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Abstract

This thesis deals with analysis of constrained dynamical systems, supported
by some numerical methods. The systems that we consider can be broadly
seen as a class of nonsmooth systems, where the state trajectory is con-
strained to evolve within a prespeci ed (and possibly time-varying) set. The
possible discontinuities in these systems arise due to sudden change in the
vector eld at the boundary of the constraint set. The general framework
that we adopt has been linked to di erent classes of nonsmooth systems in
the literature, and it can be described by an interconnection of an ordinary
di erential equation with a static relation (such as variational inequality, or

a normal cone inclusion, or complementarity relations). Such systems have
found applications in modeling of several engineering and physical systems,
and the results of this dissertation make some contributions to the analysis
and numerical methods being developed for such system class.

The rst problem that we consider is related to the stability of an equilib-
rium point for the aforementioned class of nonsmooth systems. We provide
appropriate de nitions for stability of an equilibrium, and the Lyapunov
functions, which take into consideration the presence of constraints in the
system. In the presence of conic constraints, it seems natural to work with
cone-copositive Lyapunov functions. To con rm this intuition, and as the
rst main result, we prove that, for a certain class of cone-constrained sys-
tems with an exponentially stable equilibrium, there always exists a smooth
cone-copositive Lyapunov function. Putting some more structure on the sys-
tem vector eld, such as homogeneity, we can show that the aforementioned
functions can be approximated by a rational function of cone-copositive ho-
mogeneous polynomials.

This later class of functions is seen to be particularly amenable for nu-
merical computation as we provide two types of algorithms precisely for that
purpose. These algorithms consist of a hierarchy of either linear or semidef-
inite optimization problems for computing the desired cone-copositive Lya-
punov function. For conic constraints, we provide a discretization algorithm
based on simplicial partitioning of a simplex, so that the search of the de-
sired function is addressed by constructing a hierarchy (associated with the
diameter of the cells in the partition) of linear programs. Our second al-
gorithm is tailored to semi-algebraic sets, where a hierarchy of semide nite
programs is constructed to compute Lyapunov functions as a sum of squares
of polynomials. Some examples are given to illustrate our approach.

Continuing with our study of state-constrained systems, we next consider
the time evolution of a probability measure which describes the distribu-
tion of the state over a set. In contrast with smooth ordinary di erential
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equations, where the evolution of this probability measure is described by
the Liouville equation, the ow map associated with the nonsmooth di er-
ential inclusion is not necessarily invertible and one cannot directly derive a
continuity equation to describe the evolution of the distribution of states. In-
stead, we consider Lipschitz approximation of our original nonsmooth system
and construct a sequence of measures obtained from Liouville equations cor-
responding to these approximations. This sequence of measures converges in
weak-star topology to the measure describing the evolution of the distribution
of states for the original nonsmooth system. This allows us to approximate
numerically the evolution of moments (up to some nite order) for our ori-
ginal nonsmooth system, using a hierarchy of semide nite programs. Using
similar methodology, we study the approximation of the support of the solu-
tion (described by a measure at each time) using polynomial approximations.

Keywords Constrained systems; complementarity systems; converse Lya-
punov theorem; moment-sums-of-squares optimization; ensemble approxim-
ations.



Resune

Cette trese traite de I'analyse de sysemes dynamiques avec contraintes, avec
certaines nethodes nuneriques. Les sysemes que nous consicerons peuvent
@tre consiceles comme une classe de sysemes non lisses, ai la trajectoire
detat est contrainte devoluer dans un ensemble peck ni (eteventuellement
variable en temps). Les discontinuies possibles dans ces sysemes surviennent
en raison d'un changement soudain du champ vectoriel a la frontere de
'ensemble de contraintes. Le cadre gereral que nous adoptons est rele a
dierentes classes de sysemes non lisses dans la literature, et peut étre
cecrit par une interconnexion d'uneequation dierentielle ordinaire avec une
relation statique (telle qu'une iregalie variationnelle, ou une inclusion dans

le cone normal, ou des relations de compementarie). De tels sysemes ont
trouwe des applications dans la mocelisation de sysemes d'ingenierie et phy-
sigues, et les esultats de cette these apportent des contributionsa l'analyse
et aux nethodes nuneriques ceveloppees pour une telle classe de sysemes.

Le premier probeme que nous consicerons est lea la stabilie d'un point
dequilibre pour la classe susmentionree de sysemes non lisses. Nous propo-
sons des ck nitions approprees pour la stabilie d'unequilibre et les fonctions
de Lyapunov, qui prennent en consiceration la pesence de contraintes dans
le syseme. En pesence de contraintes coniques, il semble naturel de tra-
vailler avec des fonctions de Lyapunov cone-copositives. Pour con rmer cette
intuition, et comme premier esultat principal, nous prouvons que, pour une
certaine classe de sysemes avec contraintes coniques avec unequilibre expo-
nentiellement stable, il existe toujours une fonction de Lyapunov lisse cone-
copositive. En mettant un peu plus de structure sur le champ de vecteurs
du syseme, comme I'homogereie, nous pouvons montrer que les fonctions
susmentionrees peuvent etre approctees par une fonction rationnelle de po-
lynbmes homogenes cbne-copositifs.

Cette dernere classe de fonctions est particulerement adapee au calcul
nunerique et nous fournissons deux types d'algorithmes dans ce but. Ces al-
gorithmes consistent en une herarchie de probemes d'optimisation lireaires
ou semi-ce nis pour le calcul de la fonction de Lyapunov cbne-copositive.
Pour les contraintes coniques, nous proposons un algorithme de discetisation
base sur le partitionnement simplicial d'un simplexe, de sorte que la recherche
de la fonction souhaite est abordee en construisant une herarchie (assocee
au diametre des cellules de la partition) de programmes lireaires. Notre
deuxeme algorithme est adape aux ensembles semi-algebriques, ai une
herarchie de programmes semi-ce nis est construite pour calculer les fonc-
tions de Lyapunov sous la forme de polyndbmes sommes de cares. Quelques
exemples sont donres pour illustrer notre approche.
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Poursuivant notreetude des sysemesaetat contraint, nous consicerons
ensuite levolution temporelle d'une mesure de probabilie qui cecrit la distri-
bution de letat sur un ensemble. Contrairement auxequations dierentielles
ordinaires lisses, ai levolution de cette mesure de probabilie est cecrite
par lequation de Liouville, le ot assocea l'inclusion dierentielle non lisse
n'‘est pas recessairement inversible et on ne peut pas directement ceriver
une equation de continuie pour cecrire levolution de la distribution des
etats. Au lieu de cela, nous consicerons l'approximation de Lipschitz pour
notre syseme original non lisse et construisons une squence de mesures
obtenuea partir desequations de Liouville correspondanta ces approxima-
tions. Cette ®quence de mesures converge en topologie faible etoile vers la
mesure cecrivant levolution de la distribution desetats pour le syseme ori-
ginal non lisse. Cela nous permet d'approximer nuneriguement levolution
des moments (jusqua un certain ordre ni) pour notre syseme original non
lisse, en utilisant une herarchie de programmes semi-ck nis. En utilisant une
nmethodologie similaire, nous etudions l'approximation du support de la so-
lution (cecrite par une mesure a chaque instant)a l'aide d'approximations
polynomiales.

Mots ckes : Sysemes avec contraintes; sysemes de compkmentarie;
converse du treoeme de Lyapunov; optimisation moments - sommes de
cares ; approximations d'ensemble.
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Notation

This section provides the notations used all along the thesis.

~

N: The set of positive integers.

" N": The set of multi-indices = ( 1; »2;:::; n) of non-negative in-
tegers.

Np,: The set of vectors 2 N" such that P 1 i 6 m.

R: The set of real numbers.

R": Real n-dimensional space.

R?: Nonnegative orthant ofR".

k:k: Euclidean norm onR".

x> : Transpose of a vectoK.

hx;yi = x”y: Standard inner product of vectors inR".

X?y: x7y=0.

Li.: Space of functiond 2 L! (K) for every compact setkK  R".
imF: Image of a set-valued mappingr .

S". Space of symmetric matrices irR" ".

R[x]: The ring of polynomials.

R[x]q: The vector space of polynomials of total degree at modt
degp: Total degree of a polynomialp.

dim S: Dimension of the setS.

" bdS: Boundary of the setS.

clS: Closure of the setS.

int S: Interior of the set S.

rint S: Relative interior of the setS.
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s: Indicator function of the setS.
Ns(x): Normal cone to the setS at point x.
Ts(X): Tangent cone to the setS at point x.
S : Polar cone of the sefS.
S?: Dual cone of the setS.
d(x; S): Euclidean distance between vectox and setS.
dn (X;Y): Hausdor distance between setX and Y.
@" Subdi erential of the function ' .
B(x;r): Closed Euclidean ball of radiug centered atx.
C(X): Space of all continuous functions oiX .
C. (X): Cone of all nonnegative continuous functions o¥X .
C(X;Y): Space of all continuous functions fronX to Y.
M (X): Space of all signed Borel measures of.
M . (X): Cone of all nonnegative Borel measures oX.
P(X): Set of probability measures orX .
r f: Gradient of f . If f is a function of ¢; x), thenr f = %fx
domf : Domain of the functionf .
inf f: In mum of the function f.
supf : Supremum of the functionf .
min f : Minimum of the function f .

maxf : Maximum of the function f .



Acronyms

This section provides the acronyms used all along the thesis.

~

CP: Complementarity problem.

LCP/LCS: Linear complementarity problem/system.
LCCP/LCCS: Linear cone complementarity problem/system.
SOS: Sum-of-squares of polynomials.

LMI: Linear matrix inequality.

LP: Linear program, linear programming.

SDP: Semide nite program, semide nite programming.
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Introduction

1.1 Overview

Constrained dynamical systems, where the evolution of state trajectories is
con ned to a prede ned set, arise in di erent applications. Examples in-
clude electrical circuits [1] where the voltages and currents have to respect
some algebraic relations in addition to the di erential equations arising from
active elements. Mathematically, such systems can be modeled using dif-
ferent approaches, but in this thesis, we adopt an approach which models
constrained systems as a particular class of nonsmooth dynamical systems
using the framework of di erential inclusions. More precisely, given a closed
convex setS R", and a locally Lipschitz continuous functionf : R" ! R",

we consider the evolution of state trajectories described as:

x2f(x) N s(x); 1.1)

where x is the state of the system and\Ns(x) 2 R" denotes the outward
normal cone to the setS at the point x 2 R". Using the de nition of the
normal coné, one can also write (1.1) as an evolution variational inequality,
described as

(t) f(x(1)y x(©)i>0

forally 2 S, x(t) 2S,t 2 [0; T]. Such dynamical systems have been a matter
of extensive study in past decades due to their relevance in engineering and
physical systems and its connections to di erent classes of nonsmooth math-
ematical models. Analysis of such systems requires tools from variational
analysis, nonsmooth analysis, set-valued analysis [14, 115, 139].

An absolutely continuous functionx : [0; T]! R" is a solution of (1.1)
if there exists a (possibly discontinuous and state-dependent) function :
[0;T]! R"suchthat (t) 2 N s(x(t)), forall t > 0andx(t) = f (x(t))+ (t)

1The de nition of a normal cone appears in Chapter 2, De nition 10.
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holds for almost everyt. In other words, if at a timet 2 [0;T], x(t) is in
the interior of S, then (t) is essentially equal to 0. However, ik(t) is on
the boundary of the setS, then the vector (t) 2 N s(x(t)) is chosen such
that x(t) = f (x(t))+ (t) points inside the setS, which allows the motion to
continue within the setS. In other words, one can also interpret the evolution
of the trajectories of system (1.1) to be constrained in such a manner that
x(t) 2 S, for eacht 2 [0; T].

One sees that the system (1.1) involves discontinuities, which depend on
the position of x. Discontinuous systems, i.e. dynamical systems whose
right-hand side is not a continuous vector eld, have been studied in various
scienti ¢ elds like applied mathematics, systems and control, mechanics,
biology, and electronics. They model a whole variety of applications: dry
friction, forced vibrations, electrical circuits, elasto-plasticity, oscillating sys-
tems with viscous damping [1, 5, 107]. Discontinuous systems,@nsmooth
systemsin general, form a rather large class of systems (just like nonlinear
systems) and it is important to develop tools which address peculiar features
of such systems. In mathematics and optimization, there is an increasing
interest in studying problems involving nonsmooth phenomenon and there
is a need to study them rigorously. The utility of the tools of nonsmooth
analysis [54, 56] are not con ned only to situations in which nonsmoothness
is present. Sometimes in order to solve di cult smooth problems, we need
to recall methods from nonsmooth analysis for simplifying the problem.

In the literature, we nd several references related to analysis, numerics,
and control of dynamical systems of the form (1.1). A recent survey article
[35] provides an overview on this topic. In this dissertation, we are primarily
concerned with questions related to analysis and computational feasibility
for certain problems related to system class (1.1), or close variants of such
systems.

The rst set of questions that we address in our work is related to stability
of an equilibrium point. Stability analysis of hybrid, or nonsmooth dynam-
ical systems, where the vector eld is set-valued with possible discontinuities,
is of particular relevance with respect to several applications. Naturally, Lya-
punov functions for such systems provide a potent tool for studying stability
related properties and the underlying theory strongly in uences our under-
standing of the motion of dynamic systems. Several advances have been
made on the theoretical side to establish existence of Lyapunov functions
for various classes of dynamical systems, see e.g. [65, 96, 98, 78, 138, 29]
for examples of standard expositions. An important question in stability
analysis is to determine a class of Lyapunov functions whose existence is ne-
cessary and su cient for proving stability. For constrained systems of the
form (1.1), such questions have not received much attention in the literat-
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ure. This dissertation addresses the existence of Lyapunov functions rather
rigorously with certain mild assumptions on the system structure. In partic-
ular, we specify a function class for the Lyapunov functions which takes into
consideration the constraints on the system dynamics.

Having a candidate for the Lyapunov function, the theory provides an
analysis tool to ensure the stability of dynamical systems. However, it does
not give a procedure for nding the Lyapunov function. Then, constructing
a suitable Lyapunov function is a hard problem since there are no general
methods for computing such functions. In general, the problem of nding the
Lyapunov function is a challenging task, which has attracted the attention
of many researchers, see for example [77] for an overview. If one looks at
the literature on computing Lyapunov functions numerically using appropri-
ate algorithms, the fundamental question behind the works in this direction
boils down to checking the positivity of certain functions over the state space,
which is a challenging problem numerically [120]. Modern developments in
the eld of real algebraic geometry [136, 141] provide certi cates of positivity
of (polynomial) functions with Positivstellensatze relying onsums-of-squares
(SOS) decompositions. Since it has been observed in [134, 53, 128] that nd-
ing SOS decompositions is equivalent to semide nite programming (SDP)
or linear matrix inequalities (LMI), numerical tools based on SOS optimiza-
tion have been developed extensively over the past two decades to compute
Lyapunov functions, see e.g. [128, 135, 85, 52]. While checking if a func-
tion is positive everywhere is numerically hard, checking if it admits an SOS
decomposition is a semide nite program [134, 53, 128]. An overview of sum-
of-squares techniques can be found in [102], and applications of semide nite
programming for solving polynomial inequalities in control systems related
problems appear in [84]. When the system is modeled by switching vector
elds over the whole state space, then the construction of Lyapunov func-
tions using SOS is studied in [126, 10, 8]. Other approaches for computing
Lyapunov functions for di erential inclusions based on linear programming
appear in [15]. However, we are concerned with a certain class of di erential
inclusions which is useful in modeling systems with state constraints, where
the vector eld exhibits discontinuous behaviour on the boundary of the con-
straints so that the state trajectory is forced to evolve within the prespeci ed
set.

Stepping aside from the stability related problems, one observes that there
is a considerable amount of e ort being put into developing the simulation
tools for system of form (1.1). In these methods, we study the evolution of
state trajectories, de ned as absolutely continuous functions of time, by tak-
ing the initial condition to be a given vector in the constraint set. For several
applications, the initial condition is not known exactly and it is natural to
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model the initial condition via some probability distribution supported on
the constraint set. Evolution of probability measures through the system
dynamics of the form (1.1) has received very little attention in the literature,
and once again our interest lies in proposing appropriate numerical methods
that allow us to approximate the resulting solution (which now evolves in
the space of probability measures).

By and large, our e orts have been focused on studying some analysis
related problems for systems of the form (1.1), with a special attention on
developing appropriate numerical routines to support our analytical obser-
vations. The interesting aspect of our work comes from the fact that the
presence of constraints introduces nonsmooth vector elds which needs spe-
cial care. By restricting ourselves to convex sets, one can borrow tools from
the theory of convex analysis and maximal monotone operators to provide
constructive statements. On the numerical side, the use of semide nite pro-
grams (such as the ones based on SOS decomposition) remained unexplored
for simulation or stability analysis of the constrained systems (1.1) before
this dissertation, and in this thesis, we provide some instances of how such
tools can be adapted.

1.2 Motivating Examples

To present some motivation behind the system class (1.1), let us rewrite it
as follows:

x=f(x)+

2 N s(x):

One can, therefore, see (1.1) as interconnection of an ordinary di erential
equation x_= f (x), with a static relation 2 N g(x). This sort of static
relation, described by normal cone inclusion, can be represented in several
forms. In the particular case, wherS is the positive orthant of R", that is,
S = R, then

(1.2)

2N s(x), 06 ?2x>0;

where the expression on the right-hand of the equivalence denotes the fol-
lowing three algebraic relations:

x>0, >0 x =0; (1.3)

with ;x 2 R", and the inequality x > 0 is componentwise.

This section provides some examples where the relations of the form (1.3)
appear. This will provide the motivation about why we are interested in
such nonsmooth relations. In the next section, we will see some examples of
dynamical systems which includes such static relations in their description.
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1.2.1 Piecewise Linear Functions

It is possible to model certain piecewise linear relations using the framework
of complementarity relations [34, 35, 106, 150]. Let us consider two such
examples:

Example 1. For somea 2 R, consider the piecewise linear function:
x 7'y = f(x) = maxfa; xg
then we can write it as
y=x+,; w =X+ a, 06 ?2w>0;

or
y=a+,; w= x+a+; 06 ?2w>Q0

Example 2. Now, let us consider the saturation function:

8
3L, ifx>1
Y=f(x):sat(x)=gx; if 16 x6 1
1, ifx6 1

We can write it in complementarity form as

y= 1+ ;4 W= X+ 1 Lw= X+ -,+1;06 ?w>0:

1.2.2 Constrained Optimization Problem

This section is inspired by [45]. Let us consider the optimization problem

min g(x)
_ (1.4)
subjectto x 2 C;
whereg : R" ! R is a continuously di erentiable convex function, and

C R"is aclosed convex set. We can write the constrained optimization
problem as an unconstrained optimization problem

min g(x)+ c(x) (15)
where ¢ is an indicator function associated with the seC, de ned by,
8
<0 if x 2 C;
c(x)=. (1.6)

' +1 otherwise
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As a special case, let us consider the following quadratic program
.1
min -x~ AX + b’ x
x 2 a.7)
subjectto Cx > c;

whereA 2 R" ", b2 R",C 2 R™ "andc 2 R™. We assume thatA is
symmetric. In addition, if A is positive semide nite, then the cost function
is convex, and we have a convex quadratic program.

We can characterize the optimal solution using Karush-Kuhn-Tucker (KKT)
conditions. If x? is a locally optimal solution of the quadratic program, then
there exists ? 2 R™ such that

Ax’+b C> 7=0; (1.8)
>0, Cx* ¢>0 7(Cx* o=0:
These points are described as the stationary points of the linear complement-
arity system
Xx= Ax b+ C”; (1.9)
06 ?Cx c>0

1.2.3 Electrical Circuits with Ideal Diodes

Modeling of electrical circuits has attracted much interest over the past few
decades and it has been studied in numerous articles and books [1, 3, 4]. The
following framework has been proposed in [2].

Let us consider electrical circuits in which the diodes are supposed to be
ideal, i.e., the characteristic between the current(t) and the voltage v(t)
satis es the complementarity conditions:

06 i(t) ? v(t) > O (2.10)

This set of conditions means that both the variables current(t) and voltage
v(t) have to remain nonnegative at all timeg and they have to be orthogonal
one to each other. Sa(t) can be positive only ifv(t) = 0, and vice versa.
The complementarity condition (1.10) between the current across the diode
and its voltage represents the way to de ne the diode characteristic.

We can rewrite the complementarity relations in (1.10) as:
()2 @r, (V(); V(t)2 @&, (i(1): (1.11)

where @ r, is equal toNg, , the normal cone toR. .
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A~

Both (1.10) and (1.11) are in turn equivalent to the variational formu-
lation: for all i(t) > O,

hi(t);z wv(t)i >0, 82> O: (1.12)

A simple electrical circuit containing an ideal diode, a current source and
an inductor set up in parallel, satis es the following dynamical system [34,
Example 8]:

8

g X=V

S 1= x u (1.13)
06 i?2v>0

where we can see that the complementarity relation (1.3) appears in (1.13).
The variables in system (1.13) are de ned byx(t) is the inductor current,
v(t) is the voltage across the diode(t) is the current across the diodeu(t)

is the current variable of the current source.

1.3 Some Mathematical Models of Nonsmooth
Systems

In this section, we recall some mathematical models of di erent classes of
nonsmooth set-valued dynamical systems, that constitute an active area of
research over the past several years and motivated in particular by engin-
eering applications. The Subsection 1.3.1 is devoted to present the model
of Moreau's sweeping processes. The complementarity system is presented
in Subsection 1.3.2 and the model of projected dynamical system appears in
Subsection 1.3.3.

1.3.1 Moreau's Sweeping Processes

The sweeping, or Moreau, process was introduced and extensively studied by
Jean Jacques Moreau in the seventies, in [116, 117, 118, 119], to model an
elastoplastic mechanical system. Today, it remains an object of mathematical
research.

Signi cant applications of sweeping processes have been given, speci cally
in electrical circuits [1, 3, 7], crowd motion modeling [113, 112], hysteresis
in elastoplastic models [99], mathematical economics [62, 75], dynamic net-
works, nonsmooth mechanics [100] and many other. The sweeping process
theory has become an important area of nonlinear and variational analysis
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with various mathematical achievements and some challenging open ques-
tions; see, e.g., [61, 100] and the references therein.

Sweeping processes are considered as an evolution variational inequality,
or a di erential variational inequality. The main concept of these processes
is to describe the movement of a point belonging to a moving set, and since
the set is moving with time, the point is swept by it. In general, the time-
dependent moving set is given.

Mathematically, the most simple formulation of the sweeping process is
the following. We consider a set-valued mappin®(t) : R, ! R", such
that S(t) R" is a nonempty closed and convex set parametrized by the
time variable t > 0. We also assume that the moving se&b(t) is Lipschitz
continuous with respect to the Hausdor metric. The sweeping process,
[116, 117, 118, 119], corresponds to nding a functian: R, ! R" which
take the form of the following set of inclusions:

x(t) 2 S(t); 8t> 0 (1.14a)
x f(tx)2 N sg(x) (1.14b)

for a given time-varying vector eldf : R, R"! R". Under the assumption
on the setS(t), the normal cone de nes a maximal monotone mappirdgor
each xedt. Because of the presence of the normal cone, for any solution
X(t), we see thatx(t) is constrained to stay inS(t). This means in particular
that (1.14) appears as a constrained di erential inclusion.

A solution of (1.14) corresponds to nding a functionx, and a selection

:R+ ! R"suchthat (t) 2 N gu(x(t)) and x(t) f(t;x(t))= (t) holds

for Lebesgue almost every > 0. The interpretation (1.14) arises for the
way how the point x(t) is swept : as long as the poink(t) happens to be in
the interior of S(t), the normal coneNg)(x(t)) is reduced to zero, so(t)
does not move. When the pointx(t) is at the boundary of S(t), and x(t)
points outside S(t), we choose (t*) that points strictly inside the set S(t)
and rectify the vector eld in such a manner thatx(:) satis es the constraint
x(t) 2 S(t).

For the sweeping process with nonconvex se®&t), we refer the reader
to [17, 27, 48] and the references therein. And several extensions of the
sweeping process as well-posedness and optimal control have been studied in
the literature, e.g., [7, 6, 35].

2The de nition of a maximal monotone mapping appears in De nition 23, Chapter 2.
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1.3.2 Complementarity System

In many applications, one encounters systems that consists of a combination
of di erential equations and inequalities. The inequalities play an important
role at the level of modeling in problems arising in mathematical program-
ming and economics. Complementarity systems, which consist of ordinary
di erential equations coupled to complementarity conditions, have been used
for a long time in the context of speci c applications such as electrical net-
works with ideal diodes (see e.g.[106]), mechanical objects subject to unilat-
eral constraints [108] or Coulomb friction, control systems with saturation or
deadzones, piecewise linear and variable structure systems, relay systems and
hydraulic processes with one-way valves. Complementarity systems have the
potential to play a major role in developing systematic methods to overcome
analysis and synthesis problems in a wide range of applications.

The idea of coupling complementarity conditions to a general input/output
dynamical system has rst been proposed in [148]. The theory of comple-
mentarity problems has witnessed an impressive development essentially mo-
tivated by optimization problems. Recently, it has been the object of in depth
studies in the control literature. The combination of inequalities and di er-
ential equations causes the system description to be of hybrid nature as it
contains both continuous and discrete dynamics. As a consequence, comple-
mentarity systems form a subclass of hybrid dynamical systems [130, 131].

A subclass of particular complementarity system is the resulting linear
complementarity system [82] which is described by relations of the form

X(t) = Ax(t) + Bu(t) (1.15a)
y(t) = Cx(t) + Du(t) (1.15b)
06 y(t) ? u(t) > 0 (1.15c¢)

where A, B, C, and D are linear mappings. The linear complementarity
systems were introduced in [148] and studied in [81, 82, 40].

As mentioned in the beginning of Section 1.2, the complementarity re-
lation in (1.15) can be also written in terms of an inclusion. In particular,
when D = 0 and the matrices B and C satisfy certain conditions, we can
write the system (1.15) in the form of the di erential inclusion with a normal
cone operator (1.2).

A nonlinear complementarity system is described as following

x(t) = f(x(t);u(t)) (1.16a)
y(t) = h(x(t); u(t)) (1.16b)
06 y(t) ? u(t) > O: (1.16¢)
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In some applications it is natural to allow an external input (forcing term) in a
complementarity system. The previous system is then replaced by equations
of the form

x(t) = £ (x(t); u(t); v(t)) (1.17a)
y(t) = h(x(t); u(t); v(t)) (1.17b)
06 y(t) ? u(t) > O (1.17¢)

wherev(t) denotes the forcing term.

1.3.3 Projected Dynamical System

The class of projected dynamical systems in which the right-hand side of
the ordinary di erential equation is a projection operator, was introduced
in [89, 90] and it has been studied in [70, 122, 13, 58, 94]. These systems
are used for studying the behaviour of urban transportation networks, tra ¢
networks, international trade, and agricultural and energy markets. Their
stationary points can be identi ed by variational inequalities; hence one may
say that projected dynamical systems present a dynamic extension of vari-
ational inequalities. One can also write projected dynamical systems as com-
plementarity systems [83] since variational inequalities and complementarity
problems are related. The general theory of stability analysis of such dynam-
ical systems was developed in [154].

In this subsection, we recall the de nition of projected dynamical systems
[70, 122]. The projected dynamical systems model the trajectories con ned to
a given set. To present this system class, let us considgr R" a nonempty
closed and convex set, and €t be a vector eld whose domain contains.
The projected dynamics are roughly described by the equatiotft) = f (x(t))
in the interior of S, and by a suitable modi cation of f () on the boundary
of the setS, which involves taking the projection on the tangent space so
that the solution is con ned to the constraint setS.

More formally, for a given vectorv 2 R", let s(x;Vv) denotes the direc-
tional derivative of Ps(x) which is de ned as

Ps(x+ v) P s(x) (1.18)

s(x;v) = Ilgn0

wherePs is the projection operator ontoS that assigns to each vectox 2 R"
the vector in S i.e. Ps(x) := argmin,5 kx  zk, wherek:k is the Euclidean
norm.

The projected dynamical system corresponding to the closed convex set
S and the vector eld f on S is de ned by

x= s(x;f(x)) (1.19)
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wheref : R" ! R" is continuously di erentiable. For a convex setS, it is
possible to rewrite the directional derivative s(x;V) in terms of the tangent
cone operator,

s(X;V) = Prgp(V);

thatis, s(X;V) is the projection of vectorv on to the tangent spacels(x).
This last inequality, in particular, allows us to show that [35, Section 2.5] the
solutions of (1.19) coincide with the slow solutions of

x2f(x) N s(x);

that is, the solutions which correspond to the element of least norm from the
set on the right-hand side. This way, one sees the connection between the
system class (1.1) and projected dynamical systems.

1.4 Contribution and Organization

The primary contribution of this thesis lies in studying some analysis related
problems with numerical tractability for a class of constrained systems. These
systems are broadly modeled by the di erential inclusions (1.1), and as we
saw earlier, they can be linked to di erent classes of nonsmooth dynamical
systems which are described by an interconnection of the ordinary di erential
equation with a static relation. As we saw in the examples discussed in
previous sections, the static relations have some particular structure, such as
the subdi erential of a convex function, which provide some nice properties
that are broadly associated with maximal monotone operators. We exploit
those properties for the analysis, and also use some tools from the literature
for numerical certi cates for our results.

1.4.1 An Overview of Problem Statements

Let us now provide a quick summary of the problems that have been studied
in this manuscript, along with brief comments about the originality of our
work.
Converse result:We rst study the problem of analyzing the stability
of an equilibrium point for the constrained system (1.1). Note that
for system (1.1), the state trajectories evolve only on a given set and
the vector eld gets discontinuous on the boundaries. The resulting
motion corresponds to a particular choice of vector eld from the ad-
missible set, and our goal is to establish appropriate stability conditions
for such a setup. In particular, we address the question of existence
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of Lyapunov functions for stability of an equilibrium point within an
appropriate function class. As the rst main result, we provide an
a rmative answer to this question by proving the existence of cone-
copositive Lyapunov functions when the underlying constraint set is a
convex cone. These results have been published in [144].

Computing Lyapunov functions: After proving the existence of Lya-
punov functions, we explore numerical methods for computing such
functions. For the tools we use in our works, we have to add more
structure to our system class by taking the drift term to be homogen-
eous. This motivates the introduction of homogeneous cone-copositive
Lyapunov functions, and for computing such functions, we borrow tools
from optimization and polynomial approximations. In particular, we
work with two classes of algorithms. The rst one is based on taking
simplices in a cone, and discretizing the simplices to construct a set of
inequalities whose solution corresponds to the coe cients of the poly-
nomial Lyapunov function. The other method is based on representing
the positivity constraint on Lyapunov functions as thesum-of-squares
Computing Lyapunov functions using such a method leads to semi-
de nite programs, for which we have rather e cient solvers. These
developments have been published in [142, 144].

Ensemble approximations:Continuing with our approach of studying
analytical problems with computational methods, we next study the
evolution of a probability measure for the aforementioned class of con-
strained systems. For conventional ODEs, this problem is solved by
looking at the solution of a linear partial di erential equation, the so-
calledLiouville equation In our approach, we approximate the solution

of nonsmooth system by a sequence of ODEs, and for each ODE, we
consider a corresponding Liouville equation. For this single parameter
family of PDEs, we develop some convergence results and present some
numerical methods based on semide nite programming for approxim-
ating the moments and support of the solution. These results are based
on a manuscript under review [143].

1.4.2 Organization of the Thesis

The remainder of this thesis is organized as follows:

In Chapter 2 , we present an overview of some essential mathemat-
ical background required for the developments in later chapters. Some
details about the system class (1.1) are included, along with some dis-
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cussions about how the solutions of such systems evolve with time.
We also provide an overview of the existing approaches for stability
analysis, and how our approach is di erent from the existing works.

In Chapter 3 , we address the stability notions of our interest more
formally, and the de nition of Lyapunov functions with constrained
domains for system trajectories. We then provide our rst main result
which states that if the origin is globally exponentially stable for sys-
tem (1.1) with S being a convex cone, then there exists a continuously
di erentiable cone-copositive Lyapunov function. After that, we show
the existence of homogeneous Lyapunov function for the case when the
vector eld is homogeneous, which is useful for the numerical compu-
tation.

In Chapter 4 , we prove the existence of a cone-copositive Lyapunov
function which can be expressed as a rational function of homogeneous
polynomials by using appropriate density results related to approx-
imation of functions. Then we propose computationally tractable al-
gorithms for nding the Lyapunov functions. We adopt two approaches:
the rst one is a discretization methodwhich is based on nding an in-
ner approximation of the cone of cone-copositive polynomials by using
simplicial partitions, and the second approach is based on nding the
sum-of-squareSOS) representation of the unknown function. Then,
we derive the corresponding algorithms for those two techniques with
some generalizations. As an illustration, we study some academic ex-
amples which are solved by using Matlab toolboxes.

In Chapter 5 , we study the time evolution of a probability measure
which describes the distribution of the state over a set. As opposed
to smooth ordinary di erential equations, one cannot directly derive

a continuity equation to describe the evolution of the distribution of
states. Instead, we consider Lipschitz approximation of our system
(1.1) and construct a sequence of measures obtained from Liouville
equations corresponding to these approximations. This sequence of
measures is shown to converge in weak-star topology to the measure
describing the evolution of the distribution of states for the nonsmooth
system. This allows us to approximate numerically the evolution of
moments for the nonsmooth system. An algorithm is also provided for
approximating the support of the measure that describes the solution.
We illustrate our approach by an academic example.

In Chapter 6 , we present some conclusions, along with some discussion
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about the possible future paths of research. We explain some possible
generalizations that can be carried out for the problems studied in this
manuscript, which includes deriving converse theorems for a broader
class of nonsmooth systems and developing algorithms for computing
Lyapunov functions with di erent descriptions for the constraint set.
For the problems involving the evolution of a probability measure, there
is room to improve results by relaxing certain restrictive hypotheses. In
addition to these generalizations, one can study aforementioned prob-
lems for a class of nonsmooth systems where the underlying constraints
are not necessarily convex. Potentially, such a setup would require dif-
ferent tools and it is expected that the results of this manuscript provide
some direction into investigating such questions.



Mathematical Background

This chapter collects mathematical background for the subsequent develop-
ments in the manuscript by recalling some concepts from convex analysis,
representation of positive polynomials, convex optimization, and some es-
sentials about the solutions of nonsmooth dynamical systems. In Section
2.1, we provide an overview of some basic necessary concepts. In Section 2.2,
we provide some details about the dynamical systems with complementarity
relations, followed by some discussions in Section 2.2.2 on how to interpret
or simulate the solutions of such systems.

2.1 Essential Concepts

2.1.1 Convex Analysis

Convex analysis is a special branch of mathematics combining classical ana-
lysis on the one side and geometry on the other. Convex analysis is widely
acknowledged to have an important but specialized role in mathematical op-
timization. It has a signi cant role in the study of nonlinear problems in
the calculus of variations and optimal control. Several books treat convex
analysis in depth, e.g. [91].

De nition 1. (Convex set). A subsetC of R" is called convex if for each
x;y 2 C and for each 2 [0; 1], we have

X +(1 )y 2 C; (2.1)
i.e. the closed line segmenk[y] C wheneverx;y 2 C.

De nition 2.  (Simplex). Suppose thatxg; X1;:::;X, 2 R" are anely

( 50 )
= oXo + + 1 Xp i=land ;>0 foralli2f0;:::;ng
i=0

15
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Example 3. Some examples of convex sets, and simplices are given below.
In R, convex sets are the intervals.

In R", an a ne manifold is a convex set.

In R?, the line connecting the points [0 £] and [1 OT is a simplex.
The unit simplex in R" is a convex set.

De nition 3. (Convex combination). A convex combination of the points

(Xi)sisk R" is de ned by

K X
X = iXi; with ;> 0;8=1;2::::k and i =1;

i=1 i=1

i=1:2::::k.
The idea of a convex combination can be generalized to include in nite
sums, integrals, and, in the most general form, probability distributions.

A particular class of convex subsets ifRR", which have a principle role
in optimization and linear programming, are convex polyhedra which are
de ned as following.

De nition 4.  (Convex polyhedron). A subsetP of R" is called a convex
polyhedron if there is a matrixA 2 R™ " and a vectorb2 R™ such that

P:=fx2R":Ax 6 bg; (2.2)

that is
P=fx2R":hg;xi 6 h; i=1;2:::;mg:

De nition 5.  (Projection onto a convex set). LetC be a nonempty closed
convex set inR" and x 2 R". The projection of x onto C is de ned by

projc(x) :=argmin kx  yk:
y2C
Let us now recall some notions relative to convex functions. Then for the

next de nitions, let us introduce a convex function' : R" ! R[f +1g,
that is, 8x;y 2 R", 8 2 [0; 1], we have

(x+(@ y)6 " (x)+(@ ) ()
The e ective domain of' is de ned by

dom( ):=fx2R":" (x)< +1g: (2.3)



2.1. ESSENTIAL CONCEPTS 17

De nition 6.  (Proper function). The function' : R"! RJ[f +1g is said
to be properif' (x) < +1 foratleastonex 2 R"and' (x) > 1 for every
x 2 R". It means that, a convex function is proper if its e ective domain is
nonempty and it never attains 1

Convex functions that are not proper are called improper convex functions.

De nition 7. (Lower semicontinuous function). The functiori is said to be
lower semicontinuous akq 2 R" if for every > 0 there exists a neighborhood
U of xg such that' (x) > ' (Xo) for all x in U when"' (xo) < +1 , and

" (x) tends to +1 asx tends towardsxy, when' (xg) = + 1 . Equivalently,
this can be expressed as

Il)m |Xr(1)f (X) > "' (Xo)
where liminf is the limit inferior of * at point Xo.

The function ' is called lower semicontinuous if it is lower semicontinuous
at every point of its domain.

Suppose that' : R"! R[f +1g is a proper, convex and lower semi-
continuous function. The subdi erential of' at x 2 R", denoted by @'(x)
is de ned as

@'x):=f 2R":h;z xi6'(z2) ' (x); 822 dom( )g: (2.4)
We say that' is subdi erentiable at x 2 R" if @'(x) 6 ;.

De nition 8. (Cone). A nonempty subsetK of R" is called a cone if for
eachx 2 K and each > 0, we have

X 2 K:

A coneK is called a convex cone if forevery > 0, and for allx;y 2 K,
we have
X +y 2K:

The conic hull of a subsetS R", denoted cone®), is the smallest convex
cone that containssS.

De nition 9.  (Dual cone). The dual coneK ? of a nonempty subsetk of
R" is de ned by
K?:=fp2R":hp;vi > 0; 8v2 Kg: (2.5)

Geometrically, the dual cone oK is the set of all nonnegative continuous
linear functionals onK . Notice that the dual K ? is always a closed convex
cone containing the origin. A con& that satis es K ? = K is called self-dual.
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Remark 2.1 If K is a linear subspace oR", then K? coincides with the
orthogonal subspace oK i.e.

with
K?:=fp2R":hp;vi=0; 8v2 Kg:

We note that K is a closed convex cone &" if and only if K?? = K.

De nition 10.  (Polar and normal cone). The polar con& of a nonempty
subsetK of R" is de ned by

K :=fp2R":p;vi6 0, 8v2Kg= K™ (2.6)

The normal cone to a nonempty subse of R" at a point x 2 K is de ned
by

Ne(x):=f 2R":h;y xi60;, 8y2Kg: 2.7)
If x belongs to the interior ofK i.e. x 2 int(K) then Ng (x) = 0 and by
convention, we letN (x) := ; for all x 62X .

Let «(x) be the indicator function of a nhonempty subsek R" as
de ned in (1.6). The indicator function is discontinuous on the boundary of
K, but lower semicontinuous everywhere. Its subdi erential is related to the
normal cone operator.

Proposition 2.2. The subdi erential of ¢ at x is the normal cone toK at
X2 K ie. @k(x)= Ng(x).

2.1.2 Positive Polynomials

The study of relationships between positive (nonnegative) polynomials and
sum-of-squares polynomials is a classic question which goes back to work of
Hilbert at the end of the nineteenth century. It is of real practical importance

in view of numerous potential applications.

Sum-of-squares optimization is an active area of research at the interface
of real algebraic geometry and convex optimization. Over the last decade, it
has made a crucial in uence on both discrete and continuous optimization,
as well as several other disciplines, notably control theory. A specially ex-
citing aspect of this research area is that it relies on classical results from
real algebraic geometry. Additionally, it o ers a modern, algorithmic view
point on these concepts, which is amenable to computation and semide nite
programming.
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We present in this section a brief exposition on basic de nitions and
results concerning positive polynomials and sum-of-squares polynomials.

We denote byR[x] the vector space of real polynomials in the variables
X =(Xq;:5%X,) 2 R,

De nition 11. (Sum-of-squares polynomial). A multivariate polynomial

can be written in the form
xn

p(x) = §(X); (2.8)
=1

k

We denote by
R[x]?:= fp2 R[x] : pis SOY;

the cone of elements ifR[x] that can be written as SOS polynomials.

The existence of an SOS decomposition is an algebraic certi cate for
nonnegativity of a polynomial. It is obvious that every SOS polynomial is
nonnegative orR". But the converse is not always true, that is, a nonnegative
polynomial is not necessarily SOS.

is SOS if and only if there exists a positive semide nite matriQ) such that

p(x) = ' Qz; (2.9)
wherez is the vector of monomials of degree up to d

Z=[1;Xq; X250 05 Xns XaXa; 111 XA

De nition 12. Afunction f : R"! R" is said to be homogeneous of degree
d> 1ifit satises
f(x)= 9% (x)

foreachx 2 R" and > 0.
We say that a polynomialp 2 R[x] of degreed is homogeneous if

p(x )= p(x)

for any scalar 2 R.
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Dealing with positivity of a polynomial is hard but with SOS, it becomes
easier as the problem boils down to semide nite programming (SDP) or
linear matrix inequalities (LMIs), a particular class of convex optimization
problems for which e cient algorithms are available. For detailed accounts
on SOS and positive polynomials and the algebraic concepts, we refer to
[105, 102].

Now, we review some SOS representation results for positive polynomials.
Before that, we need some de nitions.

An algebraic set is an intersection of nitely many polynomial level sets.
A semialgebraic set is a union of nitely many intersections of nitely many
open polynomial superlevel sets. A closed basic semialgebraic set is an inter-
section of nitely many closed polynomial superlevel sets which is denoted
by

K=fx2R"; g(x)>0; k=1;:::;mg (2.10)

We denote byM (K ') the quadratic module generated by, k =1;:::;m,
that is to say

M(K)= RxP+@ RXP+ +gn RX?

2hgg;iiiigmi = M(K)+ a1 RIXP+ +ai:iiign RX]Z (2.11)
We say that the quadratic moduleM (K) is Archimedean if

X0
N x22 M (K); for someN 2 N:
i=1

Polya, Schmsdgen and Putinar theorems: In the literature, we nd
several important results which characterize the positivity of a polynomial
in di erent contexts, and here we recall some of these statements which are
relevant for our work. The rst such statement, RPolya's Positivstellensatz
provides the conditions for positivity of the polynomials on positive orthants.

Theorem 2.4. (Polya [105], [133]). Let p 2 R[x] be homogeneous such
that p > 0 on RY!nf0Og. Then for all k 2 N big enough, the polynomial
(Xx1+  + Xp)¥p has only nonnegative coe cients.

The next statement, due to Schmadgen provides a characterization of
positive polynomials on a compact semialgebraic s&t with no additional
assumptions onK or on its description.
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Theorem 2.5. (Schmadgen [141]). LetK be a compact semialgebraic set
and letp 2 R[x] such thatp(x) > Oforall x 2 K. Thenp2 2hgy;:::;0ni.

Theorem 2.5 is a very powerful result. From computational viewpoint,
when we wish to check if a polynomial is positive over the sé&t, we seek
a representation of the polynomial in the form (2.11). However, note that
the number of terms in Schmudgen's representation is exponential in the
number of polynomials that de ne the setK. In the following statement,
the so-calledPutinar's Positivstellensatz we can see that by adding an as-
sumption onM (K), the number of terms in Putinar's representation is linear
in the number of polynomials that de ne K, which becomes very useful for
computation.

Theorem 2.6. (Putinar's Positivstellensatz [136]). LetK be a compact
semialgebraic set and leM (K) be an Archimedean quadratic module. Let
p 2 R[x] such thatp(x) > O for all x 2 K. Thenp2 M (K).

In some of the results developed in this manuscript, we will use some
of these statements which basically describe the representation we seek for
checking the positivity of a function.

2.1.3 Matrix Classes

In our work, we use several matrix classes, which are formally de ned in this
section.

De nition 13.  (Positive (semi) de nite matrix). A matrix M 2 R" " is
positive (semi) de nite if for all x 2 R" one hasx"Mx > 0 (> 0) for all
x 6 0. Itisdenoted M 0 (< 0). It is not necessarily symmetric.

For the following de nition and theorem, we recall that the submatrix
of a matrix M is a matrix obtained by deleting some of the rows and/or
columns ofM. The principal submatrix is a submatrix in which the set of
row indices that remain is the same as the set of column indices that remain.
The minor of a matrix M is the determinant of some smaller square matrix,
cut down from M by removing one or more of its rows and columns. The
principal minor is one where the indices of the deleted rows are the same as
the indices of the deleted columns.

De nition 14. (P-matrix). A matrix M 2 R" " is a P-matrix if all its
principal minors are positive. It is a R-matrix if its principal minors are
nonnegative.

Theorem 2.7. [64] LetM 2 R" ". The following statements are equivalent:
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1. M is a P-matrix.
2. M reverses the sign of any nonzero vector, i.e.:

[zi(Mz); 6 O for all i]) [z=0]:

3. All real eigenvalues oM and its principal submatrices are positive.

De nition 15. (Copositive matrix). A matrix M 2 R" " is said to be a
copositive matrix on the setK if

x"Mx > 0; for all x 2 K:

It is said to be strictly copositive onK if xTMx > 0 forall x 2 K, x 6 0,
that is, if there existsc > 0 such that

x"Mx > ¢ kxk?; for all x 2 K:

A basic problem in optimization is the detection of copositive matrices.
The use of copositive matrices has broad applications in many areas of ap-
plied mathematics. In the last decade, there has been an interest in copos-
itivity due to its impact in optimization modeling [38], dynamical systems
and control theory [95], complementarity problems [74], and graph theory
[12, 69]. There are many other interesting references concerning the role of
copositivity in the modeling and analysis of optimization problems.

We haveM 0) M is aP-matrix, M < 0) M is a P;-matrix and a
copositive matrix on R .

One usually considers copositivity over convex sets [92]. Yet even in this
case copositivity is hard to characterize. Many more matrix classes which
are useful in complementarity theory exist [63].

2.1.4 Conic Optimization

In this section, we describe linear programming over convex cones in nite
dimensional spaces, following [84].

De nition 16. (Linear cone). The linear cone, or positive orthant, is the
set

fX2R":xk>0; k=1;:::;ng:
De nition 17. (Quadratic cone). The quadratic cone, or Lorentz cone, or

second order cone, is the set

q —
fx2R":x;> X3+ + X2q:
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Let S" denote the Euclidean space af n symmetric matrices ofR" R",
with the inner product
_ XX
hX;Y i :=trace XY = Xi Vi ;
i=1j=1

De nition 18. (Semide nite cone). The semide nite cone is the set
fX 23S :x"Xx > 0; 8x 2 R"g:

Note that if K = R" is interpreted as a cone, then its duaK °= f0Og is
the zero cone, which reduces to the zero vector Bf'.

Linear Matrix Inequality:

A linear matrix inequality, abbreviated by LMI, is a constraint
x
Fot  XkFk>0;
k=1

on a vectorx 2 R", where matricesF, 2 S™, k =0;1;:::;n are given.

Primal/Dual Conic Problems:

Conic programming is linear programming in a convex cone : it is the
problem of minimizing a linear function over the intersection oK with an
a ne subspace:

p’ =inf X
st. Ax=D (2.12)
x2 K

where the in mum is with respect to a vectorx 2 R" to be found, and the
given problem data consists of a matrbA 2 R™ ", a vectorb2 R™ and a
vectorc2 R".

The feasibility setfx 2 R" : Ax = b; x2 K g is not necessarily closed,
this is why in general we speak of an in mum, not a minimum.
If K = R", then problem (2.12) is not interesting since eithep’ = 0 or
p’=+1 orp’= 1 . If K is the linear cone, then solving problem (2.12)
is called linear programming (LP). IfK is the quadratic cone, then this is
called (convex) quadratic programming (QP). IfK is the semide nite cone,
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then this is called (linear) semide nite programming (SDP).

In mathematical programming, problem (2.12) is called the primal prob-
lem, and p’ denotes its in mum. The primal conic problem has a dual conic
problem [28], which is:

d’> =sup By
st.tz=¢c AY (2.13)
z2 K®

2.2 Solutions of Nonsmooth Systems

Our interest in this thesis is in studying a class of dynamical systems de-
scribed by the variational inequalities

x(t) 2 f(x(t)) @'(x(t)); ae: t> O (2.14)

wheref : R" ! R" is a given vector eld, x(t) 2 R" denotes the state, and
" :R"! RJ[f +1g is a given proper, convex and lower semicontinuous
function.

More speci cally, we focus on the particular case

= s

where S is a given closed convex subset 8" containing the origin and s
is the indicator function of S. Then, the di erential inclusion (2.14) reads as

x(t) 2 f (x(t)) N s(x(1); a.e.t> 0 (2.15)

Inclusion (2.15) captures the class of complementarity systems studied in
this thesis, but the framework of (2.14) is necessary for a broader class of
complementarity systems such as the ones studied in [42, 146].

The formalism of system (2.15) with inclusion naturally allows us to de-
scribe dynamics constrained to evolve in s&. Using the depiction in Fig-
ure 2.1, itis seen that, during the evolution of a trajectory, ik(t) is in interior
of S, then Ng(x(t)) = 0 and the motion of the trajectory continues according
to the di erential equation x(t) = f (x(t)). While x(t) is on the boundary,
we add a vector from the setN s(x(t)), which restricts the motion of the
state trajectory in tangential direction on the boundary of the constraint set
S.

We focus on the particular class of constrained systems where the admiss-
ible setS is a cone, denoted b . Let us give a theorem that speci es some
conditions for the existence and uniqueness of solutions for such systems.
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S=R?

N s(x)

Ns(x)

Figure 2.1 { State trajectories in constrained system withS = R .

Theorem 2.8. [41] Letf : R"! R" be a Lipschitz continuous vector eld,
and K a closed convex cone. Lety 2 K be given. Then there exists a unique
absolutely continuous functionx : [0;1 ) ! R" such that the di erential
inclusion (2.15) holds withx(0) = xo and

X is right-di erentiable on [0;+1 ); (2.16a)
x(t) 2 K; forallt> O: (2.16b)

2.2.1 Exploiting Complementarity Structure

In Section 1.3.2, we saw the connections between the dynamical system (2.15)
and the complementarity systems, where one can see the later as a particular
case of (2.15) withS being a closed convex cone. Having more structure on
the setS allows us to get more insights into the system (2.15). In this section,
we start with a description of the complementarity problem, which allows us
to study the solutions of system (2.15) withS being a cone.

A complementarity problem refers to a system of equalities and inequal-
ities, and due to its relevance in applications, this subject now has a rich
mathematical theory, a variety of algorithms, and a wide range of applica-
tions in applied science and technology. They are widely used in many ro-
botics tasks, like motion and manipulation, because of their ability to model
nonsmooth behavior (e.g, contact dynamics). There is a great deal of prac-
tical interest in the development of robust and e cient algorithms for solving
complementarity problems. A reference book for this topic is [63], see also
[74].

De nition 19 (Complementarity Problem). The complementarity problem
consists in nding a vector in a nite-dimensional real vector space that
satis es a certain system of inequalities. Speci cally, givelr : R" ! R",



2.2. SOLUTIONS OF NONSMOOTH SYSTEMS 26

the complementarity problem, abbreviated CP, consists of nding a vector
2 R"suchthat > 0,F()> 0, >F()=0, written compactly as

06 ?F()>0: (2.17)

This notation means that each component of and F( ) must be nonnegat-
ive, and both vectors must be perpendicular to each other, which translates
to

WhenF( )= M + q, foramatrix M 2 R" " and a vectorg2 R", i.e.
06 ? M +qg>0; (2.18)

this is a linear complementarity problem denoted LCR{; M), and the set of
its solution is denoted SOL¢; M). Observe that if g > 0, the LCP(q; M) is
always solvable with the zero vector being a trivial solution. Special instances
of the linear complementarity problem can be found in the mathematical
literature as early as 1940, but the problem received little attention until the
mid 1960s at which time it became an object of study in its own right. Linear
complementarity problems are broadly used in computational nonsmooth
mechanics [33], and in applications including quadratic programming [124].

Similarly, for a given closed convex con€ R", the problem of nding

2 K ? such that
K?3 2 F()2K (2.19)

is termed as a cone-complementarity problem, and fér( )= M + q, itis
a linear cone-complementarity problem, denoted LCCR{ M; K).

Based on discussions in [74, Chapter 2], the LCP (2.18) can be reformu-
lated into three other frameworks: optimization problem, C-function, convex
subdi erential.

Optimization problem: First, problem (2.18) can be expressed as an
optimization problem. It is easy to give the following proposition.

Proposition 2.9. Letg2 R"andM 2 R" ". Vector 2 R" is a solution of
LCP(qg; M) if and only if it is a solution to the following quadratic problem:

M 9
such thatM + q> O; (2.20)
> 0

with an objective value of zero.
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Similarly, for a given closed convex coné R", one can also write the
solution 2 R" of LCCP(q; M; K) as the solution to the following optimiz-
ation problem:

™ a
such thatM + q2 K; (2.21)
2 K?”:

with an objective value of zero.

C-function: A second way of expressing the problem (2.18) is nding
the root of a C-function.

De nition 20. A C-function is a functionf : R?" | R" satisfying
f(a;p=0,h a;d =0; a;b> 0:

If f is a C-function, then LCP(q; M) is equivalent to nding 2 R" such
that f(;M + qg)=0.
One of well known C-functions is the min function which implies that
2 R" is a solution of LCP(@; M) if and only if min( ;M + ) =0.

Convex subdi erential: A third way to express the problem (2.18)
is through the subdi erential of the indicator function g, which is de ned
as rr(x)=0if x2 R} and g (x)=+1 if x2R].

Since the subdi erential of the indicator function @ r» (x) is equal to the
normal coneNgn (X), then we have the following equivalence [74, Proposi-
tion 1.1.3]:

06 2 >0, 2N g()
, 2N r():

We give now the following result which is central in complementarity
theory.

Theorem 2.10. The LCP(qg; M) has a unique solution for anyg 2 R" if
M 2 R" " is a P-matrix.

A special subclass of P-matrices are the symmetric positive de nite matrices.

For the analysis carried out in this thesis, it is important to know how
the solution of an LCP, or LCCP in general, changes if we modify one of the
parameters.
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Proposition 2.11. Given a closed convex coné¢ R" and a P-matrix M,
let denote the solution ofL.CCP(q;M;K) and  denote the solution of
LCCP(qg;M;K ), for some > 0. Then, it holds that =

Proof : Let 2 LCCP(q;M;K). Clearly, for each > 0,

2K?, 2 K?
M +92K, (M +g=M( )+(qg)2K
"M +=0, ( )Y(M( )+(qg)=0:

and hence 2 LCCP( g;M;K ). Since the solution to such an LCCP are
unique, it follows that = . }

With these basic de nitions, we introduce the following class of systems,
the complementarity systems, for which we develop our main results of this
thesis.

De nition 21  (Complementarity System) A complementarity system con-
sists of an ordinary di erential equation coupled to complementarity condi-
tions. Given a functionf : R"! R" and aconeK R", a complementarity
system is described by the following di erential equation:

x=f(x)+

K?3 ?x2K: (2.22)

To draw connections with the system class (2.15), we use the basic result
from convex analysis [74, Proposition 1.1.3]:

2N «(X)0 K73 ?x2K;

where the notationK? 3 ? x 2 K is the short hand for the three state-
ments: i) x 2 K, i) 2 K? andiii) x> =0.

Complementarity systems form a class of nonsmooth dynamical systems
that is of use in mechanical and electrical engineering as well as in optim-
ization and in other elds. A general way of coupling ordinary di erential
equations to complementarity conditions was proposed in [148] in 1996, and
this work was extended in a later paper [149]. There has been signi cant
work though in specic areas where combinations of di erential equations
with complementarity conditions arise.

Several works exist in the literature which deal with existence and nu-
merical construction of the solution to system (2.22). A recent reference [41]
contains results in this direction, along with pointers to earlier works. Mo-
tivated by these works, it is stipulated that the data of (2.22) satisfy the
following assumption.
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Assumption 1. Function f : R" I R" is locally Lipschitz continuous,
f(0))=0and K R" is a closed convex cone.

The next statement concerns the sensitivity of the solution of an LCCP
with respect to one of its parameters. The results given in [110, Section 2]
and [125] focus on Lipschitz continuity of the solution to LCP problems, and
they can be modi ed to get the following statement:

Proposition 2.12. Consider system(2.22) under Assumption 1. Let(x; ):
[0;1)! R2? denote the solution with an admissible initial conditiox(0) 2
K. Then, there exists a constanC > 0 such that for eacht > O,

k ()k 6 Ckf (x()k: (2.23)

2.2.2 Time Evolution

Before proceeding with next chapters which present our results, it is instruct-
ive to recall how a solution to (2.22) evolves with time, and the underlying
optimization problem which may be solved to compute.

For a xed s > 0, if x(s) 2 int(K), then Nk (x(s)) = f0g, and we let

(s) = 0. As aresult, for some" > 0 andt 2 [s;s+"), we havex(t) = f (x(t))

and x(t) 2 int(K).

However, if for somes > 0, we have thatx(s) 2 bd(K), the boundary of
K, then we essentially compute (s) satisfying the relation'

K?3 (s)? f(x(s)+ ()2 Tk(X): (2.24)

If the boundary constraint remains active over an intervalg;s+ "] for some
"> 0, that is, for eacht 2 [s;s+ "], x(t) 2 bd(K), then (t) satis es the
complementarity relation in (2.24). We say that

() 2 LCCP(f (x(1); 15 Tk (x(1)));

which is equivalently described as the solution to the optimization problem
stated in (2.21).

In what follows, it is also important to recall how we interpret the solution
to (2.22) if x(0) = xo 62K . In such a case, we let

Xg = Proj g (Xo) (2.25)

and then propagate the solution withxg, the projection of xo on K with
respect to Euclidean norm. We can thus formally de ne the solution to
(2.22) as follows:

INote that, for a closed convex coneK  R", for eachx 2 K, we denote the tangent
cone toK at x by Tk (x) and Ng (x) = T k (x)?. Also, for x 2 K, if 2 N g (x), then
2 K?, and henceK? T g (x)’.
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De nition 22.  For a given initial condition Xo 2 R" and an interval [ T], a
solution to (2.22) is an absolutely continuous functiorx : [0; T]! R", such
that x(t) 2 K for eacht > 0, and x§ = proj x (Xo).

Existence and uniqueness of solutions is a basic issue in the formulation
of any dynamical system. From the point of view of mathematical program-
ming, conditions that ensure existence and uniqueness of solutions are of
interest because they can serve as a soundness test on a proposed model.

Under Assumption 1, there exists a unique solution to (2.22) in the sense
of De nition 22. We denote by x(t; Xg) the solution of (2.22), at timet > 0
starting with initial condition Xxq at time 0. Assumption 1 also guarantees
that the origin is an equilibrium and x(t; 0) = 0 is the unique trivial solution
starting from xo = 0. Indeed, with K being a closed convex cone, we have
02 K. Under the conditionf (0) = 0, we have (t) =0 and x(t) =0, for all
t> 0.

2.3 Overview of Stability Analysis

Maximal monotone operators were rst introduced in [114] and [153] and its
de nition is given as follows.

De nition 23. (Maximal monotone operator). Consider a set-valued map-
pingM :R" R" thatis M (x) R" for eachx 2 R". We say thatM is
monotone if it satis es the following property:

hyi  YoiXi Xoi > 0; forall yo2 M (Xg);y12M (X1):

We say that M is maximal monotone if no expansion of its graph is possible
in R"  R" without destroying monotonicity. In other words, M is maximal
monotone if it is monotone and in additionM = M © for all monotone
MO: R" R" such that graphM )  graph(M 9, where graphM ) =
fxy)iy2M (x)g.

Let us consider the following linear dynamical system, denoted by , and
described by the quadrupleA;B;C;D):
8

<x=Ax+B
"~ y=Cx+D

The linear system is said to be passive if there exists a positive semi-
de nite function V : R" ! R, such that the dissipation inequality
Z t
V(x() V(x(0))6 h(s);y(s)i ds (2.26)
0
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is satis ed along all solutions of , for eachx(0) 2 R" and eacht > 0. A
function V satisfying (2.26) is called astoragefunction.
We say that is strictly passive if
z t Z t
V(x(t)) V(x(0)) 6 . h (s);y(s)i ds . (x(s)) ds (2.27)

for some positive de nite function

Certain interconnections of dynamical systems and nonsmooth relations
can be expressed as maximal monotone operators. In this context, let us
consider the following dynamical system:

Xx=Ax + B (2.28a)
y=Cx+D (2.28b)
2 M (y) (2.28c)

whereM is a maximal monotone operator.
This system can be equivalently written in the following form:

x2 H (xX):= Ax B(M + D) }Cx): (2.29)

The following theorem asserts thatH is maximal monotone if the linear
system is passive and the set-valued mappirld is maximal monotone.

Theorem 2.13 ([44, Theorem 2]) Suppose that
1. The quadruple(A;B;C;D) is passive with storage functiox 7! x> X.

2. The mappingM is maximal monotone.

3. It holds thatimC\ rint(im(M + D)) 6 ;.

Then the mappingH is maximal monotone.

Let us now mention a lemma that gives necessary and su cient conditions
for a system being strictly passive.

Lemma 2.14 (Kalman-Yakubovich-Popov Lemma) System is strictly
passive with storage functioiv (x) = x> P x if and only if there exist matrices
L2 R"PandW 2 RP P, a positive scalar > 0, and a symmetric positive
semi-de nite matrix P 2 R" " such that:

8

3AP+PA= LL> P
_B”P C= wrL
"D+ D> = WW:
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In other words, the system is passive if and only if the linear matrix in-
equalities

" #
_._ . AP+PA+P PB C’ _

Moreover, V(x) = x> Px de nes a storage function ifP is a solution to the
above linear matrix inequalities.

Due to Theorem 2.13 and Lemma 2.14, one can write down su cient
conditions to check if the system is asymptotically stable, under the restric-
tion that the quadruple (A;B;C;D) describes a passive system. The com-
putational burden, in that case, boils down to nding a quadratic positive
de nite Lyapunov function which is numerically achieved by solving LMIs,
as indicated in Lemma 2.14. In this thesis, we are basically interested in
the stability analysis of dynamical systems where an ordinary di erential
equation is coupled with a maximal monotone relationship, but the system
described the ordinary di erential equation is neither assumed to be linear
nor passive. Hence, one cannot use the aforementioned approach based on
passivity and LMIs for stability analysis and computing Lyapunov functions.

In fact, we observe that, in general the class of Lyapunov functions depends
on the constraint set under consideration. For this reason, we introduce the
following de nition of Lyapunov functions for the class of systems (1.1).

De nition 24  (Constrained Lyapunov Function). System (1.1) has a
continuously di erentiable (global) Lyapunov function V : R" I R with
respect toS if

1. There exist clasK; functions _, — such that

_(kxk) 6 V(x) 6 —(kxk); 8x2S;

2. There exists a clasK function such that

hr V(x);f (x)i 6 (kxk); 8x 2 int(S); (2.30a)
hr V(x);f (x)+ «i 6 (kxk); 8x 2 bd(S); (2.30b)

where  is the projection off (x) on Ng(x), such that f (x) + 2
Ts(x).

In the next chapter, we address our rst main question on the existence of
Lyapunov functions in the sense of De nition 24, while restricting ourselves
to the case whereS is a positive orthant.



Stability Analysis: Converse Result

The stability analysis of constrained systems of the form (1.1) using Lya-
punov functions has received considerable attention in the literature, and in
this chapter we address the converse question when the constraint is described
by a closed convex cone, so that the dynamics are equivalently expressed by a
complementarity system. Since the state of such systems essentially evolves
in a closed convex cone, often chosen to be the positive orthant, it is natur-
ally desirable to consider Lyapunov functions which are positive de nite over
the positive orthant; the functions satisfying this latter property are called
copositivefunctions. The need to search for such functions for stability ana-
lysis of complementarity systems was presented as an open problem in [43].
The papers [80, 79, 42] investigate su cient stability conditions for linear
complementarity systems, or conewise linear systems [93] in terms of copos-
itive Lyapunov functions. The paper [79] also provides examples of systems
where a positive de nite Lyapunov function does not exist, but the system

is nonetheless asymptotically stable and it admits a copositive Lyapunov
function.

While these existing works have shown the utility of enlarging the search
space of Lyapunov functions from positive de nite to copositive functions,
and cone-copositive functions when considering systems with state traject-
ories constrained to a cone rather than the positive orthant, none of the
existing works has adressed the converse question:

Does every exponentially stable complementarity system admit a
cone-copositive Lyapunov function?

The objective of this chapter is to answer this question in the a rmative by
constructing a Lyapunov function as a functional of the solution trajectories,
thereby concluding that one does not need to go beyond cone-copositive
functions to nd Lyapunov functions for complementarity systems.

33
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3.1 Overview

Converse stability results for dynamical systems have been studied for a long
time in the control community, see the recent survey article [97]. Moreover,
due to discontinuities in the vector eld at the boundary of the constraint set
(which can be seen as an example of constrained switching), establishing the
existence of Lyapunov functions within cone-copositive functions becomes
di cult.

In this chapter, we establish an existence result for Lyapunov function,
that is, if the system is exponentially stable then there exists a Lyapunov
function, with certain properties, for such system.

There exist several results in the literature on converse Lyapunov the-
orems for systems where the vector elds are discontinuous, see [65, 111]
for switched systems, and [42] for complementarity systems. The results in
[65, 111] use linearity of the ows, and the results in [42] are restricted to the
class of complementarity systems where the right-hand side is Lipschitz con-
tinuous (and hence not discontinuous). Some other articles have also showed
a converse Lyapunov theorem for other classes of systems, see [76, 39].

Here, we study the converse result where the ow maps are not necessarily
linear, and the complementarity relations may induce discontinuities in the
vector eld. In essence, we generalize the converse results on di erential
inclusions presented in [55, 147]. An essential di erence compared to these
results is that our system does not satisfy the regularity assumptions imposed
in those works, and instead of strong stability (with respect to all possible
vector elds in the di erential inclusion), we address weak stability, that is,
there exists a vector eld in the di erential inclusion for which the equilibrium
is stable. Moreover, the structure of the system only allows construction over
the admissible domain, which is a closed convex cone in our case.

This chapter is structured as follows. In Section 3.2, we describe the
appropriate notions of stability which are to be adapted with respect to the
constrained domain, and discuss some interesting properties that may arise
due to the presence of constraints. In Section 3.3, we introduce the de nition
of cone-copositive Lyapunov functions. In Section 3.4, we present our main
result: we establish an existence result for Lyapunov function and we carried
out its technical proof all along the rest of this section. In Section 3.5, we
show the existence of homogeneous Lyapunov functions which can be useful
for numerical computation.
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3.2 Stability Notions

During recent years, the concepts of stability of dynamical systems have
evolved, either by modifying old ideas or by creating new ones. We de ne as
in [79, 80] the stability of the origin for the system of our interest:

x=f(x)+

? x2K: (3-1)

K

It is stable if small perturbations of the initial condition at the origin lead to
solutions remaining in the neighborhood of the origin for all forward times:

De nition 25 (Stability) . The origin is stable in the sense of Lyapunov if
for every" > O there exists > 0 such that

Xo 2 K; kxok 6 )k x(t;xg)k6 "; 8t>0

whereX(t; Xo) denotes the solution at timet with initial condition Xg.
The origin is locally asymptotically stable if it is stable in the sense of
Lyapunov and there exists > 0 such that

Xo 2 K; kxogk 6 ) t'Ii(rnl kx(t; Xo)k = 0:

The origin is globally asymptotically stable if the latter implication holds for
arbitrary > 0.
The origin is globally exponentially stable if there existg; > O and > 0
such that
kx(t;xo)k 6 coe ' kxok; for everyxg 2 K:

The interpretation of stability is that the trajectories starting from points
in the neighborhood of an equilibrium point remain close to that equilibrium
point. Lyapunov's direct method allows us to check the stability of an equi-
librium point without solving the di erential equation of the system. This
interesting and useful method had great in uence on the development of the
modern theory of stability of motion.

Compared to the conventional de nitions of stability for unconstrained
dynamical systems, our domain of interest is reduced to the skt in system
(3.1). Also, the vector eld jumps instantaneously at the boundaries of the set
K, which may have an impact on the stability of the system. The following
examples motivate why it is not enough to analyze stability just by looking
at the vector eld f in (3.1).
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Example 4 (Constraints make the system sfable, gven if the unconstrained

system is unstable) Let f (x) = Ax with A= 1 2 'andK = RZ. Matrix

A is not Hurwitz stable since one of its eigenvalues is in the right-half complex

plane. However, constrained system (3.1) is globally asymptotically stable,

see our later Example 8 in Section 4.3.1 for a proof based on a Lyapunov
function.

Example 5 (Constraints make the system unstable, even if the uncon-
strained system is stable) Let f (x) = Ax with A =[ 15 1], andK = RZ.
The matrix A is Hurwitz but the constrained system (3.1) is unstable because
on the x,-axis, the vector eld is pointing away from the origin.

Note that in the interior of K, system (3.1) follows the dynamicg = f (x).

The rst example, however, shows that even if the constrained system is
globally asymptotically stable, it is not possible to work with a Lyapunov
function for the unconstrained system. In Example 4, the unconstrained
system does not admit a positive de nite function with negative de nite
time derivative over the entire state space. Consequently, one has to enlarge
the search for Lyapunov functions to functions which are positive de nite
only on the admissible domain.

The second example shows that even if one can nd a Lyapunov function
for the unconstrained system, it may not correspond to a Lyapunov func-
tion for the constrained system. Thus, the search of Lyapunov functions for
the constrained system needs to be investigated di erently from the uncon-
strained system.

3.3 Lyapunov Functions with Constraints

Based on the above notions, one has to adapt the notion of Lyapunov func-
tions when analyzing the stability of complementarity systems. It is thus of
interest to introduce cone-copositivefunctions:

De nition 26  (Cone-copositivity and copositivity). Let K R"bea
closed convex cone. A real-valued function : R" ! R is said to be cone-
copositive with respect toK , if h(x) > 0 for eachx 2 K. When K = R},

we simply say thath is copositive.

Positive de nite functions are obviously cone-copositive, regardless of the
cone under consideration. However, in general, when the cokeis xed,
positive de nite functions only form a subclass of the functions which are
cone-copositive with respect t&K . With this function class, the following
de nition of Lyapunov functions for (3.1) provides more exibility:
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De nition 27  (Cone-copositive Lyapunov Function). System (3.1) has
a continuously di erentiable (global) cone-copositive Lyapunov functiorV :
R" I R with respect toK if

1. There exist clasK; functions® , — such that

_(kxk) 6 V(x) 6 —(kxk); 8x2K;

2. There exists a clasK function such that

hr V(x);f (x)i 6 (kxk); 8x 2 int(K); (3.2a)
hr V(x);f(x)+ 16 (kxk); 8x 2 bd(K); (3.2b)

where 2 LCCP(f (x);1; Tk (x)).
Condition (3.2) is splitted into two parts because the complementarity vari-
able resulting from an LCCP takes nonzero value only on the boundary of
the conekK ..

Note that we require the inequalities to hold only for a particular selection
of . This aspect of our de nition is in contrast with several existing works
dealing with the existence of Lyapunov functions for di erential inclusions
[55, 147].

3.4 Existence Result

Our main result appears below. The proof of the following theorem is a
rather lengthy and technical a air and it is carried out in the remainder of
this section.

Theorem 3.1. Under Assumption 1, if the origin is globally exponentially
stable for system(3.1), then there exists a continuously di erentiable cone-
copositive Lyapunov function.

3.4.1 Proof of the Existence Result

To prove Theorem 3.1, we start with the following lemma.

1A function : Ry ! Ry is said to be of classK if it is continuous, it satis es
(0) =0, and it is increasing everywhere on its domain. It is said to be of clasK, if it
is, in addition, unbounded.
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Lemma 3.2. If Assumption 1 holds and the origin is globally exponentially
stable for system(3.1), then there exists a globally Lipschitz functioff :
R" ! R" such that the system

=fO(x) +
RS (X) (3.3)
K3 ?x2K
has a globally exponentially stable equilibrium. {8.3) admits a continuously
di erentiable cone-copositive Lyapunov function?, then ¥ is a Lyapunov
function for (3.1).

Proof : For f locally Lipschitz in (3.1), there exists a continuous positive
de nite function : R" ! R,, such that (x)f (x) is globally Lipschitz on
R"nf0g, [55, Lemma 4.10]. Sef(x) := (x)f (x) in (3.3). We rst prove the
second item: if¥ is a continuously di erentiable Lyapunov function for (3.3),
then there exists a clas¥ function b such thathr ¥; (x)f (x)i 6  b(kxk)
for x 2 int((K) and hr¥; (x)f(x)+ i 6 b(kxk) for x 2 bd(K). By
choosing a clasK function such that (kxk) < ﬁb(kxk), and using Pro-
position 2.11, it follows thatV = ¥ is a continuously di erentiable Lyapunov
function for (3.1).

To prove the rst item, we need to show that the origin of (3.3) is glob-
ally exRonentiaIIy stable. Letz 2 [0;1 ) be a solution to (3.3), and let

(t)= 4 (z(s)) ds. Using Proposition 2.11 and the chain rule for di erenti-
ation, it follows that x(t) = z( (t)) is a solution of (3.1). Thus, for every
solution z of (3.3), there exists a solutiorx of (3.1) such thatz(t) = x( (t)).
Lyapunov stability of the origin of (3.3) thus follows by inspection. Sup-
pose that there exists a solutiorz such that z(t) does not converge to the
origin ast ' 1 , then limy; (t) = + 1. Let X be a solution to (3.1)
such that z(t) = x( (t)) and since (3.1) is asymptotically stable, we have
limyy;  X( (t)) =0, which is a contradiction. Hence,z converges to the ori-
gin as well. }

Based on Lemma 3.2, it can be assumed for the proof of Theorem 3.1,
without loss of generality, thatf in (3.1) is a globally Lipschitz continuous
vector eld with modulus L and this assumption is assumed to hold in the
remainder of this section. Note that, in Theorem 3.1, we assume the origin
to be globally exponentially stable and our proof (appearing next) indeed
uses that property. It remains to be seen if the proof can be adapted to the
case where the origin is only asymptotically stable.

For the proof of Theorem 3.1, we construct the Lyapunov function for
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(3.1) by introducing a functionV : R" ! R, de ned as
Z1 2L
V()= kx( ;projc (2)k™ ™ d; (3.4)
0

wherex( ;Z) denotes the solution to system (3.1) at time > 0 with x(0*) =
Z 2 K. Note that V is de ned for eachz 2 R" and not just for z 2 K.
When z 62K, the term x( ;projk (z)) can be interpreted as the solution
obtained by projecting the initial condition on K, and then propagating it
continuously according to the system vector eld. Thus, for > 0, we have
X( ;projg (z)) = x( ;z) for eachz 2 R".

Step 1: Bounds on Solutions

The following lemma demonstrates the continuity of solutions with re-
spect to the initial conditions and plays an important role in the remainder
of the proof.

Lemma 3.3. Let L be the Lipschitz modulus of . If x and k are two
solutions to system(3.1) that satisfy x(0) = z2 K and »(0) = 2 K, then
it holds that, for each > 0,

kx( ;z) R( :R)k6 € kz Bk (3.5a)
and for someC > 0,
kx( ;z)k> e © kzk: (3.5b)

Proof : It will be assumed without loss of generality thatz 2 K and
b2 K sincekproji (z) projc ()k 6 kz Bk. By de nition of the solution
to (3.1) and monotonicity of the normal cone operator, it follows that, for
eachy 2 K, * +

dx .
G TxMry x@® >0

and similarly, for eachy 2 K,
* +

PO fery w0 >0

where we have suppressed the dependencea @ind ® on the initial condition
for brevity. Letting y = ®(t) 2 K, and$ = x(t) 2 K, we have:

+

O fxaEn x>0

and, % +
(2::(0 f (R(1));x(t) R®(t) > 0
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By adding the last two inequalities, we get the following:
* +

;(X(t) R(1);x(t)  R(t) 6 H(x(t)) f(R();x(t) R(t)i;
or equivalently,
;kx(t) R(t)k? 6 20 (x(1)) f (R(t));x(t) KR(t)i:

Because of the Lipschitz continuity assumptiorkf (x(t)) f (k(t))k 6 Lkx(t)
®(t)k, and hence,

;’th(t) R(1)k2 6 2Lkx(t) R(t)k*:

The bound in (3.5a) now follows by integrating both sides, or invoking the
so-called comparison lemma [98, Lemma 3.4]. To get the bound in (3.5b),
we make use of Proposition 2.12 which ensures that there exists a constant
C > Osuchthatj j6 C jf (x(t))j. We therefore get

O‘:'th(t)k2 =2 jhx(t); f (x(0) + ]

6 2kx(t)kkf (x(t)) + k
6 2kx(t)k(Lkx(t)k + C Lkx(t)k)
6 2L(1+ C )kx(t)k*:

In particular, %kx(t)k2 > 2L(1+ C)kx(t)k?, and hence, the inequality in
(3.5b) follows by takingC = L(1+ C). }

To show that V satis es item 1) of De nition 27, let us rst use the bound

in (3.5b) from Lemma 3.3, so that
z

1 2L
V(z) > e @L* €= kprojg (2)k~ 1 d
0
> Ckproj (2)k™*;

for someC > 0. Also, exponential stability of the origin implies that
kx( ;z)k 6 coe  kproj, (z)k and hence there exist€ > 0 such that
Z

1 L
V()6 o e @* ) kprojg (2)k™ 1 d
0

6 Ckproj, (z)k™*1:

Step 2: Local Lipschitz Continuity of V
To show that V is locally Lipschitz continuous, we need the following two
properties [57]:
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V is continuous; and
its Dini subderivative? satis es
DV (z;v) 6 (z)kvk (3.6)

for everyv 2 R", every z 2 R", and some locally bounded function
R" ! R, with (z)> 0forz6D0.
The continuity of V follows directly from Lemma 3.3 as the exponential
bound on the solutions of the system makeg a composition of continuous
functions. These properties can again be shown using Lemma 3.3. Fi2
R". Consider a sequence of initial conditions, = z + "(v. We get

V(z+ ") V(2

DV (z;v) 6 lim ircl)f
k!

1 41

=liminf o (ko )k Kk x(;2kT)d 0 (3.7)

k!0 Ty

whereky( ;&) is the notation of x( ;&).
Using the mean-value theorem, for each> 0, there exists (s) between
ki (s; B )k and kx(s; z)k such that

ki (s; BOK ™ Kk x(s;2)k 11
ki (s; D)KL Kk x(s;2)k ™"
(8) (kri(s; )k K X(s;2)K)
6 j (s)i*" Ka(sim)  x(si2)k: (3.8)

It follows from Lemma 3.3 thatkky(s; &) X(s;z)k 6 €°" kvk. Substituting
these bounds in (3.7), we get

(o3}

z 1
DV (z;Vv) 6 liminf i j (9)j?F €e*" kvkds
k! ZO Kk 0

1
6 kvk  €°j (9)j ds:
0

Due to the exponential stability assumption,k (s)k 6 be ° kzk, for some
b > 0, then we have
Z,
DV (z;v) 6 kvk  be “kzk?= ds:
0

2The Dini subderivative of V at x in the direction v is de ned as

DV (x;v) :== liminf V(X+"V\,/,) V(X):

w! v;"l 0o
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Hence we choose z,
(z) = bkzk?< e S ds;
0

so that the bound (3.6) is seen to hold. Thusy is locally Lipschitz continu-
ous.
Step 3: In nitesimal Decrease in V
As the next step, we show that the functioriV decreases along the system
vector eld. In what follows, we will denote the right-hand side of (3.1) by
F(z2), so that
F(z)2f(z) N «(2):

The function V in (3.4) is di erentiable almost everywhere because it is
locally Lipschitz continuous. We next show that the Dini subderivative oV,
along F (z) is negative de nite.

Lemma 3.4. For the functionV : R"! Rin (3.4),andz 2 K,
DV (z;F(2)) 6 k zk=*: (3.9)

Proof : [Proof of Lemma 3.4] To prove (3.9), we need a bound &A(z)
V(z + tF (z)) for t > 0 su ciently small. We will get the desired bounds by
rewriting the di erence as

V(z+tF(2)) V(2)= hV(z+tF(z)) V(x(t:hZ))i _
+ V(x(t;2)) V(z)I (3.10)

and getting a bound on each of the two di erence terms on the right-hand
side. The rstterm V(z+ tF(z)) V(x(t;z)) can be analyzed from the
following lemma:

Lemma 3.5. For t> 0 su ciently small, it holds that
kz+ tF (z) x(t;z)k6 oft) (3.11)
for eachz 2 K.

The proof of Lemma 3.5 will follow momentarily. Using the estimate
(3.11), and the inequalities (3.7) and (3.8), we get

V(z+tF(2) V(X(t;2) 6 C kz+ tF(z) x(t;z)k
= o(t);
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fora xed z2 K, and someC > 0. For the second term on the right-hand
side of (3.10), it follows from the de nition ofV in (3.4), with x(0) = z, that

Zt 2L Z 1 2L
V(z) > kx( ;2)k™*td + kx( ;x(t;z)k™*d
0 0

and hence Z,
V(x(t;z)) V(z)6 kx ( ;z)k&”d : (3.12)
0
Substituting the bounds from (3.11) and (3.12) in (3.10), we get

ming V(z+tF(2) V(2

t! o R t
t . 2L 41
6 liminf 0 <X(52)k d
t! o t

liminf K x(t; 2k = k zk™ L,

and hence the Dini subderivative oV is negative de nite for almost every
z2 K. }

Proof : [Proof of Lemma 3.5] By de nition, the solutionx of system (3.1),
with x(0) = z 2 K, satis es

h(t) f(x(t);x(t) vyi60 8y2K; (3.13)

for almost allt > 0. For h > 0 small enough, introduce the functiore :
[0;h] ! R" given by

ety =z+tF(z2)=z+tf (2)+ t ;;
where , issuchthat , =0 for z 2 int(K) and , 2 LCCP(f (2);1; Tk (2))
for z 2 bd(K). It is readily checked that 2(t) 2 K for all t 2 [0;h], and

B= Bt = F(@=f(2)+ .. From the de nition of F(z), it follows that
f(z) B;¢ z 6 0,forallg2 K, or equivalently,

Df(z) B} z(t)E6 hHF(z) f(z2);2(t) zi;8¢2K:

For t > 0 small enough, we havex(t) =2(t)+ te(t)) 2 K. SinceK is a
cone, we can takeg = %(x(t) B(t) + te(t)) 2 K to get

D E
f(z) e;x(t) =2(t) 6th,elt) z:
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Taking y = 2(t) in (3.13), and adding it to the last inequality, we get

D E

x(t) Byx(t) 2(t) 6 K (x(t) f(z2);x() =2)i+th,elt) z:
To bound the terms on the right-hand side, we observe that

kf (z) f(x(t))k6 Lkz x(t)k
6 Lkz e(t)k+ Lke(t) x(t)k
6 LtkF(z)k+ Lke(t) x(t)k:

Using Proposition 2.12, there is some consta@ such that
h,;e(t) zi=h,tF(2)i6 tk ,kkF(z)k6 C tkF(z)k:

Consequently, we get

1d D E
Eakx(t;z) e()k>= = x(t);B(t) x(t)

6 kf(z) f(x(t)k ke(t) x(t)k+ C t?kF(z)k

6 Lkz x(Dk ke(t) x(t)k+ C t2kF (2)k

6 LtkF (2)kke(t) x(t)k+ Lke(t) x()K?+ C tkF (2)k
6 Cike(t) x(t)k?+ Cy,t?

where we used Young's inequality for the product terni.t kKF (z)k ke(t)
x(t)k, and choseC; = (L +0:5L2) and C,, = maxf 0:5kF (z)k?; C kF (z)kg.
Solving the di erential inequality, and using the fact that, 2(0) = x(0), we

get z,

ke(t) x(t)k?*6 2C,, ) exp(2C.(t  s))s?ds:
Solving the integral on the right, we get
ke(t) x(t)k?6 Cs, t3+ oft3);
for someCs., > 0, whence the estimate in (3.11) follows. }

Step 4: Regularization ofV
The nal step is to regularizeV so that we obtain a continuously di er-
entiable Lyapunov function.

Lemma 3.6. Under Assumption 1, if the origin is globally exponentially
stable for system(3.1), then there exists a continuously di erentiable cone-
copositive Lyapunov function.
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Proof : [Proof of Lemma 3.6] Using the functiorV/ in (3.4) as a template,

we introduce
Z

V(z):= V(z vy) (y)dy
zR

= o V(proi(z y) - (y)dy

where , 2 (0;1),istheso-called molli erthatsatises: 2 C! (R";R,),
supp( ) B(0; ), and g (y)dy = 1. It follows from standard texts in
functional analysis, see for example [30, Proposition 4.21], thdt is continu-
ously di erentiable and for every" > 0 and a compact setJ., there exists
—> 0, such that for every 2 (0;7), we getjV(x) V (x)j <" for each
x 2 U.. Next, we show thathr V (z2);F(z)i approximatesDV (z;F(z)), for
z2 K. Indeed, foragiveny 2 R", andz 2 K, let z, = proj« (z y). Itthen

follows that®
Z

hr V (z);F(2)i = thr V(zy);F(z))i (y)dy
+ " hrV(zy);F(zZ) F(z)i (y)dy

6 k zZk™ T+ "+ C o0, KTV (@)Kkykdy
where the bound on the rst integral is due to Lemma 3.4, and the bound on
the second integral is obtained from the Lipschitz continuity of and that of
given in Proposition 2.12. Thus, on each compact set excluding the origin,
we can nd a function V such that hr V (z); F(z)i is negative de nite.

Let us now considerfU;gi,n to be a locally nite open cover ofR" nf0Og
with U; bounded and 062cl(U;), for eachi 2 N. Let f g,y be a subor-
dinated C' partition of unity. For each i 2 N, and"; > 0, we can choose
the function V; such that jV(x) Vi(x)] <", and hr Vi(x); F(x)i is neg-
ative, for eachx 2 cl(U). Let V :R: ! Ry besuchthatV(0) =0
and V(x) := oy i(X)Vi(x) for x 6 0, then following the analysis in [55,
Pages 106-108], it is seen that is a cone-copositive Lyapunov function which
is Ct on R" nf0g, and continuous atf 0g. Finally, to achieve di erentiability
at the origin, we can introduce a positive de nite function : R, ! R.
with  {s) > 0 for eachs > 0 such that W(x) = (V(x)) is a continuously
di erentiable cone-copositive Lyapunov function with respect tK . }

3SinceV is locally Lipschitz, its gradient r V exists almost everywhere and the value of
the integral on the right-hand side is not a ected by the value of r V on a set of Lebesgue
measure zero.
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Remark 3.7. The construction given in the proof of Lemma 3.6 actually gives
aC! (R"; R) Lyapunov function. This regularization technique is inspired by
[55], and has also been used for smoothening of locally Lipschitz Lyapunov
functions for hybrid systems [78, Chapter 7] and switched systems [66].

3.5 Homogeneous case

For numerical purposes, it is useful to show the existence of homogeneous
Lyapunov functions. We show that the previous developments can be gener-
alized to construct a homogeneous Lyapunov function when the vector eld
f in the system description (3.1) is homogeneous.

The next two statements are generalizations of results given in [140].

Proposition 3.8. Under Assumption 1, if the origin is locally exponentially
stable for system(3.1) with f homogeneous, then it is also globally exponen-
tially stable.

Proof : We rst show thatif x : [0;1 )! K is a solution that satis es
(3.1) starting with initial condition Xq, then for each > 0 andt > 0O, the
function y(t) = x ( ¢ t) is also a solution to system (3.1) starting with
initial condition X . It follows by inspection that y(t) 2 K, for eacht > 0.
Noting that for eachz 2 K, and > 0, there existsz 2 K such thatz = Z,
we get

()  fy(®):z y)i

dX_( d 1t) .lf(x ({Zd lt)z’z X( d 1t)
D = df(x( 9 1) E
Tx( ) fx(r)); z o x(C Y

E

— d+l DX_( d 1t) f(X( d 1t)),Z X( d lt) > O,

+

and hencey(t) f(y(t)) 2 N «(y(t)) for almost everyt > 0.

Since the origin is locally exponentially stable, there is an open set relat-
ive to K, say Ry, such that for eachx(0) 2 R o, the corresponding solution
X converges to the origin. For an initial conditiony(0) 62 R, there is a con-
stant > 0 such thaty(0) = x (0), with x(0) 2 R . Since the solutions are
unique, the above reasoning shows that the solution starting frog{(0) stays
within a bounded set and converges to the origin. }

The next result allows us to construct a homogeneous Lyapunov function
under local exponential stability. The proof is inspired from [140].
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Proposition 3.9. Consider dynamical system(3.1) with f homogeneous
and the origin locally exponentially stable. Letv 2 C! (R";R) be a cone-
copositive Lyapunov function for(3.1). Let a2 C! (R;R) be such that
8
_ <0 on(1 ;1]

=1 o1y (3.14)

andr a(s) > 0, for eachs 2 R. Let k be a positive integer. Then the function

8R
<1 1 i n .

W)= 0 (a W)(x)d !fx%R. nf Og; (3.15)
-0 if x=0;

is a cone-copositive Lyapunov function of clags® ! on R"nf0Og, and it sat-
is es

W(sx) = s*W(x)
for all x 2 R"nfOg and s > 0.

Proof : The key ingredient required for applying the construction of [140]
is to show that if f is homogeneous of degrek> 1, then

LCCP(f (x );I; Tk (x ) = @LCCP(f (x);1; T (x));

that is the nonsmooth multiplier respects the same homogeneity as the
function f (). This indeed follows from Proposition 2.11.

The function W is well de ned since we havéV(x) ! +1 askxk! +1
and vanishes at 0. Besides, we can nd two numbee> 0 anda > 0 such
that W(x ) 6 1, forkxk 2 [0:5;2], 6 a, andW(x ) > 2, for kxk 2 [0:5; 2],

> a. Then, for all x 2 R" satisfying kxk 2 [0:5; 2], we have

o fa Za 1
W (x) = . ﬁFa_v{\é)(_x}d + . (@ W)(x)d
Z, 1:
t g
z, 4 - )

@ Wi(x)d + %

k+1

k+1

a

1
W + —
(a W)(x)d +
n h o
It is obvious that W is C on the set xj kxk2 %;2 . So we have

av, . %1 QW .
@(x)_ . —a ' a(W(x)).@((X)d-
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By the homogeneity off and since satises , = 9 ,, we obtain

D E Z1 1
rwx);fx)+ « = , oL’ a(W(x)):

d+ k+1
hr W(x);f(x)+ xid: (3.16)

Sincer a(s) > 0 for somes 2 (1;2) and W is a Lyapunov function then, for
% < kxk < 2, the right-hand side is negative.

Homogeneity ofW follows by a change of variable of integration. There-
fore, we getW is Ct on R"nfOg and cone-copositive Lyapunov function with
respect toK. }

In this chapter, we addressed the stability analysis for a class of comple-
mentarity systems using the method of Lyapunov functions : we established
an existence result for cone-copositive Lyapunov function for exponentially

stable complementarity system. Besides, we showed the existence of homo-

geneous Lyapunov function which is useful for numerical computation in the
next chapter.



Computation of Lyapunov Functions

In this chapter, our target is to address the computational aspects of the
Lyapunov functions of Chapter 3. While working with homogeneous vector
elds, we prove that we can restrict our search to rational homogeneous func-
tions. Moreover, one can adapt the algorithms from the literature on copos-
itive programming to compute these rational functions. Then the question

addressed in this chapter is the following one:

If there exists a rational homogeneous cone-copositive Lyapunov function
for a stable complementarity system, how can we construct it?

The answer to this question essentially boils down to nding certain poly-
nomials which satisfy some nonnegativity condition, which is a challenging
problem numerically. Such questions have received a lot of attention in mod-
ern developments in the eld of real algebraic geometry [136, 141] which
provide certi cates of positivity of (polynomial) functions with Positivs-
tellensatze relying onsums-of-square$SOS) decompositions. Since it has
been observed in [134, 53, 128] that nding SOS decompositions is equival-
ent to semide nite programming (SDP) or linear matrix inequalities (LMI),
numerical tools based on SOS optimization have been developed extens-
ively over the past two decades to compute Lyapunov functions, see e.g.
[128, 135, 85, 52].

We explore, in this chapter, two possible routes for designing algorithms
for the search of Lyapunov functions.

4.1 Overview

We propose computationally tractable algorithms for nding the Lyapunov
functions. The interesting aspect of our problem lies in computing Lyapunov
functions which satisfy certain inequalities over a given set. For example, in
linear complementarity systems, one needs to check the positivity of a func-
tion over the positive orthant only, and if the function we seek is of the form

49
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x> Px, then nding such a function boils down to nding a copositivematrix

P that satis es certain inequalities. However, checking whether a given mat-
rix is copositive is an NP-hard problem [22]. The papers [36, 37, 123], [71]
propose algorithms for detecting copositivity of a matrix or tensor. Moreover,
we will show with the help of an example that, even in the case of linear com-
plementarity systems, such functions cannot be computed by solving a linear
set of equations, as is done for unconstrained linear systems. Another chal-
lenging aspect of these problems is that, when dealing with conic constraints
which are unbounded sets, there are no readily available Positivstellensatz
that guarantee SOS decompositions of a positive polynomial over the sets of
our interest. The eld of copositive programming has been an active area of
research over the past decade which addresses some of these challenges [21].
In computing the Lyapunov functions for complementarity systems which
evolve on unbounded cones with positivity constraints, we are faced with
similar challenges.

Motivated by such questions, we propose two approaches for computing
homogeneous cone-copositive Lyapunov functions numerically. The rst one
is a discretization methodwhich is based on nding an inner approximation
of the cone of cone-copositive polynomials by using simplicial partitions and
evaluating inequalities over a set of points taken on the simplex. It is shown
that, as the partition gets ner, we can approximate any cone-copositive
polynomial function. The second approach is aBOS methodvhere we show
that the positivity of polynomial over the given cone can be checked by
expressing it as an SOS function. By increasing the degree of the approx-
imating SOS polynomial, we again obtain a hierarchy of SDP problems to
compute the desired Lyapunov function. Then, we derive the corresponding
algorithms for those two techniques, which can be seen as an adaptation of
tools available in the literature on polynomial optimization. The constraint
setK that we rst take is R?, the positive orthant in R". The illustration
of some academic examples is provided using standard Matlab toolboxes.

After that, we extend those ideas to study more general constraint sets
S (conic sets and semi-algebraic sets) and how our earlier algorithms can be
adapted for these broader class of sets. For conic constraints, we provide
the discretization algorithm based on simplicial partitioning of a simplex.
And for semi-algebraic constraints, we use the second method based on SOS
decomposition of the Lyapunov function.

This chapter is organized as follows. In Section 4.2, by putting some struc-
ture on the system vector eld, such as homogeneity, and using the appro-
priate density results, we prove the existence of a cone-copositive Lyapunov
function which can be expressed as a rational of homogeneous polynomials.
This later class of functions is seen to be particularly amenable for numerical
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computation. In Sections 4.3 and 4.4, we provide two types of algorithms
(discretization method and SOS method) for precisely that purpose. These
algorithms consist of a hierarchy of either linear or semide nite optimiza-
tion problems for computing the desired Lyapunov function. We study the
following three cases of constraint sets, by increasing degree of generality:

The positive orthant;
Polyhedral cones;

Semi-algebraic sets.
For each case of constraint sets, we give examples to illustrate our approach,

by using the YALMIP toolbox in Matlab.

4.2 Polynomial Approximation

For the class of numerical algorithms that we propose in the next sections,
it is important to show that the cone-copositive Lyapunov functions of (3.1)
can actually be approximated by polynomial functions. Among the existing
results in this direction, it is seen that the existence of polynomial Lyapunov
functions has been shown under certain restrictions only. In [129], the authors
use generalizations of the Weierstrass approximation theorem for nonlinear
systems with smooth vector elds to show existence of polynomial Lyapunov
functions on compact sets for exponentially stable systems. In the case of
switched systems, the existence of polynomial Lyapunov functions has been
proven in [111] when the solution maps (parameterized by time) are linear
functions of the initial condition. Such methods cannot be generalized here
because our vector elds are not even continuous, and even withlinear

in (3.1), the resulting solution maps for the complementarity systems are
nonlinear and hence nonconvex. As an example of this last observation, we
consider the following example:

Example 6 (Constraints make the solution space nonlinear)Let f (x) = Ax
with A =[ % 4] and K = R? and let x;(0) = (a;0)> and x,(0) = (0;b)>.
Let x; : R! R? be the solution starting with initial condition x;(0), i =1;2,
and z denote the solution starting with initial condition x;(0) + x,(0). It
can be checked that(t) is not equal to x4 (t) + xo(t), for,any t > O hecause
we havexy(t) = x3(0) for t > 0, Xa(t) = €'xp(0) = ) soay [9] =
(bsin(t); bcost)) which gives

X1(t) + X2(t) = (a+ bsin(t); bcost));
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but we have

' #" #
cost) sin(t) a
sin(t) cos¢) b

= (acost) + bsin(t); asin(t) + bcost));

z(t) = € (x1(0) + x2(0)) =

which is not equal tox,(t) + X,(t) for a;b6 0.

These discussions and the example suggest that it may not be possible
to nd a homogeneous polynomial approximation to the Lyapunov function
proposed in Theorem 3.1 in Chapter 3. Due to lack of any known results on
density of homogeneous polynomials in the class of di erentiable functions,
we enlarge our search to rational functions whose numerator and denominator
are homogeneous polynomials. For such functions, we have the following
density result [9, Lemma 2.1]:

Proposition 4.1. Let W 2 C}R";R.) be a homogeneous function of de-
greed and > 0 be a given scalar. There exist an even integerand a
homogeneous polynomial of degreer + d, such that

max max W(x) ; max r W(x) 6
x2Sn 1 x2Sn 1

whereS" ! denotes the unit sphere ilR" and W (x) = W(x) 2%,

With such a rational function in hand which approximates the homo-
geneous function from Proposition 3.9 (in terms of value and gradient) to
desired accuracy, one can establish the existence of a rational homogeneous
cone-copositive Lyapunov function.

4.3 Discretization and Copositive Functions

In the previous section, we motivated the need for computing cone-copositive
homogeneous Lyapunov functions for the class of constrained dynamical sys-
tems (3.1). Proposition 4.1 suggests that for a certain class of complement-
arity systems, we can reduce our search of Lyapunov functions to the space
of rational polynomial functions, where the denominator has a certain struc-
ture. By xing the denominator, we reformulate our problem as nding the
numerator in the form of a polynomial which satis es certain inequalities.

We carry out the steps by specifying the inequalities that must be sat-
is ed, and the algorithms using convex optimization methods that can be
implemented for computing such functions.
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Just as a quick motivation for what follows, we remark that contrary to
unconstrained linear systems, the following example shows that copositive
Lyapunov functions cannot be simply obtained by solving a linear equation,
and hence there is a need to develop tools for computing them.

Example 7 (Copositive Lyapunov fungtions;are not obtained by solving

linear equations) Let K = RZ andA = 1 7. LetH =[}9]the identity

matrix which is copositive on con&K . By solving the equationA” G + GA =
H, we obtain G = 31 %1 which is not copositive. On the other hand, if

a 1

we take for example the copositive matrif = | 5 2], we obtain the copositive
1
matrix G = t ; bysolvingA>G+ GA= H.

4 1

This example shows that for a given matrixA, we can have a copositive
matrix H without the existence ofG copositive verifyingA>G+ GA= H,
but with existence of someS such that A>& GA is copositive.

We now establish the inequalities which will be used in our algorithms to
nd copositive homogeneous Lyapunov functions. We restrict our attention
to full-dimensional polyhedral cones, that isK = fx 2 R"jFx > 0g with
non-empty interior. By using Proposition 4.1, let

_he) _ heo
YOS Prer T

(4.1)

wherer is a nonnegative integer, and( ) is a homogeneous polynomial of
degree at least 2 + 1, copositive on K. Here, we used the notation that

As we know, nding such Lyapunov function is equivalent to ndingV
that satis es the inequalities:

_ hx) _ .
V(X) = kxkZ > 0; 8x 2 KnfOg (4.2a)
hr V(x);f(x)+ 1> 0; 8x 2 KnfOg (4.2b)

where

hr V(x);f(xX)+ i
k xkzhr h(x);f(x)+ i+2rh(xX)hx;f(x)+ i
kx k5D

with = LCCP(f (x);I; Tk (x)). The numerator is denoted by

s(x) ;= k xk3hr h(x);f (x)+ i+2rh(x)h;f (x)+ i
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which is a homogeneous polynomial if andf are homogeneous polynomials.
So we have

_ hx) _ .
V(X) = kxkZ > 0; 8x 2 KnfOg (4.3a)
: : s(x) . :
hr V(x);f(x)+ i= o2 > 0; 8x 2 KnfOg: (4.3b)
2

Thus, nding a copositive V for system (3.1) with the structure imposed in
Proposition 4.1 boils down to ndingh and s such that

h(x) > 0; 8x 2 KnfOg (4.4a)
s(x) > 0; 8x 2 KnfOg: (4.4b)

Since is nonzero only on the boundary oK , we replace the second inequal-
ity in (4.4) by inequalities with respect to each face of polyhedroK . Let

si(x) = k xk3hr h(x);f (x)+ i +2rh(x)hx;f (X)+ i

for all x 2 S; where ; = LCCP(f (x);l; Tk (x)). In the interior of K, we
have =0 so let

so(X) = k xk3hr h(x);f (x)i +2rh(x) h;f (x)i :

Consequently, the inequalities used for nding/ can be rewritten as follows:

h(x) > 0; 8x 2 KnfQOg (4.5a)
So(x) > 0; 8x 2 int(K nf0g) (4.5b)
si(x)>0; 8 2S; i2f1:::;nk0: (4.5¢)

4.3.1 Copositive functions with K =R}

Let us assumeK = R?. The basic idea behind the discretization methods
is to select a certain number of points in the con®?] and evaluate the
inequalities (4.5) with a certain polynomial function parameterized by nitely
many unknowns. This allows us to construct an inner approximation of
copositive polynomials with respect to con®? .

Copositivity plays a role in quadratic optimization, where the set of co-
positive matrices can be used to obtain relaxations on the unknown optimal
value. Many discrete optimization problems can be formulated as (the dual of
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a) linear program over the copositive cone [137]. Contrarily to positive semi-
de niteness, copositivity of a matrix is a property that cannot be checked by
means of its eigenvalues, and it is considerably harder to check copositivity
of a matrix than semide niteness. More precisely, deciding whether a given
matrix is copositive is an NP-hard problem [22].

In the literature, several algorithms to check copositivity of a matrix have
been presented and formulated. There exist algorithms that uses discretiza-
tion methods [36, 37], [71], and a moment relaxation hierarchy [123]. Here,
we restrict ourselves to discretization schemes and generalize the existing
algorithms for arbitrary polynomials (not necessarily quadratic functions).

To describe this discretization algorithm, let us rst consider the convex
cone of copositive polynomials

8 9
Co= _<g 2 RYx] g is homogeneous and.: ; (4.6)
: g(x) > 0 for all x 2 R}:

where RYx] denotes the ring of polynomials of degred, over the eld of
reals, inx 2 R".

We will establish an inner approximation ofC based on simplicial par-
titions inside coneR"}. To do so, we rst need to introducetensors which
generalize the notion of a matrix, and will be used for compact representation
of polynomials of our interest.

De nition 28. A tensor A of orderd over R" is a multilinear form

n n no
’:\’ R iz R} [ R
d times
(xLxZioxd) 7 A xE i x9]
where VIRV
Alx; x? ;Xd] = ail;iz;:::;idxill Xidd
i1=1 i2=1 ig=1

Qg = Xosjorija

wheneveri; + i, + +ig=j1+j2t + jg, for all possible permutations

A matrix A 2 R" " describes a tensor of order 2 ovdR", also called a
quadratic form, where the coe cients of the quadratic form belong to a table
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X ) i
g(x) = g(X1; 111 Xn) = axiy  xin:

Using the tensor representationg can also be compactly written in the form

9x) = Gl ;7 i] (4.7)

d times

where G is a symmetric tensor. The following lemma shows an equivalent
expression for copositivity which we will consider all along this section.

Lemma 4.2. Consider a homogeneous polynomigl2 RY[x] of degreed and
let k k denote any norm inR". We have

g2C ( g(x)> 0 forall x 2 R} with kxk =1:

Proof : [) ]is obvious. [ ]: Take x 2 R} with kxk 6 1. If kxk =0
then x = 0 and g(0) = 0 because of the homogeneity af. If kxk > 0 then
k= oo fullls kek = 1, therefore g(x) = g(kxke) = kxkdg(r) > 0, for all
x 2 R} which meansg 2 C. N o }

If we choose the 1-norm, then the set S := x 2 R7jkxk; =1 is the
standard simplex. Because of Lemma 4.2, copositivity of a homogeneous
polynomial g is then expressed as

g(x)> 0 forall x2 *=:

Our goal is to discretize the simplex S and obtain a hierarchy of lin-
ear inequalities with respect to the discretization points which allow us to
approximate the setC.

De nition 29. Let be a simplex in R" de ned as De nition 2. A family
Pn:=f %:::; ™gof simplices satisfying

"and int '\int 1=; fori6j
i=1

is called a simplicial partition of .

De nition 30.  For a simplicial partition P, = f !;:::; Mg of a simplex

of a simplex inP,, is de ned as

(Pm):= max max kv vfk:
k2f 1;:::mgi;j 2f 1;::5pg
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Thus the diameter of the partition quanti es the distance between vertices
in each simplex contained in the partition.

For a given partition P, = f %;:::; Mg of S and a homogeneous
polynomial g de ned as in (4.7), let us consider the seQ, which contains
all the vertices of *, and moreover, let the set §_ be de ned as

8 9
o - J92RX] Glaigitiia]> 0

Pm

(4.8)

n [0}
The following proposition shows that | SI 2N is a sequence of inner ap-

proximation which approximates the cone of copositive polynomials under
the condition that the diameter of the simplicial partition goes to zero.

Proposition 4.3. Let fPg,,, be a sequence of simplicial partitions of S
such that (P;)! 0. Then, we have

int C [ 5, C; and henceC= " I§:
12N I2N

Proposition 4.3 ensures that if we construct a hierarchy of linear programs
by making the partition ner, we can nd a rational Lyapunov function for
homogeneous systems if the origin is exponentially stable.

To prove Proposition 4.3, we need the following two lemmas. The rstone
gives us su cient conditions for copositivity and the second one a necessary
condition for strict copositivity.

Lemma 4.4. Consider the set of vectorsVp = fvq; ;' Vpg, and let =
convfvy;:ii;vpg. If
Glvi,;Vi,; v, ] > 0 forall iq;ig;iit;ig2f1 00, pg; 4.9

then g(x) = G[f(_x{z_)i] > O for all x 2

d times

Proof : For each pointx 2 , we can represent it in the a ne hull of
by its uniquely determined barycentric coordinates = ( 1;:::; p) with
respect to i.e.

X X
X = iV with j = 1:
This gives

g(x) = G[x;X;:::5x]
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h xP xXP i
=G A i,Vips i) iaVig
i1=1 io=1 ig=1
= GlViyiVips 15 Vil iy i 110 i

Forx 2 ,we have ;> 0, and by the assumption (4.9), we geg(x) > O for
all x 2 . }

Lemma 4.5. Let g 2 RYx] be strictly copositive and homogeneous. Then

there exists > 0 such that for any nite simplicial partition P, = f 1;:::; Mg

of Swith (Pn)6 ,wehaveBk =1;:::;m;andiy;iz ::;iqg2f1:::;jQ¥g,
GIVi Vi vk > 0;

11? I2’
wherev&; vk; 2 QX, the set containing the vertices of the simplexk.

Proof : We have by assumption thatg is strictly copositive which means

that the tensor form G[x*; x?;:::;x9] is strictly positive on the diagonal of

S S S R, By contlnwty for every x' 2 S, there exists
« > 0 such that, forj =1;:::;d,

k' xk6 ) Gx:Lx%::x9> 0

SinceG is uniformly continuous on the compact set S S, it follows
that :=infyi, s i IS strictly positive.

Let P, = f 1;:::; ™gbe a simplicial partition of S with (P.,) 6
Let * with k = 1;:::;m be an arbitrary simplex, andv¥, i = 1;:::;jQ¥j
arbitrary vertices of K Then, fori;j =1;:::;jQj, we havekv" v"k< :
and thereforeG[v,l, I2;:::;v,"] > Oforalliy;ips;i:i;ig2f 1"::;]Q"]g so the
statement is proved. }

Proof : [Proof of Proposition 4.3] Takeg 2 int C, which means thatg is
strictly copositive. é_emma 4.5 implies :Ishat there existdg 2 N, such that
gZIOI Theng?2 “j,nI8,and intC  ~ 518 .

Next for proving ",y 18 C, we have to show thatl§ C for some
| 2 N. So takeg 2 | gl for somel 2 N. To prove g 2 C, it is su cient
to prove nonnegativity of g(x) for x 2 S. Let us choose an arbitrary
x2 S,thenx2 kforsome *2P,. By direct use of Lemma 4.4, we get
g(x) = G[x;x;:::;x]>O0forallx2 S,

Lastly, sinceC= int C, we getC= "~ 518 . }
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The pseudocode which allows us to compute Lyapunov function based on
the method of discretization of simplices is given in Algorithm 1.

Algorithm 1: Discretization method in R}

Input: vector eld f, maximum degreedmax (resp. rmax) of the
numerator (resp. denominator) of Lyapunov function, minimum
diameter of the simplical partition

Output: either a copositive Lyapunov function V, or an error message.
S f x2RDjkxky=1g

1

while > do

Q vertices of simplex  of a simplicial partiton f 1;:::: Mg
of S with diameter

forall r=0;1;2;:::;rmax do

forall d=1;2;:::;dmax dO

forall ~=1;2;:::;m do

h homogeneous polynomial of degred and n variables
with unknown coe cients

forall i=1;2;::::jQj do

Xj v 2 Q

Xi LCCP(f (xi); 15 Trr (Xi))
sk(xi) ko xikghr h(xi);f (xi)+ i+
2rh(xi) hxi; F(xi)+ x i, k=0;:::5n

end

forall j =1;2:::; 197 do
Q j ™ combination of d vertices in Q
Solve the LP problem in the coe cients of h

if the LP problem is feasiblethen

return V(x) = %
2

end

end
end

end
end

2
end
display(\Lyapunov function not found")
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Now, we give examples for computing copositive polynomial Lyapunov
functions for complementarity systems by implementing our discretization
method. In our examples, the YALMIP toolbox in Matlab is used to input
the LP problems and solve them with the conic solver MOSEK.

Example 8 (Quadratic Lyapunov function by the dis¢retization method)
Consider system (3.1) withf (x) = Ax andA = 1 2 andK = RZ. We
apply the discretization method on the standard simplex

n [0}
S:= x2R%jkxky=1

of Algorithm 1 with = 0:1. Starting with a degree 2 polynomial, we solve
for its coe cients at the vertices of S. This procedure in Algorithm 1 is
applied by partitioning all the simplices at each step by a factor of half and
solving certain inequalities at the vertices of resulting simplices. For this
example, we found

V(X) = X2+ XXz + X3; (4.10)

in four iterations, that is, Algorithm 1 terminates with = 1=16.

Example 9 (Cubic Lyapunov function by the discretization method) Con-

sider system (3.1) withKk = R? and
" #

X2 2X3+ X1Xz

f(x)=
(x) X2 X3+ 2X1Xz

(4.11)

Applying the discretization method of Algorithm 1 by taking = 0:1, after

4 iterations with = ==, we obtain

1
V(x)= x5+ §x1x§+ 2x2x§+ éx%: (4.12)

4.3.2 Polyhedral Conic Constraints

For what will follow here is that we will extend the previous ideas developed
in Subsection 4.3.1 to study more general constraint sets (conic sets) and
how our earlier algorithm can be adapted for these broader class of sets. We
provide the discretization algorithm where a hierarchy of linear programs is
constructed for the search of the desired function.

We let the following assumptions be imposed for the numerical computa-
tion of Lyapunov functions of the form (4.1).

(Al) The function f : R" ! R" is locally Lipschitz continuous, it satis es
f (0) =0, and it is homogeneous.



4.3. DISCRETIZATION AND COPOSITIVE FUNCTIONS 61

(A2) The constraint set is a closed polyhedral cone, that is
K=fx2R"jFx> Qg

for some matrixF 2 R™ ",

Polynomial inequalities:

We recall that nding a Lyapunov function V in the form (4.1) boils down
to nd h such that

h(x) > 0; 8x 2 K (4.13a)
So(X) > 0; 8x 2 int(K) (4.13b)
Si(x)>0; 8 2S; i2fl:::;mg: (4.13c)
where
so(X) = k xk3hr h(x);f (x)i +2rh(x) hx;f (x)i ;
si(x) = k xk3hr h(x);f(x)+ i +2rh(x)h;f (X)+ i; x2S

Algorithm description:

The method consists of discretizing simplex and constructing an inner ap-
proximation of cone-copositive polynomials with respect to con€. The
basic idea behind our algorithm for systems with conic sets, and homogen-
eous vector elds, is the same as the one developed in Subsection 4.3.1, which
consists of checking inequalities (4.13) only for nitely many points over a
simplex.

Because of the conic structure oK, we get two nice properties that
are desirable for implementing an algorithm (the second property is seen in
Subsection 4.3.1):

" LetO;,j =1;:::;2", denote the orthants ofR", and letK; := O;\ K,

S =0\ §, fori =1; ;m. Then, eachK; and S; is a closed
convex polyhedral cone.

For a homogeneous polynomidi 2 RY[x] of degreed, it holds that
h(x)> 0; 8x2 K | h(x) > 0; 8x 2 K; kxk=1: (4.14)
As a result of these properties, it is convenient to introduce the simplices

obtained by intersecting the cone¥; or S; with the setfx 2 R"jkxk =1g,
that is,

j = fx2 Kjj kxky =1g9; i = fx2S;jkxky=1g9:
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We next reduce the task to checking the inequalities on a nite number of
points in each of the simplex ; and .

Because of equivalence in (4.14), positivity of a homogeneous polynomial
h is then expressed as

n

h(x)>0foral|x2[2 il I3
j=1

Simplex Discretization: Our goal is to discretize the simplex and ob-
tain a hierarchy of linear inequalities with respect to the discretization points
which allow us to nd the desired function.

We use the same results mentioned in Subsection 4.3.1, which lead to the
following algorithm for computing the cone-copositive Lyapunov function
with respect to K, of the form (4.1), satisfying the inequalities (4.13). An
algorithm, similar to Algorithm 1, can also be worked out for the generic
cone case, and below we provide the main steps involved in this procedure:

1. Take h 2 R[x], homogeneous of degret and x r 2 N.

3. Identify the simplices ; K;j,and j S; which are non-empty.

4. For each nonempty simplex 2 f ;g[f 49, ] =1;::5;2", 10 =

(a) Compute a simplicial partitioning of the set , denoted byf *;:::; g,
and let Q be the corresponding set of vertices of .

(b) For each set ofd verticesfoy;:::; 49 2 Q , solve the LP problem
in the coe cients of h corresponding to the constraints

Q.
(c) If (4.15) is infeasible, re ne partition, and check (4.15) again.

5. Iterate by increasingd and r.
As an illustration of our algorithm, we compute a quadratic Lyapunov

function using the discretization method.
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h i
Example 10. Consider system (%.1) withf (>i<) = AxandA= | 7 and
K =fx2R?jCx> 0g,with C= %% [,. . We apply the discretization
method on the three simplices that correspond t&; = K \O j,

1 =conv([1;07;[0;1T); - =conv([1;0T ;[0:8; 0:2]")
3 =conv([0;1] ;[ 0:2;0:8T7);

and the two simplices which correspond to the two faces of the cone reduce
to a singleton, that is,

12=[0:8; 0:2]; x»=[ 0:208]
Solving the resulting inequalities, we obtain
V(X) = 2:9x2 + X1Xo + X5; (4.16)

which indeed satis es the inequalities in (4.13).

4.4 SOS Method

A commonly employed tool for checking the positivity of a polynomial is
to write it in the form of a sum-of-squares of other polynomials. While
testing positivity is a computationally hard problem, the question of nding

an SOS decomposition of a polynomial is actually a semide nite program
[134, 53, 128]. The crux of such ideas can be found in [127] and its application
to copositivity is sketched in [128].

While computing Lyapunov functionsV using inequalities (4.5), we notice
that we are faced with two problems, which prevent us from using conven-
tional SOS techniques. The rst problem is that there is no readily available
Positivstellensatz for unbounded domains like cones. The second problem is
that our Lyapunov functions are not necessarily SOS because a SOS polyno-
mial is in particular positive de nite but our systems require searching for
a Lyapunov function beyond positive de nite functions. To overcome these
problems, we study a technique for nding polynomials that satisfy (4.5).

4.4.1 Conic Constraints with Polya's Positivstellensatz

We assume here thaK = R7. The basic idea is to get rid of the constraint
x2RY. Weletx; = y? i2f1, ;ngbe the change of variable wherg? is

h(x)>0; 8x2R}! ( h(y>)>0; 8y2R"
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Then, the inequalities (4.5) are rewritten as follows

Pu(y) := h(y?) > 0; 8y 2 R" (4.17a)
Ps,(Y) := So(y?) > 0; y; 6 0;8i (4.17b)
Ps(y) = si(y?) >0, yi=0; i 2f1:ng (4.17c)

whereh; sy; s are homogeneous polynomials.
Next, we de ne the polynomials

PP(y) := kyk®Py(y) (4.18a)
P (y) := kyk?Ps, (y) (4.18D)
P{(y) := kyk®Ps (y) (4.18c)

whered is an integer. It is obvious that inequalities (4.17) are satis ed if and
only if

P(y)> 0; 8y2 R" (4.19a)
PO(y) > 0; y; 60;8i (4.19b)
PO(y) > 0; v =0; i2f1;::;ng: (4.19¢)

Proposition 4.6. For the homogeneous copositive functiorts, s, and s;,

P?, P and P9 are SOS.

Proof : We will carry out the proof only for h and it will be similar for
the other polynomials. Let

a._ " 5@ ene
Ky:= h2R[x]jP,’ SOS
n [0}
Cl:= h2R[x] P,fd) has positive coe cients

We notice that C¢ K ¢ because iiPrfd)(y) has only positive coe cients then
the polynomial Pn(y) = h(y?) is SOS and sincéP;,(y) is multiplied by kyk®?,
it follows that P{”(y) is SOS. So we just need to prove thaP.”(y) has
positive coe cients.

The copositivity of h is equivalent to the positivity of P,. And sinceh is
homogeneous, this will be also equivlglent to the positivity d?,, on the unit
ball which meansPn(y) > 0, 8y,2 R", N, y?=1. By substituting y? by z,
we obtainPn(z) > 0,82> 0, [,z =1.

Let us now recall Polya's Theorem, see [105] and [133] for the proof.
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Theorem 4.7. (Plya's Theorem) Let f 2 R[x] be homogeneous. > 0
on the simplexfx > 0 = [, X; = 19, then there exists a su ciently largel 2
N for which the polynomial(’ I, x;)'f (x) has all its coe cients nonnegative.

Applying this Theorem to the homogeneous polynomiaP;,(z), we ob-
tain that fog su ciently large d 2 N, all the coe cients of the polynomial
Pz = (" I, z)Pn(z) are positive. ThenP'? is SOS in view of the fact
that C¢ KJ. }

To sum up this section, the foregoing result allows us to write an al-
gorithm to compute the polynomialsP?, P{Y and P{? in the form of SOS.
The result is then used to get a homogeneous copositive Lyapunov function.

The pseudocode based on SOS decomposition is given in Algorithm 2
given below. In addition to the procedure outlined in this subsection, we use
the YALMIP command solvesos to model and solve the SOS optimization
problem: It computes the unknown coe cjents h; that we associate with
the polynomial h 2 R9[x], while minimizing ~ h?, under the constraint that

Now, we give examples for computing copositive polynomial Lyapunov
functions for complementarity systems by implementing our SOS method.
In our examples, the YALMIP toolbox in Matlab is used to input the SOS
optimization problems and solve them with the conic solver MOSEK.

Example 11 (Quadratic Lyapunov fungtion by SOS method) Consider
system (3.1) withf(x) = Ax and A = !¢ and K = R?. Following
Algorithm 2, we express positivity condition on desired polynomials by re-
quiring them to be SOS, and use the YALMIP commandolvesos which
calls a semide nite solver to yield the desired coe cients. We obtain

V(x) = 0:1x5 + 0:1916; X, + 1:113%3: (4.21)

Example 12 (A copositive quadratic Lyapunov function that is not positive

de nite) . Consider system (3.1) withf (x) = Ax and A = 3% £ 1 and

10 2
K = R3. Applying the SOS method of Algorithm 2 we obtain

V(X) = 2:323&3 + 3:672K Xy + 1:735X5 + 1:127X X3
+2:676KX3 +1:282k3: (4.22)
This polynomial is not positive de nite since one of the eigenvalues of the

corresponding matrix is negative. The unit level set of this polynomial Lya-
punov function is shown in Figure 4.1.



4.4. SUM-OF-SQUARES METHOD

Algorithm 2: SOS Approximations of Lyapunov Functions

forall r =1;2;::rmax do
forall g=1;2;::; gnax dO

with unknown coe cients h;
forall k=1;2;::;;n do

sk(x) = k xk3hr h(x);f(x)+ i
+2rh(x) h; f (X)+ ki
end

2. Pn(y)  h(y?
Ps(Y)  sk(y?), k=1f0;::1;ng
3. forall d=0;::;dmax do

PO(y) Kk  yk2Pn(y)

P
 hes LT Thil
return V(x) = ﬁi(?),
2
end

end
end

end
display(\Lyapunov function not found")

Input: vector eld f, maximum degreegmax (resp. rmax) of the
numerator (resp. denominator) of Lyapunov function, maximum degree
dmax for expressing homogeneous polynomials

Output:  either a copositive Lyapunov function V, or an error message.

1. h homogeneous polynomial of degreq and n variables
so(X) = k xk3hr h(x);f (x)i +2rh(x)hx;f ()i

k(%) LCCP(f (x);1; Trn (X)), for x 2 S

solvesos  s0s(P{”); sos(P); sos(PLY):;

4. if the SOS program is feasiblgéhen

4.4.2 Generic Constraints

For what follows in this subsection, we study more general constraint sets
(semi-algebraic sets). We use the SOS decomposition where a hierarchy of
semide nite programs is constructed to compute Lyapunov functions as a

SOS polynomial.

Let the constraint sets in this subsection be denoted b$ and let the

following assumption hold.

Assumption 2. The setS is convex, it contains the originfOg, and it is
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Figure 4.1 { Non-convex unit level set of the quadratic Lyapunov functionV in Example 12.

described as

S=fx2R"jg(x)>0;i=1;:::;Mg (4.23)
for some continuously di erentiable functionsg : R" ! R. Furthermore, the
gradientsr gj(x) 6 0 in some neighborhood of the setx 2 R"jg(x) =0g.

We present a numerical approach to deal with sets of the for@in (4.23)
whereg are not necessarily linear.

One of the di culties in checking the Lyapunov conditions is that the
corresponding inequality has to be checked for2 N s(x) forall x 2 S,
which is not feasible in general. In the previous section, we only need to
check the inequalities at nitely many points at which could be obtained
as a solution to an optimization problem, but this works only under the conic
structure of S. For more general sets without conic structure, it is of interest
to obtain Lyapunov functions without having to solve for .

One way to avoid computation of is to impose certain assumption on
the gradient of Lyapunov function and provide su cient conditions which
can be checked independently of. We then use these conditions to compute
Lyapunov functions using a semide nite program based on SOS decomposi-
tion.

Su cient Conditions:

With the aforementioned motivation, we rst provide a set of inequalities as a
su cient condition for checking asymptotic stability, which are independent
of and use the information of the gradients of the generating functiorg,
i=1:::::M.

Proposition 4.8 (Su cient Conditions) . Consider the system

X = f (X) + (424&)
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2 N s(x); (4.24Db)

under Assumption 2. Assume that there exists a continuously di erentiable
V() that satis es the following conditions:
" V() =0, and _(kxk) 6 V(x) 6 —(kxk) for everyx 2 S, and some
classK functions _, —

T (X);r V(X)i 6 (kxk), for every x 2 S, and some positive de nite
function

If x is such thatg(x) =0, for somei 2f1;, ;Mg, then
hr g (x);r V(x)i 6 O:

Then V is a Lyapunov function for system(4.24) and the origin is globally
asymptotically stable.

Proof : Consider a functionV 2 C'(R"; R) that satis es the listed condi-
tions. We show that these conditions guarantee tha¥ is Lyapunov function
for system (4.24) wherS is described by (4.23) under assumption 2. To see
this, we rstintroduce the set J(x) which de nes the set of active constraints,
that is,

JxX)=fi2f1:::;Mgjg((x)=0g: (4.25)
Then, the set-valued mappingNs is de ned as
8
50; if x 2 int(S);
P :
Ns(x)z§ 2000 iFg(x); ;60 ; ifJ(x)6;;
T if x62 S

Thus, if x 2 int(S), then =0, and
hr V(x);f (x)i 6 (kxk); x 2 int(S):
When x is such thatJ(x) 6 ;, we have that

X
= ir gi(x); forsome ; 6 O
123(x)

which follows
* +

X
h; r V(x)i = irg(x);rv(x) 60
j23(x)
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since we havéehr g (x);r V(x)i 6 0,forj 2f1, ;Mgand ; 6 0.
Thus, foreachx 2S,and 2 N s(x), we have shown that

hrVx):f()+ 16  (kxk)

which completes the proof. }

Sum-of-Squares Decomposition:

We now present a numerical approach to compute the Lyapunov function
which satis es the conditions of Proposition 4.8. The three conditions can
be actually listed as positivity constraints on the functionV and its gradient

r V. One way to ensure the positivity is to write the function as a sum-of-
squares, which boils down to a semide nite program. The basic idea behind
computing the Lyapunov function for system (4.24) under Assumption 2 is
to nd a Lyapunov function where the three positivity constraints in Pro-
position 4.8 can be written as sum-of-squares.

We focus our attention on convex semi-algebraic sets, which are basically
described by the intersection of the sublevel sets of nitely many polynomial
inequalities. That is, in the de nition of the set S in (4.23), we introduce
the following assumption:

Assumption 3. The setS in (4.23) is compact and the functiong 2 R[x],

For such sets, we can implement the following procedure to compuie
in the form of sum-of-squares:

1. LetV 2 R[x] of degreed 2 N.
2. Foreachx 2 S, let
by
V(X)= ofx)+ i(X)Gi(X):
i=1
for some SOS polynomialsy; ; wm.
3. Foreachx 2S,if J(x) = ;, let
. X
hr V(x);f (x)i = o(x) + 1 (X)gi (x):
i=1

for some SOS polynomialsg; ; wm.
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4. Foreachx 2 S, J(x) 6 ;, let, for eachj 2 J(x),

he VOOIr JI = ;o) + 5B+ s (06 ();

162 (x) i2J(x)
(4.26)
for some SOS polynomialsj; , whereas' j; 2 R[x] are not necessarily
sum-of-squares.

5. Iterate by increasingd, the degree ofV.

An important question to consider, in the implementation of this al-
gorithm, is whether one can always nd SOS decomposition of a positive
polynomial on a semialgebraic set. One possible answer to this question
comes from Putinar's Positivstellensatz theorem (Theorem 2.6).

A direct application of this result to our problem suggests that, if sys-
tem (4.24) admits a polynomial Lyapunov function which satis es the con-
ditions in Proposition 4.8, then the hierarchy of semide nite programs con-
structed in our algorithm (by increasing the degree of the search function)
is guaranteed to nd us a Lyapunov function.

To compute V with such a parameterization, one may use the YALMIP
toolbox in Matlab to solve the underlying semide nite program.

Example 13. As an illustration of the foregoing algorithm, we consider an
academic example inR? with two constraints. Let g;(X) = X3 X3, and
®(X) =1 Xx;. These two functions describe the compact semi-algebraic set
S in (4.24), and we take vector eldf to be

|
_ X5
f0=

Based on the algorithm, a Lyapunov function for this example is
V(X) = X2+ X3;

which indeed satis es the conditions listed in Proposition 4.8. Note that
the system without constraints, that is, x_= f (x) is only stable, but not
asymptotically stable. However, the constrained system is asymptotically
stable since, within the setS, x; = 0 implies x, = 0.

The examples seen in Sections 4.3 and 4.4 just provide an illustration
of two classes of algorithms primarily used for checking positivity or copos-
itivity of polynomials, and how they can be used for computing Lyapunov
functions with constrained dynamics. The survey article [23] provides an
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overview of these methods, along with some other techniques, which appear
in general in the literature on checking copositivity. Further questions such
as using other algorithms or comparing computational complexity of di erent
methods require further investigation.



Ensemble Approximations for
Constrained Systems

In the theory of dynamical systems, studying the evolution of state traject-
ories, both qualitatively and quantitatively, is a common occurrence. For
ordinary di erential equations, with a xed initial condition described by
a point in the nite-dimensional vector space, the tools for analyzing the
behavior of trajectories are widely available. However, for many applica-
tions, it is of interest to consider the evolution of dynamical systems when
the initial condition is described by distribution of mass over some set in
the state space. This chapter explores this latter direction for a particular
class of nonsmooth dynamical systems. If we consider a probability measure
to describe the distribution of the initial conditions of a dynamical system,
then the time evolution of this initial probability measure with respect to
underlying dynamics is the object of our interest.

5.1 Overview

For an autonomous dynamical system described by an ordinary di erential
equation (ODE) with Lipschitz continuous vector eld, the time evolution
of this measure is described by a linear partial di erential equation (PDE)
called the Liouville equation or the continuity equation, see e.g. [152, Section
5.4]. The solution to the Liouville equation, that is the probability measure
describing the distribution at time t, is the pushforward or image measure of
the initial probability measure through the ow map at time t. Lipschitz con-
tinuity of the vector eld ensures that the ow map of the ODE is invertible,
which in turn ensures that the pushforward measure is the unique solution
to the Liouville equation. This approach of associating the continuity equa-
tion with nite dimensional ODEs has found relevance in numerical optimal
control [103, 88] as well as in several control-theoretic problems [16, 32, 31].

72
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When the vector eld is not Lipschitz continuous, then the study of the
evolution of the initial distribution is more involved. The rst occurrence
of continuity equations corresponding to nonsmooth ODEs occurs in [68].
Continuity equations corresponding to one-sided Lipschitz vector elds have
been studied in [25, 26]. In [11], the authors consider less regular ODEs and
study uniqueness of solutions for (Lebesgue) almost-all initial conditions by
using the Liouville equation.

The dynamical systems for which we want to study the evolution of prob-
ability measures (describing the distribution of states) are the constrained
systems described by the di erential inclusion

x2f(x) N s(x) (5.1)

wheref : R" ! R" is a Lipschitz continuous function andS R" is a
time-varying closed convex set.

For the constrained system (5.1), when the initial conditiorx(0) 2 S is
given, the question of existence and uniqueness of solution to system (5.1)
has already been well-established in the literature, and the origins of such
works can be found in [119], see [72] for a recent exposition. However, if
we consider the initial conditions described by a probability measure, then
the evolution of this measure under the dynamics of (5.1) has received very
little attention in the literature. One can study such problems by considering
stochastic versions of (5.1) by adding a di usion term on the right-hand side.
Such systems rst came up in the study of variational inequalities arising in
stochastic control [18], and in the literature, we can nd results on existence
and uniqueness of solutions in appropriate function space. In [51], this is
done by considering Yosida approximations of the maximal monotone oper-
ator, whereas [19] provides a proof based on time-discretization of system
(5.1). These approaches have been generalized for prox-regular&én [20],
and the case where the drift term contains Young measures [49, 50]. One
could also, in principle, formulate a partial di erential equation with set-
valued elements and study the solutions of such equations under appropriate
hypothesis, which is the case in [24] but it is not clear how to derive the
corresponding set-valued partial di erential equation for system (5.1) and
whether the resulting inclusion would satisfy the necessary hypothesis for
well-posedness. Dierent from these approaches, and inspired by the fact
that the evolution of a probability measure for single-valued dynamical sys-
tem is described by the Liouville equation, it is natural to ask whether the
evolution of a probability measure under the dynamics of system (5.1) can
be studied using the Liouville equation. To the best of authors' knowledge,
this approach has only been adopted in [67], where the authors consider
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system of form (5.1) without the drift term f (). Since the right-hand side
of (5.1) is set-valued, it is not immediately clear how the divergence term
in the Liouville equation is to be interpreted. In [67], the authors consider
approximations to the solutions of Liouville equation associated with (5.1),
which are similar to time-stepping algorithm. That is, a time-discretization
technique is introduced which is based on projecting the density function on
to the constraint set with respect to the Wasserstein metric.

In this chapter, we consider a di erent route for computing the approxim-
ate solution of system (5.1) in the space of probability measures. Inspired by
the concepts presented in [11], our basic idea is to consider Lipschitz approx-
imations of system (5.1). The particular approximations that we work with
are the ones obtained by osida-Moreauregularization and are parameterized
by a positive scalar converging to zero. We can then associate a single-valued
Liouville equation to each of these approximants, and establish convergence
of the resulting sequence of measures. Unlike [67], our approach for numer-
ically solving the Liouville equation does not depend upon discretization in
time, or space for that matter. Instead, we use functional discretization: we
choose a family of test functions (the monomials) on which the evolution
measure and the associated moments are then approximated numerically by
a hierarchy of semide nite programs. Furthermore, we also show that the
support of the sequence of measures converges (with respect to the Hausdor
distance) to the support of the pushforward measure for the nonsmooth sys-
tem. These analytical results allow us to get an approximation of the actual
solution.

Since the pushforward measure, at each time instant is an in nite-
dimensional object, it can be challenging to approximate it numerically. One
possibility { that we do not explore here { could to use Monte-Carlo prob-
abilistic algorithms. Instead, we investigate a purely deterministic approach:
in order to get a quantitative measure of the distribution of state at any
time instant, which involves building a hierarchy of moments de ned by the
action of a nite Borel measure on polynomial test functions, and encoding
the positivity constraints on moment matrix by using sum-of-squares (SOS)
decomposition. This technique, called moment-SOS hierarchy [86] has been
used in a successful manner in several engineering problems and it is based on
the decomposition into sum-of-squares of nonnegative polynomials and it en-
codes the moments of nonnegative measures on compact basic semi-algebraic
set. The SOS method, seen in Chapter 4, is only a special case, that fo-
cuses on the dual only, of the moment-SOS hierarchy. For our purposes, the
moment-SOS hierarchy allows us to approximate numerically the moments
(up to some nite order) associated with the pushforward measure. Also,
using the recent developments on approximating the support of a measure
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with the Christo el-Darboux kernel [104], we can approximate the support
of the pushforward measure, and hence the trajectories corresponding to a
certain initial distribution.

This chapter is structured as follows. In Section 5.2, we formalize the
problem and introduce the basic mathematical elements necessary for do-
ing so. In Section 5.3, we construct Lipschitz approximations of our initial
dynamical system. In Sections 5.4 and 5.5, we study certain properties of
the sequence of measures associated with approximations constructed in Sec-
tion 5.3. Numerical aspects for approximating the moments, and support,
of the probability measure describing the evolution of system dynamics are
also discussed in Sections 5.4 and 5.5. We illustrate our results with the help
of an academic example in Section 5.6.

5.2 Problem Formulation

5.2.1 Evolution of Ensembles

Let us consider the time-varying ODE

z(t) = 9(t;z(1)); z(0) = zo; (5.2)

over a given time interval [QT], whereg: [0;T] R"! R"is a given vector
eld and z(t) 2 R" is the state. For eacht 2 [0; T], let us consider the ow
map G; : R" ! R", so that the mappingz, 7! Gi(zo) provides the value of
state trajectory of (5.2) at time t, and moreover it satis es

@Gi(20) = 9(t; G(20)); Go(z0) = zo; (t;20) 2 [0;T] R™ (5.3)

In this chapter, we consider the evolution of dynamical systems when
the initial condition is de ned probabilistically. In particular, we use the
notation z(0) o to mean that z(0) is a random variable whose law is
a given probability measure, or density functiony 2 P (R"), where P(S)
denotes the set of probability measures supported &

This model allows to capture an initial spatial distribution of particles.
To de ne the corresponding density function at timet > 0, denoted by
t 2 P (R"), we consider the pushforward or image measure @fthrough the
ow map G¢(). That is, let

t = Gt] 01 (54)
so that, for every Borel subseB R", it holds that

t(B)= o(fz2 R": Gi(2) 2 BQ):
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evolution of ;

to
ty t, t

Figure 5.1 { Evolution of probability measure  w.r.t. time and space.

The evolution of ; is described by the following PDE, called the continuity
or Liouville equation:
@ +div( (9)=0; (5.5)
with the initial condition:
jt=o = o (5.6)
The Liouville equation (5.5) should be understood in the sense of distribu-
tions, i.e. z

L (@2 + @u(t2) gt2))d(2)=0

for all continuously di erentiable functions v from R,  R" to R. The equi-
valence between the solutions of ODE (5.2) and PDE (5.5), is established in
the following result, see e.g. [152, Theorem 5.34]:

Theorem 5.1. For eacht 2 [0;T], let G; : R" ! R" be a di eomorphism
so that (5.3) holds. Given 3 2 P (R"), let  be de ned as in(5.4). Then,
¢ IS the unique solution of the Liouville equatiorf5.5)-(5.6) over the time
interval [O; T].

The importance of the Liouville PDE relies on its linearity in the probab-
ility measure , whereas the Cauchy ODE is nonlinear in the state trajectory
z(t). This PDE governs the time evolution of a measure transported by the
ow of a nonlinear dynamical system. The nonlinear dynamics is then re-
placed by a linear equation on measures. It is important to note that, in
Theorem 5.1, the equivalence is established under the assumption thag
is a di eomorphism for eacht 2 [0; T], which in particular requires that the
ow map G is invertible. ODEs with Lipschitz vector elds have this prop-
erty, but when the vector eld is not Lipschitz continuous in state variable,
the backward invertibility assumption may not hold, or the ow map G; may
itself not be uniquely de ned.
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5.2.2 Ensembles of Constrained System

In this chapter, we are interested in studying a class of dynamical systems
described by the variational inequalities

z(t) 2 £ (tz()) N su(z®); z(0) o (5.7)

over an interval [Q T] for some givenT > 0, wheref :[0;T] R"! R"isa
given vector eld, S:[0;T] R" a compact and convex-valued mapping.

We emphasize that, in (5.7), ¢ 2 P (S(0)) is a probability measure that
speci es the distribution of the initial state. For eacht 2 [0; T], let us denote
the ow map by F; : S(t) ' S (1), so that zy 7! F(z) is the value at
time t of the state trajectory of (5.7) with z(0) = z,. Given this random
initial condition, the state at each timet can also be interpreted as a random
variable in S(t), i.e. z(t) ¢ 2 P(S(t)) dened by ; := F] o. However,
unlike Lipschitz continuous ODESs, the mappind-; is not invertible in general.
An example illustrating this fact is given next.

Example 14 (Flow map not invertible). Let f (z) = Az with A =[ % §] and
S = R2 and let z; be a given iniﬁial conditiqn, with angle . Fort 6 o,
we havez(t) = F(z) = €Mz = Cgfrf?t) ig”s((tt)) Zo. And for t > ,, we have
z(t) = [jzo) OF . For example if.zg,= [1 1]7, it holds o = ; and then for
p p 1 _
L =

N

2

t> o, we havez(t)= ¢ [IO 2 0F. The ow map reads

N
°
Mo
N

N

8
< it Zy ift6 0
z()= F(z)= . . . _
- [lzoj OF ift> o
Indeed, as we can observe, the ow map is not invertible since given a state
z(t) for a given timet > o, it is not possible to retrieve the initial condition
Z.

As a consequence of Example 14, it is seen that the ow map associated
with dynamical system (5.7) is not necessarily invertible, and hence the con-
ditions of Theorem 5.1 are not satis ed in general for such systems. On the
other hand, for eacht 2 [0; T], the forward ow map F; is well-de ned and
therefore the solution ; := F] ( exists and is uniquely de ned. However,
it is not possible to write down the evolution equation for , like Liouville
equation for smooth ODESs, due to nonsmooth set-valued dynamics in (5.7).
Recent literature in this direction deals with such problems, either by study-
ing partial di erential equations with set-valued mappings [24] or by intro-
ducing an approximation based on time discretization [67]. In this chapter,
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our goal is to nd alternate methods based on functional discretization with
monomial basis to approximate the measure, and propose computational
algorithms to calculate such approximations numerically.

5.2.3 Problem Formulation

We consider the dynamical system (5.7) with ow mag~; : R" ! R". For

a given o 2 P (S(0)), since there is no direct derivation of the PDE for
characterizing the evolution of ; := F;] o, we compute an approximation of
¢ as follows:

Construct a sequence of ODEs with Lipschitz continuous right-hand sides
which approximate the solution of ODE (5.7) for a xed initial condition.
This construction is based on a regularization of (5.7), and results in a
sequence parameterized by a scalar 0.

A

Exploit the regularity of the approximating ODE to construct a sequence
of measures,; = F, ] o.

" When tendsto O, prove that , convergesto; := F] o in the weak-star
topology. In particular, all nite order moments of , converge to the
moments of ;.

" When tends to O, prove the convergence of the support of to the
support of ; in the Hausdor metric.

From a computational viewpoint, the by-product of the above results is
that, for a xed > 0, one can invoke e cient numerical methods for com-
puting moments associated with the probability measure, and the support
of .. This allows us to compute an approximation of the moments and
support of  associated with nonsmooth system (5.7).

5.3 Lipschitz Approximation

The rst step in our analysis is to compute an approximation of the solutions
of (5.7) by using Moreau-Yosida regularization. The development carried out
here is inspired by [35]. We introduce a sequence of approximate solutions,
the so-called Moreau-Yosida approximant$z g. o, which are obtained by
solving the following ODE parameterized by > O:

z (t)=f(tz (1) }(Z (t) proj(z (t);S(1)); z (0)= 22S(0) (5.8)
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over the interval [0, T], where proj;S) is the (unique) Euclidean projection
of vector z onto convex setS. It is observed that, for each > 0, the right-
hand side of (5.8) is (globally) Lipschitz continuous, and therefore, there
exists a continuously di erentiable trajectoryz :[0;T]! R" such that (5.8)
holds for everyt 2 [0; T]. The relation between the solution of the inclusion
(5.7) and the approximantsfz g o holds under the following assumptions:

Assumption 4. There exists a constant.; > 0 such that, for eacht 2 [0; T],

jf(t2)j6 Li(1+jzj); 8z2R"
if(t;ze) f(t;22)j6 Lijzs 2zj; 8z1;2,2 R™:

Assumption 5. The mappingS : [0;T] R" is closed and convex-valued
for eacht 2 [0;T], and S() varies in a Lipschitz continuous manner with
time, that is, there exists a constantLs > 0, such that

dy (S(t1); S(t2)) 6 Lsjty  ty; 8ty;t, 2 [0, T]:

The notation dy (A; B) means the Hausdor distance between sets and
B, that is, ( )

dy (A;B):=max supd(y;B); supd(x;A) (5.9)
y2A x2B

whered(x; A) denotes the Euclidean distance between vectarand setA.

Theorem 5.2. Under Assumptions 4{5, consider the sequence of solutions
fz g- o to parameterized ODE(5.8) on an interval [0; T]. Then, as !

0, the sequence converges uniformly to a Lipschitz continuous functiarn
[0;T]! R", the unique solution to the di erential inclusion (5.7).

The proof of this theorem is discussed in the remainder of this section.

Proof : The basic idea of the proof is to show that the sequenée g-
satis es bounds ensuring uniform convergence to a functiag ) solving (5.7).
This development is carried out in three steps.

Step 1. Estimates on the sequende g- o. As a rst step, to obtain
bounds on the norm ofz (:), let us begin by computing bounds on the norm
of z () as stated in the following lemma.

Lemma 5.3. For each > 0, it holds
jZ(1j 6 2L¢ + Lejz (1) + L maxjz (s)j + Ls; (5.10)

wherelL;;Ls were introduced in Assumptions 4 and 5 respectively.
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Proof : For each > 0, the dynamics forz in (5.8) yield

jz (0)j=jf(tz (1) }(Z (t) proj(z (t); S(1)))]

. .1 . .
6 jf (t;z (t)j+ —jz (t) proj(z (t); S(1))j: (5.11)
For the rst term in the right-hand side of (5.11), we have that
jF(tz (1)j6 Le(1+jz (1)) (5.12)

For the second term in the right-hand side of (5.11), we introduce the
function d (t) = inf yos 1y jy  z (1)), so that d (t) = dsq)(z (t)). It is seen
that d (t) = jz (t) proj(z (t); S(1))j. Sojz (t) proj(z (t);S(t))j= *d (t).
To obtain a bound ond (t), we compute the derivative ofd?(t):

S = Sk ()

dt
— lim G )(z (t+ ) dy(z (1)
1o

d%(t+ y(z (t+ ) d%(t)(z (t+ ) N d%(t)(z (t+ ) dé(t)(z (t)):

(5.13)

=lim
0

For the rst term in the limit, we use that
dé(t+ y(z (t+ ) d%(t)(z (t+ )

6 dn (S(t+ );S(t) dsis+ y(z (t+ )+ dspy(z (t+ )

6 jjLs dsi+ )(z (t+ )+ dspy(z (t+ ) : (5.14)
For the second term in the limit, we rst notice that

Bz (t+ ) Bz ()= Bz M)+ z(1)  dgy(z (1)
+ dspy(z (t+ ) dspy(z ()+ z (1)
dsy(z (t+ )+ dswy(z (1) + z. (1))

Sincez (:) is dierentiable, z (t+ ) = z (t)+ z (t)+ O() and hence
dsi(z (t+ )) dsw(z (t)+ z(t))= O( ). This implies that

ds(z (t+ ) dey(z (1) = d5(z () + Z(1) d5y(z (1):
And,

h i
li!ng,l Az (t+ ) diy(z (1) = hrdiy(z (1);z (D)
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=2he (t) proj(z (t);S(t));z (t)i:
(5.15)

By substitution of (5.14) and (5.15) in equation (5.13), we obtain

;dz(t) =2d (t)d(t) 6 2d (t)z (t) +2Lsd (t)

62d (1) f(tz (1) —d(t) +2Lsd (1)
6 2d(t)+2d (0 (tz (1) +2Lsd (1):

Dividing by 2d (t), we get

c(ljtd (t) 6 14 )+ f(tz () + Ls;

which implies that,

Zt
dM6e=d@O+ eI (f(siz(s)+ Ls)ds:

Or, d (0) = jzog proj(zo; S(0))j = 0 since zg 2 S(0) and we have thatf
satis es (5.12), then it follows
1 1%t _ N
Zd@)6 = e 9% (Ls + L¢jz (s)j + Ls) ds: (5.16)
0

And therefore, substituting (5.12) and (5.16) in (5.11), we get
z

: . . .17t - . .
iZ(0j6 L+ Lijz (0)j+ = e 97 (L +Ljz (s)i+Ls)ds
. . Lf t (t S)= Lf Zt (t S)= . .
6 Li + Lijz (1)j+ — e ds+ — e jz (s)j ds
0 0
z
w5 e we= gs
0
We have
Z .
Lif te(t s)= ds = Life t= heszlt: Lif t= et:
0 0
=L 1 e = 6 Ls:
Similarly, 7
LS t (t s)=
— e ds6 Lg:
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Besides, we have
z z

L ¢ o _ L t _ ) .
L e 9% jz(s)jds6 -~ e ® 9= ds:maxjz (9)]
- 0 | 0 {7 06s6t
6L

6 Li maxjz (s)j:
The bound ofjz (t)j is then expressed as
iZ (1 6 2L; + Lejz (i + Ly mpaxjz ()i + Ls:
}

Based on Lemma 5.3, let us now calcula@jz (t)j? for getting an estimate
onjz ()j. First, we observe that

:tjz (0j* = 2k (1); 2 ()i 6 2z (Vijz (V)i: (5.17)
Substituting (5.10) in (5.17) yields
j'tjz (Dj* 6 2L¢jz (1)j* +2L¢jz (Dj: maxjz (s)j + (4Lt +2Ls)jz (1)j:
Lety (t) = jz (1)j° so
d q —— q —— q ——
Y (08 2Ly (+2L; y (:ax y (s)+ (4L +2Ls) v (b):

Since the right-hand side of this di erential inequality results in a nonnegative
and nondecreasing function, it follows thaty (t) 6 ¥ (t), for all t 2 [O; T],
wherey satis es

Sy =219 m+aL, v(t):qu(t)+ @L+2Le) b (O
4Ly () + (4L +2Ls) ¥ (1): (5.18)
By using the substitution v(t) = (¥ (t))% in (5.18), it yields
v(t)=2Lsv(t)+2Ls + Ls:
The solution of this di erential equation isv(t) = €2 tv(0)+( €21t 1)Errts),
Consequently,jz ()j2=y (t) 6 ¥ (t) = v(t)?, and we obtain

(2L + Ls).

jz (06 ¢ Tjz @) + (T 1)L
f

(5.19)
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sincev(0) = (¥ (1))z = (y ()2 = jz (0)j. Hence,jz (t)j is bounded on the
interval [0; T], independently of .

Step 2: Extracting a converging subsequendBdased on the estimates in
Step 1 there exists a subsequence af () which converges toz(). More
formally, the following statement is obtained.

Lemma 5.4. There exists a subsequenée , gi>n Which converges uniformly
to a Lipschitz continuous functionz( ) on [O; T].

The proof of Lemma 5.4 is a consequence of the Arzeh-Ascoli theorem
since the sequenckz g, IS continuously di erentiable andfz_, g2y is uni-
formly bounded. The limit function z( ) is also Lipschitz continuous in this
case.

Step 3: Limit is a solution. To nish the proof of Theorem 5.2, we
just need to show that the limit z( ) satis es the di erential inclusion (5.7).
This particular step requires a variational inequality, which is stated in the
following lemma.

emmab.5. If" :[0;T]! R"is a continuous function that satis es' (s)+
o f(rz (r)) dr 2S(s) for eachs 2 [ty; 1], for t3;t, 2 [0; T], then

k z(tl)kZ. :
(5.20)

1 z 2

z t, D E t2
' (9):z(s) f(s;z(s)) ds> z(t2) t f(r;z(r)) dr

i1 é

Proof :  Let z (s) :% proj( z (s); S(s)); then s 7! z (s) is a continuous
mapping. Since' (s)+ f(r;z (r)) dr 2 S(s) and s positive, it follows
from the de nition of the projections that
D Zs E

‘() f(nz (r)dr z(s);z(s) f(s;z(9)
t
1D k S E
- "(s)+ f(rz (r))dr z(s);z(s) z(s) >0
t1

Then
D E D Zg E
'(s);z.(s) f(s;z(s) > z (9 t f(nz (r))drz(s) f(s;z(9)) ;

which implies that,

Z to D E
"(s);z(s) f(siz(s) ds>
z to D V4 S E
z (s) t f(r;z (r))dr;z(s) f(s;z(s)) ds:

1

t1
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Since at the points wherez () is di erentiable, we have

he (s);z.(s) f(siz(s))i=te(s) z(s);z(s) f(siz(9)i
+he (s);z.(s) f(s;z(s))i

=iz (9 z 9P+ iz f(sz ()i
| {z }
>0

it follows that,

ke (s);z(s) f(siz(s)i>he(s);z(s) f(s;z (i

and,
z t, D E
"(s);z(s) f(siz(s) ds>
' Zy,p Z E
t z (s) t f(r;z (r))drz(s) f(s;z(s) ds:

We have

z t2 D VA S E

.2 (s) f(rz (r)) driz(s) f(s;z(s) ds

' Z stl t2
_ ; kz (s)  f(rz (r) dri?
1 2 N

5 kz (t,) ttzf(r;z (r)) drk® k z (t)k? ;

hence, we obtain that

z t, D E
'(s);z(s) f(s;z(s) ds>
1 7 .
; kz (t,) t f(r;z (r)) drk® k z (t1)k® :
We take limitg with respect to ! 0. Sipcez () converges pgintwise to
z(:), we have ' (s);z (s) _f(s;z () ! " (8);z(s) f(s;z(s)) foreach

R
s 2 [ty;to], and kz (ty) ttff(r;z () drk? 'k  z(t,) ttff(r;z(r)) drk?,
and kz (t)k? 'k z(t1)k2.
Therefore, this yields to

z

Z to D t2
f(rz(r)) drk® k z(t)k? ;
t1

(9i2(s) f(siz(s) ds> k()

t1
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and Lemma 5.5 is then proved. }

We now complete the proof of Theorem 5.2 by showing that the limit of
the converging subsequenc ) satis es z(t) 2 f (t;z(t)) N sq)(z(t)) thatis,
h  z(t);z(t) f(t;z(t))i > 0, forany 2 S(t) and for almost everyt > 0.
This is indeed the case, since for every 2 S(t), we can take a Lipschitz
continuous function' : [t;T]! R" such that, due to Lemma 5.5, we get

z
[H (s);z(s) f(siz(s))i ds>

[tit
z t

; kz(t+ ) t+ f(r;z(r)) drk® k z(t)k® ;

and by letting ' (s) = (" (s), we obtain
z z
h; z(s) f(s;z(s))i ds h ' (s);z(s) f(s;z(s))i ds
[ [tt+ [
1D i, Z E
> > z(t+ ) t f(r;z(r)) dr+ z(t);z(t+ ) t f(r;z(r)) dr z(t) ;

[t;t+

which implies

D Z s E Zi
pz(t+ ) z(b) f (s;z(s)) ds h ' (s);z(s) f(s;z(s)i ds
1D Z 4 t t Z 14 E
> > z(t+ ) t f(r;z(r)) dr+ z(t);z(t+ ) f(r;z(r)) dr z(t) :

From this, we get

D 1 Z iy Z 1+ E
> z(t+ ) t f(r;z(r)) dr+ z(t) ;z(t+ ) z(t) t f(s;z(s)) ds
Z

>t h ' (s);z(s) f(s;z(s))i ds
> max j ' (9)jjz(s) f(s;z(9))]

s2[tt+ [
> Jmax | (s)iiz(s)] Lfszrg;gf[J (9)i(1 + jz(s)j):

Sincez( ) is Lipschitz continuous,z( ) is bounded on [QT] and di erentiable
almost everywhere on [0T']. Hence, for almost every 2 [0; T], wherez( ) is
di erentiable, dividing the last inequality by , we get

' Z R+ ) +
; z(t+ ) t f(rz(r)) dr+ z(t) ;Z(t+ ) z(t) T f(siz(s)) ds

Mszrp;gf[J (9) MLfS{H;?z([J (9)i;
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for some constantM > 0. Letting tend to zero, we get
h  z(t);z(t) f(t;z(t))i > 0; foreach 2 S(t);

and hence,z( ) satis es the di erential inclusion (5.7). }

Remark 5.6. In the literature, we can nd several proofs of convergence of
solutions obtained from Moreau-Yosida regularization to the solution of sys-
tems closely related to (5.7), see for example [35, 101, 121]. The proof tech-
nique adopted here closely follows the outline given in [35], but the di erence
here is that we add the Lipschitz perturbationf (t; z) on the right-hand side

of (5.7), which modi es certain calculations.

5.4 Convergence of Approximating Measures

Using the results from the previous section on the convergence of solutions for
xed initial condition, we now study the evolution of probability measures
for system (5.7). As before, let us assume that(0) is a random variable
whose law is a given probability measurey 2 P (S(0)). We recall that the
ow map for system (5.7) is denoted byF;, so thatt 7! z(t) := F¢(zo) is the
unique solution to (5.7).

For the Lipschitz approximation given in (5.8), consider the magF,
R"! R", sothatt 7! z (t) := F, (z0) de nes the unique solution to (5.8).
Since the right-hand side of (5.8) is Lipschitz continuous for each> 0, we
can consider a sequence of probability measurgs2 P (S(t)) de ned as

t = F o

for eacht 2 [0;T] and > 0. From Theorem 5.1, it follows that , satis es
the partial di erential equation:

@, +div( f,)=0 (5.21)

in the sense of distributions, with the initial condition o= O and

f, (z) = f(tz) 1 z proj(z;S(t)) : (5.22)

On the other hand, we do not know how to derive a meaningful PDE for
. However, in the sequel, we show that the probability measure can be
approximated by ; as ! 0. This way, a good numerical approximation of

¢« would also provide an approximation of ;.



5.4. CONVERGENCE OF APPROXIMATING MEASURES 87

5.4.1 Weak-star Convergence

We rst show convergence in the weak-star topology. This allows us to ap-
proximate the evolution of the moments of the measureg using the moments
of ,. Given a measure , we denote its support by supp(), de ned as the
smallest closed set whose complement has zero measure with respect to
Equivalently, it is the smallest closed set for which every point has a neigh-
borhood of positive measure with respect to.

Proposition 5.7. Letv : R"! R be a continuous function, and assume
that ¢ has bounded support. Then,

z z
lim v(z) d,(2) = v(z) d (2): (5.23)
1'0 Rn RN
Proof : By de nition of the pushforward measure ,, it holds
z z
V@ d @)= V() d o) (5.24)

for all continuous functionsv. From Theorem 5.2, for eacht 2 [0;T], we
have lim, ¢z (t) = z(t), which is equivalent to

lim F, (y) = Fi(y); 8y2S(0):
Sincev is any continuous function, this implies
lim V(F, (v)) = V(Fu(y)):

By assumption,v F, is bounded on the bounded set supp{). This allows
us to invoke Lebesgue's dominated convergence theorem to get
z z

lim N V(F, (y)) d oy) = . V(Fe(y))d o(y): (5.25)

Hence, (5.24) and (5.25) yield
z z

im - v(z)d (2)= _ Vv(F(y))d o(y):
! Rn R"

Using again the change of variables formula, we obtain
z z

lim v(z) d,(2) = v(z) d ¢(2)
1'0 Rn Rn

for all continuous functionsv on R". Therefore, the equality in (5.23) is
proved. }
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Remark 5.8 In the proof of Proposition 5.7, the boundedness of suppj was
used to invoke dominated convergence theorem. The result of Proposition 5.7
extends in some cases where supg) is unbounded. In particular, if it can
be shown that there exists a functiorg : [0;T] R"! R, such that, for
each > 0,

Fo(y) 6 g(ty); t2[0T]

then the convergence in (5.23) holds for all continuous functions which
satisfy Z

L VaEY)do(y) <15 t2[0T]

5.4.2 Relations Describing Moments

An immediate consequence of Proposition 5.7 is that we can get a desired
approximation of the moments of ; by choosing appropriate test functions
v. This amounts to computing the moments of ,. We will now explore
numerical techniques which allow us to compute the solution of (5.21) by
computing the desired moments.

Toward this end, we rst observe that the Liouville equation (5.21) can
be equivalently written as a linear PDE satis ed by the occupation measures

d :=dtd,; with 0= 00, T TT]

which is
@ +div( f)+ = 4 (5.26)

which again should be understood in the sense of distributions, i.e.
z Z

(@(2)+ @u(tz) f (tz)d (t2)
R+ RN 7 7
= VDA 1 (62) d o(t2));
for all continuously di erentiable functions v.

We compute approximate moments of by applying the moment-SOS
hierarchy [86]. This method consists of minimizing a functional subject to
the following constraints:

1. The Liouville equation (5.26) expressed in the sense of distributions,

as a linear constraints on the moments of and .

2. Necessary linear matrix inequality (LMI) constraints based on the dual
of Putinar's Positivstellensatz (Theorem 2.6).
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We will see in the following how to formulate the Liouville equation (5.26)
as a linear moment constraint.
Let g be a polynomial vector eld de ned as

and v be a monomial test function, with a maximum degreel 2 N, de ned
as

vi(tz) 7! t32° = 2z z;
for all (a;bp 2 N"*1, with a+ by + b, + + b, 6 d. The maximal degreed

is called the relaxation degree.
Besides, let us denote

z,2
Ya 1p:= t* 2% (tz) (5.27)
0 Rn
and .2
Yap = t°2°d +(t;2); (5.28)
' 0 R
z,2
Yau = t22°d o(t; 2): (5.29)
' 0 R

Let ¢ denote the vector whose only non-zero entry is equal to one at position
i.

Proposition 5.9. The Liouville equation(5.26) is equivalently expressed as:

o Z12Z
Yab Yap= a ot b2’ fg(2)d (t2) (5.30)

i=1
which are linear constraints that link the moments of the initial measure,
terminal measure and occupation measure.

Proof : Choosingv(t; z) = t3z° as a monomial test function, the Liouville
equation (5.26) is then written as

h@ ;vi+ hdiv( g);vi+ h ;vi=h g vi;

which implies
Z:2Z Z:2Z
L@ aV(tz)g(2)d (tz)=  v(tz)(d (62) d o(t2):
(5.31)
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We have
@v(t;z) = at® 1z
and
@v(t;z) = (bt?z: 22z bpt?zz b oz ttzze Z Y.

Replacing @v(t; z) and @v(t; z) by their expressions in (5.31) yields
Z:2Z 0
(at* 12°+  Qt¥z Cg(2) d (t2)
0 R" i
Z.2 T oz.z
= t2z° d 1 (t;2) t2z° d ,(t; 2)
0 R" 0 R"
which is the expected statement by using the notations (5.27), (5.28) and
(5.29). }

5.4.3 Numerical Computation

Based on the result of Proposition 5.9, we now describe a numerical method
for computing y.,. It is assumed that the initial measure o is given, which
allows us to computey2,. We next describe the main steps involved in writing

a semide nite program for calculatingy,., corresponding to the measure .
Note that, for each > 0, the measure is supported on a subset oR"*!.

In what follows, we provide some elements of construction for our algorithm
for a nite Borel measure supported onRP.

Given a Borel probability measure and 2 NP, we let
z

y()= _zd(2);
RP

where we recall thatz = z 1z 2: ALY We consider the sef 2 NP; |+

+ , 6 dg with graded lexicographic order, and denote it byNf; for
example, withp = 2, d = 2, N3 = f(0;0);(1;0); (0; 1); (2; 0); (1; 1); (0; 2)g.
The cardinality of Nf is s(d) := "’;d , Which is the number of monomials
of degree at mostd. The sequencey = (y ( )) 2ne therefore encodes the
moments of the measure .

The moment matrix of degreed associated with a Borel measure, de-
noted by My( ) is a matrix of dimensions(d) s(d), whose rows and columns
are indexed by monomials of degree at most For ; 2 N, the corres-
ponding entry in Mg4( )isdened by (Mg( )). =y + (). Asanexample,
once again withp=2, d=2, M,( ) 2 R® ¢ and the element in second row
( =(1;0)), third column ( =(0;1)), corresponds t0 . 2:2,d (z).
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To see an alternate representation oMy( ), let ky(z) = (z ) 2Ny 2

R[z]j(d) denote the vector of monomials of degree less than or equaldp
with graded Iexicogrthic order. If the sequendey g 2ne has a representing
measure ,i.e.y = gz d (z) forall 2 NP, we can use the equivalent
de nition Z

Ma( )= @@ d (2);

where the integral is understood entrywise. We can also de ne the localizing

matrix of degreed with respect to a givenq(z) 2 R[z] by
z

Mad degg=2e(d ) := - A2)(2)u(z)” d (2)

where dxe denotes the smallest integer greater thar.
Assume thatX R" is a compact basic semialgebraic set i.e.

ities pc(z) > O be of the formR n, z2> 0 whereR is a su ciently large
positive constant.

Theorem 5.10. (Putinar's Theorem) The sequence of momenty has a
representing measure supported oX if and only if Mg gegp, =2e(Px ), K =

The above theorem represents the dual (moment) formulation to the
Putinar theorem, namely SOS formulation, described in Theorem 2.6. The
moment-SOS hierarchy, based on Theorem 5.10, allows us to compute ap-
proximate moments of the occupation measure and terminal measures. Re-
call that the moments of the initial measure are given since the initial measure
is given. We x a degreed 2 N and we consider the linear constraint (5.30)
linking moments of degree up tal, and subject to the constraints that the
localizing matrices of the occupation measure and terminal measure, trun-
cated to moments of degree up td, are all positive semi-de nite. This results
in a nite-dimensional feasibility problem describe by linear matrix inequal-
ities. The higher is the relaxation degreel, the better are the approximate
moments, in the sense that whed tends to in nity, Theorem 5.10 and linear
constraint (5.30) ensure that we have indeed moments of measures satisfying
the Liouville equation.

The LMI constraints are automatically constructed by themsdpcommand
in Gloptipoly for Matlab [87]. For more details about the LMI constraints,
we refer the reader to [84, Section 3.3] or the two introductory chapters of
[86].
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5.5 Convergence of Support of Measures

For several applications, it is important to approximate the support of the
measure ; since it provides a probabilistic estimate of the state trajectories
at time t 2 [0; T]. Once again, our goal is to approximate the support of
by the support of , where , satis es (5.21).

5.5.1 Hausdor convergence of support

We rst show that supp( , ) converges in the Hausdor distance to suppg).

Proposition 5.11. For eacht 2 [0; T], it holds
lim dy (supp( ¢ ); supp(+)) = 0: (5.32)

Proof : First, let A, = supp( ;) and A; := supp( ). For proving that
lim , ody (A;;A¢) =0, we need to prove the following two limits:

lim sup d(y ;A;) =0; (5.33)
ro 2A,
and
lim supd(x;A;)=0: (5.34)
10 x2A;

For proving (5.33), we rst observe that

sup d(y ;A) = sup inf jy  xj;

y 2A, y 2A, XAt

and hence it needs to be shown that for every 2 A, there existsx 2 A;
such that jx vy j converges to zero as converges to zero. Sincg 2 A,
there existszy 2 supp( o) such thaty = F, (zo). By choosingx = F(zo) 2
A, it follows from Theorem 5.2 that lim , o F, (z0) = F:(20), or equivalently,
jX yjconvergestoOas ! O.

For proving (5.34), we similarly observe that

supd(x;A;)=sup inf jx vy j:

X2 At X2ArY 2A
Following the same idea as before, let us take 2 A;, then there exists
Zy 2 supp( o) such that x = F¢(zp). By choosingy = F, (z0) 2 A, it again
follows from Theorem 5.2 thatjx y j convergesto O as ! 0, and (5.34)
is obtained. }
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5.5.2 Approximation of support

Just like the approximation of moments, we can provide some numerical
methods to approximate the support of the sequence of measurgs By
Proposition 5.11, by computing such an approximation for> 0 su ciently
small, we get an approximation of the support of the probability measurg
for the original system.

The technique we present is based on approximating the support of a
measure by the sublevel sets of a polynomial function. In particular, for a -
nite Borel measure , with non-singular moment matrix M4( ), we introduce
the mapping

R"3x 7 q(x):= by(x)"Ma( ) "u(x) 2 R;

which we call Christo el-Darboux polynomial. Thus, the basic idea behind
the construction of the support of the measure is to use the nite order
moments, and show that the sublevel sets of the Christo el-Darboux poly-
nomial indeed converge to the actual support of. This technique has been
proposed in [104] for stationary measures under certain hypothesis. Here,
we show that by placing certain hypothesis on the initial measurey, the
approximations , obtained by the Liouville equation satisfy the required
hypothesis, which allow us to approximate the support of, by constructing
the corresponding Christo el-Darboux polynomial.

The following statement shows the existence of a sublevel set that approx-
imates the support of the sequence of measurgs when andt 2 [0; T] are
xed.

Proposition 5.12. Let o be absolutely continuous with respect to the Le-
besgue measure and let us suppose thapp( o) is compact. Fora xed > 0,
andt 2 [0;T], consider , obtained by solving5.21), and Mg, ( ) the cor-
responding moment matrix of degred. For every > 0 (small enough), there
existsd 2 N (large enough) and 4 > 0, such that the sublevel set

Syt = fZ2 RPjy(z)° Mg ( () 'tu(2) 6 a9 (5.35)

satis es
dn (Sgessupp(¢)) 6 ; (5.36)
asd! +1.

Proof : For each > 0 andt 2 [0; T], if we show that
The set supp(; ) is compact and has nonempty interior.
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A~

It holds that , is absolutely continuous with respect to the Lebesgue
measure.
then, the statement follows by applying [104, Theorem 3.11] to the measure
‘-
The aforementioned properties basically follow from the fact that, for a
xed t 2 [0;T] and > O, the mappingF, : R" ! R" is a homeomorphism
obtained from the solution of an ODE with Lipschitz continuous right-hand
side (5.8). LetL denote the (uniform with respect to time) Lipschitz con-
stant for the mapping on the right-hand side of (5.8). One can readily show
that for a pair of initial conditions yo;zp and y; := F; (Yo), z := F; (20), it
holds that

jZo Yojexp( L t)6 jzz Wwj6 jzo Yojexp(L t):

Using this estimate, and recalling that , = o, it readily follows that
supp( ;) is compact and has nonempty interior under the given hypothesis
on o.

Absolute continuity of , with respect to Lebesgue measure holds if is
absolutely continuous with respect to . The later indeed holds because for
every measurable sef\, Lipschitz continuity of F, implies that

olA)=0) ((A)= of(F) "(A)=0; (5.37)

whence the desired result follows. }

5.6 lllustrative Example

In this section, we give an example that illustrates the computation of the
moments associated with, of the regularized system (5.8) in the case where
f :R?! R?2, by applying the moment-SOS hierarchy [86].

Consider the constrained system (5.7) of Example 14 wheféz) = Az
with A =] % 3]and S = R2. Let us write the regularized system (5.8) in
polar coordinates ¢, ) as follows:

8

Sr(t)=0;

)= 1 I ) proj( (t);S(1):
or equivalently:

8

“r(t)=0;

5.38
o= 1 () max( (1);0)): (638
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Let d = 4 be the degree of relaxation, and let us choose di erent values
of the regularization parameter 2 f 0:05;0:1; 0:5g. We introduce the initial
measure as a Dirac measure with respect to time product a uniform measure
in [0;1] [O; 1] with respect to the state.

We calculate the moment of the initial measure to replace it directly
in Liouville constraint (5.30), where the variablesz; and z, in (5.30) are
respectivelyr and . For all (a;b;; ) 2 N3, with a+ b+ b, 6 d, the moment
of the initial measure is then given as

taZ]l?lle)z d o(t; Z) = taZ]l?lZgz o(dt) [0;1](d21) [o-l](dZZ)
0 Rn 0 _Rn 2
=0% zdz " 2zZrdz
0 0 |
— Oa 1 1b1+l Ob1+l 2 1_ bz"‘l Ob2+1
by +1 bh+1 2

Then we apply the moment-SOS hierarchy [86] which allows us to approx-
imate numerically the moments of the unknown occupation measure and ter-
minal measure. For di erent values of the terminal timeT 2 f 0;0:1;0:2;:::; 19,
this gives us: .
The evolution of the moment r(t)2 d ; as a function of time, which
we observe numerically is a constant for di erent values of the regular-
ization parameter .

. R . :
The evolution of the moment ~ (t)2 d ; as a function of time for
di erent values of the regularization parameter , which is illustrated
on Figure 5.2.
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Figure 5.2 { First order moment of the second state (vertical axis) of the occupation
measure of the regularized system, as a function of time (horizontal axis), for di erent
values of the regularization parameter (top curve = 0:5, middle curve = 0:1, bottom
curve =0:05)



Conclusion and Perspectives

6.1 General Conclusions

This thesis has considered stability analysis and numerical approximation
for a class of constrained dynamical systems. In Chapter 1, we discussed
the relevance of such systems with some motivating examples and drew con-
nections with di erent types of set-valued/nonsmooth dynamical systems
(complementarity system, projected dynamical system, Moreau's sweeping
processes). The mathematical background related to the tools used in de-
veloping the results was collected in Chapter 2, where we recalled relevant
notions and results from the elds of convex analysis, sum-of-squares repres-
entation of polynomials, convex optimization, and the solutions of nonsmooth
systems. The rst two chapters, therefore, provide a brief introduction and
an overview of the topic covered in this thesis. The main results of this
dissertation were then organized in three core chapters, whose technical con-
tributions are listed below:
In Chapter 3 , we rst described the stability notions of our interest
and gave the de nition of Lyapunov functions with constrained domains
for system trajectories. Then we addressed our rst main result, that is
the stability analysis for a class of complementarity systems using the
method of Lyapunov functions. Questions pertaining to the existence
of continuously di erentiable cone-copositive Lyapunov functions were
answered in the a rmative for exponentially stable complementarity
systems by constructing a Lyapunov function as a functional of the
solution trajectories. Then, we showed the existence of homogeneous
Lyapunov function for the case when the vector eld is homogeneous,
which is useful for the numerical computation.

In Chapter 4 , under certain conditions on the vector eld in the sys-
tem dynamics, some re nements of our results in Chapter 3 allowed us
to restrict our search for cone-copositive Lyapunov functions within the

97
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class of rational functions of homogeneous polynomials. These state-
ments indeed bring tractability to the numerical methods that we have
been proposed for computing Lyapunov functions. In particular, two
hierarchies of convex optimization problems were obtained using the
methods based on discretization and SOS approximation, respectively
for computing the desired Lyapunov function. As an illustration of our
corresponding two algorithms, we studied some examples which are
solved by using Matlab toolboxes.

In Chapter 5 , we studied the time evolution of nonsmooth constrained
dynamical systems when the initial condition is described by a probab-
ility measure. We proposed an approximation technique based on con-
structing Lipschitz approximations for the original nonsmooth system,
and then using the Liouville equation for the approximate Lipschitz dy-
namics. Numerical methods for computing the approximation of solu-
tions of Liouville equation then allowed us to compute the moments and
support of the probability measures associated to the original system
using the moment-SOS hierarchy method.

6.2 Perspectives

Building up on the work summarized in previous section, let us conclude this
dissertation by indicating certain possible paths for future research which
may emerge from the works presented here.

6.2.1 Converse Results

Several immediate questions of interest emerge from our work in Chapter 3.
The rst one is to extend our results to broader classes of complementarity
systems. Systems of the form (3.1) are one particular class of relative degree
one systems, but in applications, one sees more complex complementarity
systems of the form studied in [146]. In such a wider class of systems, one
sees di erent kinds of constraints on the state trajectories. Moreover, the
constraints may vary with time in which case one has to consider the possib-
ility of time-varying Lyapunov functions. It would be interesting to consider
converse questions for this broader class of systems.

6.2.2 Computation of Lyapunov Functions

Some extensions at the level of designing algorithms are also of potential
interest. In our current treatment, we have considered, in Chapter 4, discret-
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ization algorithms in R? and R? for the computation of Lyapunov functions,
where it is relatively straightforward to write algorithms for partition of sim-
plices. It remains to be seen how the algorithms for simplicial partition in
higher dimensions perform in computing such functions. It is also interesting
to see how the method of discretization can be applied for more generic sets
than polyhedral cones. Just like the generalizations that can be carried out
for addressing converse results, we can also study the discretization algorithm
for computing Lyapunov functions for more general dynamical systems (with
possibly di erent complementarity relations). Moreover, for the SOS method
treated in Chapter 4, we used Polya's theorem on conic sets and Putinar's
theorem on compact semi-algebraic sets, for expressing positive polynomials.
One may explore the questions of nding appropriate representation of pos-
itive polynomials for more general sets, such as unbounded sets which are
not necessarily cones.

6.2.3 Connections with Liouville Equation

A rst direction of research that appears from Chapter 5 is to seek im-
provements in the approach adopted in this chapter. It is observed that the
proposed Lipschitz approximations are di cult to simulate numerically. In
particular, for the illustrated example, we implemented the projection map
onto a cone by splitting the Liouville equation in di erent regions of the state
space, where each of them corresponds to the region where the approximating
ODE is easily described by elementary smooth functions (compatible with
GloptiPoly). One could use some recent work on approximating ODEs with
twice di erentiable right-hand side [60] to see if the resulting implementation
is easier to simulate for a broader class of constraint sets.

Another potential direction of research that comes out from our work
presented in Chapter 5 is the possibility of using the proposed tools for op-
timal control problems. As was done for ODEs [103], it is possible to use
the formalism of Liouville equation for optimal control problems. The op-
timal control for the class of nonsmooth systems studied in this dissertation
is a challenging problem, and it has been addressed recently in [46, 59, 151].
The analysis of optimal control problems is a branch of mathematical op-
timization, which nds its origin in the calculus of variations and has many
applications in a wide variety of topics. Hence, it would be interesting to
see if the methods proposed in Chapter 5 provide a numerically constructive
solution to such challenging problems.
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6.3 Non-convex extensions

For the constrained dynamical systems considered in this dissertation, we
have limited ourselves to the constraints given by convex sets. One more
direction of research that could be explored is the formulation of similar
problems for certain classes of non-convex sets. The primary di erence that
occurs with non-convex sets is that in this case, we are going to loose the
maximal monotonicity of the set-valued mapping in the dynamics, but for
some special classes of nonconvex, one could nd some closely related analysis
tools in the literature. One possible example of such nonconvex sets is the
so-calledprox-regular sets; they form a class of non-convex sets for which
the normal cone operator is not monotone but there is a parameter that
qguanti es the extent of nonconvexity in the underlying set. To de ne prox-
regular sets, let us just recall the notion of Fechet normal cone for (general)
closed sets.

De nition 31. (Fechet normals [115]). Foraclosedse® R",andx2S,
the vectorw 2 R" is called a Fechet normal to the setS at x if, for every
> 0, there exists > 0 such that

hw;x° xi 6 jx° xj; 8x%°2S;jx x§<: (6.1)
The set of all Fechet normals at a pointx 2 S form a cone denoted by
N (S;x).
We use this de nition for introducing uniformly prox-regular sets as follows:

De nition 32.  (Uniformly prox-regular set [132]). A setS is called uni-
formly prox-regular with constant % or simply r-prox-regular, if for each
x 2 S, and eachw 2 N (S;x) with jwj < 1, it holds that projg(x+ rw) = fxg,
that is, x is the unique nearest vector tox + rw in the setS.

It follows from the above de nition that S is anr-prox-regular set, if and
only if, for eachx;x°2 S, and eachw 2 N (S; x), with jwj < 1, we have

jrwji? = jx+rw  xji?<jx+rw  x3%=jx x§2+2hw;x  x§ + jrwj?;

or equivalently for eachw 2 N (S; x),
Dw E 1
—:x x> Zjx xY% 8x°2s: 6.2
Wi X x] (6.2)
Letting r 'l in the inequality (6.2) gives us thatw is the normal vector
at x 2 S in the classical sense of convex analysis. Thereby we say that the
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caser ! 1  corresponds toS being convex. Then the convex sets are a
particular case of ther-prox-regular sets withr being arbitrarily large.

With such a characterization, it is possible to study stability of an equi-
librium for dynamical systems where the constraints are prox-regular sets
[145]. To get an idea of the kind of stability results that one obtains in such
a setup, let us consider the following system:

x(t) 2 Ax(t) N s(x(t)) (6.3)

wherex(t) 2 R", A 2 R" ", and there exists a constant > 0 such that S
is a nonempty, closed, and-prox-regular set. The following theorem gives
su cient conditions for asymptotic stability of system (6.3).

Theorem 6.1. [145] Consider system(6.3) and suppose that the following
inequality is satis ed for some > O:

A+A 6 I (6.4)
For 0< < 1, dene

r

[ n ;
R =fx2R"jkxk6 KAK

o) (6.5)
If is large enough and 2 S, then system(6.3) is asymptotically stable and
the basin of attraction contains the seR \S .

As we can observe, the primary di erence compared to the stability con-
ditions proposed for convex valued sets is that the asymptotic stability no
longer holds globally for non-convex sets. So, we see qualitative di erences
in the results that one gets by replacing convex sets by prox-regular sets.
Moreover, the underlying toolset for analysis also changes as one can no
longer use the monotonicity relations. It therefore becomes interesting to
revisit some of the questions from earlier chapters, which are summarized
below:

In what context, one can develop converse Lyapunov result considering
the fact that the stability holds only locally in general for non-convex sets?

To what extent we can generalize the key ideas behind our algorithms
for computing Lyapunov functions when the domain is non-convex? It is
interesting to note that Putinar's representation of positive polynomials
does not require convexity, but only compactness. On the other hand,
certain arguments used in the discretization algorithm do not necessarily
require convexity.
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Lastly, how can we study the time evolution probability measure with
nonconvex domains? For the approach we have adopted in our work,
the convergence of the solutions of approximating ODEs to the solution
construct a sequence of ODEs with Lipschitz continuous right-hand sides
which approximate the solution of the nonsmooth system for a xed initial

condition.



Preliminaries to Chapter 5

In this appendix, we provide some preliminaries concerning measures, mo-
ments, occupation measures and dual spaces to provide the reader some
background and references for the work carried out in Chapter 5.

A.1 Measures and Moments

Most of the material in this section has been borrowed from [84]. L&t be
a compact subset of the Euclidean spade”. Let B (X) denotes the Borel

-algebra de ned as the smallest collection of subsets ®f which contains
all open sets.

De nition 33. (Signed measure). A signed measure Igs a function :
B(X)! R[flg suchthat (;) =0and ([«2nXk)= 1o~ (Xk) for
any pairwise disjoint Xy 2 B (X).

De nition 34.  (Positive measure). A positive measure is a signed measure
which takes only nonnegative values.

Positive measures on the Borel-algebra are often called Borel measures,
and positive measures which takes nite values on compact sets are often
called Radon measures.

De nition 35.  (Probability measure). A probability measure on X is a
positive measure such that (X) = 1.

Let us denote byM . (X) the cone of positive measures supported of,
and by P (X) the set of probability measures supported oX . Geometrically,
P (X) is an a ne section of M , (X).

Example 15. (Dirac measure). The Dirac measure ak, denoted 4, is a
probability measure such that ,(A)=1if x2 A, and 4(A)=0if x 2 A.

103
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For a given compact setX R", let M (X) denote the Banach space
of signed measures supported a¥, so that a measure 2 M (X) can be
de ned as a function that takes any subset oK and returns a real number.
Elements of M (X) are continuous linear functionals acting on the Banach
space of continuous function€ (X)), that is, as elements of the dual space
C(X)°

The action of a measure 2 M (X) on a test functionv 2 C(X) can be
modeled with the duality pairing

hv; 1:= v(x)d (x):
X

Let us denote byC, (X) the cone of positive continuous functions orX,
whose dual can be identied to the cone of positive measures of, i.e.
M. (X)= Ci(X)°

De nition 36.  (Indicator function). The indicator function of a setA is the
function x 7! 1a(x) such that 1a(x) =1 when x 2 A and I5o(x) = 0 when
X 2 A.

De nition 37.  (Monomial). For multi-index 2 N", and vectorsx 2 R",
a monomial is de ned as

b The degree of a monomial with exponent 2 N" is equal toj j :=

n
i=1 I

De nition 38. (Moment). Given a measure 2 M (X), the real number
Z

y =h; i= x (dx) (A.1)
X

is called its moment of order 2 N".

The sequencey ) ,nn is called the sequence of moments of the measure
, and givend 2 N, the truncated sequencey( ) 54 is the vector of moments
of degreed.

De nition 39. (Representing measure). Iy is the sequence of moments of
a measure , which means that if (A.1) is satised for all 2 N", we say
that is a representing measure foy.

In the theory of moments, a fundamental problem concerns the identi ca-
tion of in nite or truncated sequences of moments of some measure. Instead
of manipulating a measure, which is a abstract object, we manipulate its
moments. In fact, a measure on a compact set is uniquely determined by the
in nite sequence of its moments.
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Lebesgue's dominated convergence:

In measure theory, Lebesgue's dominated convergence theorem provides suf-
cient conditions under which almost everywhere convergence of a sequence
of functions implies convergence in the® norm.

Theorem A.1. (Lebesgue's dominated convergence theorem). (&) be a

sequence of measurable functions on a measure spg&e ; ). Suppose that
the sequence converges pointwise to a functibnand is dominated by some
integrable functiong in the sense that

jfa(x)j 6 9(x)

for all numbersn in the index set of the sequence and all poik2 S. Then
f is integrable (in the Lebesgue sense) and

z
nI!l{n ijn fid =0
which also implies 7 7
Iim f,d = fd
n'l S IS

Remark A.2. The statement "g is integrable' means that measurable function
g is Lebesgue integrable; i.e.
z
jgid < 1
S

A.2 Occupation Measures

De nition 40. (Occupation measure). Given an initial conditionxg, the
occupation measure of a trajectorx(tjXe) is de ned by
z
(A BjXo) = A'B(X(tjxo))dt

forall A2 B ([to; T]) and B 2 B (X).
Let us de ne
(dt;dx) = dt y)(dx) 2 M, ([to; T]  X):

A geometric interpretation is that measures the time spent by the graph
of the trajectory (t; x(tjXo)) in a given subsetA B of [to; T] X. An analytic
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interpretation is that integration w.r.t. is equivalent to time integration
along a system trajectory, i.e.
V(t; X (tjxo))dt = v(t;x) (dt; dxjxo)
0 to X

for every test functionv 2 C([to; T] X).

Now think of initial condition Xy as a random variable inX, or more
abstractly as a probability measure o 2 M. (X), that is a map from the
Borel -algebraB (X) of subset of X to the interval [0;1] R such that
o(X) =1.

De nition 41.  (Average occupation measure). Given an initial measurg,
the average occupation measure of the ow of trajectories is de ned by
z
(A B):= « (A BjXo) o(dxo)

forall A2 B ([to; T]) and B 2 B (X).

A.3 Basic Concepts in Dual Spaces

The notions in this section appear in [109].

De nition 42. (Bounded linear functional). A linear functional f on a
normed spaceX is bounded if there is a constanM such that

jf(x)j 6 Mkxk; 8x 2 X:

De nition 43.  (Dual space). LetX be a normed linear vector space. The
space of all bounded linear functionals oK is called the normed dual ofX
and is denotedX ?,

The norm of an elementf 2 X ? is

kf k = sup jf (x)j:

kxk6 1

Given a normed spacé , its normed dual X ? simply refers to the dual of
X . The value of a linear functionalx” 2 X ? at the point x 2 X is denoted
by x?(x) or by the symmetric notation hx; x”i.
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Theorem A.3. (Riesz representation forC[a; j space). Letf be a bounded
linear functional on X = C[a;ld. Then there is a functionv of bounded
variation on [a;d such that for allx 2 X,

Zy
F(x)=  x(t) dv(t)

and such that the norm of is the total variation of v on [a;d. Conversely,
every function of bounded variation orja;d de nes a bounded linear func-
tional on X in this way.

It should be noted that Theorem A.3 does not claim uniqueness of the
function of bounded variationv representing a giving linear functionaf .

An important concept that arises naturally upon the introduction of the
dual space is the weak convergence.

De nition 44. (Weak convergence). A sequendex,g in a normed linear
vector spaceX is said to converge weakly tox 2 X if for every x* 2 X ?, we
have hx,;x%i ' h x;x%i. In this case we writex, ! x weakly.

We have that if x, ! x strongly, thenx, ! x weakly.

De nition 45.  (Weak® convergence). A sequenckx’g in X? is said to
converge weak-star (or wed}j to the elementx” if for everyx 2 X, hx;x7i !
hx; x?i. In this case we writex? ! x* weak.

Then in X?, we have three notions of convergence: strong, weak, and
weak’. Moreover, strong implies weak, and weak implies weakonvergence.
In general, the reverse statements do not hold.

Theorem A.4. (Alaoglu). Let X be a real normed linear space. The closed
unit sphere inX? is weaK compact.

Theorem A.5. (Bolzano{Weierstrass). Each bounded sequence Rf' has a
convergent subsequence.

A.4  GloptiPoly

We brie y describe the toolbox GloptiPoly in Matlab, used in Chapter 5.
GloptiPoly [87] is a Matlab toolbox that builds convex linear matrix in-
equality (LMI) relaxations of the generally non-convex global optimization
problem of minimizing a multivariable polynomial function subject to poly-
nomial inequalities, equalities or integer constraints. It produces a series of
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lower bounds monotonically converging to the global optimum. Numerical
experiments illustrate that for most of the problems described and available
in the literature, the global optimum is reached at low computational cost.

GloptiPoly is intented to solve, or at least approximate, the Generalized
Problem of Moments (GPM), an in nite-dimensional optimization problem
which can be viewed as an extension of the classical problem of moments.
From a theoretical viewpoint, the GPM has impact in various areas of math-
ematics such as algebra, functional analysis, probability and statistics, etc.
Moreover, the GPM has important applications in many elds such as op-
timization, control, etc.



Liouville Equation for a Nonlinear
ODE

B.1 Derivation of the Liouville Equation

Let x(t) = f (t;x(t)) be a nonlinear ODE wheref is a given vector eld and
x(t) 2 X is the state of the system, withX R". LetL : CY([to;T] X)!
C([to; T] X) be the linear operator de ned by

@v+ X @v @v

v7lLv:= — —f, = = +gradv:f:
@t _, @x @t Y

Forv 2 CY([ty;T] X), we observe that

Z ¢ Z1
VTX(T)  vltox(t)) = dv(tx ()= w(tx(D)dt
z" ¢
= Lvtx(D)dt= hLy: i

to

where is the occupation measure de ned in De nition 40, which can be

written as
hv; 1i h v; of = hLv; i (B.1)

by de ning the initial and terminal occupation measures
o(dt;dx) := o (dt) xio)(dX); r(dt;dx) = 1 (dt) xcry(dx):

The adjoint linear operatorL%: C([to; T] X)°! CY([to; T] X)%is de ned
by hv;L% i := hLv; i forall 2 M ([to;T] X)andv 2 Ci(te;T] X).
Using integration by parts, we obtain :

@ .
| 0 = - .
7'L° @t divf ;
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where the derivatives of measures are understood in the weak sense, or in
the sense of distributions (i.e., via their action on suitable test functions),
and the change of sign comes from the integration by parts formula. For
more details, the interested reader is referred to any textbook on functional
analysis and partial di erential equations, e.g., [73].

Equation (B.1) can be written equivalently as

hv: 1i hv; of = hv;LO |

and since this equation holds for alv 2 C([to;T] X), we get a linear
partial di erential equation (PDE) linking the nonnegative measures 1, o
and

which is @

— +divf + = o B.2

ot r= o (B.2)
This linear transport equation is called the continuity equation, or Liouville's
equation, or the equation of conservation of mass. This equation is classical
in uid mechanics and statistical physics.

Note that we can disintegrate the occupation measure as follows
(dt;dx) = dt (dxjt)

where (:;jt) 2 M. (X) is the conditional of with respect tot. Liouville's
equation (B.2) can be equivalently written as a linear PDE satis ed by the
probability measure , that is

gt+ divf =0 (B.3)
with an initial measure (:jt=0)= ,.
Lemma B.1. (Cauchy ODE = Liouville PDE). There exists a unique solu-
tion to the Liouville PDE (B.2), which is concentrated on the solution of the
Cauchy ODEXx(t) = f (t;x(t)).

B.2 Notions for the Liouville Equation

This section presents some important notions and a theorem related to the
Liouville equation which can be seen in [47] (Apprendix, section 5.4).

De nition 46. Let T be aBorel map :X ! Y, the push forward (or image
measure) of through T is the Borel measure, denoted] denedonY by

T] (B)= (fx2 X :T(x) 2 Bg); for every Borel subset B of Y
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We remark that T] can equivalently be de ned by the change of variables
formula: z z

,dTl = (Te0)d (x); 8 2 C(Y): (B.4)

Let f be a smooth vector- eldR, RY! RY such that there is a constant
C such that

jf(tx)j6 CA+jxj); jf(tx) f(ty)i6e Cix vj, 8(txy):

For x 2 RY, let us denote the ow mapt 7! X(x) as the value at timet
of the solution of the nonautonomous ODE

y(s) = f(s;y(s)); y(0) = x:
Which means that X, satis es
@X(x) = T (t;X(X)); Xo(x)=x; (x)2 R, R

Let , be a probability measure onRY, that captures an initial spatial
distribution of particles that follow the ow of f. We shall see that := X;] o
is identi ed by the following PDE, the Liouville equation:

@ +div( f)=0 (B.5)

with the initial condition:
jtzo = 0 (B.6)

Since none of regularity assumption is made on ( could be a Dirac
mass and thenX;] o would remain a Dirac mass for every > 0), we have
to interpret the continuity equation in the weak sense i.e. in the sense of
distributions. The family of probability measurest 7! ; is a measure-valued
solution of (B.5)-(B.6) if:

it is continuous in the sense that8 2 C.(RY), the map
z z
M :t7! ) d ¢ is continuous on [01 ) and M (0) = ) d o; (B.7)
R R
8T >0,8r>0and8 2 CY[0;T] RY suchthat '(T;:) =0 and
' (t;:) is supported byB, for everyt 2 [0; T], we have
zZ;: Z z
(@ (EX)+ T (LX) " (Ex))d ((x) dt=" " (0;x)d o(x): (B.8)

The equation (B.8) is the weak formulation of the continuity equation
(B.5). The demonstration consists of taking a test-function, multiplying
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(B.5) by ' and then integrating, we obtain:
(@ +div(f)=0
=) @ + pdiv(f)=0
5 "@ o+ (T)dr N ©@)d, “gradif =0
| —{z——}
0
=) (@ +gradd ) = (0o
=) 0 w(@ +firt)d dt= ot (0;0)d o

Theorem B.2. The measure-valued curve7! X,] o is the unique measure-
valued solution of (B.5)-(B.6).

Proof : It is obvious that t 7!  := X] ¢ satis es the continuity con-
dition (B.7). Then it remains to prove that t 7! ; := X] o satises the
continuity equation. Let ' be a test-function, then using the de nition
t .= X¢] o, Fubini's theorem and' (T;:) =0, we have

z; 2
FEj(@ (tx)+ £ (tx)r " (tx))d (x))dt

Z

= (@ EX00* TEXO0T " GX () d)d ofx)
Al S

= (S0 @xeondnd o0
ZR4 0 t 7

= Rd(' (T; X1 (X)) " (0;Xo(x)))d o(X) = Rd' (0;x)d o(x):

SoX¢] o is a measure-valued solution of (B.5)-(B.6).
To prove uniqueness, suppose that7!  andt 7!  are two solutions
and let ;= ; t, SO for every test-function' , we have
zZ;: Z
d(@ (t;x)+ f(t;x)r " (t;x))d ((x) dt=0: (B.9)
R
Let 2 C.((0;+1) RY and let us consider the linear transport PDE:
@ +fr' = on (0;T) RY '(T:)=0: (B.10)

It can be equivalently written as

d 1 1

gil X=X () " (T5) =0
which can be integrated as

L X (X)) = tT (s; Xs(x))ds
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which gives that the unique solution of (B.10) is

Z7
' (tx) = , (s;Xs X, }s))ds:

This function is compactly supported in space uniformly in time 2 [0; T],
we can then use it as test-function in (B.9), which gives

zZ:2Z
(t;x)d ¢(x)dt=0:

This implies =0 because is arbitrary. So the uniqueness is proved.}
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