.1 Routes verbalization patterns

void Sentences : : createEnd ()
{

end_ . push_back ({ end_side ,
{{ " , and " , " , then " , " . " , " . After that " , " . F ina l ly , " } ,
{ " you w i l l " } , { " s ee " , " f i n d " } ,
{ " /X " } , { " on " } , { " your " , " the " } , { " /D " } ,
{ " s i d e " , "when you walk " , " " } ,
{ " , s t r a i g h t a f t e r /Y " , " " }} }) ;

end_ . push_back ({ end_side ,
{{ " , and /X i s " , " , then " , " ,/X i s then " , " . After that , " } ,
{ " on " } , { " the " , " your " } ,
{ " /D " } , { " s i d e " , "when you walk " } ,
{ " , s t r a i g h t a f t e r /Y " , " " }} }) ;

end_ . push_back ({ end_side ,
{{ " , then " , " . After that , " , " . " , " , and " , " . F ina l ly , " ,
" . From there on , " } ,
{ " /X w i l l be on your /D " } ,
{ " s i d e " , "when you walk " , " " } ,
{ " , s t r a i g h t a f t e r /Y " , " " }} }) ;

end_ . push_back ({ end_side ,
{{ " , then " , " . After that , " , " , and " , " . F ina l ly , " ,
" . From there on , " } ,
{ " /X i s on the /D there " } ,
{ " , s t r a i g h t a f t e r /Y " , " " }} }) ;

end_ . push_back ({ end_side ,
{{ " , then " , " . After that , " , " , and " , " . F ina l ly , " } ,
{ " i t i s on the /D, you w i l l s e e /X " } ,
{ " , s t r a i g h t a f t e r /Y " , " " }} }) ;

end_ . push_back ({ end_here ,
{{ " , then " , " . After that , " , " , and " , " . F ina l ly , " } ,
{ " you see the re /X " } ,
{ " , s t r a i g h t a f t e r /Y " , " " }} }) ;

end_ . push_back ({ end_here ,

210 APPENDIX A. ROUTE DESCRIPTION SUPPLEMENTARY MATERIAL

{{ " , then " , " . After that , " , " , and " , " . F ina l ly , " } ,
{ " you w i l l f i n d /X there " }} }) ;

end_ . push_back ({ end_here ,
{{ " , then " , " . After that , " , " , and " , " . F ina l ly , " ,
" . From there on , " } ,
{ " /X i s " } , { " the re " , " " } ,
{ " on the /DY s i d e o f /Y " }} }) ;

end_ . push_back ({ end_in_front ,
{{ " , then " , " . After that , " , " , and " , " . F ina l ly , " ,
" . From there on , " } ,
{ " you w i l l " } , { " f i n d " , " s e e " } ,
{ " /X r i g h t away " }} }) ;

}

void Sentences : : createEndBegin ()
{

end_begin_ . push_back ({ end_side ,
{{ " you w i l l " } , { " s ee " , " f i n d " } ,
{ " i t " , " /X " } , { " on " } , { " your " , " the " } , { " /D " } ,
{ " s i d e " , "when you walk " , " " } ,
{ " , s t r a i g h t a f t e r /Y, " , " " }} }) ;

end_begin_ . push_back ({ end_side ,
{{ " i t w i l l be on your /D " } ,
{ " s i d e " , "when you walk " , " " } ,
{ " , s t r a i g h t a f t e r /Y, " , " " }} }) ;

end_begin_ . push_back ({ end_side ,
{{ " i t ’ s on the /D there " } ,
{ " , s t r a i g h t a f t e r /Y, " , " " }} }) ;

end_begin_ . push_back ({ end_side ,
{{ " on the /D you w i l l s e e /X " } ,
{ " , s t r a i g h t a f t e r /Y, " , " " }} }) ;

end_begin_ . push_back ({ end_here ,
{{ " you see the re /X " }} }) ;

end_begin_ . push_back ({ end_here ,
{{ " you w i l l f i n d i t the re " }} }) ;

end_begin_ . push_back ({ end_here ,
{{ " i t ’ s " } , { " the re " , " " } ,
{ " on the /DY s i d e o f /Y " }} }) ;

end_begin_ . push_back ({ end_in_front ,
{{ " you w i l l " } , { " f i n d " , " s ee " } ,
{ " i t " , " /X " } , { " r i g h t away " }} }) ;

}

void Sentences : : c r eateBeg in ()
{

A.1. ROUTES VERBALIZATION PATTERNS 211

begin_ . push_back ({ s ta r t_cor r ido r ,
{{ " j u s t " , " " } ,
{ " go " , " walk " , " go s t r a i g h t " } ,
{ " a c r o s s " , " through " , " on " , "down " } ,
{ " that " , " t h i s " } , { " c o r r i d o r " }} }) ;

begin_ . push_back ({ s ta r t_cor r ido r ,
{{ " go to t h i s " } , { " c o r r i d o r " }} }) ;

begin_ . push_back ({ start_end_of_corr idor ,
{{ " /X " } , { " i s " } , { " j u s t s t r a i g h t " , " " } ,
{ "down " } ,
{ " t h i s " , " that " } , { " c o r r i d o r " }} }) ;

begin_ . push_back ({ start_end_of_corr idor ,
{{ " j u s t " , " " } , { " walk " , " go almost " } ,
{ " u n t i l the end o f " } , { " t h i s " , " that " } ,
{ " c o r r i d o r " }} }) ;

begin_ . push_back ({ start_end_of_corr idor ,
{{ " /X i s at the end o f " } ,
{ " t h i s " , " that " } , { " c o r r i d o r " }} }) ;

begin_ . push_back ({ s t a r t _ i n t e r f a c e ,
{{ " / I " }} }) ;

}

void Sentences : : c reateDur ing ()
{

during_ . push_back ({ during_end_of_corridor ,
{{ " walk to " , " go almost at " , " walk u n t i l " } ,
{ " the " } , { " very " , " " } , { " end o f the c o r r i d o r " }} }) ;

during_ . push_back ({ during_turn_continu_corridor ,
{{ " turn /D " } , { " at " , " s t r a i g h t a f t e r " } ,
{ " /Y " }} }) ;

during_ . push_back ({ during_turn_continu_corridor ,
{{ " turn /D " }} }) ;

during_ . push_back ({ during_turn ,
{{ " turn /D " }} }) ;

during_ . push_back ({ during_turn ,
{{ " turn /D " } , { " at " , " s t r a i g h t a f t e r " } ,
{ " /Y " }} }) ;

during_ . push_back ({ dur ing_re ference ,
{{ " you w i l l " } , { " s ee " , " f i n d " } , { " /Y " }} }) ;

during_ . push_back ({ dur ing_inter face_font ,
{{ " / I " } , { " j u s t in f r o n t " , " r i g h t away " }} }) ;

during_ . push_back ({ dur ing_inter face_s ide ,

212 APPENDIX A. ROUTE DESCRIPTION SUPPLEMENTARY MATERIAL

{{ " / I " } , { " at " } , { " the " , " your " } , { " /D " } ,
{ " s i d e " , " " }} }) ;

}

A.2 Routes search solutions

Table A.1: Performance analysis and solutions characteristics for the route search
algorithm based on the Semantic Spatial Description. The algorithm has been
run on 26 places being on distinct paths and each being on a unique path. The
table presents the resolution time, the number of regions used, the number of routes
found, the number of paths explored, and the length of the longest route. Resolution
times include the ROS communications to query the ontology.

Place name
Resolution
time(ms)

Used
regions

Found
routes

Expl.
paths

Max.
length

1 Espresso_House 0.434841 1 1 1 1
2 Brother_Clothing 1.289182 1 1 2 2
3 only_2 1.251221 1 1 2 2
4 Gant 1.369534 1 1 2 2
5 Donna_Rosa 2.751091 1 1 3 3
6 River_and_Co 2.940316 1 1 3 3
7 Jesper_Junior 2.674137 1 2 6 3
8 Guess 2.984623 1 1 3 3
9 gf_atm_east 2.953073 1 1 3 3
10 Kauneus 3.344798 1 1 3 3
11 HairStore 3.110017 1 1 3 3
12 gf_toilet_west 2.640851 1 1 3 3
13 Kalastus_Suomi 3.622685 1 1 4 4
14 Juvesport 3.021612 1 1 4 4
15 Cafe_de_Lisa 12.298473 2 3 11 4
16 Ballot 13.682847 2 3 12 5
17 Hairlekiini 13.668867 2 3 12 5
18 Pancho_Villa 46.16124 2 11 32 5
19 LahiTapiola_desk 33.773911 2 16 94 8
20 Ti_Ti_Nallen 33.954918 2 11 63 8
21 Masku 42.927055 2 11 70 9
22 Beefking 30.531876 2 14 68 9
23 ff_toilet_west 31.247139 2 12 65 9
24 ff_toilet_east 37.755016 2 11 71 9
25 Sticky_Wingers 35.685139 2 11 57 10
26 Coyote_Grill 33.838421 2 11 63 11

Appendix B

Referring Expression
Generation suplementary

material

B.1 Referring Expression Generation solutions

Table B.1: Performance analysis and solutions characteristics for the UCS-based
REG algorithm on the three-room apartment ontology. The algorithm has been
run on the 77 entities inheriting the upper class “Object”. Resolution times do not
include the ROS communications to query the ontology.

Entity name
Resolution
time (ms)

Result
size

Number
of entity

1 ball_l_0 0.067859 2 1
2 ball_O_0 0.059308 2 1
3 bottle_l_0 0.139627 4 2
4 bottle_l_1 0.068305 2 1
5 box_l_0 0.193782 2 1
6 box_l_1 0.217469 2 1
7 box_l_2 1.361858 4 2
8 box_l_3 1.1367 4 2
9 box_l_4 0.617972 3 2
10 box_l_5 0.564576 3 2
11 box_O_5 0.619296 4 2
12 can_l_0 0.014065 1 1
13 chair_l_0 0.226579 2 1
14 chair_O_0 0.149172 2 1
15 chair_O_1 0.317905 3 1
16 coat_hanger_l_0 0.066575 2 1
17 couch_l_0 0.013508 1 1
18 cup_O_0 0.764456 3 2
19 cup_O_2 1.064564 4 2
20 cup_O_3 3.034582 4 2
21 cup_O_4 2.105825 4 2
22 cup_O_5 1.018651 3 2

214 APPENDIX B. REG SUPLEMENTARY MATERIAL

Table B.1 continued from previous page

Entity name
Resolution
time (ms)

Result
size

Number
of entity

23 drawer_O_0 0.013237 1 1
24 fan_O_0 0.014185 1 1
25 food_container_l_0 1.322064 2 1
26 lamp_O_0 0.685341 5 2
27 lamp_O_1 0.185361 2 1
28 lamp_O_2 0.343764 3 2
29 room_B_bed_0 0.013346 1 1
30 room_B_book_0 6.405807 6 3
31 room_B_book_1 5.771545 4 2
32 room_B_book_10 1.668816 2 1
33 room_B_book_11 0.869473 2 1
34 room_B_book_12 3.559328 5 2
35 room_B_book_13 2.979439 5 2
36 room_B_book_2 1.035305 3 1
37 room_B_book_3 4.698687 4 2
38 room_B_book_4 3.922041 5 2
39 room_B_book_5 3.558096 5 2
40 room_B_book_6 0.799378 2 1
41 room_B_book_7 3.029112 5 2
42 room_B_book_8 0.641222 2 1
43 room_B_book_9 0.758528 2 1
44 room_B_box_0 0.18311 2 1
45 room_B_box_1 0.361131 2 1
46 room_B_box_2 0.407418 3 1
47 room_B_chair_0 0.546668 4 2
48 room_B_chair_1 0.474871 3 2
49 room_B_chair_2 0.435847 3 1
50 room_B_coat_hanger_0 0.073927 2 1
51 room_B_cube_0 0.058384 2 1
52 room_B_cube_1 0.060926 2 1
53 room_B_cup_0 1.1184 4 2
54 room_B_cup_1 1.030775 4 2
55 room_B_cup_2 2.454008 5 2
56 room_B_cup_3 3.096267 5 2
57 room_B_cup_4 2.55846 4 2
58 room_B_cup_5 0.5239 2 1
59 room_B_cup_6 1.952396 3 2
60 room_B_lamp_0 0.305946 3 2
61 room_B_lamp_1 0.111063 2 1
62 room_B_shelf_0 0.485909 2 1
63 room_B_shelf_1 2.316131 3 2

B.2. COMPARE REG WITH OTHER COMMUNICATION MEANS 215

Table B.1 continued from previous page

Entity name
Resolution
time (ms)

Result
size

Number
of entity

64 room_B_shelf_2 0.220443 2 1
65 room_B_shelf_3 2.001844 4 2
66 room_B_table_0 0.245021 2 1
67 room_l_book_0 0.423708 2 1
68 shelf_l_0 1.733897 4 2
69 shelf_l_1 0.416069 3 2
70 shelf_O_0 0.42869 3 2
71 shelf_O_1 0.478794 2 1
72 table_l_0 0.516371 3 1
73 table_l_1 0.425897 3 2
74 table_O_0 0.478838 3 1
75 table_O_1 0.941871 3 1
76 TV_O_0 0.132627 5 3
77 TV_O_1 0.121472 3 2

B.2 Compare REG with other communication means

Listing B.1: The HATP solution for the third case study of Chapter 5. The robot
chooses to point instead of verbalizing to designate the cubes 5 and 7. Please note
the order of cube motions is not considered in this problem. The lines beginning
with H represent the actions of the human and the lines beginning with HR represent
actions involving the human and the robot (communication actions). In green are
the REG results for each communication action even if a pointing has been choose.
HR - TellHumanToTake(C3) // (C3, isA, Cube), (C3, hasDigit, int:1)

// (C3, isIn, area_red), (area_red, isA, Area),

// (area_red, hasColor, red)

H - Take(C3)

HR - TellHumanToPack(C3, area_black) // (area_black, isA, Area),

// (area_black, hasColor, black)

H - Pack(C3, area_black)

HR - TellHumanToTake(C4) // (C4, isA, Cube), (C4, hasColor, black)

// (C4, isIn, area_red), (area_red, isA, Area),

// (area_red, hasColor, red)

H - Take(C4)

HR - TellHumanToPack(C4, area_white) // (area_black, isA, Area),

// (area_black, hasColor, white)

H - Pack(C4, area_white)

HR - PointHumanToTake(C5) // (C5, isA, Cube), (C5, hasDigit, int:2)

// (C5, hasColor, black)

// (C5, isIn, area_black), (area_black, isA, Area),

// (area_black, hasColor, black)

H - Take(C5)

HR - TellHumanToPack(C5, area_white) // (area_black, isA, Area),

// (area_black, hasColor, white)

216 APPENDIX B. REG SUPLEMENTARY MATERIAL

H - Pack(C5, area_white)

HR - TellHumanToTake(C6) // (C6, isA, Cube), (C6, hasDigit, int:2)

// (C6, hasColor, red)

H - Take(C6)

HR - TellHumanToPack(C6, area_white) // (area_black, isA, Area),

// (area_black, hasColor, white)

H - Pack(C6, area_white)

HR - PointHumanToTake(C7) // (C7, isA, Cube), (C7, hasDigit, int:2)

// (C7, hasColor, green)

// (C7, isIn, area_black), (area_black, isA, Area),

// (area_black, hasColor, black)

H - Take(C7)

HR - TellHumanToPack(C7, area_white) // (area_black, isA, Area),

// (area_black, hasColor, white)

H - Pack(C7, area_white)

HR - TellHumanToTake(C9) // (C9, isA, Cube), (C9, hasColor, black)

// (C9, isIn, area_black), (area_black, isA, Area),

// (area_black, hasColor, black)

H - Take(C9)

HR - TellHumanToPack(C9, area_red) // (area_red, isA, Area),

// (area_red, hasColor, red)

H - Pack(C9, area_red)

HR - PointHumanToTake(C11) // (C11, isA, Cube), (C11, hasDigit, int:1)

// (C11, hasColor, red)

H - Take(C11)

HR - TellHumanToPack(C11, area_black) // (area_black, isA, Area),

// (area_black, hasColor, black)

H - Pack(C11, area_black)

B.3 Referring Expression Generation comparisons

Table B.2: Performance comparison between the original REG version, the task-
based extension, and the compound relation version. The three algorithms have
been run on the three-room apartment ontology over the 77 entities inheriting the
upper class “Object”. Resolution times do not include the ROS communications to
query the ontology.

Entity name

Original:

Resolution
time (ms)

Task based:

Resolution
time (ms)

CR based:

Resolution
time (ms)

1 ball_l_0 0.067859 0.175575 0.120015
2 ball_O_0 0.059308 0.141727 0.112483
3 bottle_l_0 0.139627 1.119924 0.591754
4 bottle_l_1 0.068305 0.131283 0.099736
5 box_l_0 0.193782 0.476698 0.374592
6 box_l_1 0.217469 0.508015 0.394767
7 box_l_2 1.361858 9.136083 7.154199

B.3. REFERRING EXPRESSION GENERATION COMPARISONS 217

Table B.2 continued from previous page

Entity name

Original:

Resolution
time (ms)

Task based:

Resolution
time (ms)

CR based:

Resolution
time (ms)

8 box_l_3 1.1367 9.653615 4.984035
9 box_l_4 0.617972 4.470673 2.772374
10 box_l_5 0.564576 1.144243 1.514405
11 box_O_5 0.619296 7.610336 7.494356
12 can_l_0 0.014065 0.013077 0.016982
13 chair_l_0 0.226579 0.586629 0.427859
14 chair_O_0 0.149172 0.509738 0.26145
15 chair_O_1 0.317905 1.442332 1.399296
16 coat_hanger_l_0 0.066575 0.178833 0.11939
17 couch_l_0 0.013508 0.013362 0.017672
18 cup_O_0 0.764456 4.2213 2.777132
19 cup_O_2 1.064564 14.022109 8.645581
20 cup_O_3 3.034582 15.155928 18.904949
21 cup_O_4 2.105825 5.927248 5.447168
22 cup_O_5 1.018651 3.575444 1.951084
23 drawer_O_0 0.013237 0.01316 0.016902
24 fan_O_0 0.014185 0.012952 0.017147
25 food_container_l_0 1.322064 2.312981 1.363851
26 lamp_O_0 0.685341 7.014069 3.129251
27 lamp_O_1 0.185361 0.401585 0.207447
28 lamp_O_2 0.343764 0.735108 0.596541
29 room_B_bed_0 0.013346 0.013202 0.017394
30 room_B_book_0 6.405807 70.577606 45.716713
31 room_B_book_1 5.771545 28.865629 20.767796
32 room_B_book_10 1.668816 5.911679 1.63053
33 room_B_book_11 0.869473 0.730637 1.323878
34 room_B_book_12 3.559328 18.389738 13.825704
35 room_B_book_13 2.979439 15.685247 11.037728
36 room_B_book_2 1.035305 5.968753 4.244997
37 room_B_book_3 4.698687 18.002239 12.628333
38 room_B_book_4 3.922041 20.141655 13.855048
39 room_B_book_5 3.558096 16.105089 13.210673
40 room_B_book_6 0.799378 0.694669 1.301659
41 room_B_book_7 3.029112 15.880693 11.307087
42 room_B_book_8 0.641222 0.637827 1.203315
43 room_B_book_9 0.758528 0.685999 1.284837
44 room_B_box_0 0.18311 0.409545 0.578893
45 room_B_box_1 0.361131 0.780212 0.621853
46 room_B_box_2 0.407418 0.940093 0.730397

218 APPENDIX B. REG SUPLEMENTARY MATERIAL

Table B.2 continued from previous page

Entity name

Original:

Resolution
time (ms)

Task based:

Resolution
time (ms)

CR based:

Resolution
time (ms)

47 room_B_chair_0 0.546668 3.404545 1.802689
48 room_B_chair_1 0.474871 3.391011 2.316866
49 room_B_chair_2 0.435847 0.82642 1.607748
50 room_B_coat_hanger_0 0.073927 0.154667 0.138173
51 room_B_cube_0 0.058384 0.131024 0.104184
52 room_B_cube_1 0.060926 0.127503 0.104204
53 room_B_cup_0 1.1184 7.298525 4.937895
54 room_B_cup_1 1.030775 5.893492 5.554281
55 room_B_cup_2 2.454008 18.066069 14.860561
56 room_B_cup_3 3.096267 20.715389 15.100975
57 room_B_cup_4 2.55846 5.101856 7.619192
58 room_B_cup_5 0.5239 1.015293 0.932277
59 room_B_cup_6 1.952396 6.329725 6.954328
60 room_B_lamp_0 0.305946 0.772256 1.257307
61 room_B_lamp_1 0.111063 0.464758 0.220344
62 room_B_shelf_0 0.485909 0.941829 0.438766
63 room_B_shelf_1 2.316131 5.849635 6.427223
64 room_B_shelf_2 0.220443 0.446526 0.390474
65 room_B_shelf_3 2.001844 5.099002 4.94336
66 room_B_table_0 0.245021 0.409597 0.628512
67 room_l_book_0 0.423708 0.953376 0.618058
68 shelf_l_0 1.733897 7.198431 7.687705
69 shelf_l_1 0.416069 1.538461 1.598254
70 shelf_O_0 0.42869 4.22667 3.003134
71 shelf_O_1 0.478794 3.277662 0.685916
72 table_l_0 0.516371 2.270701 0.638314
73 table_l_1 0.425897 0.802616 0.658631
74 table_O_0 0.478838 2.374376 0.952758
75 table_O_1 0.941871 1.945553 1.087856
76 TV_O_0 0.132627 2.745053 1.733654
77 TV_O_1 0.121472 1.012234 0.513965

Appendix C

Résumé en Français

Nous fournissons ici un résumé en langue française des travaux présentés dans ce
manuscrit de thèse.

Résumé : L’arrivée des robots dans notre vie quotidienne fait émerger le besoin
pour ces systèmes d’avoir accès à une représentation poussée des connaissances et
des capacités de raisonnements associées. Ainsi, les robots doivent pouvoir com-
prendre les éléments qui composent l’environnement dans lequel ils évoluent. De
plus, la présence d’humains dans ces environnements et donc la nécessité d’interagir
avec eux amènent des exigences supplémentaires. Ainsi, les connaissances ne sont
plus utilisées par le robot dans le seul but d’agir physiquement sur son environ-
nement mais aussi dans un but de communication et de partage d’information avec
les humains. La connaissance ne doit plus être uniquement compréhensible par le
robot lui-même mais doit aussi pouvoir être exprimée et partagée.

Dans la première partie de cette thèse, nous présentons Ontologenius, le logiciel
développé durant ces trois ans de thèse. C’est un logiciel permettant de main-
tenir des bases de connaissances sous forme d’ontologies, de raisonner dessus et de
les gérer dynamiquement. Nous commençons par expliquer en quoi ce logiciel est
adapté aux applications d’interaction humain-robot (HRI), notamment avec la pos-
sibilité de représenter la base de connaissances du robot mais aussi une estimation
des bases de connaissances des partenaires humains ce qui permet d’implémenter
les mécanismes de théorie de l’esprit, telle que la prise de perspective. Nous pour-
suivons avec une présentation de ses interfaces. Cette partie se termine par une
analyse des performances du système ainsi développé.

Dans une seconde partie, cette thèse présente notre contribution à deux prob-
lèmes d’exploration des connaissances : l’un ayant trait au référencement spatial
et l’autre à l’utilisation de connaissances sémantiques. Nous commençons par une
tâche de description d’itinéraires pour laquelle nous proposons une ontologie per-
mettant de décrire la topologie d’environnements intérieurs et deux algorithmes de
recherche d’itinéraires. Nous poursuivons avec une tâche de génération d’expression
de référence. Cette tâche vise à sélectionner l’ensemble optimal d’informations à
communiquer afin de permettre à un auditeur d’identifier l’entité référencée dans
un contexte donné. Ce dernier algorithme est ensuite affiné pour y ajouter les infor-
mations sur les activités passées provenant d’une action conjointe entre un robot et
un humain, afin de générer des expressions encore plus pertinentes. Il est également
intégré à un planificateur de tâches symbolique pour estimer la faisabilité et le coût
des futures communications.

Cette thèse se termine par la présentation de deux architectures cognitives, la

220 APPENDIX C. RÉSUMÉ EN FRANÇAIS

première utilisant notre contribution concernant la description d’itinéraire et la sec-
onde utilisant nos contributions autour de la Génération d’Expression de Référence.
Les deux utilisent Ontologenius pour gérer la base de connaissances sémantique. À
travers ces deux architectures, nous présentons comment nos travaux ont amené
la base de connaissances a prendre un rôle central, fournissant des connaissances à
tous les composants du système.

Introduction

Dans cette thèse, nous présentons plusieurs contributions autour de l’utilisation
d’ontologies comme moyen de représenter les connaissances pour le robot ainsi que
pour représenter une estimation des connaissances des partenaires du robot. Une
ontologie est un graphe de connaissances avec en plus une spécification formelle et
explicite de la signification partagée des concepts qui y sont utilisés. En robotique,
l’utilisation d’une telle représentation formelle et explicite permet une unification
des connaissances au sein d’une architecture entière. La connaissance n’est plus
omniprésente parmi les composants, chacun possédant la partie dont il a besoin
sans cohérence globale. Avec une ontologie, la connaissance devient une ressource
partagée. Cette notion de connaissance partagée est également importante lorsqu’on
parle de systèmes multi-robots. L’utilisation d’une ontologie permet à tous les
robots de communiquer en utilisant le même vocabulaire. Par conséquent, il peut
faciliter leur interaction, même s’ils ne reposent pas sur la même architecture.

En étendant les applications multi-robots, nous atteignons les applications
multi-agents et par conséquent les applications pour l’interaction humain-robot.
La connaissance qu’une ontologie représente est la connaissance de la façon dont
nous, en tant qu’êtres humains, nous percevons notre environnement et comment
nous l’interprétons. Certes une ontologie est compréhensible par la machine mais
surtout, à la base, compréhensible par l’homme, à la différence des réseaux de neu-
rones par exemple. Grâce à toutes ces caractéristiques et parce qu’elle vient de la
connaissance humaine, l’ontologie peut convenir pour représenter une estimation
de la connaissance humaine pour un robot. De plus, en essayant de l’aligner sur le
savoir humain, de la même manière que plusieurs robots peuvent utiliser le vocabu-
laire qu’une ontologie contient pour communiquer, un robot pourrait l’utiliser pour
communiquer avec un humain, que ce soit pour interpréter un acte de communica-
tion ou pour en produire un.

Ontologenius : une mémoire sémantique pour
l’interaction Humain-Robot

Dans ce chapitre, nous présentons Ontologenius, un logiciel open source et léger
pour maintenir un graphe de connaissances à l’aide d’une ontologie. Ce logiciel a
été développé pour des applications d’Interaction Humain-Robot avec la possibilité
de maintenir plusieurs bases de connaissances à la fois, l’une représentant les con-

221

naissances du robot et les autres étant l’estimation des connaissances des partenaires
du robot. De plus, concernant la gestion de plusieurs instances à la fois, Ontologe-
nious est livré avec une fonctionnalité de copie profonde pour récupérer l’état d’une
base de connaissances à un moment donné, puis pour la modifier librement. Pour
représenter plusieurs états de connaissance d’un même agent et éviter la création
de trop d’instances qui pourraient ralentir le CPU, avec Ontologenius nous avons
proposé une sorte de système de versionnage, gardant une trace des changements.
Concernant la récupération de connaissances, avec Ontologenius nous avons choisis
de fournir un ensemble de requêtes précises travaillant au niveau sémantique mais
permettant l’exploration de la structure de la connaissance plutôt que simplement
les relations entre entités.

Conception et fonctionnalités

Dans cette section, nous expliquons d’abord notre choix d’utiliser l’ontologie comme
moyen de représentation des connaissances, tant du point de vue de son expressivité
que de son utilisation croissante en robotique. Ensuite, nous présentons les fonc-
tionnalités souhaitées et le niveau d’expressivité que nous avons sélectionné pour ce
logiciel.

Pourquoi une ontologie ?

En psychologie cognitive, la mémoire sémantique fait référence à la connaissance
encyclopédique des mots associée à leur signification. Après plusieurs études sur
les temps de réponse des participants aux questions, certains auteurs ont pro-
posé un modèle de cette mémoire sémantique comme étant un réseau séman-
tique [Collins 1969, Collins 1970]. Avec ce modèle, ils posent l’hypothèse que
les connaissances sont organisées de manière hiérarchique, respectant un principe
d’inclusion entre les classes. Par exemple, une classe représentant le concept de
chat hériterait d’une classe supérieure, représentant le concept d’animal. De plus,
les instances de ces classes seraient liées aux autres par des propriétés, et de la même
manière que pour les classes, une notion de hiérarchie sur les propriétés existerait.
Une telle structure des connaissances chez l’homme permettrait une économie cog-
nitive ainsi qu’un stockage efficace de ces connaissances. Même s’ils n’ont pas été
les premiers à formaliser le principe d’un réseau sémantique, Collins et Quillian ont
fourni des travaux et des implémentations informatiques de premier plan.

Comme indiqué dans [Prasad 2020], un tel réseau sémantique, également appelé
graphe sémantique ou graphe de connaissances, est aujourd’hui fréquemment util-
isé comme représentation de connaissances dans les applications robotiques pour
représenter entre autres :

• les catégories d’entités à différents niveaux
d’abstraction [Bálint-Benczédi 2018], par ex. une poignée est un objet
physique

222 APPENDIX C. RÉSUMÉ EN FRANÇAIS

• les caractéristiques des entités [Tenorth 2017], par ex. un réfrigérateur a une
poignée

• la fonction ou le but des entités [Paulius 2019], par ex. la poignée du réfrigéra-
teur permet d’ouvrir le réfrigérateur

• l’emplacement d’une entité par rapport à une autre (c’est-à-dire des relations
spatiales) [Singh 2020], par ex. la bouteille de lait est au frigo

C’est sur la base de ces connaissances que nous pouvons ensuite créer des pro-
grammes pour fournir des capacités cognitives aux robots. Voici un point impor-
tant, cette connaissance doit supporter les composants de l’architecture mais n’en
fait pas forcément partie. C’est ce qu’on appelle le paradigme de la programmation
robotique basée sur la connaissance [Beetz 2012], où la connaissance est séparée
du programme. Il permet d’avoir plusieurs sous-systèmes d’une même architec-
ture robotique, chacun apportant une capacité cognitive spécifique mais partageant
tous les mêmes connaissances. Le choix de partager des connaissances communes
entraîne des défis importants nécessitant d’abord de se mettre d’accord sur le con-
tenu de la connaissance et ensuite de le fournir d’une manière compréhensible par
la machine. Considérant l’utilisation d’un réseau sémantique comme représentation
des connaissances, l’utilisation de l’ontologie est destinée à répondre à ces défis.

La première définition d’une ontologie a été proposée par Guber
dans [Guber 1993] comme suit : “une ontologie est une spécification explicite d’une

conceptualisation”. Plus tard, Borst [Borst 1999], a introduit deux nouveaux con-
cepts définissant une ontologie comme une “spécification formelle d’une conceptu-

alisation partagée”. Les nouveaux concepts sont les notions de « formel » et de
« partagé ». En fusionnant ces deux définitions, Studer et al. [Studer 1998] sont
parvenus à la définition : “Une ontologie est une spécification formelle et explicite

d’une conceptualisation partagée”. Avec cette dernière définition, on commence à
voir qu’une ontologie peut être un outil puissant pour créer une base de connais-
sance commune à toute une architecture robotique et utilisée par des sous-systèmes
fournissant des capacités cognitives spécifiques.

Même si toutes les définitions précédentes tendent à affiner ce qu’est une ontolo-
gie, elles reposent toutes sur la notion commune de conceptualisation pour laquelle
aucune définition formelle n’est fournie. Une ancienne définition, présentée dans
[Genesereth 1987], était :

« Un corps de connaissances formellement représenté est basé sur une

conceptualisation : les objets, concepts et autres entités qui sont

supposés exister dans un domaine d’intérêt et les relations qui existent

entre eux. Une conceptualisation est une vue abstraite et simplifiée du

monde que nous souhaitons représenter dans un but précis. Chaque

base de connaissances, système à base de connaissances ou agent de

niveau de connaissance est engagé dans une certaine conceptualisation,

explicitement ou implicitement.”

223

Cependant, comme l’explique Guarino dans [Guarino 2009], une telle définition
d’une conceptualisation ne correspond ni à notre intuition ni à notre besoin d’une
ontologie. En effet, nous ne voulons pas que la conceptualisation dépende de la situ-
ation actuelle. Il doit plutôt être ce qui est commun à toute situation, permettant de
les représenter de manière uniforme. Comme expliqué dans [Guarino 1995], lorsque
le monde est modifié, la conceptualisation doit rester la même. On s’intéresse donc
au sens des concepts utilisés pour décrire un état du monde. Cependant, la défini-
tion finale d’une conceptualisation fournie par Guarino va difficilement dans ce sens
malgré son objectif initial. Pour la simplicité du propos actuel, la conceptualisation
devrait être le sens de tout concept permettant de représenter une situation ou un
état du monde donné. Par conséquent, une ontologie pourrait être définie comme :

une spécification formelle et explicite du sens partagé de tout concept

permettant de représenter une situation donnée.

En d’autres termes, une ontologie vise à contraindre l’interprétation d’un vocab-
ulaire utilisé. C’est donc une théorie logique. Cependant, en regardant la littéra-
ture, nous remarquons que la définition d’une ontologie est encore aujourd’hui floue.
En effet, même si elle représente le sens des concepts utilisables, nous souhaitons
l’appliquer à la base de connaissance représentant un état du monde donné, même
s’il évolue dans le temps. Là où un réseau sémantique représenterait cette instan-
ciation, car la signification de ses arêtes pourrait être définie par l’utilisation d’une
ontologie, dans cette thèse, nous utiliserons le terme ontologie pour désigner un
réseau sémantique possédant une restriction sur l’interprétation du vo-
cabulaire utilisé. Le but de cette thèse n’étant pas de modéliser ces règles de
restriction mais plutôt de les utiliser, cela ne doit pas prêter à confusion.

Considérant l’étude de l’ontologie en robotique, et plus généralement en infor-
matique, on peut distinguer trois types d’apports :

• création d’ontologie,

• stockage et inférence à base d’ontologies,

• système utilisant une ontologie

La création d’ontologies se concentre sur la définition du vocabulaire et des
règles. Les ontologies créées sont souvent divisées en quatre catégories : niveau
supérieur, référence, domaine et application. Les ontologies de niveau supérieur
définissent des concepts largement applicables, transversaux à plusieurs disciplines.
Les plus utilisées sont DOLCE (Descriptive Ontology for Linguistic and Cognitive
Engineering) [Masolo 2003], Cyc [Lenat 1989], ou SUMO (Suggested Upper Merged
Ontology) [Niles 2001]. Les ontologies de référence sont basées sur une ontologie
supérieure et décrivent le vocabulaire d’une discipline, comme l’ingénierie ou la
médecine. Par exemple, [Schlenoff 2015] couvre la robotique et l’automatisation,
décrivant le robot d’un point de vue technique, avec ses capteurs, ses processus et sa

224 APPENDIX C. RÉSUMÉ EN FRANÇAIS

pose. Les ontologies de domaine visent à affiner une discipline, en se concentrant sur
un domaine plus restreint, comme l’ontologie SOMA [Beßler 2020] se concentrant
sur la représentation des activités. Enfin, les ontologies d’applications étendent les
ontologies de domaine pour des applications précises. La conception de l’ontologie
utilise des langages tels que RDF (Resources Description Framework), FOL (First
Order Logic) ou OWL (Web Ontology Language). Chaque langage est livré avec
des caractéristiques telles que le formalisme ou la calculabilité.

À l’aide de ces ontologies, de nombreux frameworks ont été développés
pour prendre en charge les processus de raisonnement de haut niveau dans
les applications robotiques. Parmi elles, on trouve des ontologies utilisées
pour la prise de décision, l’évaluation de situation, la planification ou le main-
tien de croyances. Un examen complet de ces capacités de raisonnement
et des systèmes correspondants est disponible dans [Olivares-Alarcos 2019].
Parmi les systèmes revus, les emblématiques sont KnowRob [Tenorth 2013],
ROSETTA [Stenmark 2013], CARESSES [Bruno 2017], RoboBrain [Saxena 2014],
ou encore ORO [Lemaignan 2010].

Le dernier type de contribution est le stockage et l’inférence à base
d’ontologies pour former une base de connaissance sur laquelle le framework peut
s’appuyer pour effectuer un raisonnement de haut niveau. KnowRob utilise Pro-
log [Wielemaker 2003] avec une bibliothèque pour gérer les triplets RDF. ROSETTA
utilise un triple store Sésame [Broekstra 2002]. ORO utilise le système de stock-
age de triplets Jena en plus du raisonneur Pellet [Sirin 2007]. Enfin, RoboBrain
utilise une base de données de graphiques personnalisée. Nous pouvons voir
qu’aucune solution standard n’a émergé car elle dépend principalement des besoins
de l’application en termes de capacité de requête, de prise en charge de l’expressivité
ou de support technique et de compatibilité. Comme d’autres outils, nous pouvons
trouver en C++ owlcpp [Levin 2011] basé sur Raptor et Fact++ [Tsarkov 2006],
ou en Python RDFlib, OWLReady2 ou AllegroGraph.

En résumé, une base de connaissances sous forme d’ontologie, peut être vue
comme un graphe sémantique reposant sur une spécification formelle et explicite du
sens partagé des concepts utilisés pour représenter une situation donnée. Afin d’être
utilisée dans un système pour effectuer un raisonnement de haut niveau, l’ontologie
doit être stockée pour exposer les connaissances qu’elle contient à d’autres com-
posants. Aucune solution de stockage standard n’a vu le jour jusqu’à présent car
elle dépend principalement des besoins de l’application. Par conséquent, dans la
partie suivante de cette section, nous discutons de nos besoins en nous concentrant
sur les applications d’interaction humain-robot et en nous inspirant des solutions
existantes, nous définissons les fonctionnalités que nous souhaitons pour notre sys-
tème de stockage.

Caractéristiques souhaitées

Travailler en serveur : L’architecture robotique que nous visons est composée
de plusieurs modules, capables de communiquer. En plus de l’architecture, nous

225

considérons un système de supervision, étant une sorte de “chef d’orchestre” qui
appelle chaque composant en cas de besoin. Un problème commun avec une telle ar-
chitecture est que chaque composant possède une partie des connaissances générales
qui peuvent conduire à des incohérences. Par conséquent, la base de connaissances
que nous voulons doit être un serveur, accessible par requête et mise à jour par
n’importe quel composant. Il fournit ainsi une connaissance uniforme au sein de
l’architecture. Pour créer un serveur, nous pourrions utiliser n’importe quel outil
existant et lui attacher une couche de communication. C’est par exemple le cas
d’ORO, qui fonctionne comme un serveur, basé sur le triple store Jena et four-
nissant une interface Telnet pour envoyer les requêtes et les mises à jour.

Supporter plusieurs instances : Puisque nous ciblons l’application HRI, nous
devons être en mesure de représenter une estimation des connaissances des parte-
naires humains. Là où certains pourraient utiliser une seule base de connaissances
pour représenter les connaissances des robots ainsi que les connaissances des hu-
mains, nous voulons que notre logiciel prenne en charge la "distinction soi-autre".
Elle est présentée dans [Pacherie 2012] comme le fait que “pour que les représenta-
tions partagées (...) favorisent la coordination plutôt que de créer la confusion, il
est important que les agents soient capables de séparer les représentations de leurs
propres actions et intentions et de celles des autres ”. A notre connaissance, ORO
est le seul logiciel proposant cette capacité. Cependant, il utilise un moyen simple
de l’implémenter en exécutant plusieurs instances du même système de stockage
de triplets, chacune attachée à un agent. En application robotique une telle so-
lution n’est pas suffisante. Ainsi, pour l’utilisation de la planification des tâches,
nous pourrions avoir besoin d’estimer un état futur d’une base de connaissance.
Pour implémenter cette fonctionnalité, il faut pouvoir capter l’état d’une base de
connaissance à un instant donné puis pouvoir le modifier sans impacter la base de
connaissance d’origine, qui est continuellement mise à jour par la perception. A la
date de cette thèse, aucun outil à base d’ontologie n’offre cette possibilité.

Requête au niveau sémantique : Comme expliqué dans [Broekstra 2002], pour
interroger des graphes RDF, trois niveaux sont possibles. Considérant une ontologie
écrite en XML, le niveau syntaxique interrogerait la structure XML. Par conséquent,
il interrogerait un arbre plutôt qu’un graphe. Une requête serait “donnez-moi les
ressources imbriquées dans un élément Description ayant l’attribut about avec la
valeur X”. Il est donc dépendant de la langue et nécessite de connaître les mots-clés
utilisés. Le niveau structurel, tel qu’il est disponible dans [Lassila 1998], fournit
une abstraction au langage. Il permet des requêtes du genre “donnez-moi tous les
éléments de type A” quelle que soit la façon dont il est représenté dans le langage.
Cependant, le niveau structurel ne regarde que les triplets explicites. Si B est un
sous-type de A et que l’élément x est décrit comme étant de type B, demandant
les éléments de type A, x ne sera pas renvoyé. Le dernier niveau de requête est le
niveau sémantique qui ne se limite pas à des connaissances explicites. À ce niveau,

226 APPENDIX C. RÉSUMÉ EN FRANÇAIS

en demandant les éléments de type A, x serait renvoyé car x est de type B et B est
une spécification de A. Cela signifie que nous ne considérons pas un simple système
de stockage de triplets essayant de faire correspondre des modèles. Pour supporter
ce niveau de requête, deux solutions peuvent être utilisées : calculer la fermeture du
graphe (ajouter A comme type de x et le stocker), ou l’inférer à la requête. Alors
que la première solution supprime une partie de la sémantique en aplatissant la
hiérarchie1, la seconde peut être chronophage pour les requêtes.

Requêtes spécifiques : Nous visons à utiliser notre logiciel avec des algorithmes
de solveur. Cela signifie que nous voulons fournir un accès fin aux connaissances
stockées à haute fréquence. A la différence de Prolog ayant son propre algorithme
de recherche, nous avons préféré des requêtes de niveau inférieur telles que : “quels
sont les types directs de X ?”, “quelles sont les propriétés inverses de Y ?”, “quelles
les propriétés relient C et D?”, ou ”E est-il dans le domaine d’application de F?”,
et cela au niveau sémantique. Néanmoins, pour les requêtes rapides, nous devons
faire attention au nombre d’inférences nécessaires au moment de la requête.

Raisonnement à la mise à jour : Pour éviter trop d’inférences au moment de
la requête, nous voulons que certaines inférences soient appliquées lors de la mise à
jour. Bien que le calcul de la fermeture entière aplatirait la base de connaissance,
certaines relations peuvent encore être calculées lors de mises à jour comme celles
provenant de relations inverses ou d’axiomes en chaîne.

Thread safe : Puisque le logiciel doit fonctionner comme un serveur, nous voulons
qu’il supporte plusieurs requêtes en parallèle mais qu’il soit sécurisé lors de la mise
à jour.

Niveau d’expressivité : Considérant le langage d’ontologie Web (OWL), il ex-
iste différents niveaux d’expressivité selon les besoins. Le plus expressif est OWL-
full, cependant, il est dit qu’il n’est pas informatique, ce qui signifie que les inférences
qu’il permet ne peuvent pas être résolues au moment de la requête. Ensuite, OWL-
DL (Description Logic) prend en charge la hiérarchie des propriétés et des classes,
la restriction de valeur d’énumération, les propriétés inverses ou la restriction de
cardinalité. Enfin, OWL-lite est le moins expressif, ne supportant pas la restriction
de cardinalité et la restriction de valeur. Même si OWL-DL conviendrait, dans
une première version OWL-lite pourrait suffire et sera donc le niveau minimal à
atteindre.

Raisonnement personnalisé : À des fins de recherche, nous ne voulons pas
nous limiter au raisonnement logique du premier ordre. Nous voulons pouvoir inté-
grer des processus de raisonnement applicatifs ayant un accès direct à la structure
interne. Une telle fonctionnalité pourrait être fournie par le support de plugins

1On perd le fait que x est de type A car il est de type B.

227

par exemple. L’avantage des plugins est que n’importe qui peut ajouter des ca-
pacités de raisonnement sans modifier le noyau du logiciel ou posséder une version
personnalisée.

Au vu de nos fonctionnalités souhaitées, du nombre d’outils disponibles mais
plus maintenus ou sans documentation, et de notre besoin de pouvoir mettre en
œuvre de nouvelles capacités en fonction de nos besoins de recherche évoluant dans
le temps, nous choisissons de développer de nouveaux logiciels en partant de zéro.
Le logiciel résultant est Ontologenius. Un tel choix est risqué car il sera difficile
d’atteindre le niveau de logiciels beaucoup plus matures. En revanche, cela nous a
permis au cours de cette thèse d’avoir la maîtrise de son fonctionnement interne et
de pouvoir le faire évoluer facilement au cours des différents projets dans lesquels
nous l’avons utilisé.

Ontologenius s’inscrit dans la continuité du logiciel ORO mais en proposant
une gestion multi-instances plus poussée et un système de requêtes plus adapté à
l’intégration dans des algorithmes.

Recherche d’un itinéraire avec des connaissances séman-
tiques

Sur la base d’Ontologenius, nous présentons plusieurs contributions utilisant les
connaissances stockées.

Nous avons tous déjà été sollicités, ou avons nous-mêmes demandé, notre chemin
en ville, dans un centre commercial, ou plus simplement dans une maison. Lorsque
nous fournissons de telles informations à une personne, nous effectuons ce que l’on
appelle communément une tâche d’orientation. Même si cela peut sembler anodin
pour nous, développer un robot capable de l’exécuter peut être un défi. Dans ce
chapitre, nous choisissons de nous concentrer sur la sous-tâche consistant à générer
la phrase d’explication. Cette sous-tâche s’appelle la description de l’itinéraire.
Pour l’effectuer, nous avons d’abord besoin d’un ensemble de connaissances sur
l’environnement dans lequel la personne guidée va se déplacer, comme les chemins,
les intersections des chemins, ou les éléments qui les côtoient. Ensuite, nous avons
besoin d’un ensemble de « bonnes pratiques » pour fournir un itinéraire assez facile
à suivre et à retenir.

Dans le domaine de l’Interaction Humain-Robot (HRI), des robots guides ont été
étudiés intensivement et déployés dans des centres commerciaux [Okuno 2009], des
musées [Burgard 1999, Clodic 2006, Siegwart 2003], ou des aéroports [Triebel 2016].
D’un point de vue représentation des connaissances, on peut remarquer l’utilisation
de représentations métriques [Thrun 2007] ou topologiques [Morales Saiki 2011]
pour représenter l’environnement dans lequel le robot agit. Puisque nous nous
concentrons sur la tâche de description d’itinéraire, nous considérons que le robot
n’accompagne pas l’humain jusqu’à sa destination finale mais explique plutôt com-
ment l’atteindre. Par conséquent, la représentation métrique ne sera pas considérée
comme étant principalement utilisée à des fins de navigation [Thrun 2007]. Pour ef-

228 APPENDIX C. RÉSUMÉ EN FRANÇAIS

fectuer plus spécifiquement une description d’itinéraire, la connaissance topologique
n’est pas suffisante. En plus de la topologie de l’environnement, le robot a besoin
de connaître les types des éléments composant l’environnement et leurs noms en
langage naturel. Certaines contributions ont ainsi tenté de mélanger des représen-
tations métriques ou topologiques avec des représentations sémantiques pour con-
tenir ces connaissances supplémentaires [Satake 2015b, Chrastil 2014, Zender 2008].
Cependant, les mélanger peut créer un manque d’uniformité dans la représentation
globale des connaissances. De cette façon, créer une représentation unique per-
mettant à un robot de calculer des itinéraires et de les exprimer pourrait assurer
l’uniformité des connaissances.

Même muni d’une représentation cohérente de son environnement, le robot doit
trouver un itinéraire non pas pour lui-même mais pour l’humain guidé. Un robot
accompagnant l’humain n’a qu’à déterminer un chemin, adapté à ses capacités et
interprétable uniquement par lui-même. Fournissant un itinéraire à un humain,
l’itinéraire doit être adapté aux capacités et aux connaissances humaines. Par
exemple, dans un environnement extérieur, on ne donnera pas le même itinéraire
pour un automobiliste ou un cycliste. Dans le cadre d’un centre commercial, nous ne
donnerons pas de parcours avec escalier à une personne à mobilité réduite ou à une
personne avec un caddie. Une fois calculé, le robot doit expliquer l’itinéraire. Là
où les cartes interactives n’ont qu’à mettre en évidence un chemin, ici, le robot doit
générer une phrase que l’humain pourra mémoriser. Bien sûr, le robot n’instruira
pas un humain avec une phrase comme « marche de 30 mètres et tourne à -90 degrés
». Ce ne serait pas adapté. L’utilisation de l’orientation et de la référence aux
éléments de l’environnement sera nécessaire à travers une phrase comme “marcher
jusqu’au fleuriste puis tourner à gauche”. Nous voulons donc que le robot génère
des plans compréhensibles et exécutables par l’humain.

La première contribution de ce chapitre est une représentation unifiée d’un
environnement intérieur utilisant une ontologie, pour inclure à la fois des connais-
sances topologiques et sémantiques. Ensuite, sur la base de cette représentation,
nous avons proposé un premier algorithme pour trouver un itinéraire approprié
à expliquer à un humain et un second algorithme pour verbaliser un itinéraire
de manière appropriée.

Génération d’expression de référence basée sur une on-
tologie

Poursuivant sur l’exploitation des connaissances et plus précisément sur la commu-
nication spatiale, nous présentons maintenant une contribution autour de la tâche
de génération d’expressions de référence.

Faire référence à une entité est l’une des tâches les plus courantes que nous
effectuons chaque jour.“ Pouvez-vous m’apporter ma tasse ? C’est la noire à côté
de l’évier”. “Je ne me souviens pas du nom de l’homme avec la chemise rouge et
les lunettes”. “J’ai perdu mes clés, elles sont sur un porte-clés avec une peluche en

229

forme de licorne”. Un tel type de communication, précis et efficace, est un aspect
clé pour le succès d’une tâche collaborative. Néanmoins, dans des environnements
complexes avec une grande variété d’objets, de lieux ou de personnes, faire référence
à une entité spécifique peut devenir un véritable défi pour un robot. Elle doit tenir
compte du contexte de la tâche globale, de la diversité des faits qui peuvent être
extraits de la situation et qui dépendent des modalités de perception disponibles,
et de la connaissance partagée (ou non) entre le robot et son partenaire.

Figure C.1: Six situations vues du point de vue de l’auditeur, avec le robot placé
de l’autre côté de la table. Se référer au même stylo implique différents mécanismes
pour lever l’ambiguïté, dans chaque situation. La phrase en-dessous de chaque
situation est une expression de référence possible pour désigner ledit stylo sans
ambiguïté.

Considérez la situation où vous êtes autour d’une table avec votre robot collab-
oratif et le robot a besoin d’un stylo. La simple instruction “Donnez-moi le stylo”

peut entraîner plusieurs situations de complexités diverses. Dans le cas où il n’y a
qu’un seul stylo (Fig.C.1a), s’y référer est évident. Considérons maintenant deux
stylos sur la table. Si l’un est accessible par vous (l’humain) et l’autre ne l’est pas
(Fig.C.1b), l’accessibilité peut être utilisée pour désigner le stylo. Si les deux stylos
ne sont pas accessibles mais que l’un est visible pour vous et l’autre ne l’est pas
(Fig.C.1c où un stylo est caché sous la boîte), la visibilité par prise de perspective
peut également être utilisée pour déterminer que le autre stylo ne conduit pas à
un ambiguïté avec celui référencé. Maintenant, les deux stylos sont visibles et ac-

230 APPENDIX C. RÉSUMÉ EN FRANÇAIS

cessibles, mais l’un est bleu et l’autre est rouge (Fig.C.1d). L’ajout de la couleur
du stylo résout l’ambiguïté. Si les deux stylos ont la même couleur mais que l’un
est dans une boîte à crayons (Fig.C.1e), la relation avec la boîte à crayons résout
l’ambiguïté. Si malheureusement, les deux sont dans une boîte à crayons mais l’un
est vert et l’autre orange (Fig.C.1f), le rapport avec la boîte à crayons et la couleur
de cette dernière lève l’ambiguïté. On pourrait continuer ainsi longtemps, en con-
sidérant qu’un est à votre gauche et un à votre droite, qu’il n’y a pas de stylo sur
la table mais qu’il y en a un sur une étagère et ainsi de suite.

Jusqu’à présent, nous considérions que le robot connaissait les notions de stylo et
de boite a crayon ainsi que leurs noms en langage naturel pour en parler. Cependant,
imaginez-vous voyager dans un autre pays et devoir parler anglais2, vous pouvez
parfois ne pas connaître certains mots précis et donc en utiliser un plus générique
à la place. Cependant, ce faisant, une nouvelle ambiguïté peut être levée car ce
mot générique fait également référence à d’autres entités. Il en est de même pour
notre robot s’il doit parler français et ne connaît pas la traduction du concept de
la boîte à crayons. Il devra utiliser un terme plus générique, tel que « conteneur ».
Cependant, ce terme plus générique pourrait également désigner d’autres entités,
comme des boîtes.

En plus des noms de concepts, le robot doit faire attention aux relations qu’il
utilise. Le poids ou la longueur exacte d’un objet ne serait pas utile car un humain
ne peut pas facilement les évaluer. Au contraire, la couleur de l’objet semble être une
propriété appropriée à utiliser, sauf si le robot partenaire est daltonien. Cela signifie
que le robot doit utiliser des relations qu’il estime connues et facilement observables
par son partenaire. Cela peut être fait en considérant la théorie de l’esprit et
en effectuant la génération d’expression de référence sur la base de connaissances
humaine estimée par le robot.

Cette tâche pour faire référence à une entité précise parmi d’autres est com-
munément appelée la tâche Referring Expression Generation (REG). Elle est
souvent décomposée en deux sous-tâches : la détermination du contenu et la
réalisation linguistique [Krahmer 2012]. La détermination de contenu vise à
déterminer les relations à utiliser pour se référer à une entité tandis que la réali-
sation linguistique vise à choisir les mots à utiliser pour communiquer le contenu.
Notre contribution dans ce chapitre est centrée sur la détermination du contenu
mais nous ne pouvons pas considérer ces deux sous-tâches comme entièrement in-
dépendantes. Comme expliqué précédemment, si le robot ne connaît pas certains
noms de concepts en langage naturel, la réalisation linguistique échouera dans le cas
où la détermination du contenu les sélectionne. Une autre possibilité pour la réal-
isation linguistique serait de choisir un mot plus général mais il ne correspondrait
pas au contenu déterminé. On pourrait imaginer une base de connaissances dédiée
pour le REG avec uniquement des concepts utilisables en langage naturel, mais une
telle solution n’est pas adaptée si l’on veut une base de connaissances unique pour
tout le système robotique. De plus, il pourrait être difficile de maintenir cette base

2Je m’excuse auprès des anglophones natifs qui ne profiteront pas pleinement de cet exemple.

231

de connaissances dédiée pendant l’interaction, en plus d’autres car il s’agirait d’un
dédoublement de connaissances.

La principale contribution présentée dans ce chapitre est un algorithme
basé sur une ontologie et indépendant du domaine pour la génération
d’expressions de référence. Il utilise une fonction de coût personnalisable es-
timant la charge cognitive nécessaire à un humain pour interpréter l’expression de
référencement afin de produire l’ensemble “optimal” d’assertions verbalis-
ables qui permet de se référer sans ambiguïté à une entité donnée.

Comme expliqué dans [Reiter 2000], il s’agit de “comment produire une descrip-
tion d’une entité qui permet à l’auditeur d’identifier cette entité dans un contexte
donné”. Alors que cette tâche est étudiée depuis des décennies, aucune des méth-
odes existantes n’a tenté d’utiliser une ontologie comme base de connaissances,
travaillant la plupart du temps sur une base de connaissances dédiée à la tâche.
De plus, parce que leur base de connaissances est dédiée à la tâche, elle n’est com-
posée que de relations utilisables pour communiquer avec un humain. Cependant,
si l’on considère une base de connaissances partagée par tous les composants de
l’architecture, certaines connaissances peuvent avoir un usage purement technique
pour le fonctionnement du robot. Plus important encore, aucun des travaux ex-
istants n’a vraiment pris en compte la notion de contexte. Leur seul but était
de désigner une entité dans un état donné d’un environnement. Cependant, dans
son utilisation pour de l’interaction humain-robot, la génération d’expression de
référence n’est qu’une action d’une tâche plus large, dans laquelle un contexte ex-
iste, qu’il s’agit d’informations déjà connues sur l’entité à laquelle se référer ou d’une
restriction implicite sur les entités concernées. Nous présentons ainsi un nouvel al-
gorithme gérant toutes les problématiques précédemment évoquées et utilisant une
ontologie comme base de connaissances. De plus, à travers des comparaisons avec
d’autres algorithmes, nous montrons que notre contribution est, à ce jour, la plus
efficace, résolvant la plupart des problèmes de génération d’expressions de référence
en moins d’une milliseconde. Enfin, comme une preuve d’utilisabilité, l’algorithme
a été intégré dans une architecture robotique avec une base de connaissances mise
à jour en permanence par la perception.

Estimation de la faisabilité et du coût de la communica-
tion lors de la planification des tâches

Profitant des bonnes performances de notre algorithme de génération d’expressions
de référence, dans ce chapitre, nous proposons une méthode l’intégrant à un plani-
ficateur de tâches.

Il est bien établi qu’un aspect clé du succès des tâches collaboratives repose sur
une communication claire et fluide ancrée dans le contexte de l’interaction. Centré
sur la communication verbale, dans le domaine de recherche Traitement du langage
naturel (TALN) et par extension dans le domaine de l’interaction humain-robot, il
a été divisé en deux doubles problèmes [Tellex 2020]. D’une part, la compréhension

232 APPENDIX C. RÉSUMÉ EN FRANÇAIS

du langage naturel (NLU) vise au robot à interpréter et à fonder les énoncés humains
par rapport à la situation actuelle et à réagir en fonction de celle-ci [Brawer 2018].
D’un autre côté, la génération de langage naturel (NLG) vise à permettre au robot
à produire du langage. Il peut s’agir soit de demander de l’aide [Tellex 2014],
d’aligner les connaissances [Devin 2016], soit d’expliquer sa décision à son parte-
naire [Roncone 2017].

Dans le chapitre précédent, nous avons introduit un algorithme capable de
générer le contenu d’une expression référente. Une telle contribution relève donc
du problème NLG. Considérer le REG comme une action pouvant être effectuée
par le robot signifie que le robot pourrait planifier une telle communication en ter-
mes de quand et quoi pour communiquer. Alors que le “quand” est directement
géré par le planificateur de tâches, le “quoi” en termes de contenu est fourni par
le REG3. Cependant, le REG ne fournit pas seulement le contenu mais est égale-
ment en mesure d’indiquer si une telle communication est réalisable ou non et de
donner des informations sur son coût. Dans le contexte du REG, la faisabilité de
la communication est liée à la capacité à générer une expression référente sans am-
biguïté alors que le coût dépend du nombre de relations à communiquer. Étant
donné que l’algorithme REG fonctionne sur une base de connaissances représentant
l’état actuel de l’environnement, le maintien d’une représentation comparable de
l’environnement pour les états futurs de la tâche (comme cela se fait dans la plani-
fication symbolique des tâches) permettrait au robot d’estimer le faisabilité et le
coût des actions de communication verbale tout au long d’une tâche.

Avec ces deux informations, à savoir le coût et la faisabilité, un planificateur de
tâches pourrait comparer les communications verbales entre elles, comparer avec
d’autres moyens de communication, minimiser la complexité globale de la commu-
nication et éviter certains échecs du plan. Cette approche pour estimer la commu-
nication lors de la planification des tâches peut être comparée à celle proposée dans
[Lallement 2016]. Dans ce dernier cas, les actions de mouvement ont été évaluées
lors de la planification des tâches pour estimer leur faisabilité, leurs coûts et leurs
effets indirects. Avec les deux approches, les plans symboliques peuvent être opti-
misés et peuvent être plus fiables pour prévenir les échecs d’exécution et donc le
besoin de réparation.

Pour mieux comprendre l’avantage de considérer la communication au niveau
de la planification des tâches, considérons les situations de la Figure C.2. Le robot
doit disposer des tags RFID sur trois zones d’une table. Le robot peut les identifier
avec leur identifiant unique mais les tags étant trop petits, il ne peut pas les saisir.
Au contraire, le partenaire humain ne peut pas les identifier de manière unique mais
peut les saisir. Pour cet exemple, nous supposons également que le robot ne peut
pas pointer vers les tags. Le robot doit donc communiquer les actions successives
que l’humain devra effectuer pour passer de la configuration initiale (C.2 a) à la

3Le REG ne détermine pas l’entité à laquelle se référer mais seulement comment elle sera
référencée à. On pourrait dire que le « quoi » est choisi par une composante décisionnelle supérieure,
tandis que le « comment » est déterminé par le REG. Pour correspondre à la définition habituelle,
nous supposons cette simplification linguistique.

233

Figure C.2: Une tâche collaborative Humain-Robot avec trois zones colorées et
trois tags RFID (situation a). Le robot doit expliquer à son partenaire humain de
mettre le tag o1 dans la zone noire et le tag o2 dans la zone blanche, pour atteindre
la situation d. Les identifiants des objets ne sont connus que du robot. Si toutes
les communications de la tâche ne sont pas planifiées à l’avance, une situation de
blocage peut apparaître si le robot demande d’abord de déplacer la balise o1 avant
o2 (situation b).

configuration but (C.2 d). Entre les deux configurations, seules les tags o1 et o2

doivent être déplacés. Le tag o1 doit être déplacé de la zone rouge vers la zone noire
et o2 de la zone noire vers la zone blanche. Alors que le tag o3 peut être référencé
sans ambiguïté grâce à sa couleur, les deux autres ne le peuvent pas. Cependant,
ils peuvent être référencés grâce à la zone dans laquelle ils se trouvent (par exemple
“le tag qui est dans la zone rouge”).

Si le contenu des communications n’est affiné qu’à l’exécution, deux solutions
équivalentes peuvent être envisagées (C.2 séquence a-b-d et a-c-d). A l’exécution, la
première solution commence par demander à l’humain de déplacer o1 dans la zone
noire résultant en l’instruction “prendre le tag qui est dans la zone rouge et le mettre

dans la zone noire” . Dans cette nouvelle situation où les deux tags rouges sont
maintenant dans la zone noire (Figure C.2b). Le robot n’a aucun moyen de désigner
le tag o2 sans ambiguïté. Par conséquent, la tâche est bloquée4. L’estimation de
la faisabilité et du coût de la communication au cours du processus de planification
aboutirait à la deuxième solution possible. Le robot demande d’abord de déplacer
le tag o2 (Figure C.2 c) puis le tag o1 (Figure C.2 d). Si le robot avait pu pointer,
l’impasse de la première solution aurait pu être évitée avec une action de pointage
et néanmoins, grâce à l’estimation des coûts de communication, la solution la moins

4Le robot pourrait utiliser des relations spatiales comme la droite, la gauche ou le plus proche
de moi. Cependant, la génération d’une telle expression de référence n’est pas une tâche a comfacile
et spréhension non plus. Même si la situation n’est pas vraiment bloquée, la communication requise
peut être complexe.

234 APPENDIX C. RÉSUMÉ EN FRANÇAIS

chère peut être sélectionnée5.
La principale contribution présentée dans ce chapitre est une approche pour

estimer la faisabilité et le coût de la communication au niveau de la
planification des tâches. Cela implique un lien fin entre un planificateur et
une ontologie pour estimer la communication ancrée dans l’état futur estimé de
l’environnement.

Le but de cette méthode est de doter le planificateur de tâches de la capacité
d’estimer la faisabilité et le coût de la communication, et donc d’éviter les impasses
et de trouver des plans minimisant la complexité de la communication. Certes, dans
notre contribution, la communication s’est limitée à la génération d’expressions de
référence d’entités mais pourrrait s’étendre à d’autres. Premièrement, le planifi-
cateur de tâches que nous utilisons est HATP [Lallement 2014], un planificateur
de tâches prenant en compte l’humain, ce qui signifie qu’il est capable de planifier
pour le robot et son partenaire, en estimant leur état mental futur et leurs capac-
ités à assigner des tâches à l’un ou l’autre. Pour estimer les futurs états mentaux,
HATP dispose d’une représentation interne dédiée, limitée aux entités utilisées dans
la tâche à planifier. Cependant, pour fonctionner, notre algorithme de génération
d’expressions de référence a besoin d’une ontologie comme base de connaissances et
doit prendre en compte toutes les entités de l’environnement. Pour le faire fonction-
ner, nous présentons donc un schéma permettant au planificateur de mettre à jour
une ontologie, représentant la future connaissance estimée du partenaire humain,
afin de pouvoir exécuter l’algorithme dessus. Cette contribution tire pleinement
avantage des fonctionnalités apportées par Ontologenius, à savoir la possibilité de
maintenir une instance par agent, et de copier une instance à un moment donné
pour la modifier librement. La méthode résultante est implémentée dans une archi-
tecture robotique en tant que preuve de concept.

Étendre le REG avec des connaissances sur les activités
passées

Lorsque deux ou plusieurs agents effectuent une tâche collaborative, bien qu’ils
puissent avoir une perception différente de leur environnement partagé, ils peu-
vent estimer les informations qu’ils partagent et peuvent ainsi les utiliser pour
communiquer sur des entités qu’ils estiment connues des autres. Cette hy-
pothèse est celle couramment utilisée pour développer et évaluer les méth-
odes de génération d’expressions de référence via l’utilisation de la légende de
l’environnement[Duboue 2015]. Ces situations sont des images toujours prises du
point de vue de l’auditeur. L’image, ou la représentation des connaissances asso-
ciée, est fournie à l’algorithme qui doit générer une expression de référence. Cette

5Beaucoup d’autres solutions pourraient exister mais dépendent de la capacité robotique. Don-
ner les deux instructions dans l’état initial avant l’acte humain résout aussi le problème par exem-
ple. Néanmoins, si le robot ne peut pas comparer ces différentes solutions au regard de sa capacité
actuelle, des situations non souhaitables peuvent encore apparaître.

235

hypothèse a également été utilisée lorsque le REG a été appliqué à l’interaction
Humain-Robot et peut être comparé à un robot apparaissant dans un environ-
nement et devant désigner un objet. Cependant, cette désignation se produit lors
d’une activité conjointe entre un robot et un partenaire humain, ce qui signifie que
les objets désignés peuvent avoir été utilisés, déplacés ou déjà évoqués. Toutes ces
informations sur la tâche effectuée peuvent être considérées comme des connais-
sances supplémentaires partagées par les agents impliqués. On peut ainsi se référer
aux entités à travers ces actions passées en plus de leurs attributs et relations les
unes avec les autres.

Figure C.3: Se référer au couteau k2 dans la situation actuelle (t3) est impossible
si le robot effectue une action qui ne lui permet pas de voir ce qui se trouve devant
l’humain. Compte tenu des étapes précédentes de la tâche humaine, le robot peut
se référer au couteau à travers l’action pour couper une tomate (t2) ou pour couper
un concombre (t1).

Considérez la légende de l’interaction représentée dans la Figure C.3 à l’instant
courant t3. Le robot, au fond de la cuisine, doit demander le couteau à l’humain k2.
Étant donné que le robot effectue une autre action de la tâche conjointe, il ne peut
pas voir ce qui se trouve devant l’humain. Par conséquent, il ne peut connaître
et donc utiliser de relations spatiales sur k2 6. Par conséquent, le robot ne peut
utiliser que les attributs k2 (c’est-à-dire uniquement sa couleur) pour générer une
expression lui faisant référence. Toujours en ne considérant que l’instant courant t3,
deux autres couteaux bleus se trouvent dans la cuisine étant k1 et k3. Le couteau
k1 est fixé au mur devant le robot ce qui signifie qu’il lui est déjà accessible et
non à l’humain. Ce couteau peut donc être considéré comme étant hors contexte
et n’entraînant aucune ambiguïté avec k2. L’autre couteau bleu k3 reste ambigu

6On pourrait aussi considérer un objet connu du robot mais pour lequel il ne dispose d’aucune
information concernant sa nouvelle localisation et sa recherche. Il faudrait s’y référer, demander
l’aide humaine, sans possibilité d’utiliser des relations spatiales.

236 APPENDIX C. RÉSUMÉ EN FRANÇAIS

puisqu’il n’a pas d’attribut perceptible qui diffère de celui auquel le robot doit se
référer.

Jusqu’à présent, nous n’avons considéré que la situation actuelle t3 et non
l’expérience partagée entre l’homme et le robot sur la tâche qu’ils effectuent. A
l’instant précédent t2 l’humain coupait une tomate avec le couteau k2. Il était
évident pour l’humain que le robot observait la scène pendant qu’il agissait. Cette
nouvelle information sur l’action effectuée pourrait ainsi être utilisée par le robot
pour générer une référence au couteau recherché dans la situation actuelle. Une
expression de référence possible serait “le couteau avec lequel vous avez coupé la

tomate”.
Considérons maintenant l’action une étape avant de couper la tomate à l’instant

t1. L’humain coupait un concombre avec ce même couteau. La combinaison de ces
deux actions passées peut être considérée comme la tâche de préparer des légumes.
Le robot peut donc aussi utiliser cette connaissance pour se référer au couteau.
Une expression de référence possible considérant la totalité de l’interaction serait
“le couteau avec lequel vous avez préparé les légumes”. L’exploitation des connais-
sances partagées sur les activités passées en plus des attributs et propriétés habituels
pourrait conduire à la génération d’une expression de référence plus riche qui pour-
rait être plus facile à comprendre par le partenaire humain. De plus, cela permet
de générer des ER dans des contextes où la méthode précédente n’était pas efficace.

Ce chapitre est une extension de notre précédent travail [Buisan 2020b] présenté
dans le chapitre 4. Il a été intégré dans un planificateur de tâches de base d’agents
hiérarchique basé sur les coûts pour estimer la faisabilité et le coût des ER pen-
dant le processus de planification [Buisan 2020a], présenté au chapitre 5. Dans ce
chapitre nous visons donc à créer le lien inverse, rendant le REG capable d’utiliser
des traces d’exécution résultant de l’exécution de plans hiérarchiques générés par
HATP. Comme les chapitres précédents, nous nous concentrons uniquement sur la
détermination du contenu du problème REG mais continuons à considérer la néces-
sité d’avoir des noms en langage naturel pour permettre la réalisation linguistique.

La principale contribution de ce chapitre est une extension de l’algorithme REG
basé sur une ontologie en considérant les activités passées des agents. Une
contribution secondaire de ce chapitre est une proposition d’un formalisme pour
représenter les Traces d’Exécution Hiérarchiques (plans exécutés basés sur
HTN) dans une ontologie. Notre contribution précédente a considéré des fonctions
de coût basées sur les propriétés des relations utilisées pour représenter la charge
cognitive requise pour qu’un humain interprète l’expression de référence. Dans cette
extension, nous proposons d’ajouter des fonctions de coût personnalisables basées
sur le temps, pour représenter la charge cognitive requise pour qu’un humain se
souvienne des activités référencées.

Avec l’intégration de l’algorithme de génération d’expressions de référence avec
un planificateur de tâches, nous mettons donc en évidence le fait que l’acte de faire
référence à une entité, apparaît la plupart du temps dans le contexte d’une tâche. Au
cours de cette tâche, les agents agissent avec l’environnement et manipulent les en-
tités de l’environnement. Sur cette base, dans ce chapitre, nous proposons d’utiliser

237

cette connaissance supplémentaire sur les activités des agents avec les entités de
l’environnement comme une nouvelle information, utilisable pour s’y référer. En
continuant à utiliser HATP pour le planificateur de tâches, nous proposons d’abord
un moyen de représenter le domaine de planification de tâches dans une ontolo-
gie, ainsi que l’exécution de ce plan, que nous avons appelé la trace d’exécution
hiérarchique. Ensuite, nous présentons les modifications apportées à notre algo-
rithme de génération d’expression de référence d’origine, lui permettant d’utiliser
la représentation des activités passées pour générer un nouveau type d’expression
de référence.

Aller plus loin que les relations binaires dans le REG

Représenter toute la complexité des connaissances composant notre monde dans un
langage lisible par machine est un enjeu central en intelligence artificielle. Venant
du Web sémantique, nous avons vu que l’utilisation d’une ontologie à travers des
langages basés sur RDF a réussi à s’imposer dans le domaine de l’intelligence ar-
tificielle et donc de la robotique. Cependant, ce qui est souvent considéré comme
une limitation des ontologies est sa capacité à ne représenter que des relations un-
aires et binaires. Les relations binaires telles que “Sean Connery a la nationalité

britannique” sont décrites sous la forme de triplets (sean_connery, hasNational-

ity, british). Les relations unaires telles que “Sean Connery est un acteur” peu-
vent alors être transformées en relations binaires par l’ajout de prédicats dédiés
(sean_connery, isA, Actor). Cependant, la description de relations plus complexes
impliquant plus de deux entités est beaucoup plus difficile en utilisant ce type de
représentation.

Prenons l’exemple de Sean Connery7, si nous voulons vous référer à lui8, on
pourrait affirmer qu’il s’agit de l’acteur jouant le rôle de James Bond (sean_connery,

hasPlayedRole, James Bond). Cependant, d’autres acteurs ont joué ce rôle. On
pourrait aussi dire qu’il est l’acteur jouant dans le film Goldfinger (sean_connery,

hasPlayedIn, goldfinger) mais encore une fois d’autres le font. On pourrait enfin
expliquer qu’il s’agit de l’acteur jouant le rôle de James Bond et jouant dans le film
Gold Finger. Cependant, nous limiter à l’utilisation de relations binaires modifie
l’information exacte. Une description plus précise serait qu’il est l’acteur jouant le
rôle de James Bond dans le film Gold Finger. On voit ici la nécessité de relations
impliquant plus de deux entités. Dans notre exemple, nous devons lier les trois
entités que sont l’acteur “Sean Connery”, le rôle “James Bond” et le film “Gold
Finger”. Ensemble, ils décrivent une performance. Sans être explicitement liées ces
trois informations ne représenteraient pas la performance. D’ailleurs, sans ces liens,
on pourrait donner une explication comme l’acteur jouant le rôle de James Bond et

7Dans le cas où vous ne savez pas qui est Sean Connery, n’hésitez pas à prendre un autre acteur
que vous aimez mais vous devrez adapter l’ensemble de l’exemple.

8Évidemment on veut faire référence à lui sans son nom puisque l’on considère une personne
s’étant reconnue dans la note précédente.

238 APPENDIX C. RÉSUMÉ EN FRANÇAIS

jouant dans le film Rising Sun. Les deux informations sont vraies mais n’ont pas
de sens ensemble.

Pour faire référence à une entité, étant un objet ou un agent, de telles relations
complexes pourraient être utiles mais doivent être gérées avec soin pour garder le
lien entre chaque relation binaire la composant. A la lumière de cette considération,
on peut observer que la description des tâches passées des agents utilisée dans le
chapitre précédent est basée sur le même principe. Là où nous nous référons à Sean
Connery à travers son rôle et le film dans lequel il joue, nous avons décrit le couteau
à travers le légume qu’il a servi à couper et l’agent qui l’a utilisé. Cependant, selon
le contexte de la conversation, il n’est pas toujours nécessaire d’utiliser toutes les
relations binaires d’une relation aussi complexe. Nous n’en avons peut-être besoin
que d’une. En essayant de lister les acteurs ayant le titre honorifique de “Sir”,
l’expression référente “L’homme ayant joué James Bond” pourrait suffire. De la
même manière, pour désigner le couteau, la phrase “Le couteau avec lequel vous

avez coupé” pourrait également suffire dans certains contextes.
Même si l’adaptation de l’algorithme de génération d’expressions de référence

du chapitre précédent apporte de nouvelles possibilités, nous montrons donc dans
ce chapitre qu’il présente certaines limites. La principale est la connaissance a priori
dont il a besoin sur la représentation. Elle est ainsi restreinte à une représentation
unique des activités passées. Cependant, nous avons vu dans la littérature qu’il
existe de nombreuses représentations d’activités, chacune créée pour des applica-
tions particulières. Dans ce chapitre, nous explorons donc des modèles d’ontologie
communs utilisés pour représenter de telles relations complexes sous la forme de
relations n-aires. En leur ajoutant un ensemble de motifs paramétriques simples en
tant que label, nous avons créé ce que nous avons appelé des relations composées.
Avec ce nouveau type de relation, nous adaptons notre algorithme de génération
d’expression de référence original pour fournir un moyen plus générique de générer
une expression de référence. L’algorithme résultant fonctionne toujours avec une
description des activités passées, mais aussi avec toute représentation utilisant une
relation n-aire. De plus, nous montrons que les performances du nouvel algorithme
sont meilleures que celles de l’algorithme précédent et égales à celles de l’algorithme
d’origine lorsqu’aucune relation composée n’est utilisée dans la représentation.

Un robot dans le centre commercial : le projet MuM-
MER

A travers les chapitres suivants, nous présentons deux architectures robotiques im-
pliquant les contributions présentées tout au long de cette thèse.

Dans les environnements intérieurs à grande échelle, comme les musées, les cen-
tres commerciaux ou les aéroports, la présence de grands écrans interactifs, de cartes
ou de panneaux souligne l’importance de fournir des informations sur les itinéraires.
Cependant, la lecture de telles cartes peut être difficile et certaines informations
peuvent manquer, comme l’emplacement des magasins vendant un produit donné.

239

Pour apporter ces nouvelles informations et aider les gens à trouver leur itinéraire
dans de grands environnements intérieurs tels que les centres commerciaux, des
robots peuvent être utilisés.

Pour étudier ce défi et l’exigence d’interaction humain-robot soulignée, dans le
cadre du projet européen H2020 MuMMER [Foster 2016], nous avons développé
et déployé un robot de service dans l’un des plus grands centres commerciaux de
Finlande, Ideapark dans le ville de Lempaalä. Le robot résultant a pu discuter
avec les clients et les guider. Le dialogue a été apporté par un partenaire du pro-
jet [Papaioannou 2018]. La contribution de l’équipe LAAS-RIS, et donc l’objectif
de ce chapitre, portait sur la tâche de direction.

Avec un centre commercial comptant environ 1,2 kilomètre de rues piétonnes et
plus de 150 magasins, avoir un robot accompagnant les clients prendrait beaucoup
de temps. En nous inspirant des employés du centre commercial, nous avons choisi
de décrire verbalement le parcours tout en accompagnant ce discours par des gestes
de pointage. Le robot peut cependant se déplacer de quelques mètres si besoin.
Le résultat de ce projet est une architecture de robot complète qui intègre un
certain nombre de composants. Chacun d’eux utilise des modèles et des algorithmes
décisionnels, prenant en compte explicitement les humains.

Dans le chapitre courant, nous présentons donc le projet MuMMER et
l’architecture qui en résulte. Le but du projet MuMMER était de développer une
architecture robotique permettant à un robot de guider un client dans un centre
commercial et de discuter avec lui. Par guider, nous n’entendons pas accompagner le
client mais plutôt lui expliquer le parcours à suivre. Pour pouvoir trouver l’itinéraire
à expliquer et générer la phrase d’explication, nous utilisons la contribution sur la
description de l’itinéraire. Pour conserver la représentation de l’environnement et
la partager avec d’autres composants, nous utilisons Ontologenius. L’architecture
résultante, incarnée dans un robot Pepper, a fonctionné pendant 14 semaines dans
un centre commercial en Finlande.

La tâche du directeur : Évaluer les architectures cogni-
tives

Développer des architectures robotiques adaptées à l’Interaction Humain-Robot
et ainsi capables de réaliser des interactions de manière acceptable est encore au-
jourd’hui un véritable défi. La complexité vient entre autres du nombre de capacités
dont doit être doté le robot et donc du nombre de composants logiciels qui doivent
être intégrés de manière cohérente. De telles architectures doivent fournir au robot
la capacité de percevoir son environnement et les personnes/agents avec lequel il
interagit, de fusionner et d’interpréter cette information perceptive, de communi-
quer à son sujet, de planifier des tâches avec son partenaire, d’estimer la perspective
et l’état mental des autres, etc. Une fois développé, l’évaluation de ces architec-
tures peut être difficile car tous ces composants sont regroupés en un seul système.
Les tâches que l’on souhaite généralement que le robot exécute doivent mettre en

240 APPENDIX C. RÉSUMÉ EN FRANÇAIS

avant un maximum de capacités, tout en étant suffisamment simples pour être re-
produites par la communauté. De plus, nous devrions pouvoir mener avec elle des
études d’utilisateurs pour valider les choix concernant les utilisateurs naïfs.

Étant donné qu’un objectif à long terme du domaine de la robotique est de voir
des robots agir dans notre vie quotidienne, de nombreuses tâches et scénarios ont
été inspirés par les activités quotidiennes. Même si ces tâches offrent une grande
variété de situations à gérer, puisque le partenaire humain n’est pas limité dans
ses actions, elles ont l’inconvénient de ne pas mettre en avant certaines capacités
subtiles pourtant nécessaires à une bonne interaction. La tâche de guidage de robot
[Satake 2015b] dans un centre commercial, un musée ou un aéroport, nécessite des
compétences de communication élevées pour comprendre les requêtes (éventuelle-
ment en discutant) et y répondre, que ce soit pour indiquer une direction ou pour
donner des conseils. Cependant, les besoins de perception peuvent être limités en
raison des vastes environnements, ainsi que les besoins de prise de perspective dus
à la même perception de l’environnement par le robot et l’humain9. Enfin, même
si l’humain doit contribuer au problème, avec une telle tâche le partenaire humain
n’est pas forcément acteur de la tâche et peut juste écouter le robot une fois sa
question posée. Même si elles sont dans des environnements plus contraints, les
tâches de type barman [Petrick 2012] présentent les mêmes inconvénients. En effet,
l’humain est considéré comme un client, et à ce titre, l’interaction avec le robot est
limitée. Le robot ne demandera jamais à l’humain de l’aider à effectuer une tâche
et ses actions ne nécessitent ni coordination ni collaboration complète.

Pour impliquer le partenaire humain dans la tâche et lui demander d’agir avec
le robot, des tâches de type assemblage [Tellex 2014]10 peuvent être utilisées. Néan-
moins, dans la plupart des cas, l’humain agit comme un assistant plutôt que comme
un partenaire, car une collaboration complète peut être difficile à réaliser. Le robot
élabore ainsi un plan et effectue l’assemblage, puis demande de l’aide lorsqu’il dé-
tecte des erreurs lors de l’exécution (par exemple, lorsqu’il ne peut pas atteindre
certaines pièces). Ici, la tâche conduit à une communication unidirectionnelle. De
plus, étant donné que dans une telle tâche, le robot et l’humain ont des connais-
sances équivalentes sur l’environnement, il peut être difficile de concevoir des sit-
uations où une divergence de croyances apparaît et donc une prise de perspective
serait nécessaire.

Réduire une tâche quotidienne pour la transformer en une tâche jouet autour
d’une table peut réduire la complexité de la tâche et permettre une reproductibilité
facile. De plus, cela permet au robot et à l’humain de travailler à proximité l’un
de l’autre, avec des robots plus petits par exemple. Avec la version jouet de la
tâche d’assemblage présentée dans [Brawer 2018], l’humain est plus impliqué dans
la tâche. Cette tâche demande au robot de prélever des morceaux et de les tenir
pour les aider à assembler une chaise. Même si la communication est unidirection-
nelle, on pourrait imaginer d’inverser les rôles pour tester différentes capacités. De

9Bien sûr, nous pouvons trouver des cas délicats où cela pourrait aider mais ils ne reflètent pas
les situations courantes.

10Cette tâche n’est pas explicitement destinée à être répliquée par la communauté.

241

plus, la communication implique des objets se référant à l’utilisation de diverses
caractéristiques visuelles sur les entités. Même si les deux agents ont les mêmes
connaissances sur l’environnement, la communication est fondée sur l’état actuel
du monde. Dans cette tâche, aucune décision ne doit être prise par le robot mais
encore une fois, l’inversion des rôles pourrait ouvrir d’autres défis.

Pour focaliser les études autour de la prise de perspective et de la gestion des
croyances, le scénario de Sally et Anne, issu d’un test de psychologie, a été étudié
en robotique [Milliez 2014]. Dans ce scénario, le robot est un observateur d’une
situation où deux humains vont et viennent dand une pièce, et déplacent un objet
d’une boîte à une autre. Puisqu’un humain est dans une autre pièce quand l’autre
agit, une divergence de croyance apparaît entre les deux humains et le robot doit
le comprendre. Alors que la tâche met en évidence la gestion des croyances, elle
est d’abord limitée en ce qui concerne la prise de perspective puisque la présence
humaine ou non pourrait être suffisante pour estimer les croyances humaines11. De
plus, les humains n’agissent pas avec le robot puisqu’ils ne sont qu’observateurs de
la scène. De plus, aucun objectif n’est formulé et les humain n’interagissent pas les
uns avec les autres. Enfin, aucune communication n’est nécessaire dans la tâche.
Le scénario est ainsi centré sur l’analyse d’une situation.

Pour terminer cette thèse, dans ce chapitre, nous présentons une intégration de
l’algorithme de génération d’expressions de référence dans une architecture robo-
tique complète dédiée aux applications d’Interaction Humain-Robot. De plus, avec
cette nouvelle architecture, nous montrons comment nous plaçons la connaissance
au centre de l’architecture, utilisée par tous les composants. De plus, dans ce
chapitre, nous introduisons une nouvelle tâche, inspirée d’expériences de psycholo-
gie, pour évaluer l’architecture cognitive de l’interaction Humain-Robot. Partant de
cette tâche et eu égard à l’architecture mise en œuvre, nous terminons ce chapitre
par un ensemble de défis que nous pensons être intéressants pour la communauté.

Travaux futurs

Pour terminer cette thèse, nous présentons quelques travaux futurs potentiels, en
nous concentrant sur deux thèmes principaux étudiés au cours de ces trois années
: le besoin de connaissances pour l’HRI et le REG.

Besoin de connaissances pour l’IHR

Dans l’introduction de cette thèse, nous avons vu le système de mémoire principal
que nous estimons qu’un humain possède. Dans cette thèse, nous nous sommes
concentrés sur la mémoire sémantique, pour doter le robot de la sémantique sur
les éléments de son environnement. Si nous avons géré la mémoire procédurale qui
pourrait être assimilée au domaine de la planification des tâches, nous n’avons pas

11Quand les deux humains sont dans la pièce, ils ont la même perception de la scène mais avoir
des croyances différentes sur les objets cachés. Une prise de perspective serait nécessaire si les
humains pouvaient se pencher sur les boîtes pour vérifier ce qu’il y a à l’intérieur.

242 APPENDIX C. RÉSUMÉ EN FRANÇAIS

géré la mémoire épisodique, même si nous avons commencé à en dessiner certains
aspects à travers la description des activités passées. La capacité de mémorisation
est cependant un aspect clé pour HRI. Cela permet à un robot d’en parler en tant
que narrateur, comme nous l’avons vu pour se référer à des entités, d’apprendre
des politiques d’action, ou d’apprendre les préférences des autres. L’un des sys-
tèmes actuels les plus avancés gérant ces connaissances est aujourd’hui le système
openEASE [Beetz 2015b]. Mais comment l’étendre à l’application HRI ? Comment
représenter l’estimation des expériences de l’autre ? Comment faire la différence
entre une expérience réelle et une situation passée que d’autres nous disent avoir
vécue ?

Enfin, pour moi, la question la plus complexe et encore ouverte, serait : comment
faire une distinction claire entre le système sémantique et l’épisodique ? Cependant,
poser cette question conduit à une autre : avons-nous besoin d’une distinction claire
? D’une part, ce sont deux types de savoirs différents mais d’autre part, l’un n’est
rien sans l’autre. Nous avons besoin de sens pour comprendre les souvenirs (au sens
d’expériences passées) ce qui signifie que nous avons besoin d’un lien entre eux.
A vouloir créer deux systèmes distincts, à mon avis, on arrive à deux solutions,
qui ne me semblent pas adaptées. Premièrement, nous pourrions garder dans le
système sémantique une trace des expériences avec leurs significations (par exemple
cut_7 est une action de coupe) tandis que le système épisodique ne les ordonnerait
que temporellement (par exemple cut_7 tient entre t1 et t2). La seconde solution
serait de ne garder aucune trace de l’expérience dans le système sémantique mais
nécessiterait de garder une partie du sens dans l’épisodique (par exemple cut_7,
étant une action coupante, tient entre t1 et t2).

Génération d’expressions de référence

Au cours de la dernière année de cette thèse, nous nous intéressons au problème de
génération d’expressions de référence. Ce problème est intéressant car il nécessite
une représentation riche d’un environnement, une exploration fine de celle-ci, la
communication verbale des connaissances inhérentes, la prise en compte du prob-
lème au niveau de la tâche, et la prise en compte du partenaire. Même si nous
avons proposé quatre contributions autour de ce sujet, nous pensons que nombre
de défis restent à explorer. Dans la suite de nos travaux, nous pourrions d’abord
utiliser l’algorithme REG basé sur les activités passées lors de la planification des
tâches comme nous l’avons fait pour la version originale. De cette façon, le robot
pourrait planifier la communication en fonction des futures activités passées.

Une deuxième piste d’étude pourrait porter sur l’utilisation de relations spa-
tiales comme la gauche et la droite. Au cours de cette thèse, nous avons essayé
d’annuler de telles relations, même si notre algorithme pouvait les gérer. La rai-
son en est que de telles relations dépendent de la perspective et donc du cadre
de référence, c’est-à-dire du cadre dans lequel les relations sont calculées. Par ex-
emple, nous pourrions dire “le stylo à votre gauche” où le cadre de référence est
l’auditeur. On pourrait aussi dire « ma voiture est celle à gauche de la voiture

243

rouge » où le référentiel est la voiture rouge. Cependant, dire “regarde l’écureuil à
droite de l’arbre” est plus délicat. A la différence d’une voiture, un arbre n’a pas
d’orientation. Vous et l’auditeur étant au même endroit et ayant la même perspec-
tive, cette phrase ne conduit à aucune ambiguïté car vous et l’auditeur pourriez
être le cadre de référence. Cependant, si vous êtes un de chaque côté de l’arbre,
le cadre de référence utilisé n’est pas clair et l’expression de référence résultante
est ambiguë. Avec ces exemples, nous voyons que la perspective et les caractéris-
tiques des entités impliquées doivent être utilisées. Certains travaux commencent
à l’étudier [Kelleher 2006, dos Santos Silva 2015]. Cependant, ils sont principale-
ment basés sur l’algorithm incrémental qui n’est pas adapté et l’utilisation d’une
ontologie pourrait aider à généraliser le processus.

Enfin, une autre piste d’étude intéressante serait la référence aux ensembles. Une
approche prenant en charge cette fonctionnalité prendrait en charge deux nouveaux
types d’expression de référence. Premièrement, on pourrait dire «donnez-moi les
vis qui sont dans le bac rouge» ou «donnez-moi les stylos rouges» où l’on demande
un ensemble d’entités. Néanmoins, nous avons vu que le REG est une sorte de
processus récursif dans le sens où pour faire référence à une entité donnée, nous
pouvons avoir besoin de générer une expression de référence à une autre entité. Avec
des expressions de référence supportant des références à des ensembles, on pourrait
ainsi générer des phrases comme “donne-moi la bouteille qui est à côté des feuilles de
papier”. Ici l’entité cible n’est pas un ensemble mais elle possède une relation avec
un ensemble. Là où les quelques méthodes existantes possèdent la représentation
de l’ensemble dans la base de connaissances de manière statique [Fang 2013], il
serait plus intéressant de les calculer dynamiquement en fonction de la situation
actuelle et de l’entité cible. Un algorithme et la représentation des connaissances
sous-jacente pour prendre en charge une telle caractéristique pourraient être très
intéressante, et encore plus si nous parvenions à prendre en compte les références
spatiales en même temps.

Bibliography

[Allen 1983] James F Allen. Maintaining knowledge about temporal intervals. Com-
munications of the ACM, vol. 26, no. 11, pages 832–843, 1983. (Cited in
page 126.)

[Allen 2000] Gary L Allen. Principles and practices for communicating route knowl-

edge. Applied Cognitive Psychology: The Official Journal of the Society for
Applied Research in Memory and Cognition, vol. 14, no. 4, pages 333–359,
2000. (Cited in pages 53, 69, and 204.)

[Andresen 2016] Erik Andresen, David Haensel, Mohcine Chraibi and Armin
Seyfried. Wayfinding and cognitive maps for pedestrian models. In Traffic
and Granular Flow’15, pages 249–256. Springer, 2016. (Cited in page 57.)

[Atkinson 1966] Richard C Atkinson and Richard M Shiffrin. Some two-process

models for memory(Two-process models for memory and learning). 1966.
(Cited in page 8.)

[Baader 2003] Franz Baader, Diego Calvanese, Deborah McGuinness, Peter Patel-
Schneider, Daniele Nardiet al. The description logic handbook: Theory,
implementation and applications. Cambridge university press, 2003. (Cited
in page 22.)

[Baddeley 1986] Alan Baddeley, Robert Logie, S Bressi, S Della Sala and
H Spinnler. Dementia and working memory. The Quarterly Journal of
Experimental Psychology Section A, vol. 38, no. 4, pages 603–618, 1986.
(Cited in page 8.)

[Bálint-Benczédi 2018] Ferenc Bálint-Benczédi and Michael Beetz. Variations on

a Theme:“It’s a Poor Sort of Memory that Only Works Backwards”. In
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 8390–8396. IEEE, 2018. (Cited in pages 16 and 221.)

[Baron-Cohen 1985] Simon Baron-Cohen, Alan M Leslie and Uta Frith. Does the

autistic child have a “theory of mind”? Cognition, vol. 21, no. 1, pages
37–46, 1985. (Cited in page 189.)

[Bauer 2009] Andrea Bauer, Klaas Klasing, Tingting Xu, Stefan Sosnowski, Geor-
gios Lidoris, Quirin Muhlbauer, Tinguang Zhang, Florian Rohrmuller, Dirk
Wollherr, Kolja Kuhnlenzet al. The autonomous city explorer project. In
IEEE International Conference on Robotics and Automation (ICRA), pages
1595–1596. IEEE, 2009. (Cited in page 162.)

246 BIBLIOGRAPHY

[Beetz 2012] Michael Beetz, Dominik Jain, Lorenz Mosenlechner, Moritz Tenorth,
Lars Kunze, Nico Blodow and Dejan Pangercic. Cognition-enabled au-

tonomous robot control for the realization of home chore task intelligence.
Proceedings of the IEEE, vol. 100, no. 8, pages 2454–2471, 2012. (Cited in
pages 17 and 222.)

[Beetz 2015a] Michael Beetz, Ferenc Bálint-Benczédi, Nico Blodow, Daniel Nyga,
Thiemo Wiedemeyer and Zoltán-Csaba Marton. Robosherlock: Unstructured

information processing for robot perception. In IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 1549–1556, 2015. (Cited
in pages 97 and 189.)

[Beetz 2015b] Michael Beetz, Moritz Tenorth and Jan Winkler. Open-ease. In
IEEE International Conference on Robotics and Automation (ICRA), pages
1983–1990. IEEE, 2015. (Cited in pages 206 and 242.)

[Beetz 2018] Michael Beetz, Daniel Beßler, Andrei Haidu, Mihai Pomarlan,
Asil Kaan Bozcuoğlu and Georg Bartels. Know rob 2.0—a 2nd genera-

tion knowledge processing framework for cognition-enabled robotic agents.
In IEEE International Conference on Robotics and Automation (ICRA),
pages 512–519. IEEE, 2018. (Cited in page 188.)

[Belhassein 2017] Kathleen Belhassein, Aurélie Clodic, Hélene Cochet, Marketta
Niemelä, Päivi Heikkilä, Hanna Lammi and Antti Tammela. Human-human

guidance study. Technical Report, 2017. (Cited in pages 69, 163, and 164.)

[Belke 2002] Eva Belke and Antje S Meyer. Tracking the time course of multidimen-

sional stimulus discrimination: Analyses of viewing patterns and processing

times during “same”-“different “decisions. European Journal of Cognitive
Psychology, vol. 14, no. 2, pages 237–266, 2002. (Cited in pages 77 and 134.)

[Beßler 2020] Daniel Beßler, Robert Porzel, Mihai Pomarlan, Abhijit Vyas, Sebas-
tian Höffner, Michael Beetz, Rainer Malaka and John Bateman. Foundations

of the Socio-physical Model of Activities (SOMA) for Autonomous Robotic

Agents. arXiv preprint arXiv:2011.11972, 2020. (Cited in pages 18, 123, 139,
and 224.)

[Borst 1999] Willem Nico Borst. Construction of engineering ontologies for knowl-

edge sharing and reuse. 1999. (Cited in pages 17 and 222.)

[Bovy 2012] Piet H Bovy and Eliahu Stern. Route choice: Wayfinding in transport
networks: Wayfinding in transport networks, volume 9. Springer Science &
Business Media, 2012. (Cited in page 63.)

[Brachman 1979] Ronald J Brachman. On the epistemological status of semantic

networks. In Associative networks, pages 3–50. Elsevier, 1979. (Cited in
page 143.)

BIBLIOGRAPHY 247

[Brawer 2018] Jake Brawer, Olivier Mangin, Alessandro Roncone, Sarah Widder
and Brian Scassellati. Situated Human–Robot Collaboration: predicting in-

tent from grounded natural language. In IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pages 827–833. IEEE, 2018.
(Cited in pages 102, 179, 232, and 240.)

[Broekstra 2002] Jeen Broekstra, Arjohn Kampman and Frank Van Harmelen.
Sesame: A generic architecture for storing and querying rdf and rdf schema.
In International semantic web conference, pages 54–68. Springer, 2002.
(Cited in pages 18, 20, 224, and 225.)

[Bruno 2017] Barbara Bruno, Nak Young Chong, Hiroko Kamide, Sanjeev Kanoria,
Jaeryoung Lee, Yuto Lim, Amit Kumar Pandey, Chris Papadopoulos, Irena
Papadopoulos, Federico Pecoraet al. The CARESSES EU-Japan project:

making assistive robots culturally competent. In Italian Forum of Ambient
Assisted Living, pages 151–169. Springer, 2017. (Cited in pages 18 and 224.)

[Bui-Xuan 2008] Binh-Minh Bui-Xuan. Tree-representation of set families in graph

decompositions and efficient algorithms. PhD thesis, Université Montpellier
II-Sciences et Techniques du Languedoc, 2008. (Cited in page 150.)

[Buisan 2020a] Guilhem Buisan, Guillaume Sarthou and Rachid Alami. Human

aware task planning using verbal communication feasibility and costs. In In-
ternational Conference on Social Robotics (ICSR), pages 554–565. Springer,
2020. (Cited in pages 101, 121, and 236.)

[Buisan 2020b] Guilhem Buisan, Guillaume Sarthou, Arthur Bit-Monnot, Aurélie
Clodic and Rachid Alami. Efficient, situated and ontology based referring

expression generation for human-robot collaboration. In 29th International
Conference on Robot and Human Interactive Communication (RO-MAN),
pages 349–356. IEEE, 2020. (Cited in pages 73, 79, 121, and 236.)

[Buisan 2021] Guilhem Buisan and Rachid Alami. A Human-Aware Task Planner

Explicitly Reasoning About Human and Robot Decision, Action and Reac-

tion. In Companion of the ACM/IEEE International Conference on Human-
Robot Interaction, pages 544–548, 2021. (Cited in page 191.)

[Burgard 1999] Wolfram Burgard, Armin B Cremers, Dieter Fox, Dirk Hähnel, Ger-
hard Lakemeyer, Dirk Schulz, Walter Steiner and Sebastian Thrun. The mu-

seum tour-guide robot RHINO. In Autonome Mobile Systeme 1998, pages
245–254. Springer, 1999. (Cited in pages 52, 162, and 227.)

[Caniot 2020] Maxime Caniot, Vincent Bonnet, Maxime Busy, Thierry Labaye,
Michel Besombes, Sebastien Courtois and Edouard Lagrue. Adapted Pepper.
arXiv preprint arXiv:2009.03648, 2020. (Cited in page 174.)

248 BIBLIOGRAPHY

[Cassell 2007] Justine Cassell, Stefan Kopp, Paul Tepper, Kim Ferriman and
Kristina Striegnitz. Trading spaces: How humans and humanoids use speech

and gesture to give directions, 2007. (Cited in pages 53, 66, 68, 69, and 163.)

[Chen 2017] Yingfeng Chen, Feng Wu, Wei Shuai and Xiaoping Chen. Robots serve

humans in public places—KeJia robot as a shopping assistant. International
Journal of Advanced Robotic Systems, vol. 14, no. 3, pages 1–20, 2017.
(Cited in page 162.)

[Chrastil 2014] Elizabeth R Chrastil and William H Warren. From cognitive maps

to cognitive graphs. PloS one, vol. 9, no. 11, page e112544, 2014. (Cited in
pages 52 and 228.)

[Clodic 2006] Aurélie Clodic, Sara Fleury, Rachid Alami, Raja Chatila, Gérard
Bailly, Ludovic Brethes, Maxime Cottret, Patrick Danes, Xavier Dollat,
Frédéric Eliseiet al. Rackham: An interactive robot-guide. In IEEE In-
ternational Symposium on Robot and Human Interactive Communication
(ROMAN), pages 502–509. IEEE, 2006. (Cited in pages 52, 162, and 227.)

[Clodic 2009] Aurélie Clodic, Hung Cao, Samir Alili, Vincent Montreuil, Rachid
Alami and Raja Chatila. Shary: a supervision system adapted to human-

robot interaction. In Experimental robotics, pages 229–238. Springer, 2009.
(Cited in page 191.)

[Collins 1969] Allan M Collins and M Ross Quillian. Retrieval time from semantic

memory. Journal of verbal learning and verbal behavior, vol. 8, no. 2, pages
240–247, 1969. (Cited in pages 16 and 221.)

[Collins 1970] Allan M Collins and M Ross Quillian. Does category size affect cat-

egorization time? Journal of verbal learning and verbal behavior, vol. 9,
no. 4, pages 432–438, 1970. (Cited in pages 16 and 221.)

[Dale 1989] Robert Dale. Cooking up referring expressions. In 27th Annual Meeting
of the association for Computational Linguistics, pages 68–75, 1989. (Cited
in pages 77 and 79.)

[Dale 1992] Robert Dale. Generating referring expressions: Constructing descrip-
tions in a domain of objects and processes. The MIT Press, 1992. (Cited in
pages 77 and 79.)

[Dale 1995] Robert Dale and Ehud Reiter. Computational interpretations of the

Gricean maxims in the generation of referring expressions. Cognitive science,
vol. 19, no. 2, pages 233–263, 1995. (Cited in pages 77, 90, and 95.)

[Dale 2009] Robert Dale and Jette Viethen. Referring expression generation

through attribute-based heuristics. In 12th European workshop on natural
language generation (ENLG 2009), pages 58–65, 2009. (Cited in page 96.)

BIBLIOGRAPHY 249

[Deliyanni 1979] Amaryllis Deliyanni and Robert A Kowalski. Logic and semantic

networks. Communications of the ACM, vol. 22, no. 3, pages 184–192, 1979.
(Cited in page 143.)

[Denis 1997] Michel Denis. The description of routes: A cognitive approach to the

production of spatial discourse. Cahiers de psychologie cognitive, vol. 16,
no. 4, pages 409–458, 1997. (Cited in pages 53 and 66.)

[Devin 2016] Sandra Devin and Rachid Alami. An implemented theory of mind to

improve human-robot shared plans execution. In ACM/IEEE International
Conference on Human-Robot Interaction (HRI), pages 319–326. IEEE, 2016.
(Cited in pages 102, 104, 110, 191, and 232.)

[Diab 2020] Mohammed Diab, Mihai Pomerlan, Daniel Bebler and Jan Rosell Grat-
acòs. “Knowing from”–An outlook on ontology enabled knowledge transfer

for robotic systems. In Joint Ontology Workshops (JOWO), pages 1–6, 2020.
(Cited in page 123.)

[dos Santos Silva 2015] Diego dos Santos Silva and Ivandré Paraboni. Generating

spatial referring expressions in interactive 3D worlds. Spatial Cognition &
Computation, vol. 15, no. 3, pages 186–225, 2015. (Cited in pages 79, 207,
and 243.)

[Duboue 2015] Pablo Ariel Duboue, Martin Ariel Domínguez and Paula Estrella.
Evaluating robustness of referring expression generation algorithms. In 14th
Mexican International Conference on Artificial Intelligence (MICAI), pages
21–27. IEEE, 2015. (Cited in pages 120 and 234.)

[Dumontheil 2010] Iroise Dumontheil, Ian A Apperly and Sarah-Jayne Blakemore.
Online usage of theory of mind continues to develop in late adolescence. De-
velopmental science, vol. 13, no. 2, pages 331–338, 2010. (Cited in page 181.)

[Ebbinghaus 1885] Hermann Ebbinghaus. Über das gedächtnis: untersuchungen
zur experimentellen psychologie. Duncker & Humblot, 1885. (Cited in
page 7.)

[Erol 1994] Kutluhan Erol, James Hendler and Dana S Nau. HTN planning: Com-

plexity and expressivity. In AAAI, volume 94, pages 1123–1128, 1994. (Cited
in pages 123 and 124.)

[Fang 2013] Rui Fang, Changsong Liu, Lanbo She and Joyce Chai. Towards situ-

ated dialogue: Revisiting referring expression generation. In Conference on
Empirical Methods in Natural Language Processing, pages 392–402, 2013.
(Cited in pages 80, 207, and 243.)

[Fang 2014] Rui Fang, Malcolm Doering and Joyce Chai. Collaborative models for

referring expression generation in situated dialogue. In AAAI Conference on
Artificial Intelligence, volume 28, 2014. (Cited in page 80.)

250 BIBLIOGRAPHY

[Fiala 2005] Mark Fiala. ARTag, a fiducial marker system using digital techniques.
In IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05), volume 2, pages 590–596. IEEE, 2005. (Cited in
page 189.)

[Fikes 1971] Richard E Fikes and Nils J Nilsson. STRIPS: A new approach to the

application of theorem proving to problem solving. Artificial Intelligence,
vol. 2, no. 3-4, pages 189–208, 1971. (Cited in page 123.)

[Fiore 2016] Michelangelo Fiore, Aurélie Clodic and Rachid Alami. On planning

and task achievement modalities for human-robot collaboration. In Experi-
mental Robotics, pages 293–306. Springer, 2016. (Cited in page 191.)

[FitzGerald 2013] Nicholas FitzGerald, Yoav Artzi and Luke Zettlemoyer. Learning

distributions over logical forms for referring expression generation. In Con-
ference on empirical methods in natural language processing, pages 1914–
1925, 2013. (Cited in page 77.)

[Fokoue 2006] Achille Fokoue, Aaron Kershenbaum, Li Ma, Edith Schonberg and
Kavitha Srinivas. The summary abox: Cutting ontologies down to size. In In-
ternational Semantic Web Conference, pages 343–356. Springer, 2006. (Cited
in page 21.)

[Foster 2016] Mary Ellen Foster, Rachid Alami, Olli Gestranius, Oliver Lemon,
Marketta Niemelä, Jean-Marc Odobez and Amit Kumar Pandey. The

MuMMER project: Engaging human-robot interaction in real-world public

spaces. In International Conference on Social Robotics (ICSR), pages 753–
763. Springer, 2016. (Cited in pages 162 and 239.)

[Foster 2019] Mary Ellen Foster, Bart Craenen, Amol Deshmukh, Oliver Lemon,
Emanuele Bastianelli, Christian Dondrup, Ioannis Papaioannou, Andrea
Vanzo, Jean-Marc Odobez, Olivier Canévet, Yuanzhouhan Cao, Weipeng
He, Angel Martínez-González, Petr Motlicek, Rémy Siegfried, Rachid Alami,
Kathleen Belhassein, Guilhem Buisan, Aurélie Clodic, Amandine Mayima,
Yoan Sallami, Guillaume Sarthou, Phani-Teja Singamaneni, Jules Waldhart,
Alexandre Mazel, Maxime Caniot, Marketta Niemelä, Päivi Heikkilä, Hanna
Lammi and Antti Tammela. MuMMER: Socially Intelligent Human-Robot

Interaction in Public Spaces. In Artificial Intelligence for Human-Robot In-
teraction Symposium (AI-HRI), Arlington, VA, United States, 2019. AAAI
Fall Symposium Series 2019. (Cited in page 165.)

[Freitas 2014] Artur Freitas, Daniela Schmidt, Felipe Meneguzzi, Renata Vieira and
Rafael H Bordini. Using ontologies as semantic representations of hierarchi-

cal task network planning domains. In Proceedings of WWW, 2014. (Cited
in page 124.)

BIBLIOGRAPHY 251

[Gangemi 2008] Aldo Gangemi. Norms and plans as unification criteria for social

collectives. Autonomous Agents and Multi-Agent Systems, vol. 17, no. 1,
pages 70–112, 2008. (Cited in page 143.)

[Gangemi 2013] Aldo Gangemi and Valentina Presutti. A multi-dimensional com-

parison of ontology design patterns for representing n-ary relations. In Inter-
national Conference on Current Trends in Theory and Practice of Computer
Science, pages 86–105. Springer, 2013. (Cited in page 143.)

[Gatt 2018] Albert Gatt and Emiel Krahmer. Survey of the state of the art in nat-

ural language generation: Core tasks, applications and evaluation. Journal
of Artificial Intelligence Research, vol. 61, pages 65–170, 2018. (Cited in
page 76.)

[Genesereth 1987] Michael R Genesereth and Nils Robert Nilsson. Logical founda-

tions of artificial intelligence. 1987. (Cited in pages 17 and 222.)

[Ghallab 2004] Malik Ghallab, Dana Nau and Paolo Traverso. Automated planning:
theory and practice. Elsevier, 2004. (Cited in page 123.)

[Gharbi 2015] Mamoun Gharbi, Raphaël Lallement and Rachid Alami. Combin-

ing symbolic and geometric planning to synthesize human-aware plans: to-

ward more efficient combined search. In IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 6360–6365. IEEE, 2015.
(Cited in page 107.)

[Giunti 2019] Marco Giunti, Giuseppe Sergioli, Giuliano Vivanet and Simone
Pinna. Representing n-ary relations in the Semantic Web. Logic Journal
of the IGPL, 2019. (Cited in pages 143 and 147.)

[Graf 1985] Peter Graf and Daniel L Schacter. Implicit and explicit memory for

new associations in normal and amnesic subjects. Journal of Experimental
Psychology: Learning, memory, and cognition, vol. 11, no. 3, page 501, 1985.
(Cited in page 8.)

[Grice 1975] Herbert P Grice. Logic and conversation. In Speech acts, pages 41–58.
Brill, 1975. (Cited in pages 54, 76, and 201.)

[Gross 2009] H-M Gross, H Boehme, Ch Schroeter, Steffen Müller, Alexander
König, Erik Einhorn, Ch Martin, Matthias Merten and Andreas Bley.
TOOMAS: interactive shopping guide robots in everyday use-final imple-

mentation and experiences from long-term field trials. In IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS), pages
2005–2012. IEEE, 2009. (Cited in page 162.)

[Guarino 1995] Nicola Guarino and Pierdaniele Giaretta. Towards very large knowl-

edge bases—knowledge building and knowledge sharing. Ontologies and

252 BIBLIOGRAPHY

knowledge bases: towards a terminological clarification, 1995. (Cited in
pages 17 and 223.)

[Guarino 2009] Nicola Guarino, Daniel Oberle and Steffen Staab. What is an on-

tology? In Handbook on ontologies, pages 1–17. Springer, 2009. (Cited in
pages 17 and 223.)

[Guber 1993] T Guber. A translational approach to portable ontologies. Knowledge
Acquisition, vol. 5, no. 2, pages 199–229, 1993. (Cited in pages 17 and 222.)

[Guitton 2012] Julien Guitton, Matthieu Warnier and Rachid Alami. Belief man-

agement for hri planning. In European Conference on Artificial Intelligence-
Workshop on Belief change, Non-monotonic reasoning and Conflict Resolu-
tion, 2012. (Cited in page 107.)

[Happé 1994] Francesca GE Happé. An advanced test of theory of mind: Under-

standing of story characters’ thoughts and feelings by able autistic, mentally

handicapped, and normal children and adults. Journal of autism and Devel-
opmental disorders, vol. 24, no. 2, pages 129–154, 1994. (Cited in page 181.)

[Hawes 2007] Nick Hawes, Michael Zillich and Jeremy Wyatt. BALT & CAST:

Middleware for cognitive robotics. In IEEE International Symposium on
Robot and Human Interactive Communication (RO-MAN), pages 998–1003.
IEEE, 2007. (Cited in page 188.)

[Heikkilä 2018] Päivi Heikkilä, Hanna Lammi and Kathleen Belhassein. Where Can

I Find a Pharmacy? -Human-Driven Design of a Service Robot’s Guidance

Behaviour. In Workshop on Public Space Human-Robot Interaction (Pub-
Rob) as part of the International Conference on Human-Computer Interac-
tion with Mobile Devices and Services (MobileHCI), pages 1–2, 2018. (Cited
in page 164.)

[Heikkilä 2019] Päivi Heikkilä, Hanna Lammi, Marketta Niemelä, Kathleen Bel-
hassein, Guillaume Sarthou, Antti Tammela, Aurélie Clodic and Rachid
Alami. Should a robot guide like a human? A qualitative four-phase study

of a shopping mall robot. In International Conference on Social Robotics
(ICSR), pages 548–557. Springer, 2019. (Cited in page 164.)

[Hemachandra 2014] Sachithra Hemachandra, Matthew R Walter, Stefanie Tellex
and Seth Teller. Learning spatial-semantic representations from natural lan-

guage descriptions and scene classifications. In IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 2623–2630. IEEE, 2014.
(Cited in page 55.)

[Ingrand 2017] Félix Ingrand and Malik Ghallab. Deliberation for autonomous

robots: A survey. Artificial Intelligence, vol. 247, pages 10–44, 2017. (Cited
in page 123.)

BIBLIOGRAPHY 253

[Kanda 2009] Takayuki Kanda, Masahiro Shiomi, Zenta Miyashita, Hiroshi Ishig-
uro and Norihiro Hagita. An affective guide robot in a shopping mall. In
ACM/IEEE international Conference on Human-Robot interaction (HRI),
pages 173–180, 2009. (Cited in page 163.)

[Kanda 2010] Takayuki Kanda, Masahiro Shiomi, Zenta Miyashita, Hiroshi Ishig-
uro and Norihiro Hagita. A communication robot in a shopping mall. IEEE
Transactions on Robotics, vol. 26, no. 5, pages 897–913, 2010. (Cited in
page 163.)

[Karp 1972] Richard M Karp. Reducibility among combinatorial problems. In Com-
plexity of computer computations, pages 85–103. Springer, 1972. (Cited in
page 151.)

[Kelleher 2006] John Kelleher and Geert-Jan M Kruijff. Incremental generation of

spatial referring expressions in situated dialog. In 21st International Con-
ference on Computational Linguistics, pages 1041–1048, 2006. (Cited in
pages 79, 207, and 243.)

[Kendon 1990] Adam Kendon. Conducting interaction: Patterns of behavior in
focused encounters, volume 7. CUP Archive, 1990. (Cited in page 171.)

[Keysar 1994] Boaz Keysar. The illusory transparency of intention: Linguistic per-

spective taking in text. Cognitive psychology, vol. 26, no. 2, pages 165–208,
1994. (Cited in page 181.)

[Keysar 1998] Boaz Keysar, Dale J Barr and William S Horton. The egocentric basis

of language use: Insights from a processing approach. Current directions in
psychological science, vol. 7, no. 2, pages 46–49, 1998. (Cited in page 181.)

[Keysar 2000] Boaz Keysar, Dale J Barr, Jennifer A Balin and Jason S Brauner.
Taking perspective in conversation: The role of mutual knowledge in com-

prehension. Psychological Science, vol. 11, no. 1, pages 32–38, 2000. (Cited
in page 180.)

[Keysar 2002] Boaz Keysar and Dale J Barr. Self-anchoring in conversation: Why

language users do not do what they’should’. 2002. (Cited in page 181.)

[Keysar 2003] Boaz Keysar, Shuhong Lin and Dale J Barr. Limits on theory of

mind use in adults. Cognition, vol. 89, no. 1, pages 25–41, 2003. (Cited in
page 181.)

[Ko 2011] Ryan KL Ko, Eng Wah Lee and SG Lee. Business-OWL (BOWL)—A

hierarchical task network ontology for dynamic business process decomposi-

tion and formulation. IEEE Transactions on Services Computing, vol. 5,
no. 2, pages 246–259, 2011. (Cited in page 124.)

254 BIBLIOGRAPHY

[Koolen 2012] Ruud Koolen, Emiel Krahmer and Mariët Theune. Learning prefer-

ences for referring expression generation: Effects of domain, language and

algorithm. In INLG 2012 Proceedings of the Seventh International Natural
Language Generation Conference, pages 3–11, 2012. (Cited in page 134.)

[Krahmer 2003] Emiel Krahmer, Sebastiaan van Erk and André Verleg. Graph-

based generation of referring expressions. Computational Linguistics, vol. 29,
no. 1, pages 53–72, 2003. (Cited in pages 77 and 79.)

[Krahmer 2012] Emiel Krahmer and Kees Van Deemter. Computational generation

of referring expressions: A survey. Computational Linguistics, vol. 38, no. 1,
pages 173–218, 2012. (Cited in pages 75, 77, 78, and 230.)

[Krauss 1977] Robert M Krauss and Sam Glucksberg. Social and nonsocial speech.
Scientific American, vol. 236, no. 2, pages 100–105, 1977. (Cited in page 180.)

[Krieg-Brückner 2020] Bernd Krieg-Brückner, Mihai Codescu and Mihai Pomarlan.
Modelling Episodes with Generic Ontology Design Patterns. In Proceedings
of the Joint Ontology Workshops co-located with the Bolzano Summer of
Knowledge (BOSK), volume 2708 of CEUR Workshop Proceedings, 2020.
(Cited in page 123.)

[Krötzsch 2013] Markus Krötzsch, Frantisek Simancik and Ian Horrocks. Descrip-

tion logics. IEEE Intelligent Systems, vol. 29, no. 1, pages 12–19, 2013.
(Cited in page 21.)

[Kuipers 2000] Benjamin Kuipers. The spatial semantic hierarchy. Artificial Intel-
ligence, vol. 119, no. 1-2, pages 191–233, 2000. (Cited in page 55.)

[Kuipers 2004] Benjamin Kuipers, Joseph Modayil, Patrick Beeson, Matt MacMa-
hon and Francesco Savelli. Local metrical and global topological maps in

the hybrid spatial semantic hierarchy. In IEEE International Conference on
Robotics and Automation (ICRA), volume 5, pages 4845–4851. IEEE, 2004.
(Cited in page 55.)

[Lallement 2014] Raphaël Lallement, Lavindra De Silva and Rachid Alami. HATP:

An HTN Planner for Robotics. In ICAPS Workshop on Planning and
Robotics, 2014. (Cited in pages 107, 123, 128, 191, and 234.)

[Lallement 2016] Raphaël Lallement. Symbolic and Geometric Planning for teams

of Robots and Humans. PhD thesis, Toulouse, INSA, 2016. (Cited in
pages 102 and 232.)

[Lassila 1998] Ora Lassila, Ralph R Swicket al. Resource description framework

(RDF) model and syntax specification. 1998. (Cited in pages 20 and 225.)

[Lefebvre 2003] Sylvain Lefebvre and Samuel Hornus. Automatic cell-and-portal

decomposition. PhD thesis, INRIA, 2003. (Cited in page 55.)

BIBLIOGRAPHY 255

[Lemaignan 2010] Séverin Lemaignan, Raquel Ros, Lorenz Mösenlechner, Rachid
Alami and Michael Beetz. ORO, a knowledge management platform for cog-

nitive architectures in robotics. In 2010 IEEE/RSJ International conference
on intelligent robots and systems, pages 3548–3553. IEEE, 2010. (Cited in
pages 18, 44, and 224.)

[Lemaignan 2011] Séverin Lemaignan, Raquel Ros, Rachid Alami and Michael
Beetz. What are you talking about? grounding dialogue in a perspective-

aware robotic architecture. In 20th International Symposium in Robot and
Human Interactive Communication (RO-MAN), pages 107–112. IEEE, 2011.
(Cited in page 78.)

[Lemaignan 2017] Séverin Lemaignan, Mathieu Warnier, E Akin Sisbot, Aurélie
Clodic and Rachid Alami. Artificial cognition for social human–robot inter-

action: An implementation. Artificial Intelligence, vol. 247, pages 45–69,
2017. (Cited in page 187.)

[Lemaignan 2018] Séverin Lemaignan, Yoan Sallami, Christopher Wallhridge, Au-
rélic Clodic, Tony Belpaeme and Rachid Alami. Underworlds: cascading sit-

uation assessment for robots. In IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), pages 7750–7757. IEEE, 2018. (Cited
in pages 168 and 189.)

[Lenat 1989] Douglas B Lenat and Ramanathan V Guha. Building large knowledge-
based systems; representation and inference in the cyc project. Addison-
Wesley Longman Publishing Co., Inc., 1989. (Cited in pages 18 and 223.)

[Levin 2011] Mikhail K Levin, Alan Ruttenberg, Anna Maria Masci and Lindsay G
Cowell. Owl-cpp, a C++ library for working with OWL ontologies. In Inter-
national Conference on Biomedical Ontology, ICBO, pages 255–257, 2011.
(Cited in pages 19 and 224.)

[Li 2016] Shen Li, Rosario Scalise, Henny Admoni, Stephanie Rosenthal and Sid-
dhartha S Srinivasa. Spatial references and perspective in natural language

instructions for collaborative manipulation. In 25th IEEE International Sym-
posium on Robot and Human Interactive Communication (RO-MAN), pages
44–51. IEEE, 2016. (Cited in page 97.)

[Li 2017] Shen Li. Automatically evaluating and generating clear robot explanations.
Master’s thesis, 2017. (Cited in pages 77 and 96.)

[Lin 2010] Shuhong Lin, Boaz Keysar and Nicholas Epley. Reflexively mindblind:

Using theory of mind to interpret behavior requires effortful attention. Jour-
nal of Experimental Social Psychology, vol. 46, no. 3, pages 551–556, 2010.
(Cited in page 181.)

[Lorenz 2006] Bernhard Lorenz, Hans Jürgen Ohlbach and Edgar-Philipp Stoffel. A

hybrid spatial model for representing indoor environments. In International

256 BIBLIOGRAPHY

Symposium on Web and Wireless Geographical Information Systems, pages
102–112. Springer, 2006. (Cited in page 55.)

[Mallot 2009] Hanspeter A Mallot and Kai Basten. Embodied spatial cognition:

Biological and artificial systems. Image and Vision Computing, vol. 27,
no. 11, pages 1658–1670, 2009. (Cited in pages 53 and 68.)

[Masolo 2003] C Masolo, S Borgo, A Gangemi, N Guarino, A Oltramari and
L Schneider. Dolce: a descriptive ontology for linguistic and cognitive en-

gineering. WonderWeb Project, Deliverable D17 v2, vol. 1, pages 75–105,
2003. (Cited in pages 18 and 223.)

[Matsumoto 2012] Takahiro Matsumoto, Satoru Satake, Takayuki Kanda, Michita
Imai and Norihiro Hagita. Do you remember that shop? computational

model of spatial memory for shopping companion robots. In Proceedings of
the seventh annual ACM/IEEE international conference on Human-Robot
Interaction, pages 447–454, 2012. (Cited in page 165.)

[Mavridis 2015] Nikolaos Mavridis. A review of verbal and non-verbal human–robot

interactive communication. Robotics and Autonomous Systems, vol. 63,
pages 22–35, 2015. (Cited in page 104.)

[Mayima 2020] Amandine Mayima, Aurélie Clodic and Rachid Alami. Toward a

Robot Computing an Online Estimation of the Quality of its Interaction

with its Human Partner. In 29th IEEE International Conference on Robot
and Human Interactive Communication (RO-MAN), pages 291–298. IEEE,
2020. (Cited in page 192.)

[McNeill 2005] David McNeill. Gesture, gaze, and ground. In International work-
shop on machine learning for multimodal interaction, pages 1–14. Springer,
2005. (Cited in page 171.)

[Mealier 2017] Anne-Laure Mealier, Gregoire Pointeau, Solène Mirliaz, Kenji
Ogawa, Mark Finlayson and Peter F Dominey. Narrative constructions for

the organization of self experience: Proof of concept via embodied robotics.
Frontiers in psychology, vol. 8, page 1331, 2017. (Cited in page 123.)

[Miller 1956] George Miller. Human memory and the storage of information. IRE
Transactions on Information Theory, vol. 2, no. 3, pages 129–137, 1956.
(Cited in page 8.)

[Miller 1968] Robert B Miller. Response time in man-computer conversational

transactions. In Proceedings of the fall joint computer conference, part
I, pages 267–277, 1968. (Cited in page 94.)

[Milliez 2014] Grégoire Milliez, Matthieu Warnier, Aurélie Clodic and Rachid
Alami. A framework for endowing an interactive robot with reasoning ca-

pabilities about perspective-taking and belief management. In 23rd inter-

BIBLIOGRAPHY 257

national symposium on robot and human interactive communication (RO-
MAN), pages 1103–1109. IEEE, 2014. (Cited in pages 98, 117, 179, 189,
and 241.)

[Milliez 2016] Grégoire Milliez, Raphaël Lallement, Michelangelo Fiore and Rachid
Alami. Using human knowledge awareness to adapt collaborative plan gener-

ation, explanation and monitoring. In ACM/IEEE International Conference
on Human-Robot Interaction (HRI), pages 43–50. IEEE, 2016. (Cited in
page 123.)

[Montello 1993] Daniel R Montello. Scale and multiple psychologies of space. In
European conference on spatial information theory, pages 312–321. Springer,
1993. (Cited in page 53.)

[Morales Saiki 2011] Luis Yoichi Morales Saiki, Satoru Satake, Takayuki Kanda
and Norihiro Hagita. Modeling environments from a route perspective. In
ACM/IEEE International Conference on Human-Robot Interaction (HRI),
pages 441–448, 2011. (Cited in pages 52 and 227.)

[Morales 2015] Yoichi Morales, Satoru Satake, Takayuki Kanda and Norihiro
Hagita. Building a model of the environment from a route perspective for

human–robot interaction. International Journal of Social Robotics, vol. 7,
no. 2, pages 165–181, 2015. (Cited in pages 54 and 55.)

[Nikolaidis 2018] Stefanos Nikolaidis, Minae Kwon, Jodi Forlizzi and Siddhartha
Srinivasa. Planning with verbal communication for human-robot collabora-

tion. ACM Transactions on Human-Robot Interaction (THRI), vol. 7, no. 3,
pages 1–21, 2018. (Cited in page 104.)

[Niles 2001] Ian Niles and Adam Pease. Towards a standard upper ontology. In Pro-
ceedings of the international conference on Formal Ontology in Information
Systems-Volume 2001, pages 2–9, 2001. (Cited in pages 18 and 223.)

[Nothegger 2004] Clemens Nothegger, Stephan Winter and Martin Raubal. Selec-

tion of salient features for route directions. Spatial cognition and computa-
tion, vol. 4, no. 2, pages 113–136, 2004. (Cited in page 54.)

[Oberlander 1991] Jon Oberlander and Robert Dale. Generating expressions refer-

ring to eventualities. In 13th Annual Conference of the Cognitive Science
Society, pages 67–72. Erlbaum Hillsdale, NJ, 1991. (Cited in page 122.)

[Okuno 2009] Yusuke Okuno, Takayuki Kanda, Michita Imai, Hiroshi Ishiguro and
Norihiro Hagita. Providing route directions: design of robot’s utterance,

gesture, and timing. In ACM/IEEE International Conference on Human-
Robot Interaction (HRI), pages 53–60. IEEE, 2009. (Cited in pages 52, 163,
165, and 227.)

258 BIBLIOGRAPHY

[Olivares-Alarcos 2019] Alberto Olivares-Alarcos, Daniel Beßler, Alaa Khamis,
Paulo Goncalves, Maki K Habib, Julita Bermejo-Alonso, Marcos Barreto,
Mohammed Diab, Jan Rosell, Joao Quintaset al. A review and comparison

of ontology-based approaches to robot autonomy. 2019. (Cited in pages 18
and 224.)

[Pacherie 2012] Elisabeth Pacherie. The Phenomenology of Joint Action: Self-

Agency vs. Joint-Agency. In Axel Seemann, editor, Joint Attention: New
Developments, pages 343–389. MIT Press, 2012. (Cited in pages 19, 163,
and 225.)

[Panchbhai 2020] Anand Panchbhai, Tommaso Soru and Edgard Marx. Explor-

ing Sequence-to-Sequence Models for SPARQL Pattern Composition. In
Iberoamerican Knowledge Graphs and Semantic Web Conference, pages
158–165. Springer, 2020. (Cited in page 193.)

[Papaioannou 2018] Ioannis Papaioannou, Christian Dondrup and Oliver Lemon.
Human-robot interaction requires more than slot filling-multi-threaded dia-

logue for collaborative tasks and social conversation. AI-MHRI, 2018. (Cited
in pages 162 and 239.)

[Paulius 2019] David Paulius, Kelvin Sheng Pei Dong and Yu Sun. Functional

object-oriented network: Considering robot’s capability in human-robot col-

laboration. arXiv preprint arXiv:1905.00502, 2019. (Cited in pages 16
and 222.)

[Petit 2016] Maxime Petit, Grégoire Pointeau and Peter Ford Dominey. Reasoning

based on consolidated real world experience acquired by a humanoid robot.
Interaction Studies, vol. 17, no. 2, pages 248–278, 2016. (Cited in page 123.)

[Petrick 2012] Ronald PA Petrick, Mary Ellen Foster and Amy Isard. Social state

recognition and knowledge-level planning for human-robot interaction in a

bartender domain. In AAAI Workshop on Grounding Language for Physical
Systems, Toronto, ON, Canada, July, 2012. (Cited in pages 179 and 240.)

[Prasad 2020] Pranav Krishna Prasad and Wolfgang Ertel. Knowledge Acquisition

and Reasoning Systems for Service Robots: A Short Review of the State of

the Art. In International Conference on Robotics and Automation Engineer-
ing (ICRAE), pages 36–45. IEEE, 2020. (Cited in pages 16 and 221.)

[Reiter 1992] Ehud Reiter and Robert Dale. A fast algorithm for the generation of

referring expressions. In 15th International Conference on Computational
Linguistics, volume 1, 1992. (Cited in pages 77 and 79.)

[Reiter 2000] Ehud Reiter and Robert Dale. Building natural language generation
systems. Cambridge university press, 2000. (Cited in pages 76, 204, and 231.)

BIBLIOGRAPHY 259

[Roediger 1996] Henry L Roediger and Melissa J Guynn. Retrieval processes. Mem-
ory, pages 197–236, 1996. (Cited in page 7.)

[Roncone 2017] Alessandro Roncone, Olivier Mangin and Brian Scassellati. Trans-

parent role assignment and task allocation in human robot collaboration. In
IEEE International Conference on Robotics and Automation (ICRA), pages
1014–1021. IEEE, 2017. (Cited in pages 102, 105, and 232.)

[Ros 2010] Raquel Ros, Séverin Lemaignan, E Akin Sisbot, Rachid Alami, Jas-
min Steinwender, Katharina Hamann and Felix Warneken. Which one?

grounding the referent based on efficient human-robot interaction. In 19th
International Symposium in Robot and Human Interactive Communication
(RO-MAN), pages 570–575. IEEE, 2010. (Cited in pages 78, 79, and 95.)

[Rubio-Fernández 2017] Paula Rubio-Fernández. The director task: A test of

Theory-of-Mind use or selective attention? Psychonomic bulletin & review,
vol. 24, no. 4, pages 1121–1128, 2017. (Cited in page 181.)

[Santiesteban 2012] Idalmis Santiesteban, Sarah White, Jennifer Cook, Sam J
Gilbert, Cecilia Heyes and Geoffrey Bird. Training social cognition: from

imitation to theory of mind. Cognition, vol. 122, no. 2, pages 228–235, 2012.
(Cited in page 181.)

[Sarthou 2019a] Guillaume Sarthou, Rachid Alami and Aurélie Clodic. Semantic

Spatial Representation: a unique representation of an environment based on

an ontology for robotic applications. In Combined Workshop on Spatial Lan-
guage Understanding (SpLU) and Grounded Communication for Robotics
(RoboNLP), 2019. (Cited in page 51.)

[Sarthou 2019b] Guillaume Sarthou, Aurélie Clodic and Rachid Alami. Ontolo-

genius: A long-term semantic memory for robotic agents. In 28th IEEE
International Conference on Robot and Human Interactive Communication
(RO-MAN), pages 1–8. IEEE, 2019. (Cited in pages 16, 94, and 98.)

[Sarthou 2021a] Guillaume Sarthou, Mayima Amandine, Buisan Guilhem, Belhas-
sein Kathleen and Aurélie Clodic. The Director Task: a Psychology-Inspired

Task to Assess Cognitive and Interactive Robot Architectures. In IEEE In-
ternational Conference on Robot and Human Interactive Communication
(RO-MAN), pages 1–8. IEEE, 2021. (Cited in page 177.)

[Sarthou 2021b] Guillaume Sarthou, Guilhem Buisan, Aurélie Clodic and Rachid
Alami. Extending Referring Expression Generation through shared knowl-

edge about past Human-Robot collaborative activity. In IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pages 1–8.
IEEE, 2021. (Cited in page 119.)

[Satake 2015a] Satoru Satake, Kotaro Hayashi, Keita Nakatani and Takayuki
Kanda. Field trial of an information-providing robot in a shopping mall.

260 BIBLIOGRAPHY

In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 1832–1839. IEEE, 2015. (Cited in pages 55 and 165.)

[Satake 2015b] Satoru Satake, Keita Nakatani, Kotaro Hayashi, Takyuki Kanda
and Michita Imai. What should we know to develop an information robot?

PeerJ Computer Science, vol. 1, page 8, 2015. (Cited in pages 52, 163, 165,
178, 228, and 240.)

[Saxena 2014] Ashutosh Saxena, Ashesh Jain, Ozan Sener, Aditya Jami, Dipen-
dra K Misra and Hema S Koppula. Robobrain: Large-scale knowledge en-

gine for robots. arXiv preprint arXiv:1412.0691, 2014. (Cited in pages 18
and 224.)

[Schaefer 2017] Kristin E Schaefer, Edward R Straub, Jessie YC Chen, Joe Putney
and Arthur W Evans III. Communicating intent to develop shared situation

awareness and engender trust in human-agent teams. Cognitive Systems
Research, vol. 46, pages 26–39, 2017. (Cited in page 104.)

[Schlenoff 2015] Craig Schlenoff, E Prestes, PJ Sequeira Gonçalves, Mathieu Abel,
Yacine Amirat, S Balakirsky, ME Barreto, JL Carbonera, A Chibani,
S Rama Fioriniet al. Ieee standard ontologies for robotics and automation.
2015. (Cited in pages 18 and 223.)

[Sebastiani 2017] Eugenio Sebastiani, Raphaël Lallement, Rachid Alami and Luca
Iocchi. Dealing with on-line human-robot negotiations in hierarchical agent-

based task planner. In Proceedings of the International Conference on Au-
tomated Planning and Scheduling (ICAPS), volume 27, 2017. (Cited in
page 104.)

[Shah 2011] Julie Shah, James Wiken, Brian Williams and Cynthia Breazeal. Im-

proved human-robot team performance using chaski, a human-inspired plan

execution system. In 6th international conference on Human-robot interac-
tion (HRI), pages 29–36, 2011. (Cited in page 104.)

[Siegwart 2003] Roland Siegwart, Kai O Arras, Samir Bouabdallah, Daniel Burnier,
Gilles Froidevaux, Xavier Greppin, Björn Jensen, Antoine Lorotte, Laetitia
Mayor, Mathieu Meisseret al. Robox at Expo. 02: A large-scale installation

of personal robots. Robotics and Autonomous Systems, vol. 42, no. 3-4,
pages 203–222, 2003. (Cited in pages 52, 162, and 227.)

[Singamaneni 2020] Phani-Teja Singamaneni and Rachid Alami. HATEB-2: Reac-

tive Planning and Decision making in Human-Robot Co-navigation. In EEE
International Symposium on Robot and Human Interactive Communication
(RO-MAN), pages 179–186. IEEE, 2020. (Cited in page 173.)

[Singh 2020] Avinash Singh, Neha Baranwal and Kai-Florian Richter. A Fuzzy In-

ference System for a Visually Grounded Robot State of Mind. In European

BIBLIOGRAPHY 261

Conference on Artificial Intelligence (ECAI), Including Conference on Pres-
tigious Applications of Artificial Intelligence (PAIS), pages 2402–2409. IOS
Press, 2020. (Cited in pages 16 and 222.)

[Sirin 2007] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur
and Yarden Katz. Pellet: A practical owl-dl reasoner. Journal of Web
Semantics, vol. 5, no. 2, pages 51–53, 2007. (Cited in pages 18, 44, and 224.)

[Sowa 2014] John F Sowa. Principles of semantic networks: Explorations in the
representation of knowledge. Morgan Kaufmann, 2014. (Cited in page 143.)

[Squire 1982] Larry R Squire, Neal J Cohen and LS Cermak. Remote memory,

retrograde amnesia, and the neuropsychology of memory. Human memory
and amnesia, pages 275–303, 1982. (Cited in page 8.)

[Stenmark 2013] Maj Stenmark and Jacek Malec. Knowledge-Based Industrial

Robotics. In SCAI, pages 265–274, 2013. (Cited in pages 18 and 224.)

[Studer 1998] Rudi Studer, V Richard Benjamins and Dieter Fensel. Knowledge

engineering: Principles and methods. Data & knowledge engineering, vol. 25,
no. 1-2, pages 161–197, 1998. (Cited in pages 17 and 222.)

[Sun 2019] Xiaolei Sun, Yu Zhang and Jing Chen. RTPO: a domain knowledge base

for robot task planning. Electronics, vol. 8, no. 10, page 1105, 2019. (Cited
in page 123.)

[Taylor 1992] Holly A Taylor and Barbara Tversky. Spatial mental models de-

rived from survey and route descriptions. Journal of Memory and language,
vol. 31, no. 2, pages 261–292, 1992. (Cited in page 54.)

[Taylor 1996] Holly A Taylor and Barbara Tversky. Perspective in spatial descrip-

tions. Journal of memory and language, vol. 35, no. 3, pages 371–391, 1996.
(Cited in page 55.)

[Tellex 2014] Stefanie Tellex, Ross Knepper, Adrian Li, Daniela Rus and Nicholas
Roy. Asking for help using inverse semantics. 2014. (Cited in pages 102,
104, 105, 179, 232, and 240.)

[Tellex 2020] Stefanie Tellex, Nakul Gopalan, Hadas Kress-Gazit and Cynthia Ma-
tuszek. Robots that use language. Annual Review of Control, Robotics,
and Autonomous Systems, vol. 3, pages 25–55, 2020. (Cited in pages 102
and 231.)

[Tenorth 2013] Moritz Tenorth and Michael Beetz. KnowRob: A knowledge process-

ing infrastructure for cognition-enabled robots. The International Journal of
Robotics Research, vol. 32, no. 5, pages 566–590, 2013. (Cited in pages 18,
40, and 224.)

262 BIBLIOGRAPHY

[Tenorth 2017] Moritz Tenorth and Michael Beetz. Representations for robot knowl-

edge in the KnowRob framework. Artificial Intelligence, vol. 247, pages 151–
169, 2017. (Cited in pages 16, 40, 41, and 222.)

[Thrun 2007] Sebastian Thrun. Simultaneous localization and mapping. In Robotics
and cognitive approaches to spatial mapping, pages 13–41. Springer, 2007.
(Cited in pages 52 and 227.)

[Triebel 2016] Rudolph Triebel, Kai Arras, Rachid Alami, Lucas Beyer, Stefan
Breuers, Raja Chatila, Mohamed Chetouani, Daniel Cremers, Vanessa Ev-
ers, Michelangelo Fioreet al. Spencer: A socially aware service robot for

passenger guidance and help in busy airports. In Field and service robotics,
pages 607–622. Springer, 2016. (Cited in pages 52, 162, and 227.)

[Tsarkov 2006] Dmitry Tsarkov and Ian Horrocks. FaCT++ description logic rea-

soner: System description. In International joint conference on automated
reasoning, pages 292–297. Springer, 2006. (Cited in pages 19 and 224.)

[Tulving 1995] Endel Tulving. Organization of memory: Quo vadis. The cognitive
neurosciences, 1995. (Cited in page 9.)

[Tversky 1998] Barbara Tversky and Paul U Lee. How space structures language.
In Spatial cognition, pages 157–175. Springer, 1998. (Cited in page 53.)

[Tversky 1999] Barbara Tversky and Paul U Lee. Pictorial and verbal tools for con-

veying routes. In International Conference on Spatial Information Theory,
pages 51–64. Springer, 1999. (Cited in pages 53, 54, and 66.)

[Umbrico 2020] Alessandro Umbrico, Andrea Orlandini and Amedeo Cesta. An

Ontology for Human-Robot Collaboration. Procedia CIRP, vol. 93, pages
1097–1102, 2020. (Cited in page 124.)

[Unhelkar 2017] Vaibhav V Unhelkar, X Jessie Yang and Julie A Shah. Challenges

for communication decision-making in sequential human-robot collaborative

tasks. In Workshop on Mathematical Models, Algorithms, and Human-
Robot Interaction at R: SS, 2017. (Cited in page 105.)

[Unhelkar 2020] Vaibhav V Unhelkar, Shen Li and Julie A Shah. Decision-

making for bidirectional communication in sequential human-robot collab-

orative tasks. In ACM/IEEE International Conference on Human-Robot
Interaction, pages 329–341, 2020. (Cited in pages 105 and 110.)

[Viethen 2013] Jette Viethen, Margaret Mitchell and Emiel Krahmer. Graphs and

spatial relations in the generation of referring expressions. In 14th European
Workshop on Natural Language Generation, pages 72–81, 2013. (Cited in
pages 77, 79, 95, and 96.)

[W3C 2006] W3C. Defining n-ary relations on the Semantic Web. W3C Working
Group Note, 2006. (Cited in page 144.)

BIBLIOGRAPHY 263

[Waldhart 2019] Jules Waldhart, Aurélie Clodic and Rachid Alami. Reasoning on

Shared Visual Perspective to Improve Route Directions. In IEEE Interna-
tional Conference on Robot and Human Interactive Communication (RO-
MAN), pages 1–8. IEEE, 2019. (Cited in page 171.)

[Wallbridge 2019] Christopher D Wallbridge, Séverin Lemaignan, Emmanuel Senft
and Tony Belpaeme. Generating Spatial Referring Expressions in a Social

Robot: Dynamic vs. Non-ambiguous. Frontiers in Robotics and AI, vol. 6,
page 67, 2019. (Cited in page 80.)

[Welty 2006] Chris Welty, Richard Fikes and Selene Makarios. A reusable ontology

for fluents in OWL. In FOIS, volume 150, pages 226–236, 2006. (Cited in
page 143.)

[Wielemaker 2003] Jan Wielemaker, A Th Schreiber and BJ Wielinga. Prolog-

based infrastructure for RDF: performance and scalability. 2003. (Cited in
pages 18, 40, and 224.)

[Wielemaker 2012] Jan Wielemaker, Tom Schrijvers, Markus Triska and Torbjörn
Lager. Swi-prolog. Theory and Practice of Logic Programming, vol. 12,
no. 1-2, pages 67–96, 2012. (Cited in page 40.)

[Williams 2016] Tom Williams and Matthias Scheutz. A framework for resolv-

ing open-world referential expressions in distributed heterogeneous knowl-

edge bases. In AAAI Conference on Artificial Intelligence, volume 30, 2016.
(Cited in page 78.)

[Williams 2017] Tom Williams and Matthias Scheutz. Referring expression genera-

tion under uncertainty: Algorithm and evaluation framework. In 10th Inter-
national Conference on Natural Language Generation, pages 75–84, 2017.
(Cited in pages 78 and 79.)

[Williams 2019] Tom Williams, Fereshta Yazdani, Prasanth Suresh, Matthias
Scheutz and Michael Beetz. Dempster-shafer theoretic resolution of refer-

ential ambiguity. Autonomous Robots, vol. 43, no. 2, pages 389–414, 2019.
(Cited in page 78.)

[Williams 2020] Tom Williams, Torin Johnson, Will Culpepper and Kellyn Lar-
son. Toward Forgetting-Sensitive Referring Expression Generationfor Inte-

grated Robot Architectures. arXiv preprint arXiv:2007.08672, 2020. (Cited
in pages 80, 122, and 134.)

[Wiriyathammabhum 2019] Peratham Wiriyathammabhum, Abhinav Shrivastava,
Vlad Morariu and Larry Davis. Referring to Objects in Videos Using Spatio-

Temporal Identifying Descriptions. In Second Workshop on Shortcomings in
Vision and Language, pages 14–25, 2019. (Cited in page 122.)

264 BIBLIOGRAPHY

[Wooldridge 1999] Michael Wooldridge. Intelligent agents. Multiagent systems,
vol. 6, 1999. (Cited in page 164.)

[Yamakata 2004] Yoko Yamakata, Tatsuya Kawahara, Hiroshi G Okuno and Michi-
hiko Minoh. Belief network based disambiguation of object reference in spo-

ken dialogue system. Transactions of the Japanese Society for Artificial
Intelligence, vol. 19, no. 1, pages 47–56, 2004. (Cited in pages 77 and 79.)

[Zender 2008] Hendrik Zender, O Martínez Mozos, Patric Jensfelt, G-JM Kruijff
and Wolfram Burgard. Conceptual spatial representations for indoor mobile

robots. Robotics and Autonomous Systems, vol. 56, no. 6, pages 493–502,
2008. (Cited in pages 52 and 228.)

[Zuo 2006] Ming Zuo and Volker Haarslev. High performance absorption algorithms

for terminological reasoning. In Proceedings of the International Workshop
on Description Logics (DL-2006), pages 159–166, 2006. (Cited in page 31.)

Abstract: As robots begin to enter our daily lives, we need advanced knowl-
edge representations and associated reasoning capabilities to enable them to un-
derstand and model their environments. Considering the presence of humans in
such environments, and therefore the need to interact with them, this need comes
with additional requirements. Indeed, knowledge is no longer used by the robot
for the sole purpose of being able to act physically on the environment but also to
communicate and share information with humans. Therefore knowledge should no
longer be understandable only by the robot itself, but should also be able to be
narrative-enabled.

In the first part of this thesis, we present our first contribution with Ontolo-
genius. This software allows to maintain knowledge bases in the form of ontology,
to reason on them and to manage them dynamically. We start by explaining how
this software is suitable for Human Robot Interaction (HRI) applications. To that
end, for example to implement theory of mind abilities, it is possible to represent
the robot’s knowledge base as well as an estimate of the knowledge bases of human
partners. We continue with a presentation of its interfaces. This part ends with a
performance analysis, demonstrating its online usability.

In a second part, we present our contribution to two knowledge exploration
problems around the general topic of spatial referring and the use of semantic
knowledge. We start with the route description task which aims to propose a set of
possible routes leading to a target destination, in the framework of a guiding task.
To achieve this task, we propose an ontology allowing us to describe the topology
of indoor environments and two algorithms to search for routes. The second knowl-
edge exploration problem we tackle is the Referring Expression Generation (REG)
problem. It aims at selecting the optimal set of piece of information to communicate
in order to allow a hearer to identify the referred entity in a given context. This
contribution is then refined to use past activities coming from joint action between
a robot and a human, in order to generate new kinds of Referring Expressions. It
is also linked with a symbolic task planner to estimate the feasibility and cost of
future communications.

We conclude this thesis by the presentation of two cognitive architectures. The
first one uses the route description contribution and the second one takes advantage
of our Referring Expression Generation contribution. Both of them use Ontologe-
nius to manage the semantic Knowledge Base. Through these two architectures, we
present how our contributions enable Knowledge Base to gradually take a central
role, providing knowledge to all the components of the architectures.

Keywords: human-robot interaction, Knowledge representation, ontology, spa-
tial referring

