
HAL Id: tel-03716427
https://laas.hal.science/tel-03716427

Submitted on 7 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Cost-driven Approach for Virtualized Network
Services Life-cycle Management)

Nour El Houda Nouar

To cite this version:
Nour El Houda Nouar. A Cost-driven Approach for Virtualized Network Services Life-cycle Manage-
ment). Networking and Internet Architecture [cs.NI]. Université Toulouse 1 Capitole, 2022. English.
�NNT : �. �tel-03716427�

https://laas.hal.science/tel-03716427
https://hal.archives-ouvertes.fr


THÈSETHÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ FÉDÉRALE TOULOUSE
MIDI-PYRÉNÉES

Délivré par :
l’Université Toulouse 1 Capitole (UT1 Capitole)

Présentée et soutenue le 15/03/2022 par :
Nour El Houda NOUAR

A Cost-driven Approach for Virtualized Network Services Life-cycle
Management

JURY
Isabelle BORNE Professeur d’Université Président du Jury
Jean-C LAPAYRE Professeur d’Université Rapporteur
Salima BENBERNOU Professeur d’Université Rapporteur
Toufik AHMED Professeur d’Université Rapporteur

École doctorale et spécialité :
MITT : Domaine STIC : Réseaux, Télécoms, Systèmes et Architecture

Unité de Recherche :
Laboratoire d’analyse et d’architecture des systèmes

Directeur(s) de Thèse :
Khalil DRIRA, Noura FACI , Said TAZI et Sami YANGUI





i

Acknowledgments

I first would like to thank the members of my jury for the time they spent on my work
and for their helpful remarks.

I would like to thank my supervisors for these years during which they accompanied
me and encouraged me in my thesis work.

I would like to thank all the present and past members of the SARA team for
welcoming me there. Especially Olivier BRUN and Ali EL-AMINE, working with you
has been very rewarding, both scientifically and humanly.

Thanks to all my friends, especially Raoua, with whom I shared these years, for
helping me survive all the stress and for making the hours of depression of writing
bearable and often even enjoyable. And especially thanks to Fadel for supporting me
and being always present despite everything.

Lastly, my family deserves endless gratitude: my father and my mother for sup-
porting and unconditionally loving me, and my sisters and brother, Rym, Ikram, and
Hamza, you are my soulmates, I am grateful to have you in my life. To my family, I
give everything, including this.





Abstract:
Network Function Virtualization (NFV) is widely expected to be a backbone of

the future service providers by allowing to run Virtualized Network Functions (VNF)
on top of generic Commercial-Off-The-Shelf (COTS) hardware, anytime and anywhere
in the network. This revolutionary concept transforms how VNFs, along with their
connectivity through the Network Service (NS) concept, are designed, deployed, and
managed. Intuitively, the agility and cost-effectiveness aim to decrease CAPital EX-
penditure (CAPEX) and OPrational EXpenditure (OPEX). However, in order to ac-
complish such goal, both technological, conceptual, and management advances are
required.

At present, operational NS provisioning and management solutions are not mature
enough. On the one hand, a lack of a shared understanding of VNF descriptions
and automated discovery mechanisms, which can undoubtedly be observed due to the
heterogeneity of technologies and providers, make the NS design phase non-efficient
and time-consuming. On the other hand, following the standards specification, NS
provision necessarily implies instantiating all the involved VNFs and configuring all
connectivity mentioned in the description template. This rigid instantiation obliges NS
providers to anticipate, compose, and configure all possible VNFs and connectivities.
Moreover, optimal and automatic placement of the composed VNFs and mapping them
to the available resources over the multi-domain environment while considering QoS
and SLA constraints can be evenly essential.

This thesis intends to address the aforementioned practical challenges and propose
using a standard and convenient domain language through ontological approaches to
describe and discover NFV components. Further, we introduce a novel approach that
enables dynamic and re-configurable wiring among VNF in a given NS. Besides, a lazy
resources allocation solution to the Network Service Embedding problem is proposed.
This solution optimizes both VNF placement for each network service along with
traffic routing across VNFs while satisfying constraints like location and latency.

Keywords: ETSI-NFV; MANO; Network Service; Semantic description; Seman-
tic discovery; Instantiation; Deployment; Management.





Contents

1 Introduction 1
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivations and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Research outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.2 Objectives and contributions . . . . . . . . . . . . . . . . . . . . 6

1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background and thesis positioning 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Background information . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 ETSI specification for the NFV . . . . . . . . . . . . . . . . . . . 10
2.2.2 NFV paradigm and analogy with service computing . . . . . . . 12
2.2.3 ETSI-NFV management and orchestration aspects . . . . . . . . 15
2.2.4 NFV restrain cost benefits . . . . . . . . . . . . . . . . . . . . . . 17

2.3 The State-Of-The-Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.1 Network service life-cycle management . . . . . . . . . . . . . . . 18
2.3.2 On network service design . . . . . . . . . . . . . . . . . . . . . . 19
2.3.3 On network service instantiation and management . . . . . . . . 23
2.3.4 On network service deployment and management . . . . . . . . . 25

2.4 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 A Semantic Virtualized Network Functions Description and Discovery
Model 31
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 A semantic approach for VNF description and discovery . . . . . . . . . 32

3.2.1 VIKING ontology for VNF description model . . . . . . . . . . . 32
3.2.2 VNF discovery model . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Mastermyr Chest architecture and implementation . . . . . . . . . . . . 40
3.3.1 Proof-of-concept architecture . . . . . . . . . . . . . . . . . . . . 40
3.3.2 Mastermyr Chest integration to ETSI NFV MANO . . . . . . . 43

3.4 Validation and evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4.1 Test collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4.2 Performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.3 Robustness evaluation . . . . . . . . . . . . . . . . . . . . . . . . 55



vi Contents

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Agile and Dynamic Virtualized Network Functions Wiring in Network
Services 57
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 A novel dynamic and re-configurable VNF wiring in NS . . . . . . . . . 58

4.2.1 Motivating use case . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2.2 Requirements and foundations . . . . . . . . . . . . . . . . . . . 60
4.2.3 High-level architecture . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Dyvine architecture and implementation . . . . . . . . . . . . . . . . . . 63
4.3.1 Proof-of-Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3.2 Running prototype . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Validation and evaluation experiments . . . . . . . . . . . . . . . . . . . 67
4.4.1 Testbed settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.4.2 Performance results and analysis . . . . . . . . . . . . . . . . . . 69
4.4.3 Effectiveness validation . . . . . . . . . . . . . . . . . . . . . . . 72
4.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Resource Optimization for Network Service Deployment 75
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 Resources model and NS embedding requests . . . . . . . . . . . . . . . 76
5.3 NSE problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.4 Heuristic NSE problem-solving . . . . . . . . . . . . . . . . . . . . . . . 82

5.4.1 Heuristic search for candidate paths . . . . . . . . . . . . . . . . 82
5.4.2 Adjusting NSE formulation . . . . . . . . . . . . . . . . . . . . . 83

5.5 Dynamic pricing scheme for resource allocation . . . . . . . . . . . . . . 85
5.6 Simulation and evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.6.1 Parameter settings for simulation . . . . . . . . . . . . . . . . . . 86
5.6.2 Performance and quality metrics . . . . . . . . . . . . . . . . . . 88
5.6.3 Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.6.4 Dynamic pricing impact analysis . . . . . . . . . . . . . . . . . . 92

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6 Conclusion and perspectives 95
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2 Overview on contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.3 Obtained results and lessons learned . . . . . . . . . . . . . . . . . . . . 96
6.4 Potentials future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Scientific production 99



Contents vii

Bibliography 101





List of Figures

1.1 The rising demand for applications/services during last years . . . . . . 2
1.2 NS life-cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 ETSI-NFV architecture overview[ETSI 2014] . . . . . . . . . . . . . . . 11
2.2 NS Connectivity management in ETSI NFV-MANO [ETSI 2021] . . . . 16
3.1 A high-level view of VIKING design . . . . . . . . . . . . . . . . . . . . . 33
3.2 VIKING’s core concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Security concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4 The Mastermyr chest tool architecture . . . . . . . . . . . . . . . . . . . 41
3.5 Snapshots of the description tool interfaces . . . . . . . . . . . . . . . . 42
3.6 The Mastermyr Chest integration to ETSI NFV MANO . . . . . . . . . . 44
3.7 VIKING’s partial syntactic representation . . . . . . . . . . . . . . . . . . 45
3.8 Probability distribution in D over Q . . . . . . . . . . . . . . . . . . . . 50
3.9 Recall rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.10 Precision rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.11 Decision threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.12 R/P ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.13 F-measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.14 Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.15 The total ranked list of the discovered VNFs . . . . . . . . . . . . . . . 56
3.16 Excerpt of a list of relevant VNFs following a requirement change . . . . 56
4.1 Network services and connectivity for vehicles platooning in 5G . . . . . 59
4.2 Network traffic representation per routing logic . . . . . . . . . . . . . . 61
4.3 Considered VNF types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4 System architecture overview . . . . . . . . . . . . . . . . . . . . . . . . 64
4.5 DYVINE architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.6 A snapshot of DYVINE - the security NS design . . . . . . . . . . . . . 66
4.7 The 3 implemented options for wiring VNFs within the security NS in

the car platoon case study . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.8 One-way latency while increasing the rate of Attacks . . . . . . . . . . . 70
4.9 Mean Time-To-Operation . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.10 Cumulative moving average . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.11 Throughput variation during pre- and post-attack (Option 1) . . . . . . 73
5.1 Notations used to describe network services . . . . . . . . . . . . . . . . 77
5.2 Trust relationships between applications and infrastructure providers . . 79
5.3 NSE orchestration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.4 Network N ′ with two different cliques . . . . . . . . . . . . . . . . . . . 83



x List of Figures

5.5 Expanded network for NS . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.6 Changing costs based on resource utilization rates for Provider 1 . . . . 86
5.7 Average execution time (seconds) with k= 10 . . . . . . . . . . . . . . . 91
5.8 Dynamic pricing’s impact . . . . . . . . . . . . . . . . . . . . . . . . . . 93



List of Tables

2.1 Dissimilarities between Web services and VNFs life-cycle implementation 14
2.2 Synthesis of related works to the NS design . . . . . . . . . . . . . . . . 27
2.3 Synthesis of related works to the NS instantiation and management . . . 28
2.4 Synthesis of related works to the NS deployment and management . . . 29

3.1 Relations in VIKING-F with the concept VNF . . . . . . . . . . . . . . . 35
3.2 Relations in VIKING-NF with the concept VNF . . . . . . . . . . . . . . 38
3.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4 Association rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5 Sample queries (Q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.6 Query classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.7 Expected VNF properties per query . . . . . . . . . . . . . . . . . . . . 49
3.8 Sample queries (Q′) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1 Features associated with infrastructures . . . . . . . . . . . . . . . . . . 76
5.2 Features associated with network service embedding requests . . . . . . 78
5.3 Network Service requirements . . . . . . . . . . . . . . . . . . . . . . . . 87
5.4 Virtual Network Functions set for each application . . . . . . . . . . . . 87
5.5 Relative quality gap (%± std) with k = 10 . . . . . . . . . . . . . . . . 90





Chapter 1

Introduction

1.1 Context

The newly introduced computing models (e.g., cloud computing, edge/fog computing)
and technologies (e.g., virtualization, the fifth generation of telcos mobile network)
enabled a myriad of novel applications that range from health care to intelligent trans-
portation/manufacturing and multimedia [TeleGeography ] (see Fig.1.1). This novel
ecosystem relies on a specific business model where every single entity could be modeled,
implemented, offered, and/or consumed as a service. Netflix, Airbnb, and Google are
among the forceful examples. All of them operate massive infrastructure and content
according to well-designed business processes and procedures to provide the prospec-
tive users with the required services in an agile and cost-effective fashion. For instance,
Netflix is currently the first multimedia content host globally, while the company does
not own any of that content. Similarly, Airbnb is currently the first hotel company
in the world. It is basically the only provider that could propose accommodation in
almost every single city in the world. However, Airbnb owns neither hotels nor any
accommodation facilities on Earth. From operating point of view, all these companies
operate according to the service computing model. From business point of view, all of
them rely on the utility computing model, where features and added-value products
are managed and offered as services. These companies could be then referred to as
Service Providers (SP) and the prospective end-users as the Service Consumers (SC).
Obviously, SP continuously aims to reduce the high Capital Expenditures (CAPEX)
and Operational Expenditures (OPEX) of their investments. For instance, Netflix in-
troduced the DevOps perspective to bring agility and automation to the services life
cycle. Google made up the Site Reliability Engineering (SRE) concept [goo ] to operate
the large data centers it owns in an automated and sometimes autonomous way.

Against this backdrop, the concept of Network Functions Virtualization (NFV)
was introduced. Broadly speaking, NFV enables the virtualization of the network
and the network functions (a.k.a. middle-boxes) to benefit from the virtualization
advantages (i.e., flexibility, dynamicity, cost-effectiveness) when operating the network.
In the earlier ages of cloud computing, the Everything-as-a-Service (XaaS for short)
service delivery models were implemented as IaaS for infrastructure resources, PaaS for
platform resources, and SaaS for software. This stipulates that applications could be
virtualized and offered as SaaS. These applications are hosted and executed over PaaS



2 Chapter 1. Introduction

Figure 1.1: The rising demand for applications/services during last years

resources that are provisioned on IaaS appliances. However, the link between these
different layers, i.e., the network, remains physical and static. With NFV, virtualization
is enabled everywhere, from the applications down to the infrastructures through the
connecting network and middle-boxes. In conventional networks, middle-boxes were
statically provisioned in the network due to the fact that they are tightly coupled to the
underlying hardware. This brings enormous CAPEX and OPEX, considering the labor-
intensive manual efforts for the deployment and configuration of middle-boxes. NFV
allows decoupling the network functions from the underlying hardware. This eventually
enables the dynamic provisioning of middle-boxes (e.g., NAT, firewall) on top of any
generic, Commercial-Off-The-Shelf (COTS) hardware, anytime and anywhere in the
network.

The European Telecommunications Standards Institute (ETSI) has defined a ref-
erence architectural framework for NFV [ETSI 2012, Virtualisation 2014]. The NFV
framework includes three main components: Virtualized Network Functions (VNFs),
NFV Infrastructure (NFVI), and NFV Management and Orchestration (MANO). A
VNF is the software implementation of a given middle-box. NFVI provides virtualized
and physical resources as services. NFVI is managed by MANO, providing the required
environments for VNFs to be deployed and executed. NFV MANO is also responsible
for VNF and network service life cycle provisioning including deployment, execution,
and management.

1.2 Motivations and Challenges

The Web Services (WS) example is the most used implementation that applies the ser-
vice computing architecture. Originally, WSs were designed to be hosted and executed
by service containers. Hence, the minimal required resources are packaged within their
artifacts. To this end, end-users rely on the information in the description file WSDL1,
which is stored in a centralized and unique UDDI 2, to find the appropriate WSs that
meet their needs. This information describes the communication between the server

1Web Services Description Language
2Universal Description, Discovery, and Integration



1.2. Motivations and Challenges 3

and the client, the transport protocol used, the WS interfaces, etc.
It is advocated that NFV is at the crossroad of networking and service computing

research fields. The same principles and lifecycle management procedures could be
applied to NFV resources in general, and Virtualized Network Functions (VNF) and
Network Services (NS) in particular. VNFs represent the concrete implementation of
the network function in NFV while NS involve a composition of a set of VNFs to
implement a more complex network function.In other words, NFV aims at provisioning
the NS through the VNF concept [Mijumbi 2016]. The latter could be provided in the
same way as any other kind of services such as telco or Web services, indeed, Service-
Oriented Architecture (SOA) principles (e.g., service abstraction, discoverability, and
composability) [Thomas 2007, Ordanini 2008] could ensure the viability of network
services’ ecosystem that could be dynamically and flexibly provisioned, thus coping with
changeable network provider (i.e., the service consumer) needs and dynamic Quality of
Service (QoS) requirements along with context conditions.

Contrary to the VNFs that are first designed and developed as software before be-
ing published in appropriate repositories. VNF artifacts are standalone and need to
properly incorporate all the necessary resources to execute the VNFs (serverless dis-
tribution). Before their deployment, VNFs are instantiated from the proprietary mar-
ketplaces into the target network. In fact, the end hosting nodes range from powerful
computing servers to virtual machines and smartphones [Chowdhury 2010] [Tao 2017].
Since nodes have different capabilities (e.g., CPU, RAM, graphics resolution, band-
width), this implies that additional checking of the correct matching between the non-
functional requirements of the discovered VNFs and the potential hosting nodes’ char-
acteristics needs to be integrated into the discovery procedure. Following, they are
configured to be integrated as part of a specific topology.

As for the NS instantiation, the web services are instantiated based on a business
process, and managed during run-time following either orchestration or choreography
methods [Peltz 2003]. WSs are never downloaded and instantiated in the local domain,
in addition to the fact that they are process-driven. Unlike the NSs, which are mainly
orchestrated by a central entity, and the constituent VNFs are arranged according
to a Network Connectivity Topology (NCT) or without any connectivity specification
between them. They are data-driven [Walsh 2002] and their source code need to be
integrated into the host node.

When it comes to the deployment phase, WSs do not make any placement decision
as they are invoked remotely. Unlike the VNFs, they need to be placed and routed
according to the NCT with an optimized solution that aims to minimize the total
deployment cost in terms of allocated resources while satisfying constraints like location
and latency.

Last but not least, we noticed that the management of WSs and VNFs, that make
up a given NS, could be slightly different. The VNFs interaction is not limited to ba-



4 Chapter 1. Introduction

sic operations like the case with WSs. It should also include additional sophisticated
operation management dedicated to each VNF. Further, the deployed VNFs, when nec-
essary, could dynamically be re-configured and adjusted, depending on the need (e.g.,
request type, data type), during run-time. Thus, the composition and placement re-
quests issued for these VNFs should vary accordingly.

Wherefore, the existing service standards, studies, and frameworks do not address
VNFs and NSs life-cycle management specificities.

1.3 Research outline

In this thesis, we intended to explore the NS provisioning life-cycle summarized in
Fig. 1.2

1.3.1 Research questions

The NS life-cycle is mainly composed into 4 phases [nfv 2018, Boubendir 2018,
Yangui 2016]. In the following, we detail each phase and highlight their limitations:

NS design phase. Valuable standardization initiatives (e.g., ETSI
NFV [Virtualisation 2014], IETF SFC [IETF 2018], and OASIS
TOSCA [Specification 2017]) focus on providing an intent framework and
enabling VNF provisioning capabilities such as description, publication,
and discovery mechanisms to design the NS. Similarly, several research pa-
pers (e.g., [Oliver 2018], [Bouten 2016], [Hoyos 2016]) proposed description
models for VNFs. On the one hand, these proposed VNF descriptions and
publication models are mostly not comprehensive. Indeed, they include details
on VNF deployment but fail to cover their associated functional and non-
functional specifications. Functional characteristics of VNFs refer to the business
functionality that a given VNF implements, while non-functional characteristics
refer to what the VNF requires for proper functioning. In other words, these
characteristics aim to describe the optimal use state and/or the requirements
of the VNF in terms of security, reliability, performance, maintainability, and
so on. On the other hand, the existing discovery approaches remain specific to
the owner providers. Each provider defines particular procedures and practices
to parse VNF descriptors and select relevant information for them. Where
the prospective consumers (e.g., NS provider) still need to manually select the
required VNF rather than having an automated discovery mechanism. All these
limitations are due to several reasons. In NFV broad landscape, a lack of a
shared understanding of VNF descriptions can undoubtedly be observed because
of the heterogeneity of technologies and providers. Besides, implicit knowledge
leads to possible different interpretations. Consequently, consumers are obliged



1.3. Research outline 5

to parse a priori known sources to look for VNF candidates. This way of doing
is time-consuming and often results in a minimal number of VNF candidates,
not all relevant concerning consumers’ initial needs.

NS instantiation phase. The VNFs could be arranged and chained together in
a pre-defined order to provide end-to-end services [NFV 2017]. Moreover, sev-
eral industrial groups are developing standards for VNF chaining. For example,
ETSI has proposed a service architecture that uses network forwarding graphs to
forward traffic between virtual network functions, called VNF Forwarding Graph
(VNF-FG). However, despite all the promising advantages brought by NFV, there
are still many fundamental challenges that need to be tackled in NFV-based chain-
ing with more attention. For instance, in VNF-FG, the VNFs are arranged as a
set of functions according to a Network Connectivity Topology (NCT) or with no
connectivity specification between them. However, ETSI NFV does not provide
a specific control technique that dictates the execution order and the composi-
tion logic of VNFs in a given NS. This reflects negatively on the NS provisioning
methodology and procedures. Indeed, at instantiation time, developers must en-
tirely rely on SDN, along with its inherent service function chaining concept, to
design and configure the routing rules between the involved VNFs. Consequently,
they have to foresee and plan all possible and practical composition scenarios in
the NS. Moreover, they should instantiate, deploy, configure, and manage all
these potential paths at run-time, including those that will rarely be or never
be used. On top of being costly, tedious, and time-consuming, this way of pro-
ceeding contradicts NFV spirit, specifically virtualization, promoting agility and
cost-effectiveness in networking applications. Yet another limitation concerns
the routing path models supported by SDN. In fact, SDN allows only sequential
service function chains to be provisioned, where VNFs are tied in a linear way.
Therefore, more complex and sophisticated chains are still not supported in the
NS.

NS deployment and management phase. In order to satisfy end-users’ re-
quirements, the network service can be instantiated and deployed over multi-
administrative domains expanded over larger areas (e.g., different countries) or
one compass area where its QoS can only be guaranteed by combining resources
from multiple administrative operators. Furthermore, the network service in-
stance could dynamically be reconfigured and adjusted during run-time depend-
ing on the need (e.g., request type, data type). Consequently, the resource al-
location requests issued for this kind of network service should vary over time,
i.e., new/existing VNFs and the corresponding virtual links are added/removed.
A primary alternative to support such a procedure could be one-to-one map-
ping between pre-defined provisioning requests and available resources over



6 Chapter 1. Introduction

the different NFVIs. However, this alternative remains static and fails to up-
date the placement decisions following any perspective changes on the deploy-
ment/placement requests. For instance, changes would reflect SLAs updates,
such as billing/metering variation or technical breakdown. Therefore, a Net-
work Service Embedding (NSE) solution that provides VNF placement for each
network service along with traffic routing across VNFs while satisfying constraints
like location and latency is needed. This optimization aims at minimizing the net-
work service deployment cost in terms of allocated resources.

Figure 1.2: NS life-cycle

1.3.2 Objectives and contributions

Most challenges in the field of NFV are associated with management and orchestration
operations, such as automated provision, configuration, and optimisation. For this
purpose, the key factor towards accelerating NFV adoption is not associated with a
single specific technology, but rather with a complete end-to-end provision framework
which will fulfil all the key NFV-related requirements from the network operators’ as
well as the customers’ point of view. In this context, this thesis considers.

1. Semantic Description and Discovery of Virtual Network Functions.
This contribution introduces a domain-independent VIrtualized networK func-
tIoN ontoloGy (called VIKING). The latter proposes a novel semantic-based



1.4. Thesis Organization 7

methodology to enable VNFs developers and owners to sufficiently describe the
capabilities and requirements of their VNFs prior to publication. Prospective
VNFs consumers use the same model to automate the discovery process, improve
its precision and rely on federated repositories systems if needed. Yet another con-
tribution is supporting the VNFs non-functional properties and user preferences
during the discovery process, in addition to the classical functional properties.

2. Agile and Dynamic Virtualized Network Functions Wiring in Network
Services. A novel approach is proposed to enable agile and dynamic NS compo-
sition as an extension to the ETSI NFV architectural framework. Broadly speak-
ing, this contribution initiative introduces novel technical VNFs, called routing
VNFs, with efficient re-configurable wiring capabilities for NSs. Furthermore,
this initiative distinguishes domain-specific aspects from the connectivity ones in
the NS definition. Domain-specific aspects are implemented with regular VNFs,
while the routing VNFs support connectivity aspects. By doing so, developers
will be able to change and update the NS’s composition logic at run-time, given
specific criteria (e.g., message type, data size, QoS metrics).

3. Resource Optimization for Network Service Deployment. This contribu-
tion introduces a lazy resources allocation solution to Network Service Embed-
ding (NSE) across multi-administrative domains problem. The proposed solution
optimizes both VNF placement for each network service along with traffic routing
across VNFs while satisfying constraints like location and latency. This optimiza-
tion aims at minimizing the network service deployment cost in terms of allocated
resources and when necessary. Further, prior to provisioning, the NFVO, with
the help of VIMs, will scrutinize the hosting capacity for each infrastructure and
bandwidth for each physical link over time.

1.4 Thesis Organization

The remaining of the thesis is centered around five main chapters, and is structured as
follows:

Chapter 2 provides the main concepts of the NFV system in order to provide the
background information that is necessary for the understanding of this thesis work.
The chapter also gives a literature overview and analysis of standardization efforts,
reference frameworks, and research works related to the main research questions of
this thesis. Chapter 3 addresses the problem of describing and discovering semantic
Virtual Network Functions with the primary objective of enabling VNFs developers
and owners to sufficiently relate the functional and non-functional capabilities and
the requirements of their VNFs before publication. Then, VNFs consumers use the
same model to automate their discovery process. In Chapter 4, a novel concept of



8 Chapter 1. Introduction

new routing-VNFs with re-configurable wiring capabilities that would allow agile and
dynamic VNFs wiring from design-time to run-time is presented. Finally, an optimal
solution for the NS embedding problem in the NFV ecosystem is proposed in Chapter 5.
It minimizes the network service total deployment cost in terms of allocated resources
while satisfying some constraints.



Chapter 2

Background and thesis
positioning

2.1 Introduction

Nowadays, Service Providers expand their market offerings beyond the network con-
nectivity with new value-added services, allowing them to enhance their service pro-
visioning and meet their consumers’ requirements. These services portfolios provide
a wide range of functionalities, covering from essential internet connectivity services,
such as IPTV delivery, to highly available and secure connectivity between business
sites [ITU 2015]. Of course, adopting value-added services to current communica-
tion service provisioning is not that simple. Even basic value-adds, like simple for-
mat conversions, necessitate new hardware. They rely massively on deploying various
chained middle-boxes, each of which operates a different network function, like net-
work address translation (NAT), firewall, encryption, Domain Name Service (DNS),
Caching, etc. Those devices are highly specialized hardware produced by several ven-
dors, available in abundance, and dispersed over the network. However, operating
these chained middle-boxes is immensely expensive and challenging since they should
be physically placed in the network and manually configured. In addition, their main-
tenance still requires both labor and equipment spending. Moreover, middle-boxes
scaling up/down cannot be performed faster, where most of them are over-provisioned
and possibly overloaded when the traffic gets unexpected peaks. These operations are
time-consuming and costly in terms of CAPital EXpenditures (CAPEX) and OPerating
EXpenditures (OPEX).

To face those limitations, a group of organizations launched in 2012 an initiative
around a new paradigm called Network Function Virtualization (NFV). They believe
that the best way to deliver value-added services with greatly simplified operations and
reduced costs is through NFV. Where, the network function are virtualized as a soft-
ware appliance called Virtualized Network Functions (VNF). To further understand the
implementation and design aspects of NFV, we must first understand its architecture
and how internal components interact with each other as well as with other external
elements of other systems.

The rest of this chapter is organized as follows. First, Section 2.2 provides a detailed



10 Chapter 2. Background and thesis positioning

overview of the NFV architecture, the service management in both service computing
and NFV settings, and evaluates the benefits gained from virtualization. Then Sec-
tion 2.3 discusses and synthesizes the state-of-the-art approaches related to network
service design, instantiation, deployment, and management.

2.2 Background information

This Section introduces fundamental and background information that are necessary
for the understanding of this work.

2.2.1 ETSI specification for the NFV

To further understand the implementation and design aspects of NFV, we must first
understand its architecture and how internal components interact with each other ex-
ternal components.

ETSI NFV Industry Specification Group (ISG) defined an architectural frame-
work [ETSI 2014] which enables flexible deployment and execution of VNFs and NSs on
virtualized infrastructure, as depicted in Fig. 2.1. This framework is composed of four
main interconnected functional blocks, each one with well-defined set of responsibilities
and interfaces, as described below:

• Operation/Business Support System (OSS/BSS). It is not a functional
component of the NFV architecture, but it represents the service provider’s back-
end system that operates its business requests. The NFV-MANO must provide
an interface for interoperability with OSS/BSS.

• Virtualized Network Function (VNF). It corresponds to the individual func-
tions of a network that have been virtualized and can be executed on the NFVI
equipment. In addition to the Element Management System (EMS) which is
responsible for the FCAPS (faults, configuration, accounting, performance, se-
curity management) for the functional part of the VNF.

• NFV Infrastructure (NFVI). It is made up of basic hardware resources that
contain compute facilities (COTS appliances), storage hardware (hard disks), and
network hardware (switches/routers). This resources are partitioned and shared
through a hypervisor layer which abstracts them. All of this form the virtual
infrastructure that contains the virtualized resources.

• NFV Management and Orchestration (NFV-MANO). It is the brain of
this architecture. It is responsible for driving the deployment, execution, and
operation of VNFs/NSs in the NFV infrastructure.



2.2. Background information 11

Figure 2.1: ETSI-NFV architecture overview[ETSI 2014]

NFV-MANO specifies open technologies and paradigms to orchestrate the NFVIs
and manage the life-cycle of VNFs/NSs based on their descriptors. It comprises three
main components, as follows:

• NFV Orchestrator (NFVO). It has two primary responsibilities. The Re-
source Orchestration (RO) ensures an optimized allocation of the necessary re-
sources and the connectivity between VNFs. And, the Network Service Orches-
tration (NSO) responsible for managing the Network Service (NS) life-cycle.

• VNF Manager (VNFM). It is in charge of the life-cycle management of VNF
instances and the execution of FCAPS management, under the control of the
NFVO.

• Virtualised Infrastructure Manager (VIM). It translates the directives of
NFVO in order to controls and manages the NFVI compute, storage, and network
resources in one domain. In case of multiple VIMs in an NFV architecture, each
VIM manages its respective NFV Infrastructure (NFVI) domain.

In addition to these functional blocks, NFV-MANO includes Data Repositories (DR)
these are repositories that keep different types of information in the NFV-MANO. DR



12 Chapter 2. Background and thesis positioning

contains four types of repositories: VNF and NS catalogs, NFV instances, and NFVI
resources repository. The first two catalogs are descriptor repositories of on-boarded
VNFs and NSs, respectively. VNF catalog consists of a set of templates that describe
the VNFs. NS catalog represents a set of pre-defined templates of the NS which in-
clude the constituent VNFs and their connectivity. We give more details on these
templates in Section 2.2.3. NS instance repository preserves VNF and NS instances re-
lated information. NFVI repository maintains available, reserved, and allocated NFVI
resources and their state information. NFV-MANO functional blocks have access to
these repositories to perform NS/VNF and NFVI orchestration and management.

Many communities and leading tech vendors are offering ETSI align NFV-MANO
projects and products. Hereafter, we briefly present some open source industry projects.

Open Source MANO (OSM) is an ETSI-hosted open-source project launched in
2016 [osm ]. The implemented architecture includes three functional blocks NFVO,
VNFM, and VIM. These blocks perform the service orchestration and configuration,
abstraction of VNFs, and orchestration and management of the infrastructure resources.

Open Networking Automation Platform (ONAP) [ona 2021] is a platform with or-
chestration capabilities, which can be applied to both physical and virtual network
functions. They followed a modular implementation and supported YANG and TOSCA
data models.

OpenBaton [Carella 2015] is an open-source platform align with ETSI-NFV archi-
tecture framework. It is composed of multiple components implemented in JAVA.
Their orchestration design allows the integration of several VIM without changing the
orchestrator logic.

Cloudify [clo 2022] is an open-source platform developed to perform cloud orches-
tration software. This platform permits modeling network services and automating
their life-cycle management. It allows service mono and multi-domain deployment.

2.2.2 NFV paradigm and analogy with service computing

NFV is at the crossroad of networking and service computing research fields for many
reasons. From one side, NFV aims to provision the network functions decoupled from
their proprietary hardware appliances and run them as software through the VNF
concept. The latter is packaged as virtual machines or containers and provided with its
deployment description file. NFV allows the use of these VNFs to compose rich network
services. The connection of the constituent VNFs is defined by network connectivity
topology. On the other side, service computing refers to the loose coupling of various
components of an application to its operating systems and other technologies. These
components are separated into autonomous and self-describing units, called services.
The services are accessible via predefined network interfaces. This allows developers
to create and reuse them in developing new applications efficiently. Moreover, these



2.2. Background information 13

components can communicate with each other by sending data in a well-defined format.
The network service falls into the definition of IT services at large [Mijumbi 2016];

so, it could be provided and managed in the same way as any other kind of services
such as telco or web services. In its simplest form, the service life-cycle consists of three
phases: service design, service composition, and service execution, defined as follows:

Service design. During this phase, the service provider should provide enough informa-
tion about its requirements and preferences to dynamically discover the desired
functions.

Service instantiation. This phase consists of transforming the service requirements to
a concrete composite of functions with more connectivity aspects.

Service deployment and execution. In this phase, the constructed composite service is
deployed and executed to allow its utilization by end-users.

Despite the similarities, the reader should underline that the implemented service life-
cycle phases remain specific to service computing’s operating procedures. For illustra-
tion purposes, we present Web-Services (WS) as the most used implementation applying
the service computing architecture [Yang 2004]. Table 2.1 sums up the fundamental
differences between VNFs and WSs operations for every single phase of the life-cycle.
On one side, WSs are designed to be hosted and executed by service containers (e.g.,
Apache Tomcat, Apache Axis2). Consequently, minimal resources are packaged within
the artifact. Specifically, the WSs are deployed only once over the hosting service con-
tainers and can be simultaneously invoked by several end-users. To this end, end-users
rely on the information in the WSDL. The latter is stored in a centralized and unique
UDDI. The discovery of the most relevant associated WSDL could be either syntactic
or semantic. In all cases, web services are never downloaded and instantiated in the lo-
cal domain, as they are hosted with local servers on the cloud. On the other side, VNFs
are first designed and developed before being published in appropriate repositories for
prospective consumers. VNF artifacts are standalone and need to properly incorporate
all the necessary resources to execute the VNFs (serverless distribution). Before their
deployment, VNFs are instantiated from proprietary marketplaces into the target net-
work. The choice of the VNFs placement is based on some optimization objectives (e.g.,
minimize resource consumption and cost). After, they are configured to be integrated
as part of a specific topology. Once deployed, VNFs are executed and, when necessary,
are subject to management considerations at runtime (e.g., scale-up/down, migrate).
The discrepancy between the Web services and VNFs models and the operating proce-
dures shows clearly that it is not appropriate to recall existing approaches that manage
the WSs and simply adapt or extend them to address appropriate approaches for NFV.
Therefore, in the following section, we present how ETSI-NFV manage the network
service life-cycle and orchestrate required resource for the proper functioning of NSs.



14 Chapter 2. Background and thesis positioning

Table 2.1: Dissimilarities between Web services and VNFs life-cycle implementation

life-cycle phase Web Services VNFs
Design/
Development

Deployable that consists of ar-
tifact and source code. Web
service deployable is simple
code that needs to be hosted
and executed within Web
servers

Deployable that consists of
standalone artifact capable of
running in a serverless fashion

Description Web Service Description Lan-
guage (WSDL)

VNF Descriptor (VNFD)

Publication Universal Description Discov-
ery and Integration (UDDI)

Proprietary VNF repositories

Discovery Manual (by user) or auto-
matic (using matchmakers)

Manual (by user) or auto-
matic (using matchmakers)

Instantiation No instantiation is required.
Web services are invoked
as remote resources through
valid Unified Resource Identi-
fier (URI)

An instance of VNF is down-
loaded, installed, and config-
ured over a virtualized infras-
tructure

Placement Static placement within web
servers on the cloud

Dynamic placement according
to an optimization objective
in a target domain within a
network topology

Execution Remote Procedure Call
(RPC)

Local calls from the network
domain



2.2. Background information 15

2.2.3 ETSI-NFV management and orchestration aspects

As mentioned in Section 2.2.1, ETSI NFV enables providers to model and compose
VNFs to deliver sophisticated network services for prospective consumers. Thus, NFV-
MANO relies on deployment descriptors which include the necessary resources and
operations information for proper network service management and orchestration. In
what follows, we provide a detailed description of the information elements needed by
NFV-MANO. Then, we illustrate how NFV-MANO uses them to perform NS orches-
tration and management operations. A descriptor is a deployment and configuration
template that defines the main properties and requirements of the managed objects,
such as a VNF and NS.

Starting with the elementary component, the VNF. The associated VNFD is
a deployment and operational template that encapsulates all necessary information
that specifies VNF’s characteristics like its internal composition and required re-
sources [ETSI 2021], etc. A VNF could consist of several distinct VNF Compo-
nents (VNFC) and comprise one or many virtual deployment units (VDU). Each VDU
can support specific deployment resources and operation behavior and hosts one or more
VNFC. Mainly, a VDU describes the Virtual Compute (VC), Virtual Storage (VS), and
Virtual Memory (VM) resources. These resources’ data are necessary for deploying a
VNFC. VNFC can be linked via either connection points to local VDUs or external
connection points to VDUs that belong to other VNFs. The virtual links description
in the VNFD indicates how the VDUs are connected and via which connection points.
The deployment flavor describes a specific template/image of a VNF with capacity and
performance requirements. The NFVO, VNFM utilize this VNFD to instantiate the
VNF and reserves its required resources and to manage its life-cycle, respectively.

NSD represents the description of the constituent VNFs with their connectivities.
Fig. 2.2 depicts the core concepts describing the NS connectivity. The NS exposes
service access points (i.e., specific connection endpoints) that define the NS interfaces.
Similarly, the VNFs that compose the NS are bound to each other by Virtual Links
(VL s) that connect their associated access points. Altogether, it represents the Net-
work Connectivity Topology (NCT). The NCT formalizes a high-logical view of con-
nectivity between VNFs in the NS. The reader should note that constituent VNFs can
be arranged in NS with unspecified connectivity between them [NFV 2017]. NCT en-
compasses different VNF Forwarding Graphs (VNFFGs). A VNFFG describes NS
topology. It references a set of connection points, service access points, the descriptors
of its constituent VNFs, and the VLs that connect them. A VNFFG embraces one
or more sequential, alternative, and/or concurrent Network Forwarding Paths (NFPs)
where a given NFP implements the concrete network path for the actual traffic flows
in a VL.

As reported in Section 2.2.1, to orchestrate an NS, based on the reported NSD, the
NFVO uses both Resource Orchestrator (RO) and Service Orchestrator (SO), and it



16 Chapter 2. Background and thesis positioning

Figure 2.2: NS Connectivity management in ETSI NFV-MANO [ETSI 2021]

follows a workflow hierarchy, as follows:

Network Service design. First, the NS provider prepares the NSD, referring to the
constituent VNFs and VNFFGs. Each NS provider has its proper manner of
discovering and selecting the desired VNFs.

Network Service on-board. This procedure refers to submitting the prepared NSD
to the NFVO in the catalog. It is worth mentioning that the NS provider is in
charge of preparing and onboarding the constituent VNFDs, as well.

Network Service instantiation. When this procedure is triggered, the NFVO collects
all necessary information from VNFDs and NSD. RO communicates the required
resources to the appropriate VIMs, where the SO passes the VNF information to
the VNFM. The latter checks the feasibility of VNFs instantiation over NFVI.
Once it is validated, RO executes the resource allocation needed for the NS. Then,
VNFM instantiates the VNFs with any specific life-cycle parameters.

Network Service management. During run-time, the VIMs and VNFM update the
NFVO with the execution status of the VNFs and their connectivity. Based on
this information, NFVO may update, delete, terminate processes on the VNFFGs,
VNFs, or NSs.



2.2. Background information 17

2.2.4 NFV restrain cost benefits

As previous sections show, ETSI-NFV proposed the virtualization concept with its as-
sociated technology, likely leading to considerable financial gains over time. According
to [tco 2015], virtualization could allow an operator to reduce up to 2/3 of its Capital
Expenditure (CAPEX), which refers to the initial cost to deploy the NFV solution, and
Operational Expenditure (OPEX), which refers to the operational cost to maintain the
proposed solution. Thereby, SPs can gain some cost-benefit, but the initial NFV vi-
sion does not look as promising as expected from a management perspective. Indeed,
the cost has several facets, including the ability to bring new services and features to
market in extremely short timescales; guarantee the highest levels of service agility
based on business/network policies with the lowest cost of operations; ensure service
placement and routing while minimizing the total deployment cost, etc.

Unfortunately, the service providers nowadays cannot achieve the agility, dynamic-
ity, and cost-effectiveness they desire for several reasons. First, the solutions proposed
by standardization have addressed uniquely unprecedented challenges imposed by the
new network service architecture. However, they lack performance analysis methods for
their proposed solutions. In NFV broad landscape, a lack of a shared understanding of
VNF descriptions can undoubtedly be observed due to the heterogeneity of technologies
and providers. Besides, implicit knowledge leads to possible different interpretations.
Consequently, consumers are obliged to parse priory known sources to look for VNF
candidates. This is time-consuming and often results in a minimal number of VNF can-
didates, not all relevant concerning NS providers’ initial needs. Furthermore, following
the standards specification, provisioning the NS necessarily implies deploying all the
involved VNFs and configuring the connectivity as depicted in the associated VNFFG
description. This static description obliges NS providers to anticipate, compose, and
configure all the possible NFPs (even those who could be rarely used). This ends with
a heavy, complex, and static NCT handle during every single phase of the NS life-cycle.
Besides, optimal and automatic placement of the composed VNFs, mapping these func-
tions to the available resources over the underlying resources, and considering QoS and
SLA constraints is equally essential. Thereby, it is essential for service providers to
look beyond the basic virtualization of the services and seek the full potential and
value of NFV. That is why traditional manual service life-cycle management processes
and their multiplicity of vendor-specific components at different network layers will
need to be replaced by automated, software-based management that is standardized
across vendors.



18 Chapter 2. Background and thesis positioning

2.3 The State-Of-The-Art

This section presents a detailed state-of-the-art analysis that defines the thesis scope.
Each field is an essential aspect to consider when tackling thesis problems.

2.3.1 Network service life-cycle management

Valuable standardization initiatives (e.g., ETSI NFV [Virtualisation 2014], IETF
SFC [IETF 2018], and OASIS TOSCA [Specification 2017]) provided an intent frame-
work and enabled NS, with its constituent VNFs, provisioning capabilities such as
design, composition, and deployment mechanisms for NSs.
Initially, to design the NS, the existing discovery approaches that rely on VNFD are
still in their early ages, and much work has yet to be done for optimal VNF provision-
ing. These approaches remain specific to the owner providers. Where each provider
defines specific procedures and practices to parse VNF descriptors and select relevant
information for them. In addition, the service providers still need to manually select
the required VNF rather than having an automated discovery mechanism. Further,
these VNF descriptions and publication models are not comprehensive. Indeed, they
do include details on VNF deployment but fail to cover their associated functional and
non-functional specifications.

Furthermore, the standards allow composing complex and sophisticated NSs made
up of elementary VNFs, at a higher level of abstraction. However, they do not provide a
specific control that dictates the execution order and the composition logic of VNFs in a
given NS. This reflects negatively on the NS provisioning methodology and procedures.
Moreover, they should instantiate, deploy, configure, and manage all the potential
paths at run-time, including those that will rarely be or never be used. On top of
being costly, tedious, and time-consuming, this way of proceeding contradicts NFV
spirit promoting agility and cost-effectiveness in networking applications. Nevertheless,
another limitation concerns the routing path models. In fact, these models allow only
sequential service function chains to be provisioned where VNFs are tied in a linear
way. Therefore, more complex and sophisticated chains are still not supported in the
NS.

Afterward, the composed network services may be deployed over a set of physical
network infrastructures; each spread over mono-/multi- domains and managed
by a specific VIM. This context requires the NFV-MANO to consider the trust
partnerships between NS/infrastructure providers and infrastructures providers.
Moreover, service providers may request extending their already deployed NS with
adding/removing some VNFs without interrupting the NS. Realizing such NS de-
ployment across multi-administrative domains is challenging, not only from the
perspective of associating an NS request into a specific domain(s) but also assuring its
performance while reducing the total deployment cost without saturating the resources.



2.3. The State-Of-The-Art 19

2.3.2 On network service design

In this section, we review the more relevant works related to VNF description, publi-
cation, and discovery.

2.3.2.1 Semantics in networking

A plethora of studies in the service computing field investigated services’ and users’
queries description. Several concepts have been studied; however, the most impor-
tant results were obtained when using semantics. Handling semantics in service dis-
covery was primarily investigated from two main matching perspectives: syntactic
and semantic. The first relies on graph theory, such as Resource Description Frame-
work (RDF) [rdf 2020] and DIANE Service Description [Küster 2007]. In contrast,
the second relies on ontologies, such as the W3C Web Ontology Language(OWL-
S) [Martin 2004] and Web Service Modeling Ontology (WSMO) [Domingue 2005].
Many research works compare the syntactic ones, exemplified by information re-
trieval metrics, versus the semantic matching ones, illustrated by logic inference (e.g.,
see [Adala 2011] [Seog-Chan Oh 2006]). The latter turns out more efficient than the
former in terms of precision and recall. This result is one of the reasons that led us to
advocate for semantic matching for this work.

Generally speaking, in the networking domain, semantics has been widely used
since the late eighties (e.g., [Sowa 1987], [Shapiro 1987]). Artificial intelligence and ma-
chine translation were the first to develop and use semantic networks. More broadly,
the use of semantics in networks is done through declarative graphic representation
that represents knowledge and supports automated plans for reasoning about learn-
ing. Some approaches are highly informal, but others are formally defined as logic
systems. In particular, the reason behind semantics is to build and evolve network
ontologies (e.g., [Voigt 2018]), retrieve information in networks (e.g., [Tang 2003] for
peer-to-peer networks), and network slicing and segmentation (e.g., [Long 2015]).

When it comes to highly dynamic and/or virtualized environments such as ad-
hoc networks and cloud computing (i.e., the main building blocks of NFV), OWL
ontologies have been massively applied. For instance, OWL ontologies have been
used for cloud environments to describe the heterogeneous multi-vendor cloud re-
sources and users’ SLA in the FP7 European mOSAIC project [Petcu 2013]. In dy-
namic and ad-hoc networks, we find that all of Network Description Language (NDL-
OWL) [ndl 2020], Network Mark-Up Language(NML), Infrastructure and Network De-
scription Language (INDL) [Gruber 1993], Network Innovation over Virtualized In-
frastructures (NOVI) [van der Ham 2015] and Federated Infrastructure Discovery and
Description Language (FIDDLE) [Willner 2015] use OWL ontologies.



20 Chapter 2. Background and thesis positioning

2.3.2.2 Main contributions from research projects

Besides the previously discussed ETSI VNFD model, one of the most known and
used approaches is Topology and Orchestration Specification for Cloud Applications
TOSCA-based, namely TOSCA-NFV [Specification 2017]. TOSCA is a data model
standard managed by the OASIS industry group. This data model is used to describe
services’ operations and requirements [Binz 2014]. It also explains how services can be
deployed and managed through management plans (workflows) at runtime. TOSCA-
NFV is the concrete implementation of the model applied to NFV for VNFs provisioning
and management. It proposes a model to describe topologies, dependencies, and rela-
tionships between virtual applications and simplify these services’ complexities rather
than define VNFs capabilities and requirements. TOSCA-NFV model assumes that
the VNFs are already discovered. Its main scope is to deliver orchestration and in-
teroperability of VNFs. The same observation is valid for the IETF Service Function
Chaining14 (SFC) initiative. SFC in NFV setting relies on VNFD for VNFs description
and selection. The reader should note that these procedures only support the VNFs
business (functional) operations. In fact, SFC enables VNFs composition by simply
matching their related operations [Mechtri 2017].

The EU-funded project T-NOVA [Xilouris 2014] provides a VNF marketplace that:
(1) helps VNF developers describe and store network functions, and (2) assists the
consumers when browsing and selecting the network functions that match their needs.
T-NOVA extends the ETSI NFV description model by applying business aspects from
the TMForum SID model [sid 2013]. Additional fields enable business interaction
among actors that communicate through the T-NOVA Marketplace (e.g., SLA specifi-
cation, pricing), besides deployment details needed to deploy the network services. The
VNF/NS discovery process is conducted through the brokerage module [Xilouris 2014],
which permits consumers to search for VNFs/NSs while specifying their specific re-
quirement in terms of network SLA.

Cloud4NFV [Soares 2014] is a virtualized platform for VNFs provisioning. It aims to
deliver NF-as-a-service to end customers. Cloud4NFV is ETSI-compliant with signifi-
cant contributions to the modeling and orchestration aspects. On one side, Cloud4NFV
processes a front-end database that stores collections of VNFs along with a high-level
description (e.g., ID, name, description, location). On the other side, it handles a
back-end database that stores specific VNF information necessary for the VNF de-
ployment and configuration. Cloud4NFV provides only deployment and configuration
information and lacks automated discovery process support.

14https://tools.ietf.org/html/rfc7665

https://tools.ietf.org/html/rfc7665


2.3. The State-Of-The-Art 21

2.3.2.3 Main contributions form academic research work

In the academic literature, Hoyos et al. [Hoyos 2016] propose an NFV Ontology called
NOn and a Semantic nFV Services (SnS). NOn enables the description of NFV as
a high-level framework with reusable element descriptors. As the concrete semantic
application of NOn to the NFV domain, SnS can be used to create explicit service
descriptors. It relies on various agents to parse and evaluate NFV services capabilities.
However, NOn only considers the resources’ functional capabilities. Furthermore, the
reader should note that this approach imposes strong constraints on existing providers
and assumes they could support these agents, which may or may not be accurate.

Oliver et al. [Oliver 2018] propose an ontology for NFV that describes the whole
network resources, including VNFs, properties, and relationships (dependencies). The
resources description is achieved through reusable semantic concepts used to construct
additional rules for reasoning over the network. For instance, this could be useful to
automate network topology design and deployment. Although this work proposes a
semantic-based description model for functional VNFs operations, it mainly focuses on
network engineering and integration efforts. It does not cover the VNFs discovery given
specific and precise user needs.

The authors in [Bouten 2016] identify and discuss a set of affinity and anti-affinity
constraints useful for virtualized network management. The validation of these rules is
semantic-based. The addressed limitations are mainly related to service function chain
requests. For instance, they defined a VNFs placement strategy that considers the
network provider constraints and the chain request. This work assumes that the VNFs
are already discovered and deployed. In [Bonfim 2019], the authors introduce Onto-
NFV, an OWL-based ontology. It offers a vocabulary with its relations and constraints
to describe a VNF composition (called network service) policies and the hosting NFVI
policies. The policies involve information related to resource usage, VNFs precedence,
and location constraints (e.g., number of CPUs, amount of memory). The authors
propose NSChecker, a semantic verification system integrated into the ETSI MANO
that uses Onto-NFV. The ultimate goal of this work is to detect and diagnose policy
conflicts in NFV environments. For the semantic description, Onto-NFV only focuses
on functional properties with no reference to non-functional properties such as security
and availability. For the VNFs publication and discovery, it relies entirely on the ETSI
MANO procedures.

Kim et al. [Kim 2018] use Network Service Description (NSD) data and ontology to
automate VNFs management and network services generation. Network services con-
sist of VNFs bound to each other through virtual links to implement shared and more
general functionalities. The proposed solution relies on semantic annotation of NSD in-
formation according to ETSI NFV. This descriptor contains functional, non-functional,
and optional information blocks. The functional block provides information related to
the VNFs and their connection and dependencies. The non-functional block provides



22 Chapter 2. Background and thesis positioning

the full network service’s general and profile data. Finally, the optional block provides
policies and monitoring information. This work addresses one of the significant limi-
tations of TOSCA-NFV. It models the relationship between parameters that TOSCA
could not define. However, this work provides ontology only with neither investigated
reasoning technology nor discovery algorithms/procedures for VNFs.

An approach to use microservices architecture for implementing VNFs is proposed
in [Hawilo 2019]. To exploit the microservices adoption’s full potential in NFV, they
highlight some challenges like microservice discovery. To foster VNF dynamic scaling,
the authors claim that a real-time automated service discovery mechanism should be
developed to enable the required dynamic service chains. Indeed, in such a setting,
service discovery is critical with regard to network dynamicity (e.g., relocation, auto-
scaling) and frequent on-the-fly events (e.g., failures, upgrades). More in-depth details
on relevant discovery patterns in the microservice context are provided in [Dzone 2018].
Basically, the authors define two patterns, i.e., client-side and server-side discovery pat-
terns. They both assume that microservices are already known and only, their instances
should be discovered. In the former pattern, the service client is in charge of deter-
mining the network locations of available service instances and defining load balancing
requests across them. Specifically, the client, first, queries a service registry refer-
ring to available instances and, then, asks a load balancer to keep the best instance.
A significant drawback of this pattern is that the client and the service registry are
tightly coupled; each programming language used on the client-side requires a dedi-
cated logic for service discovery. In the latter pattern, the client makes a request to
a service (e.g., VNF) via a load balancer. The load balancer queries the service reg-
istry and routes each request to an available service instance. Discovery details are
abstracted away from the client. Clients simply make requests to the load balancer.
A major drawback of this pattern is that the load balancer should be provided by the
deployment environment and, therefore, should be highly available (i.e., a single point
of failure).

To our best of knowledge, there are few works on semantics in the context of
microservices. In [Salvadori 2017], the authors present a framework for aligning het-
erogeneous ontologies in order to integrate data provided by different microservices. In
line with microservices’ design principles (e.g., loose coupling and independent mainte-
nance), the design of heterogeneous ontologies to describe the same domain is de facto.
An alignment contains a set of correspondences between entities and properties of
such ontologies. Correspondences refer to semantic connections between concepts used
to describe microservices data. The most important difference from the traditional
ontology alignment is that equivalence statements can only be obtained at run-time.
Indeed, entities are created during interactions between microservices and their con-
sumers. Therefore, it is not possible to directly access a predefined comprehensive
data-set. Instead, the proposed framework dynamically loads entities provided by reg-



2.3. The State-Of-The-Art 23

istered microservices to infer alignment statements.

2.3.3 On network service instantiation and management

In the literature, several surveys (e.g., [De Sousa 2019, Medhat 2016, Bhamare 2016])
recently investigated and discussed the current challenges in NFV. Most of them argue
that there is still a need for more appropriate and suitable VNF chains management.
Moreover, they claim that VNF chains should be efficiently modeled, draw on dynamic
business policies, and consider the network context to ensure efficient operation and
better fit the evolving users’ requirements. In this regard, various approaches have
been proposed to tackle these challenges focusing on enabling VNF dynamic chaining.
Some of them rely on SDN to ensure the dynamicity of the control plane following a
service function chain update, while others propose a fully NFV-based solution.

Zhang et al. [Zhang 2017] introduces a hybrid packet processing architecture named
parabox for highly latency-sensitive applications. This architecture dynamically trans-
mits packets across VNFs in a parallel way and merges their outputs intelligently to
ensure correct packet sequential processing. They implemented their solution using
Berkeley Extensible Software Switch (BESS). Similarly, [Sun 2017] enables network
function parallelism for NFV. They represent network operators’ sequential or parallel
chaining intents using a policy specification scheme.

Jmila et al. [Jmila 2019] propose a security-aware network service chaining design.
Initially, the network service contains only basic VNFs. During the design phase, they
may extend the network service chain to a more complex chaining model that includes
security needs. Human security experts take the Network Service’s VNF choice and
position decisions. Based on security requirements, they proposed changing routes,
splitting or mirroring the traffic to the newly added VNFs. Their solution is based on
SDN paradigms to include customized VNFs and adapt the traffic routing.

The authors in [Lee 2015] propose an adaptive network service path model to re-
cover network function failure during run-time. The forwarding nodes in their proposed
solution contain a list of remote functions that could replace those that broke down.
In case of failure, the forwarding nodes change the traffic path to one of these remote
functions based on pre-defined rules. After the remote function finishes the processing,
it returns the traffic processed to the originating function.

Callegati et al. [Callegati 2015] ensure dynamic chaining and flexible traffic rout-
ing for network function in hybrid cloud/edge networks. This approach dynamically
configures forwarding rules in SDN switches (OpenFlow) based on network traffic condi-
tions (e.g., bandwidth) and the users’ SLA. This dynamic configuration is managed by
means of the SDN-based control plane— the latter programs the data plane according
to the desired VNF chaining.

Mohammed et al. [Mohammed 2016] enhance SDN orchestration to support dy-



24 Chapter 2. Background and thesis positioning

namic VNF chaining as a preventive solution to service degradation. This prevention
relies on network congestion prediction using traffic statistics. The SDN controller con-
tains a list of all active paths in the network. In addition, it obtains regular operational
statistics of all switches. Once the SDN orchestrator detects congestion of a switch,
it tries to eliminate the considering paths and then creates a new path using other
switches for each source/destination IP pair.

An SDN orchestrator for service chains to handle congestion events and SLA viola-
tions is introduced in [Gharbaoui 2017]. After collecting traffic statistics from switches,
the orchestrator detects overloaded ones and then initiates a recovery procedure by
adapting the impacted service chain paths. The recovery procedure deletes every ser-
vice chain path that traverses an overloaded switch; and redirects the data flow to
another switch, if available. While Liu et al. propose an orchestrator to dynamically
provision and readjust VNF chains [Liu 2017] based on user mobility. This solution
reuses existing VNFs to deal with the new users’ requests. For cost-effectiveness pur-
poses, the orchestrator periodically readjusts the chains by either migrating the VNFs
over new datacenters or replacing them following the user requests.

Scheid et al. [Scheid 2016] proposes a policies-based Service Function Chains (SFC)
management. Their proposition is based on a set of written policies which can be trig-
gered during run-time to update the service chaining graph dynamically. The network
providers write these policies in Controlled Natural Language (CNL). Then, the orches-
trator interprets the written policies to create the SFC; and communicates with the
traffic steering component to create the forwarding rule to steer the data flow across
the corresponding VNFs..

In [Martini 2016], the authors propose an SOA-inspired NFV orchestrator, which
relies on SDN capabilities for network control. On the one hand, the NFV orchestrator
discovers and orchestrates VNFs. On the other hand, the SDN controller manages and
delivers the traffic automatically to adjustable VNF chains. When network service
degradation is raised, the proposed solution adapts active paths with pre-established
ones based on resource usage (e.g., switch load). The corresponding steering rules are
updated in the forwarding nodes through the OpenFlow protocol.

A framework called ESCAPE is introduced in [Csoma 2014]. It aims to build
customized VNF chains in an SDN environment using Mininet, POX, ClickOS, and
NetCONF tools. In addition, this framework contains a VNF catalog that serves
to compose the network service. While the SDN controller decides how to chain
the VNFs based on specific policies and real-time information collected from running
VNF instances, OpenFlow switches steer the traffic across the VNFs. The authors
in [Zsoka 2019] define some heuristic bandwidth-aware algorithm to create multiple
dynamic service chains given a pre-defined set of allowed VNFs. This algorithm seeks
acceptable solutions for service chaining where the candidate network links are less
heavily loaded than possible.



2.3. The State-Of-The-Art 25

2.3.4 On network service deployment and management

This section discusses related work on cost-driven network service embedding over
multi-administrative domains.

The authors in [Katsalis 2016, Rosa 2015] analyzed the VNFs placement and rout-
ing problem across different administrative domains. They discussed theoretically the
challenges and proposed research directions to solve the problem. However, no con-
crete algorithms for VNF deployment or routing mapping were proposed. Also, some
studies such as [Baranda 2020, Valcarenghi 2018] discuss the challenges associated with
incorporating trust into multi-administrative domains.

The Network service embedding problem take variant definitions and approaches,
depending on several design metrics [Herrera 2016], such as: (i) Objectives (e.g., QoS,
cost minimization, fault tolerance, load balancing, energy efficiency, etc); (ii) type
of resources (e.g., CPU and bandwidth, processing time and buffer capacity, ternary
content-addressable memory ); (iii) the technology domain where Network service em-
bedding is applied (e.g.,radio access networks, LTE/EPC, mobile core network, cloud
networks); (v) single administrative domain or multi-domain approaches; (vi) solution
strategy (e.g., exact, heuristic, or meta-heuristic).

Luizelli et al. in [Luizelli 2018] presented an operational cost minimization place-
ment algorithm to guarantee a reasonable level of network performance under a dis-
tribute and gather NS placement strategies based on load balancing policy and energy-
saving policy, respectively. Their solution minimizes the operational cost associated
with virtual switching with the aim to provide a cost-efficient NSs deployment. The
performance evaluation of their cost model shows an occurrence lower than 5% com-
pared to actual deployment strategies.

A dynamic Virtualized Network Functions Forwarding Graph (VNFFG) extension
problem is addressed in [Houidi 2020]. They proposed a seamless extension to place
the newly added VNFs concerning previously deployed ones. They model their solution
to match with the infrastructure providers’ interests and favor the infrastructure nodes
and links that are least loaded to host the requests.

An optimal service function chain embedding strategy is proposed by Pei et
al. [Pei 2018]. Their model considers the dynamic VNF placement in geo-distributed
cloud systems while optimizing resource utilization. The solution to place the VNFs is
based on executing the shortest path over an expanding network. Then, the network
is adjusted periodically according to the load variation.

Morin et al. [Morin 2020] introduced a network service embedding over public and
private clouds while minimizing the total deployment cost. Their proposed model
allows the NFV Orchestrator to select the best cloud provider offers based on the
network services required resources. Furthermore, based on the predictions of the
NFV Orchestrator, their model plans in advance long-term reservations, which reduces
hourly prices.



26 Chapter 2. Background and thesis positioning

5Grouth [Li 2021] introduce a service platform for zero-touch service and network
orchestration and management. The objective is to deploy network services while
ensuring established SLAs, even for shared resources with different service providers
over multiple domains. Artificial Intelligence and Machine Learning solutions are
used to achieve their requirement. One of the service orchestrator’s responsibilities
is to optimally place the VNFs and allocate the necessary resources across mono-
/multi-domains. To do so, a service and resource federation needs to be established
to deploy the network services. The same logic is applied within the project 5G-
Transformer [Baranda 2020, Mangues-Bafalluy 2019].

The researchers in [Dwiardhika 2018] propose a virtual network embedding based
on a security level. In this work, they considered only the cost of virtual network
embedding, then they extended it in [Dwiardhika 2019] to consider also the revenue.
Their work aims to place some security VNFs to increase the security level of substrate
networks. More virtual networks can be embedded by adopting this method while
respecting the security levels.

Alaluna et al. [Alaluna 2017] address the virtual network embedding problem to
minimize networking and computing resource allocation cost and the overall length
paths of the SFC. Their model propose two security constraints; cloud provider trust-
worthiness represents a measured level of its good reputation, and node and link security
levels which have to be equal to or greater than virtual function security requirement.
The same strategy is followed by Wang et al. [Wang 2015]. They proposed an admission
process (based on node, link, and network trust levels) to help the network embedding
model decide where to place the VNFs. However, Fischer et al. [Fischer 2017] consider
each of nodes, links, and topology security requirements. Furthermore, they proposed
a more concrete trustworthiness model for topology security and allowed the user to
choose with whom to deploy their services.

A trust-aware service chain embedding problem in introduced by [Torkzaban 2019].
The researchers aim to deliver secure network service deployment on a reliable infras-
tructure. The constituent VNFs express security requirements via a trust value; after,
their solution assign each VNF in the chain to a server that matches its trust level.
Torkzaban et al. [Torkzaban 2019] extended their work in [Torkzaban 2019]. Where,
they generalized the trustworthiness concept to cover service network links as well.
Therefore, the service chain embedding process decides the VNF placement related to
the trust value required by the VNF and the choice of substrate network paths between
the VNFs based on the trust required by service network links.

Forti et al. [Forti 2020] introduce a secure deployment of IoT applications in edge
and cloud infrastructure, taking into consideration the security requirement. The pro-
posed deployment model proposes a deployment solution that guarantees a complete
trust between the application and chosen infrastructure providers and between all the
chosen infrastructure providers, as well. Where, each node in the infrastructure must



2.4. Synthesis 27

Table 2.2: Synthesis of related works to the NS design

Reference
Description Publication Discovery

Functional Non-Functional Interoperability Semantic matchmaking

ETSI VNFD Yes No No No
OASIS TOSCA NFV [Specification 2017] Yes No Yes No
IETF SFC [Mechtri 2017] Yes No No No
T-NOVA [Xilouris 2014] Yes Partially Yes No
Cloud4NFV [Soares 2014] Yes No No No
Hoyos et al. [Hoyos 2016] Yes No No No
Oliver et al. [Oliver 2018] Yes No No No
Bouten et al. [Bouten 2016] Yes No No No
Bonfim et al. [Bonfim 2019] Yes No No No
Kim et al. [Kim 2018] Yes Yes No No

provide its security capabilities and strength protection against attacks. Further, each
infrastructure provider announces a trust level towards other infrastructure providers.

2.4 Synthesis

Table 2.2 sums up the most relevant studied works concerning VNF descrip-
tion, publication, and discovery. The literature study shows that several works
(e.g., [Mechtri 2017], [Xilouris 2014]) tried to extend the VNFD proposed by
ETSI with additional information using different approaches. However, only
a few works (i.e., [Xilouris 2014], [Kim 2018]) succeeded in covering both the
functional and non-functional properties of the VNFs in their proposed de-
scription models. The reader should note that the description of the non-
functional properties in T-NOVA is limited. It only involves the business informa-
tion (e.g., cost, SLA) necessary for interaction with other T-NOVA actors. Nev-
ertheless, another observation related to the VNF description is the popularity
of OWL as the most used semantic language to describe VNFs in the literature
(i.e., [ndl 2020] [Gruber 1993] [van der Ham 2015] [Willner 2015] [Bonfim 2019]). Re-
garding VNF publication, the study highlights that most of the existing models require
VNF publication in dedicated and proprietary repositories. T-NOVA is the only ap-
proaches that do not impose any compatibility constraints on the provider side and
enable NFV repositories federation. Since it relies on generic and unified semantic
models, this eliminates dependencies related to technologies used when offering the
VNFs to prospective consumers.

In addition, this study shows that all the existing work either did not address
the discovery process or propose simplistic procedures for the discovery phase. These
procedures are often characterized by manual VNF selection or automated syntactic-
based matchmaking between the offered and required VNFs. In other cases, the studied
work entirely relies on ETSI MANO to discover and deploy the VNFs. Thus, they



28 Chapter 2. Background and thesis positioning

Table 2.3: Synthesis of related works to the NS instantiation and management

Reference NS instantiation Dynamic
re-configuration Technology-based

Liu et al. [Liu 2017] Linear Yes NFV
Zhang et al. [Zhang 2017] Linear & parallel No NFV & SDN

Sun et al. [Sun 2017] Linear, parallel
& load balacing No NFV & SDN

Lee et al. [Lee 2015] Linear Yes NFV & SDN
Mohammed et al. [Mohammed 2016] Linear Yes NFV & SDN
Scheid et al. [Scheid 2016] Linear Yes NFV & SDN
Martini et al. [Martini 2016] Linear Yes NFV & SDN
Jmila et al. [Jmila 2019] Linear & load balancing Yes SDN
Csoma et al. [Csoma 2014]
Callegati et al. [Callegati 2015]
Gharbaoui et al. [Gharbaoui 2017]

Linear Yes SDN

all suffer from the same issues highlighted in Section 2.3.1. Generally speaking, the
studied discovery approaches require solid domain knowledge, are time-consuming, and
are inefficient. These discovery procedures considerably decrease the agility and cost-
effectiveness that one may expect from a virtualized network ecosystem. When it comes
to the case of VNFs implemented as microservices, the studied papers emphasize VNF
instances discovery rather than microservices discovery. To our best of knowledge,
there is still no such ontology for microservices discovery.

Table 2.3 sums up the most relevant studied work concerning the NS instantia-
tion and management problem. The literature review highlights that most existing
work relies on SDN to ensure a dynamic control plane following the update of service
function chaining. Furthermore, it is remarkable that all the reviewed research work
have tried to bring agility and dynamicity in VNF chains using various and different
approaches (e.g., QoS monitoring, statistics, heuristics) and at several phases of their
life-cycle (e.g., deployment and execution). None of the proposed solutions cover the
entire life-cycle (i.e., from design to on-the-fly management at run-time). Moreover,
they all consider very simplistic VNF chains where VNFs are sequentially composed
and do not tackle more complex and more sophisticated composition scenarios, as this
might be the case in advanced NSs. Table 2.4 provides a comparative overview of
the discussed related works about NS embedding. The comparison was based on the
set of design metrics: the dynamic re-configuration of NSE during run-time, deploy-
ment across multi-administrative domains, the share of trust-partnership between the
different actors, traffic equilibration over the available resources, and optimizing the
deployment cost as an objective function.

Overall, all the reviewed works about NS embedding are performance-oriented,
optimizing for cost or resource utilization on multi-domain infrastructures, such as
[Luizelli 2018, Pei 2018]. Similar to the objective of our work, these works aim to min-



2.5. Summary 29

Table 2.4: Synthesis of related works to the NS deployment and management

Reference Minimize
deployment cost Multi-domain Security constraint Dynamic

re-configuration
Requests

equilibration
Luizelli et al. [Luizelli 2018] Yes No No No Yes
Houidi et al. [Houidi 2020] Yes No No Yes Yes
Pei et al. [Pei 2018] Yes Yes No Yes Yes
Morin et al. [Morin 2020] Yes Yes No No No
5Grouth [Li 2021]
5G-Transformer [Baranda 2020] Yes Yes Yes No No

Dwiardhika et al. [Dwiardhika 2019] Yes Yes Yes No No
Alaluna et al. [Alaluna 2017]
Fischer et al. [Fischer 2017]
Wang et al. [Wang 2015]
Torkzaban et al. [Torkzaban 2019]

Yes No Yes No No

Forti et al. [Forti 2020] Yes Yes Yes No No

imize the total deployment cost concerning service performance requirements. How-
ever, They mistreated clearly the multi-provider aspect. This limitation is addressed
by [Morin 2020]. In their model, they considered placing the VNFs in a hybrid geo-
distributed environment with multiple providers. Regarding dynamic re-configuration
of NSE, both [Liu 2017, Houidi 2020] consider updating the VNF chaining during run-
time in order to satisfy user requirements. However, contrary to [Liu 2017], Houidi et
al. [Houidi 2020] focus on applying the extensions required without interrupting the
already deployed service, which is similar to our objective.

Although the virtualized infrastructure imposes specific security threats that need
to be treated, security consideration receives only a few interests in the NSE prob-
lem. For example, the 5Growth and 5G-transformer European projects [Li 2021,
Baranda 2020] introduced the trust-partnership aspect between service and infrastruc-
ture providers to achieve full service and resource federation. They assure an entire
federation among providers that are using their orchestrator before any NS deployment.
Similarly, [Torkzaban 2019, Torkzaban 2020] treat the trust aspect to only protect the
service provider by allowing him to require security levels within their requests. Nev-
ertheless, these works provide a single security degree for the service provider. All
network service providers have to share the same security policy and priorities. Other
works such as [Forti 2020, Alaluna 2017] allow the infrastructure providers to protect
themselves by according a security level with other infrastructure providers.

2.5 Summary

This chapter introduced an overview of the background landscape necessary for un-
derstanding the thesis scope. After, we studied the research areas related to network
service life-cycle management. Further, we have analyzed the state-of-the-art and un-
derlined the research issues that need to be tackled.

In this context, it is fundamental to introduce a cost-driven approach for NS pro-
visioning to address the limitations mentioned above. To this end, designing VNF



30 Chapter 2. Background and thesis positioning

discovery need to rely on a comprehensive and generic description. In addition, effi-
cient re-configurable wiring capabilities for NSs should be defined to allow on-demand
updates dynamically. Last but not least, the deployment of network service across
multi-administrative domains should optimize both VNF placement for each network
service along with traffic routing across VNFs while satisfying constraints like location
and latency.

In the following chapters, we present our contributions to these primary challenges.



Chapter 3

A Semantic Virtualized Network
Functions Description and

Discovery Model

3.1 Introduction

Specific functions providers offer VNFs to prospective network service providers; Their
VNFs are published in dedicated marketplaces where network providers search and
instantiate them according to a pre-established service-level agreement. On top of being
proprietary and specific to the functions providers, the existing VNF description models
include details on VNF deployment but fail to fit VNF functional and non-functional
specifications. This description alters an efficient selection of the most relevant VNFs
and prevents full automation of the VNFs provisioning.

This chapter introduces a novel approach for VNFs description, publication, and
discovery, to address the aforementioned limitations. The proposed approach inspired
from service-oriented computing principles. The main contributions are twofold: 1)
design of a domain-independent VIrtualized networK functIoN ontoloGy (VIKING for
short) that enables a comprehensive and generic description of the VNF capabilities
from functional and non-functional perspectives, and 2) development of a semantic-
based matchmaker that relies on VIKING to ensure the best matching between re-
quested VNFs and published ones. As for validation, we refine VIKING for the Con-
tent Delivery Networks (CDN) domain through an illustrative use case where VNF
description and discovery are realized. The implemented prototype, called Mastermyr
chest, fully automates and simplifies the VNFs discovery and instantiation procedures.
Furthermore, it enables cooperation and federation between heterogeneous and propri-
etary providers in the NFV landscape. The performed experiments highlight that the
proposed VNFs discovery algorithm is accurate and precise. Moreover, they also show
that our algorithm can discover and select the most relevant VNFs with reasonable de-
lays and overhead. Our initiative thus constitutes an important step for paving the way
to NFV use in the novel and next-generation networks such as Content Delivery Net-
works (CDN), Internet of Things (IoT), and the fifth-generation (5G) of mobile telco
networks, and consequently, fills a considerable gap in this emerging and promising



32
Chapter 3. A Semantic Virtualized Network Functions Description and

Discovery Model

area.
The rest of the chapter is organized as follows. Section 3.2 introduces VIKING

for VNF description and its related matchmaker for semantic-based discovery. The
associated Mastermyr Chest prototype is presented in Section 4.3. Section 4.4 details
the performed experiments and discusses the obtained results. Finally, Section 4.5
concludes the chapter.

3.2 A semantic approach for VNF description and discov-
ery

This Section first details VIKING ontology for semantically describing VNFs’ capabil-
ities from functional and non-functional perspectives. Then, it presents our VIKING-
based matchmaking algorithm to discover the most relevant VNFs given specific net-
work needs.

3.2.1 VIKING ontology for VNF description model

VIKING is an OWL-based (Ontology Web Language) ontology that allows describ-
ing VNFs. To design VIKING, we first determine what domain VIKING will cover
(namely, network function virtualization), for what VIKING will be used (namely, VNF
description, publication, and discovery), and for what types of queries VIKING should
provide answers (namely, similarity and correlation). We then tackle the abstraction
exercise by identifying the main common concepts shared by various application do-
mains like CDNs, IoT, telco, and 5G networks. Concepts are organized as a class
hierarchy, where abstract concepts will be refined with more concrete ones specific to
each domain application. They are also described with properties and connected to
other concepts with semantic relations. We tried not to reinvent the wheel, so we fur-
ther reuse existing ontologies mainly related to VNF deployment (e.g., [Hoyos 2016])
and billing (e.g., [Afify 2017]). To assist VNF providers when creating comprehensive
and consistent VNF descriptors, VIKING relies on OWL’s reasoning principles. Fig. 3.1
depicts VIKING’s high-level skeleton that consists of two interrelated ontologies, namely
VIKING-F and VIKING-NF, related to VNF’s functional and non-functional properties,
respectively. On the one hand, VIKING-F refers to the formal specification of what
precisely the VNF can do. It revolves around two dimensions known as Business
and Model. Business denotes the VNF’s type, inputs (i.e., details about the con-
tent upon which the VNF will take effect along with other necessary information), and
outputs (i.e., details about the changes that will take place in the content). Model
indicates the set of operations that ensure these inputs’ conversion into outputs along
with the related techniques and/or standards. On the other hand, VIKING-NF refers to
the formal specification of what precisely the VNF needs/requires for proper function-



3.2. A semantic approach for VNF description and discovery 33

Viking-F Viking-NF

Viking

business model context deployment
QoS

Figure 3.1: A high-level view of VIKING design

ing. It revolves around three dimensions known as Context, QoS, and Deployment.
Context refers to the necessary runtime information (e.g., operating system, specific
libraries, and/or system packages), as well as, device types (e.g., smartphones, TVs,
desktops) upon which the VNF’s outputs can be readable. QoS specifies common qual-
ity features offered by the VNF (e.g., response time, operation cost) and can be refined
with specific-domain ones (e.g., surrogate servers locations for CDN, the bandwidth
for 5G applications). Finally, Deployment involves VNF’s artifact and configuration
parameters that are needed for VNF’s execution. Fig. 3.2 shows a more detailed view of

Figure 3.2: VIKING’s core concepts

VIKING dimensions. Each dimension encompasses abstract conceptual areas that are
instantiated using concrete concepts, producing a dedicated VIKING-F and VIKING-



34
Chapter 3. A Semantic Virtualized Network Functions Description and

Discovery Model

NF ontologies. These concepts, as well as, the relations between them are discussed
in-depth in the rest of this Section.

3.2.1.1 VIKING-F ontology

As mentioned earlier, VNF’s functional properties are specialized into Business and
Model dimensions, described as follows.
Business. This dimension relies on existing classification standards (e.g., ISO/IEC4,
ETSI NFV5) and leading service providers. Obviously, VNF design is always re-
lated to a target application domain. The VNF business description consists of three
main concepts, namely, VNF, Content, and Content-Attribute, along with their se-
mantic relations. VNF describes all necessary details on VNFs for advertisement and
query-building purposes. Basically, VNF will be refined into concrete virtualized net-
work functions for a given application domain. Since these functions share common
concepts and semantic relations but also have their own technical specificities, they
should be considered concepts rather than concept instances. Content refers to dif-
ferent domain-related artifact types manipulated by the VNFs. Content-Attribute in-
dicates the type of content(s) supported by the VNF. More specifically, this concept
represents the content’s technical specification (e.g., required/supplied Resolution and
Quality). It is worth noticing that VNF, Content, and Content-Attribute are seman-
tically connected with relations, namely, delivers between VNF and Content, and
requires/supplies between VNF and Content-Attribute. The first relation states that
any VNF provides some content, while the second relation captures the input/output
attributes upon which the VNF will act for specific content. Besides, for consistency
purposes, cardinality restrictions (e.g., at least one) and axioms (e.g., disjoint) are spec-
ified, so that concept instances are related to the right instance(s) and belong to the
right concepts. To ensure a consistent instantiation of concepts, Semantic Web Rule
Language (SWRL) rules (including axioms) help enforce restrictions on attribute values
and semantic relations, as well. Hereafter, we only exemplify SWRL rules referring
to concepts, while those referring to instances will be discussed in Appendix ??. For
example, Equation 3.1 formally reflects the following statement: “Any VNF (?x) that
requires content-attribute (?y) should deliver specific content (?z)”.

VNF(?x) ∧
requires(?x, content_attribute(?x, ?y))

→ delivers(?x, content(?x, ?z))
(3.1)

4https://www.iso.org/standard/68291.html
5https://www.etsi.org/technologies-clusters/technologies/nfv

https://www.iso.org/standard/68291.html
https://www.etsi.org/technologies-clusters/technologies/nfv


3.2. A semantic approach for VNF description and discovery 35

Table 3.1: Relations in VIKING-F with the concept VNF

Dimension Relation (Target) Concept

Business delivers Content
requires/supplies Content_attribute

Model
implements Operation

supports Standard
applies Technique

Model. Technical aspects are relevant when making content exchangeable and adap-
tive in heterogeneous networks and devices (e.g., be able to read video in one digital
encoding format different from the original video format). We thus rely on these as-
pects to identify three main concepts related to Model, namely, Operation, Standard,
and Technique linked to VNF through implements, supports, and applies relations,
respectively. Specifically, Operation refers to how a VNF changes on some content(s) de-
scribed in Business. Standard contains different standard(s) in the target application
domain to foster content exchanges. Technique encompasses methods and procedures
that a specialized VNF applies to make the necessary changes to the content.
Furthermore, as in Business, restrictions and axioms such as “Any VNF can apply
some techniques” might be defined. Also, in some cases, mapping Business onto
Model, or vice versa, is required (e.g., matching VNF requests with VNF advertise-
ment). To this end, SWRL rules are defined to infer new semantic relations between
instances during concept instantiation. For instance, Equation 3.2 formally reflects the
following statement: “Any VNF (?x) that applies technique (?y) should implement a
specific operation (?u)”.

VNF(?x) ∧
applies(?x, technique(?x, ?y))

→ implements(?x, operation(?z, ?u))
(3.2)

Table 3.1 sums up the defined relations between the VNF concept and the rest of
the VIKING-F concepts.

3.2.1.2 VIKING-NF ontology

As mentioned earlier, VNF’s non-functional properties are specialized into QoS, Con-
text, and Deployment description parts, described as follows.

QoS. This dimension consists of three concepts: Location, Billing, and Security
linked to VNF through locates, costs, and ensures relations, respectively. Loca-
tion refers to VNF’s placement (e.g., network domain). Billing contains pricing mod-



36
Chapter 3. A Semantic Virtualized Network Functions Description and

Discovery Model

els similar to those defined in cloud environments (e.g., time-based, volume-based,
flat rate) [Mazrekaj 2016]. Last but not least, Security is related to VNF regardless
of security mechanisms provided by the hosting platform. Indeed, the VNF should
not depend on the hosting platform that can be itself a source of threats (e.g., ma-
licious orchestrator or administrator) and thus ensure its own security compliance to
ETSI NFV SEC recommendation [nfv 2015, Lal 2017]. Many existing security on-
tologies have been proposed in the literature, each for a specific purpose like eliciting
security requirements [Souag 2015], certifying security claims [Trabelsi 2007], and de-
termining cyber-attack goals [Doynikova 2018], to cite just a few. In this work, we deem
to encompass some certification of the VNF’s security capabilities into VNF discovery so
that the VNF prospective consumers trust the VNF. To this end, we define Security with
three other concepts, namely, Security Goal, Security Requirement, and Security Prop-
erty, as depicted in Fig. 3.3. The first specifies what the VNF should prevent, while
the second describes what should happen in some specific situation. A Security Goal
can also be associated with CIA (stands for Confidentiality, Integrity, and Availability)
properties. Each CIA property refers to protection mechanisms (e.g., cryptography,
signature, and redundancy) for the VNF’s capabilities along with raw/processed data
against intrusions. It is worth noticing that Security Requirement as a constraint
contributes to the satisfaction of a Security Goal. To meet Security Requirement,
the VNF puts in place different Defense types like Authorization, Authentication, and
Trust-based. Authorization refers to control access to the VNF and its data along
with capabilities, respectively, by an authorized entity in an authorized manner (e.g.,
Role- and Identity-based mechanisms). Authentication refers to verification mecha-
nisms (e.g., public key, certification, and password) for checking a source’s identity,
including traffic provenance. Trust-based refers to evaluation mechanisms (e.g., di-
rect and collaborative trust-based) to establish trust relationships between VNFs. Fi-
nally, we refine Security Property into Auditability and Accountability. Auditability
refers to VNF examination techniques (e.g., knowledge- and behavior-based), while
Accountability refers to internal tracking mechanisms (e.g., logging) to monitor the
VNF’s activities. Note that this ontological model for capturing the VNF’s QoS as-
pects, including security, can be easily enriched with more sophisticated ones based on
the application domain. For instance, one might consider extending the QoS dimen-
sion with additional attributes like performance and adaptability to cite a few.
Context. This dimension encompasses two main concepts, namely Device and Fea-

ture. Device refers to additional details related to surrounding/target appliances (e.g.,
hosting machine), and Feature refers to options provided by the VNF (e.g., resize mul-
timedia content in CDN, and switch communication protocol in IoT). To illustrate
SWRL rules, Equation 3.3 formally reflects the following statement: “Any VNF (?x)
that implements operation (?y) and covers some device (?z) should supply a specific res-



3.2. A semantic approach for VNF description and discovery 37

Figure 3.3: Security concept

olution (?u)”.

VNF(?x) ∧
implements(?x, operation(?x, ?y)) ∧

covers(?x, device(?x, ?z))
→ supplies(?x, resolution(?z, ?u))

(3.3)

Deployment. This dimension integrates the already existing ETSI VNFD. It
enricheses it with additional/complementary details on the resources to be allocated
for VNF’s hosting and execution (e.g., number of required CPUs, amount of RAM),
as well as its high-availability. Specifically, Placement involves a URI of a remote
enriched ETSI VNFD. Undeniably, Placement is a mandatory property during VNF
discovery. Last but not least, High-Availability refers to attributes like what type
of redundancy, how much redundancy, and resource requirements for redundancy as
per ETSI recommendations [ETSI 2015]. Since ensuring high-availability improves the
VNF’s security, specifically availability (e.g., [Casazza 2017] and [Lin 2017]), we deem
to link High-Availability and Availability (CIA property) with increases relation.

Table 3.2 sums up the defined relations between the VNF concept and the rest of
the VIKING-NF concepts.

3.2.2 VNF discovery model

We propose a novel discovery model based on VIKING. VNF discovery process consists
of two main steps: user request building and semantic matchmaking. First, this process
starts with assisting the user (i.e., a network provider) build his/her VNF requests
in terms of what VNF capabilities are required. Afterward, it calls for a semantic
matchmaking algorithm to seek candidate VNFs offered by the providers in the ap-



38
Chapter 3. A Semantic Virtualized Network Functions Description and

Discovery Model

Table 3.2: Relations in VIKING-NF with the concept VNF

Dimension Relation (Target) Concept

QoS
locates Location
costs Billing
ensures Security

Context covers Device
offers Feature

Deployment refers_to Placement
warrants High-Availability

propriate repositories. Finally, the discovery process provides the user with the most
relevant VNFs based on their preferences. The algorithm and methodology that imple-
ment each one of these steps are detailed as follows.

3.2.2.1 User request building

We define functional/non-functional requirement (REQF /REQNF ) as a set of concepts
in VIKING-F/VIKING-NF requested by the user (Ui). Formally, Equation 3.4 represents
the syntax used for specifying REQF .

REQF
i = V NF (?x) [∧ Conceptj(?x, y)]j=1..n (3.4)

where

- Conceptj ∈ VIKING-F such as Operation and Technique.

- ?x corresponds to the VNF instance(s) to be retrieved. Note Ui can refine VNF
into concrete concepts related to a specific domain (see Section ??).

Below, Equation 3.5 reflects the following REQF
i : “Any VNF (?x) that should imple-

ment some Operation (y) and require some Content_Attribute(z)”.

REQF
i = V NF (?x) ∧Operation(?x, y) ∧ Content_Attribute(?x, z) (3.5)

To specify REQNF
i , we proceed as with REQF

i where VIKING-F is replaced
with VIKING-NF. In accordance with the Web semantics principles, users can
also define preferences among functional and/or non-functional requirements to se-
lect the most appropriate discovered services. To this end, we deem first to
split REQF

i /REQNF
i into {REQF

i,j}/{REQNF
i,k } where REQF

i,j/REQNF
i,k refers to

Conceptj(?x, y)/Conceptk(?x,w), respectively, as per Equation 3.4. Then, Ui de-
fines her preference values for all REQF

i,j/REQNF
i,k . For the sake of simplicity,



3.2. A semantic approach for VNF description and discovery 39

Table 3.3: Notation

Symbol Description
Ui User i
REQF

i Ui’s functional requirement
REQF

i,j REQF
i,j ∈ REQF

i

REQNF
i Ui’s non-functional requirement

REQNF
i,k REQNF

i,k ∈ REQNF
i

Pref(REQF
i ) User preference associated with REQF

i

Pref(REQNF
i ) User preference associated with REQNF

i

M-CL Mandatory-preference cluster
H-CL High requested-preference cluster
O-CL Optional-preference cluster
Pref(CL) User preference value associated with the cluster CL
JREQF

i,j , CLi,jK REQF
i,j is labeled with the preference cluster CLi,j

JREQNF
i,k , CLi,kK REQNF

i,k is labeled with the preference cluster CLi,k

REQF
i,j/REQNF

i,k will be classified into three preference clusters, namely, manda-
tory (M- CL), high-requested (H- CL), and optional (O- CL). For readability pur-
poses, Table 3.3 contains the notation used to formalize user requirements and pref-
erences. After specifying all REQF

i,j and REQNF
i,k and labeling each requirement

with a preference cluster JREQF
i,j , CLi,jK and JREQNF

i,k , CLi,kK, Ui will define all pref-
erence values, namely, Pref(REQF

i ), Pref(REQNF
i ), and Pref(CL). Note that all

mandatory REQF
i,j and REQNF

i,k will serve to discard irrelevant VNFs. Note that
Pref(REQF

i ) + Pref(REQNF
i ) + Pref(H-CLi) + Pref(O-CLi) = 1.

To sum up, the user request (URi) is a 2-tuple defined as follows:

URi =< {JREQF
i,j , CLi,jK}j=1,n, {JREQNF

i,k , CLi,kK}k=1,m,

Pref(REQF
i ),Pref(REQNF

k ),Pref(H-CLi),Pref(O-CLi) >
(3.6)

3.2.2.2 Semantic matchmaking

Algorithm 1 reflects the matchmaking logic used to return the relevant set of can-
didate VNFs (Cand). It relies on VIKING when matching VNFs provided in a given
repository (Rep) with user requests.

Algorithm 1 consists of two types of matching, namely, matchAll (Line 2)
and matchSome (Line 7). On one hand, since the set of all mandatory require-
ments (i.e., {JREQF

i,j ,M-CLK} and {JREQNF
i,k ,M-CLK}) should be fulfilled, matchAll



40
Chapter 3. A Semantic Virtualized Network Functions Description and

Discovery Model

checks if the VNF exactly matches this set (i.e., true or false). Indeed, any VNF should
be either kept or discarded in/from Cand depending on the result provided by matchAll.
On the other hand, matchSome is applied to the rest of the user request. For each VNF
in Cand, matchSome returns a set of matched capabilities (M-Cap) that could be empty
if there is no matching at all. Finally, the Cand list will be ranked based on VNF scores.

Algorithm 1 VNF matchmaking
1: VNF-Matchmaking(URi,Rep)
2: for all V NFi ∈ Rep do
3: if matchAll(V NFi, {JREQF

i,j ,M-CLK}, {JREQNF
i,k ,M-CLK}) then

4: append(V NFi, Cand)
5: end if
6: end for
7: for all V NFi ∈ Cand do
8: score(matchSome(V NFi, {JREQF

i,j ,H-CLK}, {JREQNF
i,k ,H-CLK},

{JREQF
i,j ,O-CLK}, {JREQNF

i,k ,O-CLK}), M-Cap)
9: end for

10: rank(Cand)

3.3 Mastermyr Chest architecture and implementation

For illustration purpose, we instantiated VIKING with the CDN case study. This results
into the domain-specific VIKING-CDN ontology reported in Appendix ??.

3.3.1 Proof-of-concept architecture

The developed PoC is called the Mastermyr Chest. Its name refers to the tool chest found
in Mastermyr9 on the Gotland island, Sweden, in 1936. This chest box contained more
than two hundred objects used by Viking carpenters. Similarly, our Mastermyr Chest
prototype has several instruments useful for VNFs description, publication, discovery,
and so on. Fig. 3.4 depicts the Mastermyr Chest tools, as well as the main interactions
between them. The reader should note that the Mastermyr Chest was designed and
implemented in a modular fashion to be easily extended with additional tools in the
future. VIKING-CDN was implemented with Protégé 2000 ontology editor10, while
Mastermyr Chest tools were developed with Java. The associated source code is available
on a GitHub repository11. The description tool12 assists VNF developers (possibly,

9https://en.wikipedia.org/wiki/M%C3%A4stermyr_chest
10https://protege.stanford.edu/
11https://github.com/NourelhoudaNouar/VNF-Description-Discovery

https://en.wikipedia.org/wiki/M%C3%A4stermyr_chest
https://protege.stanford.edu/
https://github.com/NourelhoudaNouar/VNF-Description-Discovery


3.3. Mastermyr Chest architecture and implementation 41

Tool Chest

VNF descriptor enhancer

VNF descriptor builder

Description tool

VNF Developer/Owner VNF Provider

Publication PortalDescription Portal

D
is

co
ve

ry
 P

or
ta

l

Consumers 
(CDN providers)

User request builder Semantic matchmaker

Discovery tool

CDN-Viking
+

Reasoner

VNF publisher

Deployment tool

VNF selector VNF instantiator

Publication tool

1.1

4

3

21

1.2

3.1

2.2

2.1

1.3

4.33.3

3.2

4.2

4.1

3.4

artifacts 
repository

VNF
descriptors
repository

VNF

Figure 3.4: The Mastermyr chest tool architecture

VNF owners) to semantically describe the VNFs that are relevant to the CDN context
(action 1). In accordance with the model introduced in Section 3.2.1, some information
are mandatory, and others are not. VNF descriptors can be enriched with QoS details
using the VNF descriptor enhancer (action 1.1). For instance, VNF developers can
specify Location details about the VNFs that implement the CDN’s surrogate servers.
This would help CDN placing the popular multimedia content in the closest servers
with regard to the end users location to reduce the delivery time. Afterwards, the
VNF descriptor builder generates the VIKING-CDN-compliant descriptors of the VNFs
(action 1.2) and forwards them to the VNF publisher (action 1.3). The VNF descriptors
are implemented as OWL files. Snapshots of the description tool are shown in Fig. 4.6.
The publication tool enables publishing the VNF artefacts (deployables) in the VNF
artefacts repository to make them available to CDN providers (action 2). The VNF
publisher requests the VNF artefacts’ Unified Resource Identifier (URI) (action 2.1).
After that, it annotates the VNF descriptor file with this URI and saves it in the VNF
descriptors repository (action 2.2). For the current prototype, we did consider concrete
VNF artefacts that implement one of the following middleboxes:

• A multimedia mixer that enables mixing several multimedia contents and
returns a resulting content (e.g., adding voice to a video, adding ads banner to
an image/video),

12A demo is available at: https://drive.google.com/drive/folders/1ocJgxdP_
oEVdPmQMFQlvNft7jsx7IhKn?usp=sharing

https://drive.google.com/drive/folders/1ocJgxdP_oEVdPmQMFQlvNft7jsx7IhKn?usp=sharing
https://drive.google.com/drive/folders/1ocJgxdP_oEVdPmQMFQlvNft7jsx7IhKn?usp=sharing


42
Chapter 3. A Semantic Virtualized Network Functions Description and

Discovery Model

Figure 3.5: Snapshots of the description tool interfaces

• A multimedia compressor that enables compressing the size and quality of
multimedia content (e.g., degrading a high-definition video quality to save storage
space or to decrease delivery time),

• A multimedia transcoder that converts original multimedia content to other
formats using appropriate codecs (e.g., converting MP4 video to AVI).

The FFmpeg13 open-source solution was used to implement these three middleboxes as
VNFs. FFmpeg involves a suite of codecs, libraries and programs to handle video, audio,
and other multimedia files and streams. Several and various FFmpeg instances with
different configurations and packaging are implemented, according to the characteristics
and capabilities mentioned in the VNF descriptors. In turn, VNF providers store
their instances into the VNF artefacts repository as Ubuntu-based virtual machine
appliances. The discovery tool14 allows the VNF consumers (i.e., CDN providers in this
specific case) to build their requests to calculate the matchmaking between required
and offered VNFs (action 3). First, the user request builder assists VNF consumers
to define a formal and VIKING-CDN-compliant request based on their functional and
non-functional needs and preferences. The request is then forwarded as a required
VNF descriptor to the semantic matchmaker (action 3.1). This matchmaker uses
Algorithm 1 (Section 3.2.2.2) where matchAll and matchSome rely on VIKING-CDN’s
reasoner (Section ??) that infers relevant relationships between concepts and instances
(action 3.2). Then, the semantic matchmaker calculates the matching scores of the
requested VNF with regard to the offered VNFs descriptors published in the VNF

13https://www.ffmpeg.org/
14A demo is available at: https://drive.google.com/drive/folders/1ocJgxdP_

oEVdPmQMFQlvNft7jsx7IhKn?usp=sharing.

https://www.ffmpeg.org/
https://drive.google.com/drive/folders/1ocJgxdP_oEVdPmQMFQlvNft7jsx7IhKn?usp=sharing
https://drive.google.com/drive/folders/1ocJgxdP_oEVdPmQMFQlvNft7jsx7IhKn?usp=sharing


3.3. Mastermyr Chest architecture and implementation 43

descriptors repository (action 3.3). Finally, the semantic matchmaker transmits the
obtained ranked list to the VNF selector (action 3.4) (e.g., see the snapshot in Fig. 3.15).
The semantic matchmaker relies on OWL API12 and Jena13 plug-ins to parse OWL files
and perform the OWL reasoning. The deployment tool enables providing a published
VNF in a target network topology (action 4). First, the VNF selector downloads and
parses its VNF descriptor. Obviously, following a discovery procedure, it selects and
processes the VNFs descriptor with the highest matching score (action 4.1). Then, it
forwards its URI to the VNF instantiator (action 4.2). The latter is responsible for
downloading the VNFs, deploying them in the target CDN network, configuring, and
integrating them into the existing topology (action 4.3).

3.3.2 Mastermyr Chest integration to ETSI NFV MANO

For dissemination and normalization purposes, Fig. 3.6 depicts the integration plan for
the Mastermyr Chest tool built around VIKING into ETSI NFV standards. As men-
tioned in Section 1, the ETSI MANO framework supports VNF provisioning according
to the procedures defined by ETSI and described in [Virtualisation 2014]. MANO
mainly consists of three key components namely, NFV Orchestrator (NFVO), VNF
Manager (VNFM), and Virtualized Infrastructure Manager (VIM). Broadly speaking,
NFVO is responsible of instantiating, deploying and executing VNFs according to the
strategies established by the OSS/BSS. To each provisioned VNF, MANO associates
a dedicated VNFM that manages the VNF lifecycle at runtime (e.g. starting, scal-
ing, migrating, and terminating). VNFM closely interacts with VIM that maintains
the necessary compute and storage appliances from the NFV Infrastructure (NFVI)
for the proper functioning of the VNFs. The reader should note that all the tools
of the Mastermyr Chest tool box were developed with respect to ETSI NFV specifi-
cation and procedures. Specifically, the VIKING descriptor format is compliant with
the VNFD information model specification described in [Nguyenphu 2018]. The data
types and communication protocols supported by Mastermyr chest tool box are in line
with the ETSI specification described in [ets 2020]. Indeed, all the tools are REST-
ful and compliant with the ETSI policy management generic interface. To integrate
and connect the Mastermyr Chest tools to the MANO components, we propose the
following configuration. First, the description tool is standalone. It will assist VNF
developers specify VIKING-compliant VNF descriptors. When it comes to the VNFs
publication, the publication tool provides the NFVO with the VIKING-compliant de-
scriptors and their related VNF artifacts (action 1). As is presently the case for regular
VNFD storage in the MANO, the NFVO stores the VIKING descriptors in appro-
priate VNF catalogue (e.g., document-based database) and the associated atefacts in

12http://owlapi.sourceforge.net/
13https://jena.apache.org/documentation/ontology/

http://owlapi.sourceforge.net/
https://jena.apache.org/documentation/ontology/


44
Chapter 3. A Semantic Virtualized Network Functions Description and

Discovery Model

Figure 3.6: The Mastermyr Chest integration to ETSI NFV MANO

the NFV repository (e.g., VM image). As for the VNFs discovery, the ETSI standard
procedure is kept. Specifically, the discovery tool first extracts a valid VNFD from
a VIKING-compliant request and forwards it to the NFVO. The latter processes the
request according to the standard VNFD discovery procedure supported by the MANO
and sends back, to the discovery tool, a list of VNF candidates (action2). This list is
refined thanks to our semantic matchmaker implemented within the discovery tool (eee
Section 6.1).

The most relevant VNF with regard to the request is forwarded to the deployment
tool. The latter first interacts with the NFVO to trigger the required VNF instantiation
and the initialization of its corresponding VNFM (action 3.1). Then, the deployment
tool communicates with the VNFM to acknowledge the creation of the VNF and start
it (action 3.2).

3.4 Validation and evaluation

This Section discusses the performed experiments to evaluate and validate our findings.
First, it describes the considered test collection and the comparative study metrics.
Then, it presents the obtained measurements in terms of performance and robustness.

3.4.1 Test collection

To conduct experiments on VNF semantic discovery, we first proceed with the test
collection creation. This collection includes three items:

1. A comprehensive set of valid VIKING-compliant VNFDs (D) that covers conver-
sion, mixing, and/or compression functions in the CDN domain,



3.4. Validation and evaluation 45

2. A set of test queries (Q) that challenges our semantic matchmaker in terms of
false positive/negative outcomes,

3. A set of relevant VNFs per query (VQ) that denotes all true positive outcomes.

These three items are detailed in the rest of this Section.

3.4.1.1 Illustrative VNFDs for the CDN use case

To achieve a comprehensive coverage for D (i.e., all possible valid VNFDs), we proceed
as follows. First, we define the association rules listed in Table 3.4. These rules map
VIKING’s tree structure with semantic parsing onto VIKING’s hypergraph structure (see
Fig. 3.7) with syntactic parsing.

Figure 3.7: VIKING’s partial syntactic representation

Formally, this hypergraph G is defined as a 3-tuple < T, NT, H > where

- T denotes the multiset of terminal nodes that correspond to VIKING’s instances
where each set (T(c)) refers to specific concept c.

- NT denotes the set of non-terminal nodes corresponding to VIKING’s abstract and
concrete concepts for the CDN domain (e.g., Operation and Transmuxing). We
refine non-terminal into OrNode and AndNode to represent inheritance (INH) and
object properties (OP) among concepts (cj) respectively. {Ri}i=1,3 reported in
Table 3.4 indicate when and how to create OrNode and AndNode.



46
Chapter 3. A Semantic Virtualized Network Functions Description and

Discovery Model

- H represents the multiset of labeled hyperedges that refers to a set of OrNode
and AndNode. Formally, H is defined as a 2-tuple < NT, L, 2NT > where L refers
to a set of labels like OP and/or OR (Fig. 3.7). {Ri}i=4,6 reported in Table 3.4
indicate when and how to create HyperEdge.

To generate D, we adapt the well-known Depth First Search (DFS) so that possible
valid VNFDs are built incrementally during visiting nodes. Algorithm 2 reflects this
adaptation. This algorithm associates each visited node with some partial VNFD tem-
plate where field names refer to all the parent nodes’ terms. In Lines 5-11, the algorithm
splits OrNode’s children into a set of nodes, each corresponding to some combination of
children. In Lines 14-17, it concatenates AndNode’s children partial VNFD templates.
As a result, D contains 695 VIKING-complaint VNFDs for our CDN use case.

Algorithm 2 D’s generation
1: Adapted-DFS(G, queue, currentt, template,D)
2: // G is the hypergraph
3: // queue is initialized to G.root
4: // currentt refers to the current node in G
5: // template refers to a certain VNFD template
6: // D is the set of all VNFD produced
7: if queue ̸= ∅ then
8: currentt = queue.pop()
9: template.add(currentt)

10: if leafNode(currentt) then
11: D.add(template)
12: else if OrNode(currentt) then
13: for all subset_t ∈ currentt do
14: queue.push(subset_t)
15: adapted-DFS(G, queue, currentt, template,D)
16: end for
17: else if AndNode(currentt) then
18: for all child_t ∈ currentt do
19: queue.push(child_t)
20: adapted-DFS(G, queue, currentt, template,D)
21: end for
22: end if
23: end if

1For AndNode, same as OrNode2.



3.4. Validation and evaluation 47

Table 3.4: Association rules

Rule Condition Action
R1 c ∈ NT & T(c) ̸= ∅ createOrNode1(x, T(x))
R2 |{INH(x, yi)}| ≥ 2 createOrNode2(x,{yi})
R3 |{OP[x, yi]}| ≥ 2 createAndNode(x, {OP, yi})
R4 OP[x,OrNode1(yi, {yi,j})] createHyperEdge(x, {yi,j})
R5 OrNode(x,OrNode2(yi,OP, {yi,j})) createHyperEdge(x, {yi,j})
R6 AndNode(x, {OP,OrNode2(y)})1 createHyperEdge(x,

{OP,OrNode2(y)})

3.4.1.2 Sample queries

To challenge our semantic matchmaker presented in Section 3.2.2.2, we build Q by
using two types of query ambiguity introduced by Song et al. [Song 2007]. These
authors classify Web queries into broad but clear and ambiguous. The former refers
to queries that cover diverse “subtopics but a narrow topic,” and the latter relates to
queries with more than one meaning. For experimentation purposes, we refine broad-
but-clear and ambiguous as follows. In the first, user requirements are specified with
implicit (or hidden) terms that can be inferred by VIKING-CDN’s reasoner, only. In
the second, user requirements include the same naming for different instances, but
only the user can remove ambiguity. Table 3.5 depicts 10 sample queries, and each
described with REQF

i and/or REQNF
i . For clarity purposes, we omit preferences from

Table 3.5. On top of this, the queries are classified into either broad but clear or
ambiguous depending on the source of ambiguity (Table 3.6).

We, thus, expect that our semantic matchmaker with broad-but-clear/ambiguous
user queries as inputs and little knowledge about the user preferences will pro-
vide VNFs candidates that would correspond to probably inconsistent interpreta-
tions (i.e., false positive/negative outcomes).

3.4.1.3 VNFD relevance

Prior to proceeding with the set of relevant VNFDs per query (VQ), we build some
VNF template (tj) per Qj referring to expected VNF properties required to satisfy
this query (Table 3.7). To obtain VQ, we automatically annotate D with binary rel-
evance values. A VNFi’s relevance (R) to a certain query (Qj) refers to what extent
this VNF’s VNFDi would be compliant with tj (i.e., user satisfaction degree). Formally,
Equation 3.7 computes R as follows.



48
Chapter 3. A Semantic Virtualized Network Functions Description and

Discovery Model

Table 3.5: Sample queries (Q)

Query REQF
i and/or REQNF

i

Q1 V Converter(?x)∧C_A(aac)∧C_A(mp3)∧Device(Zune)
Q2 V Converter(?x)∧C_A(aac)∧C_A(wav)∧Device(iRiver)
Q3 V Converter(?x) ∧ C_A(avc) ∧ C_A(wmv) ∧Device(ppc)
Q4 V Converter(?x)∧C_A(mp4)∧C_A(wmv)∧Device(pmp)
Q5 V Converter(?x) ∧ C_A(mp3) ∧Device(iPhone_6s)
Q6 V Converter(?x) ∧ C_A(mp4) ∧Device(Galaxys3)
Q7 V Converter(?x) ∧ C_A(mkv) ∧ C_A(mp3)
Q8 V Converter(?x) ∧ C_A(avi) ∧ C_A(gif)
Q9 VMixer(?x) ∧ Content(video) ∧ Content(image)
Q10 VMixer(?x) ∧ Content(image) ∧ Content(audio)

C_A : Content_Attribute

Table 3.6: Query classification

Query type Query Source

ambiguous

Q1

Content_attributeQ2
Q3
Q4

broad-but-clear

Q5 DeviceQ6
Q7 TechniqueQ8
Q8 OperationQ10



3.4. Validation and evaluation 49

Table 3.7: Expected VNF properties per query

Query VNF template
Q1 Operation(transcoding) ∧ Content(audio) ∧ C_A(codec)
Q2 Operation(transmuxing) ∧ Content(audio) ∧ C_A(format)
Q3 Operation(transcoding) ∧ Content(video) ∧ C_A(codec)
Q4 Operation(transmuxing) ∧ Content(video) ∧ C_A(format)
Q5 Operation(transsizing) ∧ Content(audio) ∧ C_A(resolution)
Q6 Operation(transsizing) ∧ Content(video) ∧ C_A(resolution)
Q7 Operation(transcoding) ∧ Content(video) ∧ Content(audio) ∧

Technique(audio_separation)
Q8 Operation(transcoding) ∧ Content(video) ∧ Content(image) ∧

Technique(image_sequence)
Q9 Operation(video_image_mixing) ∧ Content(video) ∧ Content(image)
Q10 Operation(image_audio_mixing) ∧ Content(image) ∧ Content(audio)

C_A : Content_Attribute

RQj (V NFi) =

1 if |{tj .(ck|instp) ∈ VNFDi}| ≥ σck
, ∀ck ∈ tj

0 otherwise
(3.7)

where

- tj .(ck|instp) refers to pth instance of the concept ck in the template tj .

- σck
denotes the minimum number of ck’s instances that should be included in

any satisfactory VNFi.

This annotation was performed on every VNFD in D for all test queries ({Qj}j=1,10).
Fig. 3.8 shows how VNFs annotated with 1 (see Equation 3.7) are distributed over Q.
We can observe a non-uniform distribution over D. For instance, the set of generated
VNFs satisfying queries related to conversion ({Qj}j=1,8) is more represented than the
other sets. This distribution is due to a significant number of possible conversion-related
capabilities compared to other operations like mixing.

3.4.2 Performance analysis

To assess the proposed approach’s performance, we use 2 metrics namely, com-
pleteness and efficiency. The former describes how well our VIKING-based match-
maker (Mastermyr chest) identifies the relevant VNFs compared with the total number
of such VNFs that exist in the test collection. The latter describes how well Mas-



50
Chapter 3. A Semantic Virtualized Network Functions Description and

Discovery Model

Figure 3.8: Probability distribution in D over Q

termyr chest identifies only those relevant VNFs, by comparing the number of target
VNFs identified with the total number of VNFs retrieved.

3.4.2.1 Performance metrics

First, we classify the retrieved VNFs provided by each matchmaker into three sets,
namely True Positive (TP), False Positive (FP), and False Negative (FN) where

- TP contains the retrieved VNFs that are relevant as per Section 3.4.1.3,

- FP contains the retrieved VNFs that are not relevant, and

- FN contains the relevant VNFs that are not retrieved (i.e., discarded by the
matchmaker).

Once the sets mentioned above are established, we use two well-known per-
formance measurements in the semantic Web and Machine Learning communi-
ties (e.g., [Powers 2011]), namely, recall (R) and precision (P) that implement com-
pleteness and efficiency metrics (e.g., [Pace 2012]), respectively, and are defined as
follows:

- R refers to the ratio between the number of true positive VNFs and the number
of relevant VNFs, including true positive VNFs and false negative VNFs, as
well (Equation 3.8).

R = TP
TP + FN (3.8)

- P refers to the ratio between the number of true positive VNFs and the total num-
ber of retrieved VNFs, including true positive and false positive VNFs (Equa-



3.4. Validation and evaluation 51

tion 3.9).
P = TP

TP + FP (3.9)

It happens that R and P can be inversely related. On the one hand, lower R
increases the risk to miss relevant VNFs and, therefore, would penalize VNF providers.
On the other hand, lower P denotes a significant number of irrelevant VNFs and, thus,
would mislead the end-users. To estimate to what extent VNF providers/end-users
should trust our matchmaker, we rely on F-measure that reflects the right balance
between R and P. Formally, F-measure can be defined as follows:

F-measure = 2× R×P
R+ P (3.10)

Note that Equation 3.10 considers R and P as equally important.
On top of the aforementioned metrics, we deem appropriate to measure the overhead

in terms of response time (RT ) defined as the amount of time necessary to get a
response from the matchmaker following a discovery request sent by an end-user.

3.4.2.2 Measurement and discussion

We run experiments that challenge the discovery tool of the Mastermyr chest with the
test collection including Q. To demonstrate our matchmaker’s completeness and effi-
ciency, we first consider another sample of queries (Q′) obtained from Q’s (partial or
full) disambiguation by adding new VNF property per Qi, as depicted in Table 3.8.
After, we measured discovery tool performance in terms of precision, recall, F-measure,
and response time. The reader should note that we consider all matching outcomes ob-
tained by our semantic matchmaker, given some Qi. The obtained results are discussed
in the rest of this Section.

Fig. 3.9 depicts R rates for all Qi and their corresponding Q′
i. We can observe

that our matchmaker with queries Q′
5, Q′

6, Q′
9, Q′

10 provides better R rates than with
Q5, Q6, Q9, Q10, up to 33%. For instance, for Q′

9, Operation(video_image_mixing)
helps retrieving VNFs that implement mixing capabilities without specific Content.
As for queries Q′

1 to Q′
4 and Q′

7 to Q′
8, we can observe constant R rates compared to

their corresponding Qi. Indeed, VIKING-CDN’s reasoner through SWRL rules help the
matchmaker identify relevant VNFs described with minimal required VNF properties.
For instance, for Q′

8, Content(image) does not help retrieving VNFs that support
Technique(image_sequence) due to the SWRL rule (Equation 3.1) instantiated with
gif and image.

Fig. 3.10 depicts P rates for allQi and their correspondingQ′
i with respect to the rel-

evant VNFs forQi as reported in Fig. 3.8. Overall, we can observe that our matchmaker
achieves better P rate with queries Q′

1 to Q′
6 than with Q1 to Q6, respectively, with



52
Chapter 3. A Semantic Virtualized Network Functions Description and

Discovery Model

Table 3.8: Sample queries (Q′)

Query REQF
i and/or REQNF

i

Q′
1 V Converter(?x) ∧ C_A(aac) ∧ C_A(mp3) ∧ Device(Zune) ∧

C_A(audio_codec)
Q′

2 V Converter(?x) ∧ C_A(aac) ∧ C_A(wav) ∧ Device(iRiver) ∧
C_A(audio_format)

Q′
3 V Converter(?x) ∧ C_A(avc) ∧ C_A(wmv) ∧ Device(ppc) ∧

C_A(video_codec)
Q′

4 V Converter(?x) ∧ C_A(mp4) ∧ C_A(wmv) ∧ Device(pmp) ∧
C_A(video_format)

Q′
5 V Converter(?x) ∧C_A(mp3) ∧Device(iPhone_6s) ∧Content(audio)

Q′
6 V Converter(?x) ∧ C_A(mp4) ∧Device(Galaxys3) ∧ Content(video)

Q′
7 V Converter(?x) ∧ C_A(mkv) ∧ C_A(mp3) ∧ Content(audio)

Q′
8 V Converter(?x) ∧ C_A(avi) ∧ C_A(gif) ∧ Content(image)

Q′
9 VMixer(?x) ∧ Content(video) ∧ Content(image) ∧

Operation(video_image_mixing)
Q′

10 VMixer(?x) ∧ Content(image) ∧ Content(audio) ∧
Operation(image_audio_mixing)

C_A : Content_Attribute

Figure 3.9: Recall rates



3.4. Validation and evaluation 53

an approximate increase up to 15%. For instance, for Q1, the required VNF property
C_A(audio_codec) helps overcoming the ambiguity raised by C_A(aac) as an audio
format. As for Q7 to Q10, considering additional VNF properties do not help discard-
ing irrelevant VNFs. For instance, Content(audio) in Q′

7 does not permit to exclude
the VNFs with Operation(transcoding) on Content(video) and/or Content(audio)
while relevant VNFs should implement Operation(transcoding) on Content(video) to
Content(audio).

Figure 3.10: Precision rates

Since improving R typically reduces P and vice-versa, a decision threshold (δ)
should be defined to determine a good trade-off between R and P. Fig. 3.11 illustrates
the way the discovered VNFs for each query (i.e., Q ∪ Q′) are partitioned. We, then,
compute R and P at each δj per query along with the recall and precision averages for
Q and Q′, respectively, at δj . Fig. 3.12 depicts the trade-off as the ratio between R and
P. The end-user fixes either Rj and Pj , or both and obtains the corresponding δj . For
instance, whether the end-user seeks for the most relevant VNFs, only (i.e., P = 1),
δ1 should not exceed 10% of discovered VNFs. We can observe that whenR is improved,
P remains satisfactory (i.e., ≈ 0.75 and 0.8 for Q and Q′, respectively).

Figure 3.11: Decision threshold



54
Chapter 3. A Semantic Virtualized Network Functions Description and

Discovery Model

Figure 3.12: R/P ratio

Fig. 3.13 shows F-measures for Q and Q′. Note that larger F-measures indicate
better overall results. Globally, the obtained F-measures vary over [0.57, 0.89] and [0.67,
0.89] for Q and Q′, respectively. This indicates satisfactory results for the matchmaker
from both provider and end-user perspectives. However, some improvements are still
needed in terms of additional SWRL rules related to missing relationships between
Content and Operation as highlighted for Q9 and Q10, for instance.

Figure 3.13: F-measures

Fig. 3.14 depicts the overhead (RT ) for Q and Q′. We notice that the overhead
varies according to the query. For instance, converter queries (i.e., Q1 to Q8) takes



3.4. Validation and evaluation 55

longer time than mixer queries (Q9 and Q10). This can be explained by complexity un-
derlying converter’s semantics (i.e., more concepts and instances along with semantic
relations) compared to mixer. This complexity, thus, induces additional time for match-
ing. However, we observe minor increase in RT for Qi. Compared to having better R
and P obtained for Q′

i, the overhead remains acceptable (i.e., ≈ 60ms).

Figure 3.14: Overhead

3.4.3 Robustness evaluation

We also evaluate our matchmaker robustness in terms of consistency. For a given
query, we examine and validate the obtained VNFs and their calculated matching scores
considering a specific predefined set of published VNFs. For instance, the matching
results for the VTranscoder are shown in Fig. 3.15. We observe that VNFs ranked from
8 to 10 have the same final score. This raking would mean that these VNFs are either
identical or equivalent in terms of satisfying the query and its preferences. Let us parse
the following capabilities:

• {CAPvt7588
F}H={O-Transmuxing} & {CAPvt7588

F}O={Std-MPEG_4}

• {CAPvt9500
F}H={O-Transcoding} & {CAPvt9500

F}O={Std-MPEG_2}

• {CAPvt4341
F}H={O-Transcoding} & {CAPvt4341

F}O={Std-MPEG_4}

We note that O-Transmuxing and O-Transcoding are both functional requirements
and are associated with the same preferences. This description explains the equivalence
between these VNFs. To evaluate robustness, we modify the preference values for
O-Transcoding to O- CL. Based on the updated list of scores shown in Fig. 3.16, we
notice that the final score changes. The list is refined to better satisfy the H- CL’s
requirements. Contrary to the previous list, we see that Tr_Virtual_Transcoder7588
is ranked before Tr_Virtual_Transcoder9500 in the updated list.



56
Chapter 3. A Semantic Virtualized Network Functions Description and

Discovery Model

Figure 3.15: The total ranked list of the discovered VNFs

Figure 3.16: Excerpt of a list of relevant VNFs following a requirement change

3.5 Summary

This chapter introduced a novel semantic-based methodology to describe, publish and
discover Virtualized Network Functions (VNFs). It proposes a domain-independent
VIrtualized networK functIoN ontoloGy (called VIKING) that enables VNFs developers
and owners to sufficiently describe the capabilities and the requirements of their VNFs
prior to publication. Prospective VNFs consumers use the same model to automate
the discovery process, improve its precision and rely on federated repositories system if
needed. Yet another contribution is supporting the VNFs non-functional properties and
user preferences during the discovery, in addition to the classical functional properties.

As for validation, an extensive and real-life use case was designed and implemented.
The considered use case explores VIKING in the context of Content Delivery Networks
(CDN). A validating chest tool called Mastermyr Chest is developed. It consists of
several tools that enable describing, publishing, discovering, and instantiating VNFs as
middleboxes for CDN providers. The performed experiments on the discovery tool of
Mastermyr Chest show that our semantic-based approach is accurate, precise, and with
moderate delays.



Chapter 4

Agile and Dynamic Virtualized
Network Functions Wiring in

Network Services

4.1 Introduction

According to ETSI NFV, an NS is a composition of VNFs. These VNFs are arranged as
a set of functions according to a Network Connectivity Topology (NCT) or without any
connectivity specification between them [NFV 2017]. The NS concept enables develop-
ers to provision complex and sophisticated network functions, made up of elementary
VNFs, at a higher level of abstraction. Furthermore, coupled with SDN, NFV provides
higher flexibility in NS management. SDN enables flexible data forwarding among the
VNFs. It places forwarding rules in network elements to transmit data through one of
the possible paths prepared in advance by NS providers at design time [Kreutz 2015].
This capability ensures dynamic control of VNF chains by facilitating data forwarding
across them. The forwarding elements route the traffic to follow an overlay path so
that several VNFs are visited.

However, ETSI NFV does not provide a specific control that dictates the execution
order and the composition logic of VNFs in a given NS. This reflects negatively on
the NS provisioning methodology and procedures. Indeed, at design time, developers
must entirely rely on SDN, along with its inherent service function chaining concept, to
design and configure the routing rules between the involved VNFs. Consequently, they
have to foresee and plan all possible and practical composition scenarios in the NS.
Moreover, they should instantiate, deploy, configure, and manage all these potential
paths at run-time, including the ones that will rarely be or never be used. On top
of being costly, tedious, and time-consuming, this way of proceeding contradicts NFV
spirit, specifically virtualization, promoting agility and cost-effectiveness in networking
applications. Yet another limitation concerns the routing path models supported by
SDN. In fact, SDN allows only sequential service function chains to be provisioned
where VNFs are tied in a linear way. Therefore, more complex and sophisticated
chains are still not supported in the NS.

This chapter proposes a novel approach that enables agile and dynamic NS provi-



58
Chapter 4. Agile and Dynamic Virtualized Network Functions Wiring in

Network Services

sioning as an extension to the ETSI NFV architectural framework. Broadly speaking,
this research initiative introduces novel technical VNFs, called routing VNFs, with effi-
cient re-configurable wiring capabilities for NSs. This initiative distinguishes domain-
specific aspects from the connectivity ones in the NS definition. Domain-specific aspects
are implemented with regular VNFs, while connectivity aspects are supported by the
routing VNFs. By doing so, developers will be able to change and update the NS’s
composition logic at run-time, given specific criteria (e.g., message type, data size, QoS
metrics).

The rest of the chapter is structured as follows. Section 4.2 introduces the pro-
posed approach, as well as, the associated ETSI NFV-based architecture. Section 4.3
describes the proof-of-concept and the developed running prototype. Section 4.4 elab-
orates on the performed experiments. Finally, Section 4.5 discusses the lessons learned
and concludes the paper.

4.2 A novel dynamic and re-configurable VNF wiring in
NS

This Section details the motivating use case and describes the proposed approach to
overcome the limitations. Then, we present our approach’s high-level architecture.

4.2.1 Motivating use case

Platooning technology made significant advances to mitigate traffic congestion and re-
duces vehicle emissions. For a safe and green journey, a platoon consists of a leader
vehicle that controls the speed and direction and follower vehicles that fit with the
leader ’s movement in terms of acceleration and braking. The leader also communi-
cates with the networking infrastructure to retrieve details about signalization and road
conditions. Platooning relies on vehicle-to-infrastructure (V2I) and vehicle-to-vehicle
(V2V) communications [Boban 2018] [Cao 2016]. Notably, the fifth-generation (5G) of
mobile telco networks turns out an excellent candidate to achieve this kind of communi-
cation. Indeed, the 5G network is expected to deliver ultra-low latency and ultra-high
reliability to enable efficient, safe, and reliable car platooning. To reinforce mobility
and allow V2X communications, ETSI-compliant 5G specifications recommend NFV,
SDN, Multi-access Edge Computing (MEC), and Next-Generation Protocols (NGP) as
key concepts [Raissi 2019]. On the one hand, they advocate for slicing the network into
many logic and functional entities that could be virtualized and provisioned as VNFs
to enable agile and cost-effective operating. On the other hand, SDN will handle the
control plane to support the dynamic reshaping of the traffic.

Fig. 4.1 depicts the data plane and the signaling & control plane for car platooning.
The former refers to V2V and V2I communications. The latter involves three Network



4.2. A novel dynamic and re-configurable VNF wiring in NS 59

Signaling and Control plane

V2I NSV2V NS

MAPSPAT

Data plane

RSU

Platooning

V2VV2VV2I

Leader Follower 1 Follower 2

V2I

CAMDENM

Security NS

IDAM

FW IDS

TM

IPS

ThC ThM

VPN

not permitted traffic

permitted traffic

Threats detected

No-threats detected

Figure 4.1: Network services and connectivity for vehicles platooning in 5G

Services (NS), namely, V2V, V2I, and security. The V2V NS ensures the commu-
nication services between the vehicles and encompasses VNFs such as Decentralized
Environmental Notification Messaging (DENM) and Cooperative Awareness Messag-
ing (CAM). The V2I NS ensures communications between vehicles and infrastructure,
and it encompasses VNFs such as Signal Phase and Timing Information (SPAT), road
sign information, and road topology information (MAP). Finally, the security NS se-
cures the whole system, including the V2V and V2I communications. While the V2I
and V2V NSs reflect sequential “execution” flows, the security NS provides several
prospective “execution” flows depending on the case study and the data/request types
to be secured. In practical terms, the traffic arrives first to the VNF named IDentity
and Access Management (IDAM) that is responsible for verifying the vehicle’s identity
and distinguishes if the source vehicle is trustful (e.g., already part of the platoon)
or not. The untrusted traffic must necessarily pass by the FireWall (FW) VNF be-
fore traveling through the rest of the NS. The FW VNF filters the network packets
based on specific criteria (i.e., source, destination addresses, ports) and blocks the
suspicious traffic. Next, the traffic simultaneously goes through the Intrusion Detec-
tion System (IDS) VNF and the Traffic Monitor (TM) VNF. The IDS VNF compares
the received packets to a knowledge database to identify potential threats. In paral-
lel, the TM VNF parses the network packets to detect any threats and/or malicious
content. The execution results are then aggregated by the Intrusion Prevention Sys-
tem (IPS) VNF. When no threats are detected, the traffic is forwarded to the Virtual



60
Chapter 4. Agile and Dynamic Virtualized Network Functions Wiring in

Network Services

Private Network (VPN) VNF that makes safe tunneling with the network destination.
Otherwise, the traffic should first travel through a specific network branch that consists
of Threats Classifier (ThC) VNF and Threats Mitigation (ThM) VNF before reaching
the VPN VNF. The ThC VNF classifies the intrusion within pre-defined classes/families
of threats while the ThM VNF reduces the extent of the intrusion by either isolating
or containing it until the problem is fixed.

Following the ETSI specification, provisioning the security NS necessarily implies
deploying all the involved VNFs and configure the connectivity as depicted in the as-
sociated execution workflow. Therefore, NS developers should anticipate and cover
all the execution alternatives. Specifically, this means that developers need to design,
deploy and configure all the possible NFP and end up with heavy, complex, and static
NCT handle during every single phase of the network entities’ life-cycle. Wiring con-
stituent VNFs could be easily done for simple NS but can turn out tedious and costly
tasks for complex NSs with a considerable number of VNFs and sophisticated work-
flows. Furthermore, depending on the traffic, some of the pre-deployed/pre-configured
wires will be rarely or never used. To address all these limitations, we advocate for
deploying a single execution alternative that could dynamically be reconfigured and
adjusted, depending on the need (e.g., request type, data type), during run-time.

4.2.2 Requirements and foundations

As part of our study of the ETSI NFV framework, we identified a set of requirements
that represent the necessary actions/characteristics for NS provisioning (i.e., design,
deploy, execute, and manage). In what follows, we describe the associated requirement
to each phase of the NS life-cycle when considering MANO:

1. NS description phase: When designing the VNFFG (introduced in Chapter 2),
all the necessary NFPs among a given number of VNFs need to be prepared
in advance for a prospective operation. Assuming a complete/comprehensive
knowledge is unfortunately unrealistic.

2. NS deployment phase: All the necessary elements, such as the virtual links
that make up the previously mentioned NFPs, need to be established appropri-
ately. This includes the virtual links that eventually will never be used and, thus,
leads to excessive resource consumption.

3. NS execution and management phases: Not all the management operations
are possible when maintaining the service delivery (e.g., adding new VNFs to the
NS descriptor at run-time). Only the pre-defined paths that connect VNFs in
the NS’s descriptor can be subject to updates during these phases. This would
overlook newly added paths.



4.2. A novel dynamic and re-configurable VNF wiring in NS 61

Figure 4.2: Network traffic representation per routing logic

To address the aformentioned requirements/limitations, we advocate for flexible and
dynamic wiring among VNFs in a given NS using the separation-of-concerns design
principle to separate domain-specific aspects from connectivity aspects. We intro-
duce three novel concepts, namely, routing-AND, routing-OR, and routing-XOR. Each
concept supports wiring capabilities that enable the NS designer to define a certain
partial order among the domain-specific VNFs (i.e., all, some, or single). These novel
wiring capabilities allow us to obtain non-linear (i.e., tunable) NCTs. The prospective
traffic when crossing VNFs triggers a particular routing logic as represented in Fig. 4.2:

• routing-AND triggers all the “execution” branches by forwarding the entry traffic
to all the outgoing VNFs.

• routing-OR triggers some of the “execution” branches based on traffic conditions,
either conveyed in the traffic itself or reported by NS consumer, by forwarding
the entry traffic to selected outgoing VNFs.

• routing-XOR triggers a single “execution” branch based on traffic conditions,
either conveyed in the traffic itself or reported by NS consumer, by forwarding
the entry traffic to the selected outgoing VNF.

Algorithm 3 implements the routing logic as follows. This algorithm first takes rout-
ing VNF id, NS descriptor, triggering condition, and traffic as inputs. Then, it parses
the NS descriptor to retrieve all NFPs ({NFPk}k=1,r) associated with the routing
VNF id. Afterward, {NFPk} are split into 2 disjoint sets namely, {NFPi}i=1,r′ and
{NFPj}j=r′+1,r corresponding to desired wiring capabilities to enable when the trig-
gering condition is true/false (lines 3-6 & 8-11, respectively). It is worth noticing that
r′ would be equal to r in case of routing-AND. Finally, the algorithm duplicates traf-
fic as many as either {NFPi} or {NFPj}. This results in multiple traffic to forward
through these NFPs.

In NFV setting, we advocate for specific types of VNFs that would implement
the afore-mentioned routing concepts. Fig. 4.3 depicts a conceptualized view of VNF
types. VNFs are specialized into operative for domain-specific and routing for con-
nectivity. Routing VNFs could be implemented as either swing or proxy VNFs, both
discussed in Section 4.3. Provisioning NSs endowed with routing VNFs would make



62
Chapter 4. Agile and Dynamic Virtualized Network Functions Wiring in

Network Services

Algorithm 3 Routing logic
Require: VNF id, NS descriptor, condition, traffic

1: {NFPk} = parse(VNF id, NS descriptor)
2: if check(condition) then
3: if {NFPi} ≡ {NFPk} ∨ {NFPi} ⊂ {NFPk} then
4: for all NFPi do
5: forward(duplicate(traffic), NFPi)
6: end for
7: else if |{NFPi}| = 1 then
8: forward(traffic, NFPi)
9: end if

10: else if |{NFPj}| = 1 then
11: forward(traffic, NFPj)
12: else
13: for all NFPj do
14: forward(duplicate(traffic), NFPj)
15: end for
16: end if

Figure 4.3: Considered VNF types

their associated NCT generic and customizable for modeling all the possible connections
in a given VNFFG. Thus, the NCT can be modified at run-time following user require-
ments, business policies, and/or network context. In the following section, we discuss
the way this NCT is defined, deployed, and managed at run-time.

4.2.3 High-level architecture

Fig. 4.4 depicts an overview of the system architecture. This architecture aims to
address the requirements discussed in Section 4.2.2. It ensures the proper end-to-
end provisioning of NS made up of operative and routing VNFs. The proposed design
consists of 3 main layers: NS design, NS deployment, and NS management. Each layer



4.3. Dyvine architecture and implementation 63

implements a given phase of the NS life-cycle:

• NS design phase: The NS Modeler enables designing a given NS with a set of
graphical elements to represent the NS’s execution workflow, including operative
VNFs, routing VNFs, as well as, the connections between them (Fig. 4.4, 1.1).
The output is the NS Abstract Descriptor (NS-AD) that will be forwarded to the
NS Builder (1.2). The latter parses the files and selects, from the VNFs Repository,
the needed domain-specific VNFs that are bound to operative VNFs (1.3). Then,
it produces the NS Concrete Descriptor (NS-CD) that refers to the concrete de-
ployment details (e.g., VNF images), associated NFPs for a given VNFFG along
with the constituent VNFs, and policies related to traffic management such as
the classifiers. Finally, the NS Builder forwards the NS-CD to the NS Deployer (1.4)
while saving a copy of it in the VNF Descriptors Repository (1.5).

• NS deployment phase: The NS deployment relies on the ETSI MANO. It uses
its three components (i.e., NFVO, VNFM, and VIM) described in Section ??. Con-
sidering a given NS-CD, NFVO receives queries from the NS Deployer (2.1). Then,
NFVO requests the VIM for necessary resources to instantiate both operative and
routing VNFs (2.2). VIM communicates with NFVI to allocate and instantiate the
requested resources (2.3). Moreover, the NFVO also asks VIM for the required
networking resources to create and maintain virtual links (VLs) for all associated
NFPs. VNFM will proceed with the concrete deployment of the VNFs over the
NFVI resources (2.4). VNFM also interacts with NFVO to manage them.

• NS management phase: The architectural components for this phase ensure the
service delivery and support the necessary on-the-fly updates. Indeed, at run-
time, the NS designer or NS consumer may request functional changes such as
adding/removing VNFs to a running NS, or simply modifying the wiring within
a running NS (3.1). The NS Updater forwards the NS-AD associated with these
requested changes to the NS Builder (3.2). The latter retrieves the corresponding
NS-AD from the VNF Descriptors Repository (3.3) and revises it according to the
necessary modifications. The revised NS-AD is then forwarded to the NS Adapter
(3.4). The NS Adapter applies the new changes on the NS (e.g., add/delete NFPs)
before notifying the NS Deployer to communicate with the ETSI MANO and reflect
these changes on the running NS (3.5).

4.3 Dyvine architecture and implementation

This Section presents the developed Proof-of-Concept (PoC), as well as, the running
prototype that simulates the platooning use case.



64
Chapter 4. Agile and Dynamic Virtualized Network Functions Wiring in

Network Services

Figure 4.4: System architecture overview



4.3. Dyvine architecture and implementation 65

Figure 4.5: DYVINE architecture

4.3.1 Proof-of-Concept

To prove the feasibility of our approach, we developed a PoC called DYVINE (stands for
DYnamic forwarding graphs for VIrtual NEtwork functions). DYVINE’s source code
is available on a GitHub repository1. Fig. 4.5 depicts DYVINE’s technical architecture
that implements the system architecture discussed in Section 4.2.3. Basically, DYVINE
tool enables NS provisioning while supporting the three main phases (i.e., design, de-
ploy, and manage) of their life-cycle. DYVINE is coded with JAVA and incorporates
two main modules, namely, NS Maker and NS Manager.

On the one hand, the NS Maker implements both NS Modeler and NS Builder at the
NS Design layer. Thanks to the JAVA Swing framework, this module provides the
NS developers with graphical interfaces that enable setting up NCT by drawing a given
NS structure composed of operative VNFs and routing VNFs. Fig. 4.6 shows a snapshot
of DYVINE with the security NS’s perspective representation for our case study. The
generated descriptors are implemented with YAML and stored in MongoDB, a NoSQL
database.

On the other hand, the NS Manager implements the architectural components at
the NS Management layer namely, the NS Updater and the NS Adapter. This module
displays the graphical representation of the NS to be updated from the NS descriptors
repository and applies changes requested by the NS developer, to the corresponding
NCT structure.

1https://github.com/NourNouar/DYVINE

https://github.com/NourNouar/DYVINE


66
Chapter 4. Agile and Dynamic Virtualized Network Functions Wiring in

Network Services

Figure 4.6: A snapshot of DYVINE - the security NS design

In addition to these modules, we also did integrate OSM2, an open-source MANO
implementation, to DYVINE to handle the concrete NS deployment, orchestration, and
management. Specifically, we used the VNF Configuration Adapter (VCA) module of
OSM to perform Day-2 configurations and support the dynamic (at run-time) recon-
figuration of the routing VNFs. In line with the foundations and the requirements
discussed in Section 4.2.2, the VCA enables:

• Replacing the existing NFP identifier with a new one for routing-XOR VNFs,

• Updating a list of NFP identifiers for routing-AND VNFs, and

• Add/deleting one or several NFP identifiers for routing-OR VNFs.

As for the infrastructure, we use both OpenStack3 platform to implement our
NFVI and OpenDaylight4 with Open vSwitch (OVS) [Pfaff 2015] to support the dy-
namic reshaping of the network control plane. OSM, OpenStack and, OpenDaylight
are deployed over our laboratory resources. More specifically, the NS design and NS
management layers along with OSM were executed over a single laptop featured with In-
tel(R) Core(TM) i7-8650U CPU 1.90GHz under Ubuntu 18.04 LST. Regarding Open-
stack and Opendaylight, both were hosted on our Lab’s private cloud. We, also, use

2https://osm.etsi.org/
3https://www.openstack.org/
4https://www.opendaylight.org/



4.4. Validation and evaluation experiments 67

OVS’s version 2.13.1 to support the Network Service Header (NSH) encapsulation with
VXLAN tunnels.

4.3.2 Running prototype

Our prototype simulates the use case reported in Section 4.2.1. Leader vehicle and
attackers were implemented as data streaming providers while the 4 follower vehicles
play the role of consumers, all deployed over OpenStack VMs. To enable V2V com-
munications, we create 1 virtual network mapped onto our Lab’s cloud network. Any
network service including VNFs deployed over OpenStack VMs is connected to this vir-
tual network through connection points. Note that any VM has the following features:
1 CPU, 1 GB memory, and 10 GB storage.

When it comes to the security NS implementation, we did explore 3 different op-
tions. While Option 1 relies on routing VNFs implemented through the so-called swing
VNFs, Option 2 considers proxy VNFs. As a baseline, Option 3 consists of linear
service function chaining and refers to a fully SDN-based approach for VNF wiring
within the NS. In the following, we refer to Option 3 as fully-SDN option. The VNFs
source code associated to the security NS implementation are available on GitHub
repository5. A live demo of the running prototype is available through the following
link: https://youtu.be/7emJ6tnpvLE.

On one side, swing VNFs support a static and particular logic. Each swing VNF
implements a given routing gateway (i.e., routing-XOR, routing-AND, or routing-OR).
With swing VNFs, depending on the network traffic conditions, (a) particular “execu-
tion” branch(es) will be triggered in the NS execution path. Specifically, operative VNFs
coupled with their respective intrusive swing VNF are both encapsulated in the same
VM. These particular VNFs are represented with a double ring in Fig. 4.7a.

On the other side, proxy VNFs are dynamic and implement abstract wiring
mechanisms that could be reconfigured at will during run-time. Specifically, proxy
VNFs encompass the 3 swing VNF types’ logic and need to be configured to select
the one to be used at deployment/running time (Fig. 4.7b). Packet exchanges be-
tween operative VNFs and proxy VNFs refer to Context Header 4 field’s NSH Meta-
data (Type 1) [Quinn 2018]. This offers higher flexibility to NS at run-time.

Finally, for the need of benchmarking, we also implemented security NS’s wiring
with fully-SDN option (Fig.4.7c). This solution was developed using OpenDayLight.

4.4 Validation and evaluation experiments

This Section describes the testbed settings and discusses the 2 performed sets of ex-
periments. The first set aims to observe and validate the agile and adaptive operation

5https://github.com/ieeecloudAnonym/Routing-VNFs

https://youtu.be/7emJ6tnpvLE
https://github.com/ieeecloudAnonym/Routing-VNFs


68
Chapter 4. Agile and Dynamic Virtualized Network Functions Wiring in

Network Services

(a) Option 1 - Intrusive swing VNFs

(b) Option 2 - Non-intrusive proxy VNFs

(c) Option 3 - Service function chaining (fully-SDN )

Figure 4.7: The 3 implemented options for wiring VNFs within the security NS in the
car platoon case study



4.4. Validation and evaluation experiments 69

of the newly introduced VNFs, while the second set focus on cost and performance
evaluation of the 3 implemented options presented in Section 4.3.

4.4.1 Testbed settings

To define our experimental scenarios, we rely on Segata et al.’s paper [Segata 2013].
This work discusses communication strategies in platooning. It reports realistic com-
munication rates between the leader and any follower, as well as, between successive fol-
lowers (i.e., 10 packets per second) with packet size varying over [200B, 1200B].

Furthermore, the considered experimental scenarios also refer to Denial of Ser-
vice (DoS) attacks against followers. Any attacker floods the target follower with
excessive data packets over time (i.e., 20 packets per second). The number of attackers
varies over [1, 10], depending on the conducted experiment.

4.4.2 Performance results and analysis

The first evaluation experiment aims to estimate the average time related to one-way
latency L (i.e., from the first bit sent to the last bit received) through a given NS. To
measure L, we first simulate the network traffic as a fixed number of packets (i.e., 100)
with different sizes varying between 200B and 1200B including a certain rate of attacks
varying from 10% to 100%. This traffic passes through the 3 options implementing
the security NS. To avoid biases, we repeat the experiment 10 times and then, calcu-
late L. Fig. 4.8 represents the curves associated with L(Option 1), L(Option 2) and
L(fully-SDN ) when increasing the rate of malicious packets. Overall, we notice that
L(Option 1) and L(Option 2) achieve better performance than L(fully-SDN ) by ≈ 78%
and ≈ 27%, respectively. When there are no attacks, L(Option 1), L(Option 2) and
L(fully-SDN ) have ≈ 6.8ms, 8.2ms, 14ms, respectively. The difference is due to the fact
that the packets need to go through various VNFs from one option to another. In fact,
with regard to Option 1, the additional proxy VNFs in Option 2 increases latency. How-
ever, the reader should note that the latency is still less substantial for these 2 options
with regard to fully-SDN option. Indeed, in Options 1& 2, the packets go through the
specific and selected path (i.e., limited number of VNFs), while in fully-SDN option,
packets necessarily need to go through all VNFs in the NS, one after the other. When
increasing the rate of attacks, we notice that L(Option 1) increases slightly to reach ≈
9ms whereas L(Option 2) rises significantly to reach ≈ 13ms. This is due to additional
processing for attack packets by intrusive swing VNFs and swing proxies, where, the
latter dedicates more time to process wiring information communicated by operative
VNF in packet meta-data. Also, we notice that L(fully-SDN ) remains constant because
fully-SDN option deals with both normal and attack packets in the same way.

The second evaluation experiment aims at demonstrating our approach’s effi-
ciency in terms of effective service continuity during on-the-fly network service up-



70
Chapter 4. Agile and Dynamic Virtualized Network Functions Wiring in

Network Services

Figure 4.8: One-way latency while increasing the rate of Attacks

date. Due to some changes in user requirements at run-time, existing/new VNFs
can be removed/added from/to the network service. Let us consider any vehicle
that requires additional defenses against tampering attack (i.e., false safety mes-
sages), malware (i.e., unreadable data format), and cipher attack (i.e., known plain-
text) [Sumra 2014]. As counter-measures, the security NS should be updated with
3 new VNFs namely, Coordination Control (CC), Content Filter (CF), and Encryp-
tion (Enc), each against one of the afore-mentioned attacks, as per Fig. ??. To en-
able this update, the security NS’s options 1 & 2 proceed as described in Section 4.3.
Regarding the security NS’s fully-SDN option, any NS update requires OSM to re-
deploy this NS and SDN to reconnect all the VNFs. To quantify the Mean Time-
To-Operation (MTTO), we measure deployment time for each new VNF in case of
Options 1&2 and redeployment time for all VNFs in case of fully-SDN option. During
this measurement, we vary the number of new VNFs to be added to the security NS at
once. In Fig. 4.9, we observe that the deployment/redeployment time over the 3 Op-
tions rises in a linear way. We, also, note that MTTO1 and MTTO2 are relatively equal.
The ratio between MTTOi=1,2 and MTTO3 approximates 72% (i.e., 6.5 times more).
This can be explained by the fact that only the newly added VNFs are deployed while
wiring VNFs operate to establish connectivity with these VNFs.

We, also, deem appropriate to assess the time required to create a new NFP for
the different options. To this end, we compute the cumulative moving average (CMA)
over 30 iterations per update when the new aforementioned VNFs are incrementally
added to the NS. In Fig. 4.10, we can observe that CMA weakly increases. We, also,
compare CMA(Option 1) and CMA(Option 2) with CMA(fully-SDN ) using ratio. The
first approximates 7% while the second is close to 16%. Therefore, Option 1 gives
acceptable CMA contrarily to Option 2.



4.4. Validation and evaluation experiments 71

Figure 4.9: Mean Time-To-Operation

Figure 4.10: Cumulative moving average



72
Chapter 4. Agile and Dynamic Virtualized Network Functions Wiring in

Network Services

4.4.3 Effectiveness validation

The first experiments aim at demonstrating our approach’s effectiveness to support
flexible NSs with wiring capabilities. To this end, we measure throughput over the
security NS in case of attacks issued by a single attacker. For illustration purposes,
we focus on Option 1, only. To perform fine-grained analysis, we deem necessary to
probe throughput over NS’s 3 partitions (dashed lines in Fig. 4.7a) namely, P1, P2,
and P3, each delimited with intrusive swing VNFs. Since Pi contains a set of VNFs,
we measure distinct throughput over each VNF. We define 2 time-windows ([0, t1[ &
[t1, t2]) referring to pre- and post-attack, respectively. Note that t1 refers to start-time
of attacks while t2 indicates the end of both data streaming.

In Fig. 4.11a, during [0, t1[, we observe that P1’s VNFs have the same through-
put except for FW where the traffic is null. During [t1, t2], we notice that throughput
over IDAM and FW increases while it remains constant over IDS and TM. This demon-
strates that IDAM enriched with swing-OR capability works properly by redirecting the
attacker ’s traffic to FW, only. In Fig.4.11b, we observe null throughput for P2’s VNFs
during pre-attack whereas it increases significantly during post-attack. This reveals
that FW enriched with swing-AND capability works properly by passing on attacker ’s
traffic to both IDS and TM. Finally, Fig.4.11c depicts throughput over P3’s VNFs
where it is similar for both IPS and VPN and null for ThC during [0, t1[. We observe
during post-attack that throughput over IPS and ThC increases significantly while it
remains constant for VPN. This denotes that IPS enriched with swing-XOR capability
fulfills its duty by sending attacker ’s traffic to ThC. Finally, the 3 experiments highlight
that the necessary switching time for the traffic route between pre- and post-attacks is
instantaneous, confirming the agility and the dynamicity of our approach.

4.4.4 Discussion

The performed experiments led to several important lessons learned.
The first lesson learned is that routing VNFs bring added value to NS provision-

ing procedures. Compared to the service function chain in SDN, the use of rout-
ing VNFs considerably reduces complexity in NFV connectivity management. Unlike
SDN procedures, where developers need to handle all the network routes, they will be
henceforth able to focus on particular branches of the same network. This induces a
decrease in the network’s operating cost. Generally speaking, the routing VNF con-
cept fits well with virtualization principles. Actually, it brings cost-effectiveness and
agility to the network. Also, it enables the dynamic update of the NS’s composition
logic given specific criteria (e.g., message type, data size, QoS metrics). This capa-
bility seems to be appropriate to tackle the emerging needs of the next-generation
service providers (e.g., mobile communication systems) with challenging constraints
on the network business model ecosystem. Examples of constraints are the mobil-



4.4. Validation and evaluation experiments 73

(a) P1

(b) P2

(c) P3

Figure 4.11: Throughput variation during pre- and post-attack (Option 1)



74
Chapter 4. Agile and Dynamic Virtualized Network Functions Wiring in

Network Services

ity support (e.g., autonomous vehicles [Raissi 2019]), dynamic QoS management (e.g.,
adaptive and multicast streaming [Araniti 2017]), and the tactile Internet (e.g., haptic
communications [Antonakoglou 2018]), to cite just a few.

The second lesson learned refers to the way the routing VNFs can be implemented
and the subsequent trade-off between flexibility and performance. At run-time, swing
VNFs (Option 1) show better performance in terms of end-to-end latency and the nec-
essary update time with regard to proxy VNFs (Option 2). Nevertheless, proxy VNFs
are easier to adopt and integrate during design time. The advantage of Option 2 is to
take over the routing logic management and to not require any adaptation efforts on the
network provider side. Regarding swing VNFs, their use would impose to integrate the
routing logic (i.e., routing-XOR, routing-OR, routing-OR) within the operative VNFs.
This adds more complexity to NS developers that will be in charge of injecting the
routing logic within operative VNFs. Furthermore, this practice is not always possible
because NS developers do not necessarily own all the VNFs that compose the NS. By
contrast, proxy VNFs are compliant with the separation of concerns principle since
domain-specific and connectivity aspects are decoupled in the NS. Also, this alleviates
the NS design burden by delegating the proxy VNFs operation to the network provider.
Although in line with the virtualized ecosystems’ business model, this implementation
option imposes upstream integration of this specific kind of VNFs as part of the tech-
nical provider’s capabilities. To conclude with this, we believe that both alternatives
are useful and it would be up to the NS developers to decide about the most suitable
option for their specific needs (e.g., considered use case, supported data format, and
SLA).

4.5 Summary

According to ETSI, NFV’s objective is to transform the way that network operators ar-
chitect networks by evolving standard IT virtualization. This research work fits within
this vision, taking advantage of the virtualization benefits such as agility, dynamicity,
and cost-effectiveness. We propose a novel way to provision and operate Network Ser-
vices (NSs) in the NFV setting. Our approach supports flexible and dynamic wiring
among VNFs in a given NS. Basically, we introduce 2 novel concepts namely, opera-
tive VNFs and routing VNFs with re-configurable wiring capabilities. Operative VNFs
implement the regular (functional) network functions while routing VNFs implement
the control logic among operative VNFs like concurrency (i.e., routing-AND), exclu-
sivity (i.e., routing-XOR), or inclusivity (i.e., routing-OR). By doing so, we address
the major limitation related to the non-support of dynamic NFPs changes at run-time
and considerably reduce the provisioning time and effort of both NS provisioning and
operation. Also, the proposed architecture is in line with the ETSI NFV framework.



Chapter 5

Resource Optimization for
Network Service Deployment

5.1 Introduction

As reported in Chapter 2, NFV-MANO allows multiple network services to be de-
ployed over the same set of NFVIs, each managed by a specific VIM and spread over
mono-/multi-domains. From a business perspective, NFVI providers associate fixed or
variable operating prices with computing resources required to execute VNFs. From a
technical perspective, NFVO will decide about (i) VNF placement per network service
across the different NVFIs, and (ii) data traffic routing across VNFs that compose the
network services.

In the previous Chapter 4, we advocated for deploying the network services as
single execution alternatives that could dynamically be reconfigured and adjusted, de-
pending on the need (e.g., request type, data type), during run-time. Consequently,
the resources allocation requests issued for this kind of network service should vary
over time, i.e., new/existing VNFs along with the corresponding virtual links are
added/removed. Understandably, a basic alternative to support such a procedure
could be one-to-one mapping between pre-defined provisioning requests and avail-
able resources over the different NFVIs. However, this alternative remains static and
fails in updating the placement decisions following any prospective changes on the de-
ployment/placement requests. For instance, changes would reflect SLAs updates such
as billing/metering variation or technical breakdown.

In this work, we introduce a lazy resources allocation solution to Network Service
Embedding (NSE) problem. This solution optimizes both VNF placement for each
network service along with traffic routing across VNFs while satisfying constraints like
location and latency. This optimization aims at minimizing the network service deploy-
ment cost in terms of allocated resources and when necessary. Prior to provisioning,
the NFVO, with the help of VIMs, will scrutinize the hosting capacity for each infras-
tructure and bandwidth for each physical link over time.

The rest of this chapter is organized as follows. Section 5.2 describes the resources
model along with NS embedding requests. Sections 5.3 and 5.4 present the optimal
and near-optimal problem-solving approaches to the NSE problem, respectively. Sec-



76 Chapter 5. Resource Optimization for Network Service Deployment

tion 5.5 defines the dynamic pricing scheme used by the NFVI providers for resource
allocation. Section 5.6 compares and evaluates the both proposed approaches using
different performance metrics. Finally, Section 5.7 concludes this Chapter.

5.2 Resources model and NS embedding requests

We consider a physical network N=(V,E) that encompasses N interconnected NFV in-
frastructures (Ni ⊂ N ). Each infrastructure (Ni) can be operated by a distinct in-
frastructure provider (i). Further, all nodes may belong to either the same infras-
tructure or different interconnected ones located in different domains (D) like Radio
Area Network (RAN), core network (cloud), or edge network (fog). In this setting,
we distinguish 2 node types namely, forwarding and function. While the forwarding
nodes (e.g., switches and routers) transmit data traffic, the function nodes (e.g., servers
and data centers) provide compute resources that are processing (CPU), mem-
ory (RAM), and storage (HD), as well as, any specialized resources (e.g., VMs and
containers) bound to nodes.

Let χ ⊂ V be the set of all function nodes in N and R be the set of re-
source types namely, CPU, RAM and HD. Each v ∈ χ provides the amount of available
resources per type (r), represented as a vector p⃗v = (pr

v)r∈R. It is worth noticing that
the forwarding nodes ensure traffic routing between function nodes and therefore, do
not support any significant computing capabilities. From business perspective, infras-
tructure providers define a set of fixed or variable operating prices for resources, per
type r, per unit, and per node v (ψ⃗v =(ψr

v)r∈R). We, also, characterize any communi-
cation link e ∈ E with bandwidth (be), propagation delay (τe), and cost per unit (ϕe).
For readability purpose, Table 5.1 summarizes the notations for the resource model
explained above.

Table 5.1: Features associated with infrastructures

Symbol Definition
N=(V, E) Physical network, where V is the set of nodes and E is the set of communication links
χi ⊂ V Set of function nodes on NFVI i
p⃗v Amount of available resources provided by the function node v ∈ χ
ψr

v Cost of resource unit r ∈ R at function node v ∈ χ
be Bandwidth requested by link e ∈ E
τe Propagation delay of link e ∈ E
ϕe Cost per resource unit of link e ∈ E

To deploy on-the-fly the set of network services (S) over the physical network for
a given application (A), the NFVO seeks to determine the placement of VNFs and
the corresponding routing in network services, known as online Network Service Em-



5.2. Resources model and NS embedding requests 77

(a) Network service without routing VNFs

(b) Network service with routing VNFs

Figure 5.1: Notations used to describe network services

bedding (NSE) problem. The NFVO’s objective will be to minimize S’s deployment
cost under some constraints like latency and location. More specifically, each network
service s ∈ S will be deployed between 2 predefined forwarding nodes, a.k.a., service
ingress/egress (ins/egs) points. We, also, denote by (bs) the required bandwidth be-
tween these two points for a network service s.

As previously described in Chapter 4, the network connectivity topology (NCT)
can be either sequential (i.e., containing operative VNFs, only) or not (i.e., containing
operative and routing VNFs) as depicted in Fig. 5.1 (a) and (b), respectively; where
the VNFs will be placed on function nodes. Let F s be the set of VNFs associated to
s and connected with the set of virtual links (Ls). Any Virtual Link ℓ ∈ Ls connected
2 VNFs (f1, f2 ∈ F s) will be mapped onto the set of communication links and forward-
ing nodes between the function nodes where the VNFs are placed. Also, we denote by
τ s

max the end-to-end maximum latency for s.
Any VNF f ∈ V s requires some amount of resources for its execution represented

as c⃗f =
(
cr

f

)
r∈R

, and some bandwidth (λf = ∑
s∈S b

s), along with introducing a per-
packet processing delay (γf ). Note that A might call for the same VNF instance f in
different network services in S. For security and/or latency reasons, VNFs should be
deployed over specific domains ({χi(f)}) with particular infrastructure providers. To
sum-up, Equation 5.1 formally defines the NS embedding request.

NSE-Req(s) = [{⟨c⃗f , λf , γf ⟩}, Ls, bs, τ s
max] | f ∈ F s (5.1)

For readability purpose, Table 5.2 summarizes the notations for the NS embedding
requests.

As mentioned in Chapter 4, the service owners (i.e., application developers)
define their respective network services containing discovered VNFs. At deploy-



78 Chapter 5. Resource Optimization for Network Service Deployment

Table 5.2: Features associated with network service embedding requests

Symbol Definition
s=(F s, Ls) Network service, where F s is the set of VNFs and Ls is the set of virtual links in s ∈ S

ins Ingress node of network service s
egs Egress node of network service s
bs Required bandwidth by network service s
τ s

max End-to-end maximum latency for s
χ(f) = {χi(f)} Set of potential infrastructures i in particular domains where VNF f should be deployed

c⃗f Amount of resources required by VNF f

λf Total bandwidth required for VNF f

γf Per-packet processing delay of VNF f

ment time, the NFVO might decide to place constituent VNFs over function nodes
administrated by distinct providers. For high-security and/or reachability reasons,
the service owner establishes trust partnerships with individual providers, only.
Therefore, trust propagation among providers will be conditioned by the service
owner. Indeed, this depends on whether the service owner’s data traffic requires
to be protected against attacks like jamming and scrambling. Furthermore, to
mitigate packet loss and bottleneck risks, the network providers should jointly ensure
high-connectivity to the network services. To this end, providers that would provision
the same network service(s) including VNFs, with resources, should trust each other
so that Service-Level-Agreement (SLA) between the service owner and all these
providers will be respected. For illustration purposes, let A1,A2 be 2 applications
featured with sensitive and non-sensitive data traffics, respectively, and p1, p2, p3
be 3 infrastructure providers. Fig. 5.2 depicts a trust partnership between A1 and
p1 (i.e., 1 in the trust matrix 1) while p1 has a trust partnership with p2 and p3. So,
A1 will not trust neither p2 and p3 (i.e., 0 in the trust matrix 2). Contrarily, A2
featured with some pre-established trust partnership with p1 will trust all the providers.

5.3 NSE problem formulation

Upon receipt of NS embedding requests ({NSE-Req(s)}), the NFVO will be in charge
to determine the set of VNF placements and trust-based VL deployments requested by
S/ A over time. Prior to provisioning, the NFVO should scrutinize the hosting capacity
for each NFVI Ni and bandwidth for each physical link with the help of VIMs over
time. As depicted in Fig. 5.3, each Ni maintains the VNF placement queue (Qi) when
existing/new VNFs leave/arrive at the NFVI leading to resource release/consumption,
respectively.



5.3. NSE problem formulation 79

Figure 5.2: Trust relationships between applications and infrastructure providers

Figure 5.3: NSE orchestration



80 Chapter 5. Resource Optimization for Network Service Deployment

Let {NSE-Req(s)} be the set of NS embedding requests to be satisfied. The
NSE problem can be formulated as follows:

NSE = {< τf , tf , c⃗f , ?v ∈ χ[?]i(f), {ψr∈R
v }, ?e ∈ Ei, ϕe, ?costs >}

where

• f has some duration (τf ) on any function node,

• tf indicates f ’s arrival time on any function node,

• ?v corresponds to the function node to be determined for f ’s deployment and
execution.

• [?]i refers to the NFVI that can be either predefined as requirement or to be
identified.

• ?e denotes the set of physical links to be decided for mapping the corresponding
virtual link ℓ in Ls.

• ?costs represents the total cost to be paid by A for embedding s. Formally,
Equation 5.2 computes this cost:

costs =
∑
e∈E

ϕeye +
∑
v∈χ

∑
r∈R

ψr
v

 ∑
f∈F

yv,f c
r
f

 (5.2)

In the following, we will consider the NSE problem as integer linear programming
problem where the objective function is to minimize the total cost (∑ costs) that A
should pay under constraints like those specified in {NSE-Req(s)} (e.g., bs and τ s

max)
but, also, those related to trust as per Section 5.2. Hereafter, we proceed with modelling
NS embedding including constraints and the objective function, as well.

Placement constraints. Placement decisions are modelled with binary variables
xv,f , where xv,f ’s value will be equal to 1 if VNF f ∈ Fs will be deployed at the
function node v ∈ χ(f), and to 0, otherwise. Equation 5.3 expresses that each
VNF f ∈ FS has to be mapped to one and only one node v ∈ χ(f).∑

v∈χ(f)
xv,f = 1 ∀f ∈ FS (5.3)

Routing constraints. Each virtual link ℓ = (f, f ′) ∈ Ls will be assigned with the
set of binary variables ye,s

ℓ , whose value is equal to 1 if the physical link e ∈ E
is part of the path between the nodes (v, v′) that would host (f , f ′), and to 0



5.3. NSE problem formulation 81

otherwise. Hence, Equation 5.5 represents the flow conservation constraints to
enforce the existence of a path between v and v′ where Out(n) and In(n) denote
the set of outgoing/incoming links from/to the node n.

∑
e∈Out(n)

ye,s
ℓ −

∑
e∈In(n)

ye,s
ℓ =


xs

v,f if n = v

−xs
v′,f ′ if n = v′

xs
v,f − xs

v′,f ′ if n = vand n = v′

0 otherwise

(5.4)

∀n ∈ V, ∀v ∈ χ(f), ∀v′ ∈ χ(f ′) |v′ ̸= v, ∀ℓ = (f, f ′) ∈ Ls, ∀s ∈ S

Trust constraints. Let zs
v be the binary variable whose value is equal to 1 if node

v ∈ V is used to map network service s ∈ S, and to 0 otherwise. We impose the
equality zs

v = 1 for v ∈ {ins, egs}. For the other nodes v ∈ V \ {ins, egs}, the
constraints on zs

v’s value are defined as follows:

M zs
v ≥

∑
e∈In(v)

∑
ℓ∈Ls

ye,s
ℓ (5.5)

zs
v ≤

∑
e∈Out(v)

∑
ℓ∈Ls

ye,s
ℓ (5.6)

where M is a large constant

To enforce the trust relationship (T ) between NFVI providers, we define an ad-
ditional constraint as follows:

zs
v + zs

v′ ≤ 1 (5.7)
∀v ∈ Ni, ∀v′ ∈ Nj , T (Ni,Nj) ̸= 1

Latency constraints. Since the end-to-end delay associated with s corresponds to∑
f∈F s γf and should not exceed τ s

max, it yields the following constraint:

∑
e∈E

∑
ℓ∈Ls

ye,s
ℓ τe ≤ τ s

max −
∑

f∈F s

γf ∀s ∈ S (5.8)

Capacity constraints. To enforce capacity constraints on the links, we define the
following constraint:

∑
s∈S

∑
ℓ∈Ls

ye,s
ℓ bs ≤ be ∀e ∈ E (5.9)



82 Chapter 5. Resource Optimization for Network Service Deployment

Note that the same link e may appear multiple times in the end-to-end path from
ins to egs.

We, also, represent the constraint on function nodes’ capacities as follows:

∑
f∈F S

xv,fλf c⃗f ≤ p⃗v ∀v ∈ χ (5.10)

Objective function. As previously mentioned, the aim is to minimize the total cost
of the NSE decisions. So, this function (OF ) can be expressed as follows:

OF =
∑
e∈E

ϕe

∑
g∈S

∑
ℓ∈Ls

ye,s
ℓ bs

 +
∑
v∈χ

∑
r∈R

ψr
v

 ∑
f∈F S

xv,fλfc
r
f

 (5.11)

5.4 Heuristic NSE problem-solving

To reduce time of execution, we define a near-optimal solution based on candidate
paths using heuristic search.

5.4.1 Heuristic search for candidate paths

To determine candidate paths, our 2-steps heuristic search solution first prunes N
using trust constraint. Then, it incrementally builds the candidate paths satisfying
location and end-to-end latency constraints, according to VNF ordering reported in s’s
forwarding graph.

Let G = (P, T ) be the trust graph where P represents the set of NFVI providers (Pi)
and T corresponds to the set of trust relationships as per Fig. 5.4. The first step
consists of building N ’s pruned networks ({N ′

k=1,m}) based on G. To this end,
we determine all maximal cliques in G (i.e., complete trust sub-graphs), relying on
Bron–Kerbosch (BK) algorithm [Johnston 1976]. Algorithm 4 depicts BK’s pseudo-
code featured with recursive backtracking. It takes three disjoint sets X, Y , and Z in
G as inputs where i) X stands for the currently growing clique and was initiated with
{P1, P2} 1, ii) Y refers to prospective {Pj={3,...,q}} connected to all Pi ̸=j ∈ X, and iii) Z
contains the set of “visited” {Pi}. It is worth mentioning that X may include also any
NFVI required by s. As output, BK returns {ck=1,m} maximal cliques, as reported in
Fig. 5.4. Finally, each pruned network N ′

k will be built with respect to ck.
The second step proceeds with the pruned networks {N ′

k=1,m}. To map all virtual
links ℓ ∈ Ls onto the corresponding set of physical links and intermediate forward-
ing nodes, we get inspired by Nguyen et al’s work [Nguyen 2017]. First, N ′

k will be
1P1 and P2 are the NFVI providers that own ins and egs, respectively.



5.4. Heuristic NSE problem-solving 83

Algorithm 4 Bron-Kerbosch Algorithm
Require: X, Y , Z

1: if Y = ∅ and Z = ∅ then
2: c.add(X)
3: end if
4: for each vertex p ∈ Y do
5: Call Bron-Kerbosch(X ∪ {p}, Y ∩N(p), Z ∩N(v))
6: Y ← Y \ {p}
7: Z ← Z ∪ {p}
8: end for

Figure 5.4: Network N ′ with two different cliques

artificially duplicated in {N ′
ki
}i=0,|Ls|−1 and progressively connected with weighted ar-

tificial links as depicted in Fig. 5.5. Each N ′
ki

will host fs
i+1 over some function node

v ∈ χ(fi+1) considered as exit node that will be artificially linked to the same duplicate
node considered as entry node in N ′

ki+1
with the weight γfs

i+1
. It is worth noticing that

in and eg correspond to entry and exit nodes in N ′
ki

with i equals to 0 and |Ls|-1,
respectively. For each N ′

ki
, we determine the set of all possible paths (πs

N ′
ki

) between
entry and exit nodes. The set of candidate paths πs between ins and egs refers to all
possible combinations between adjacent πs

i ∈ πs
N ′

ki

.
Let τ(πs) represent the end-to-end delay incurred by packets in s whether VNFs

are placed and (physically) linked as per πs. To get feasible solutions, we shall keep
the paths πs that satisfy latency constraints (i.e., τ(πs) ≤ τ s

max).

5.4.2 Adjusting NSE formulation

In the following, we consider the set of candidate paths for S as Π = {πs}s∈S . Initially,
we calculate the traffic ye passed over the link e ∈ E , and expressed as:

ye =
∑
s∈S

θe
πs bs (5.12)



84 Chapter 5. Resource Optimization for Network Service Deployment

Figure 5.5: Expanded network for NS

where θe
πs is defined as the number of times e in path πs appears over all N ′

ki
.

Similarly, Equation 5.13 computes the total traffic processed by VNF f at node
v ∈ χ(f) as follows:

yv,f =
∑
s∈S

θv,f
πs bs (5.13)

Here, θv,f
πs represents the number of possible artificial links associated to f .

πs is said feasible if constraints on the capacity of links and function nodes are
satisfied. Among the set of feasible paths, we look for some that minimizes the linear
cost defined as follows:

∑
e∈E

ϕeye +
∑
v∈χ

∑
r∈R

ψr
v

 ∑
f∈F

yv,f c
r
f

 (5.14)

Hereafter, we proceed with modelling NS embedding including the constraints and



5.5. Dynamic pricing scheme for resource allocation 85

the objective function (H(Π)), as well.

H(Π) = min(
∑
e∈E

ϕe ye +
∑
v∈χ

∑
r∈R

ψr
v

∑
f∈F

yv,f c
r
f ) (5.15)

subject to:
ye =

∑
s∈S

∑
πs∈Π

θe
πs bs xs

πs ∀e ∈ E (5.16)

yv,f =
∑
s∈S

∑
πs∈Π

θv,f
πs bs xs

πs ∀v ∈ χ(f)f ∈ F (5.17)

ye ≤ be ∀e ∈ E (5.18)∑
f∈F

yv,f c⃗f ≤ p⃗v ∀v ∈ χ (5.19)

ye ≥ 0 ∀e ∈ E (5.20)
yv,f ≥ 0 ∀v ∈ χ(f)f ∈ F (5.21)
xs

πs ∈ {0, 1} ∀πs ∈ Πs ∈ S (5.22)

5.5 Dynamic pricing scheme for resource allocation

As per Sections 5.3 and 5.4, the NFVO obtains the NS embedding for A’s requests
over time. As per Equation 5.2 and 5.15, the deployment result heavily depends on
the computing and networking resources’ prices. Like any multi-provider market, the
resource prices can be affected over time due to different reasons such as fair traf-
fic load distribution at the infrastructure level, as illustrated in Fig. 5.6. Indeed,
providers should satisfy their respective SLAs to avoid any penalties in case of vio-
lations. To this end, Ni’s provider will dynamically adjust ψr

v and ϕe based on v’s
and e’s load including in-going and out-going data traffic in order to prevent Ni from
resource congestion/saturation. When prices increase/decrease, the NFVO will fairly
allocate resources over less-saturated nodes.

Based on Table 5.1, ρr
vΦr

v and ρeΦe correspond to the utilization cost of r at v
and e in the physical network, where ρr

v and ρe denote the amount of used com-
puting/networking resources at v/e, respectively. Among existing cost functions
reported in the literature, we deem appropriate to choose the Kleinrock function
Φe(ρe) = 1/(1− ρe).

The Kleinrock function assumes that the total traffic never exceed the resource and
that the cost per resource unit grows unboundedly as the former approaches the latter.
As the NFVO’s objective is to prevent the NFVIs from resource congestion, we tend
to compute the costs ϕe and ψr

v, which are publicly advertised, as follows:

• The cost per unit capacity ϕe of link e ∈ E is computed as



86 Chapter 5. Resource Optimization for Network Service Deployment

Figure 5.6: Changing costs based on resource utilization rates for Provider 1

ϕe = 1
be

[
Φe(ρe) + ρeΦ′

e(ρe)
]

(5.23)

• The cost per unit capacity ψr
v of resource r at node v is computed as

ψr
v = 1

pr
v

[
Φr

v(ρr
v) + ρr

v Φr
v

′(ρr
v)

]
(5.24)

These costs per unit capacity are of course updated each time a new network services
is embedded in the network.

5.6 Simulation and evaluation

To validate the proposed solutions, we developed an event-driven stochastic simulator
in Python using Gurobi optimization tool ([gur 2021]).

5.6.1 Parameter settings for simulation

In the following, we describe the chosen parameter settings for the conducted simula-
tion.

Simulated network. To generate the simulated network N , we rely on characteris-
tics of real networks in terms of domain and NFVI as follows:

• Domain. As per Section 5.2, we consider 4 domains namely, RAN,
edge, transport and core, that each encompasses 3 NFVIs, one per spe-
cific provider.



5.6. Simulation and evaluation 87

• NFVI. To simulate the aforementioned NFVIs, we associate them with de-
tails collected from existing configurations provided by 2 libraries namely,
the survivable fixed telecommunication network design [snd ] and Inter-
net zoo topology [Knight 2011]. It is worth noticing that the same NFVI’s
nodes are connected with intra-links. All NFVIs contain 3 ingress nodes and
3 egress nodes. The way of interconnecting NFVIs, more specifically their
nodes, relies on the uniform distribution featured with α = 0.1.

On top of this, we simulate congestion situations in N that make resource allo-
cation challenging. In the literature [Nguyen 2017], there are 4 main congestion
types namely, bandwidth-limited, node-limited, both-limited and low. To deter-
mine the restrictive value per congestion type for the node’s resource amount
and link’s bandwidth, we scrutinize the rate of rejected NSE requests when run-
ning the proposed NSE solutions and varying their respective capacities until this
ratio reaches 20%.

Simulated NSE requests. Let us consider 3 application types (A1..3) along with
their respective requirements and the set of corresponding VNFs (FAi) as depicted
in Tables 5.3 and 5.4.

Table 5.3: Network Service requirements

Application Bandwidth Latency Trust level
A1- Enhanced Media Streaming 40-340 Mbps 10-30ms 1
A2- Vehicle-To-Everything 150-1000 Mbps > 10ms 2
A3- Critical communication 5 Gbps >5ms 3

Table 5.4: Virtual Network Functions set for each application

Application Operative VNFs Routing VNFs

A1
Content acquisition function; Compressor;

Transcoder; Cache; Decoder

A2

IDentity and Access Management; Distributed denial of service;
Traffic Monitor;Firewall; Network address translation;

Virtual Private Network

Proxy & Swing VNFs
(AND, OR, XoR)

A3

Firewall, Malware Scanner, Intrusion Detection System;
Deep packet inspection; Virtual Private Network

Threats Classifier; Threats Mitigation;

{NSE-Req(s ∈ S)} associated with Ai are generated as follows:

• For each s, we randomly build F s ⊂ FAi while avoiding routing VNFs to
come after each other along with Ls that connects VNF pairwises.

• ins and egs are randomly mapped onto NFVIs’ ingress and egress nodes.



88 Chapter 5. Resource Optimization for Network Service Deployment

• As per Ai’s requirements, we rely on the uniform distribution to produce
c⃗f , bs, and τmax.

• χ(f) 2 contains the set of potential locations where VNF f should be de-
ployed.

Regarding trust constraints, we define 3 trust levels, each associated with 1 Ai.
At the first level, Ai trusts any provider. At the second/third, only one/two
randomly selected provider per domain can be considered as untrustworthy.

Simulated arrival rate. For each iteration, {NSE-Req(s)} issued by all Ai are
deployed and pseudo-executed over N till completion as follows:

• NSE-Req arrives at tf following Poisson distribution with parameter δ.
• τf denotes the pseudo-execution time generated from exponential distribu-

tion with average β = 10.

To avoid biases, we conducted our simulation for 400 time slots repeated 5 times.
During each iteration, after any s’s pseudo-completion, this network service will
release the allocated resources.

5.6.2 Performance and quality metrics

To assess our proposed optimal and heuristic solutions’ performance and quality from
the both application and provider perspectives, we define the set of metrics as follows.

• Average execution time (Texec) refers to the time needed to find placement and
routing solution for an NS request. This metric reflects the ability of the algorithm
to scale with problem size. The average execution time Texec is defined as follows:

Texec(s) =
∑

j∈arrivedRequests T
j
exec

|arrivedRequests|
(5.25)

Where Tj represents the execution time of the j-th NSs request and is calculated
by Equation

T j
exec = T j

end − T
j
start (5.26)

Where T j
start and T j

end denote the starting time and the completion time for
mapping the j-th request, respectively.

• Relative quality gap (Gap) refers to the percentage of relative gap between the
optimal solution and Heuristic NSE solution. Formally, Equation 5.27 computes

2This set could be empty



5.6. Simulation and evaluation 89

Gap as follows:
Gap(%) = H()−O()

H() ∗ 100 (5.27)

We, also, calculate the relative standard deviation RSD(±) reported in [rsd 2021]
that measures the dispersion of the gap between the optimal and heuristic costs.

• NSE blocking ratio (B) represents the percentage of rejected NSE requests due
to unavailability of computing/network resources.

B = |blockedRequests|
|arrivedRequests|

(5.28)

where |blockedrequests| and |Arrivedrequests| denote the numbers of rejected
NSE requests and the total arrived NSs requests, respectively.

• Maximum resource utilization rate refers the percentage of the maximum con-
sumed resources at nodes (Uv) and links (Ue).

Uv = max(
∑

f∈F s

yv,fc
r
f

pv
) (5.29)

Ue = max(
∑
e∈E

yeb
s

be
) (5.30)

• Path length (P ) indicates the average of number of hops in a path, and it is
calculated as follows:

P = |hops| (5.31)

5.6.3 Benchmarking

The first series of experiments compare the both optimal and near-optimal solutions
in term of the relative quality gap and the execution time computed as per Equa-
tion 5.27 and 5.25 , respectively. We proceed as follows.

For each application type (A1..3), we vary the number δ of {NSE-Req(s)} over
[2, 10] with step of 2, where the corresponding NSs are deployed over the 4 conges-
tion types. Table 5.5 depicts the obtained results for the gap. We can observe that the
average gap does not exceed 0.54% reflecting satisfying results for our heuristic NSE
solution. The worst gap is 1.96% with A1’s 10 NSs deployed over “Both-limited” con-
gestion type. This can be explained by the fact that as A1 belongs to the application
category featured with low trust constraints leading to a high number of candidate
paths. Since the number of considered candidate paths is limited to k = 10, better
solutions can be discarded/missing. It might happen that the choice of k affects the



90 Chapter 5. Resource Optimization for Network Service Deployment

Table 5.5: Relative quality gap (%± std) with k = 10

A1
δ Low Both-limited Node-limited Bandwidth-limit
2 0.61 ±0.01 1.00 ±0.01 0.09 ±0.01 1.10 ±0.01
4 0.70 ±0.01 1.18 ±0.01 1.00 ±0.01 1.13 ±0.01
6 1.05 ±0.01 1.22 ±0.01 1.00 ±0.01 1.26 ±0.02
8 1.25 ±0.01 1.27 ±0.01 1.00 ±0.01 1.40 ±0.02
10 1.29 ±0.02 1.96 ±0.02 1.00 ±0.01 1.40 ±0.02

A2
δ Low Both-limited Node-limited Bandwidth-limit
2 0.14 ±0.01 0.20 ±0.01 0.15 ±0.01 0.35 ±0.01
4 0.15 ±0.01 0.20 ±0.01 0.20 ±0.01 0.56 ±0.01
6 0.23 ±0.01 0.25 ±0.01 1.13 ±0.01 0.25 ±0.01
8 0.25 ±0.01 0.35 ±0.01 1.15 ±0.02 0.20 ±0.01
10 0.41 ±0.01 0.56 ±0.01 1.17 ±0.02 0.20 ±0.01

A3
δ Low Both-limited Node-limited Bandwidth-limit
2 0.28 ±0.01 0.10 ±0.01 0.22 ±0.01 0.11 ±0.01
4 0.36 ±0.01 0.22 ±0.01 0.47 ±0.01 0.26 ±0.01
6 0.26 ±0.01 0.18 ±0.01 .31 ±0.01 0.15 ±0.01
8 0.32 ±0.01 0.11 ±0.01 0.26 ±0.01 0.41 ±0.01
10 0.40 ±0.01 0.19 ±0.01 0.30 ±0.01 0.24 ±0.01

quality of results. However, it is worth mentioning that including more candidate paths
guarantees better solutions but will take more execution time. The corresponding stan-
dard deviation varies between 0.01 and 0.02 revealing quite a stable behavior for our
heuristic solution on all congestion types and with the three application types.

For each experiment, we calculate the average execution time Texec(s) using Equa-
tion 5.25. As depicted in Fig. 5.7, we observe that the heuristic NSE (H) solution is
≈ 6 times faster than the optimal one (OF ). When δ augments, the average execution
time linearly increases and reaches ≈ 28 seconds for the optimal approach contrary to
≈ 5 seconds for the heuristic one, in worst results. Also, we notice that Texec obtained
in case of our heuristic NSE solution does not increase drastically regardless of conges-
tion types. However, it requires more execution time for network services belonging to
A3 due to strong trust constraints as explained before.



5.6. Simulation and evaluation 91

(a) Low congestion network (b) Both-limited network

(c) Node-limited network (d) Bandwidth-limited network

Figure 5.7: Average execution time (seconds) with k= 10



92 Chapter 5. Resource Optimization for Network Service Deployment

5.6.4 Dynamic pricing impact analysis

In this experiment, we run the simulation to evaluate some realistic metrics, such as
the blocking ratio, the resource utilization and the average length of NS path, in a
dynamic pricing system. The objective is to study the impact of the dynamic pric-
ing. So, we compared the Heuristic NSE and optimal solution with/without dynamic
pricing (H*/H and OF*/OF, respectively).

Fig. 5.8a illustrates the blocking ratio (B, Equation 5.28) based on load δ. Overall,
we observe that H/H* both obtain almost the same blocking ratio as the OF*/OF
solutions with an average difference less than 0.7%. We also notice that B reaches only
2.5% for all H/H∗ and OF/OF∗ and thus, is pretty good when δ <= 8. However, B
increases when δ is assigned to higher values. The important finding is that H* reduces
B with ≈ 2% where H attains 19%.

During this experiment, we also measure the node resource utilization rate (Ur,
Equation 5.29). As depicted in Fig. 5.8b, H* reduces Ur about 5%. For δ = 14, H
saturates at ≈ 43% of some nodes’ capacity. However, H* reduces it up to 39%.

As depicted in Fig. 5.8c and Fig. 5.8d, we measure the networking-resource uti-
lization rate (Ue, Equation 5.30) for intra-link and inter-link, respectively. We can
observe that intra-links are saturated quickly compared to inter-links as expected with
respect to the inter-link capacity that would be higher than the inter-link capacity (Sec-
tion 5.6.1). And, H* reduces the utilization rate up to 11%. With δ = 14, 18% of
inter-links are consumed, where H* decreases it to ≈ 15%.

Since H* represents an overhead due to more longer paths to build when applying
the dynamic pricing, the path length (P , Equation 5.31) increases by 4 hops, only.
Since the resources get expensive over time, H* will choose longer paths with less
expensive node and link resources with the option of converging to an expensive path,
as well. This explains why the path length obtained in case of H/H∗ and OF/OF*
does not increase drastically.

5.7 Summary

In this chapter, we proposed 2 alternatives to Network Service Embedding (NSE) prob-
lem referred to as optimal and near-optimal solutions that both support a lazy resources
allocation strategy. The first consists of searching the optimal placements and paths,
as well, for NSE requests while the second first seeks for candidate placements and
corresponding paths prior to building the near-optimal ones. For evaluation purposes,
we built event-driven simulations near to realistic NFV dynamic ecosystem along with
various experimental scenarios. We, also, defined different performance and quality
metrics to benchmark both solutions and analyze the impact of dynamic pricing on
both.



5.7. Summary 93

(a) Blocking ratio (b) Node resource utilization rate

(c) Intra-Link utilization rate (d) Inter-Link utilization rate

(e) Path length

Figure 5.8: Dynamic pricing’s impact





Chapter 6

Conclusion and perspectives

6.1 Conclusion

Service Computing refers to a distributed and dynamic computing architecture that
packages functionality as a suite of interoperable entities that can be operated over
multi-domains ecosystem. NFV enables the network and the network functions (VNFs)
virtualization and enables their provisioning according to the very same life cycle phases
(i.e., design, develop, describe, publish, discover, instantiate, configure, deploy, execute,
and manage) of the service computing model. However, considering the characteristics
and specificities of the network operation with regard to regular services (e.g., Web
services), there is a need for a novel and appropriate procedures to be able to provision
the NFV resources in a proper way.

In this thesis, we did focus on designing, implementing and evaluation appropriate
procedures that support the former phases (i.e. design, instantiation, deployment, and
management) of the NFV resources. We did consider the VNFs resources, as well as, the
NS resources that compose a set of VNFs to support more complex and sophisticated
functionalities. Specificaly, We addressed in this thesis the lack of an approach that
can handle:

• The heterogeneity of NS technologies’ and providers’ which prevents the full au-
tomation of the NS designing

• The rigid instantiation scenarios and sequential connectivity in the NS which
induce cost, tedious, and time-consuming NS provisioning

• Network service deployment and management while satisfying constraints like
location, latency, and trust in multi-administrative domains.

6.2 Overview on contributions

The summary of the thesis contributions is presented below.

1. Beyond the classic VNFD proposed and standardized by ETSI-NFV, in our first
contribution, we designed a domain-independent VIKING ontology that enables a
comprehensive and generic description of the VNF’s capabilities from functional



96 Chapter 6. Conclusion and perspectives

and non-functional perspectives. In addition, we implemented an automated
semantic-based discovery mechanism that relies on VIKING to ensure the best
VNFs discovery and matching between user requirements and VNF properties.

2. To achieve agile and dynamic network service provisioning, our second contribu-
tion consists of a novel approach that extends the ETSI NFV architectural frame-
work with novel technical VNFs, called routing VNFs with efficient re-configurable
wiring capabilities for NSs. This initiative distinguishes domain-specific aspects
from the connectivity ones in the NS definition. Domain-specific aspects are
implemented with regular VNFs, while the routing VNFs support connectivity
aspects. By doing so, developers will be able to change and update the NS in-
stantiation logic at run-time, given specific criteria (e.g., message type, data size,
QoS metrics).

3. In the third contribution, we turn to deploy on-the-fly network services that could
dynamically be reconfigured and adjusted, depending on the need (e.g., request
type, data type), during run-time. We introduced a lazy resources allocation
solution to the network service embedding problem. This solution optimizes both
VNF placement for each network service along with traffic routing across VNFs
while satisfying constraints like location, latency, and trust, among others. This
optimization aims at minimizing the total network service deployment cost.

6.3 Obtained results and lessons learned

Altogether, the above contributions represent a cost-driven approach for virtualized
network services life-cycle management. Firstly, the semantic VNF descriptor covering
both functional and non-functional VNF’s capabilities and the deployment require-
ment, as well, has undoubtedly improved VNF interpretation and, subsequently, the
discovery process by identifying and selecting the appropriate ones. Further, the use
of routing VNFs concept within NS provisioning fits well with virtualization principles
and brings cost-effectiveness and agility to the network. Indeed, they considerably
reduce complexity in NFV connectivity management and decrease the network’s oper-
ating cost. Last but not least, the proposed lazy resources allocation solution, with the
dynamic pricing model, to the network service embedding problem seems appropriate
to tackle the emerging needs of the next-generation service providers with challenging
constraints on the network business model ecosystem.

6.4 Potentials future work

In the near term, we are considering the following avenues of research.



6.4. Potentials future work 97

Semantic NS composition. We plan to use semantics to describe and build
VNF chains automatically. Current NS chains are represented through ETSI
VNF Forwarding Graphs (VNF-FG) descriptors. These descriptors are manually
designed by network administrators when using a straightforward model and se-
quential execution of VNFs. We believe that enhancing VNF-FG descriptors with
semantics could enable the automatic build of more complex and sophisticated
VNF chains.

BPEL4VNF. As seen in Chapter 2, it was beneficial to inspire (with re-
visitation) from SOA principles, developed in more than one decade, to target
dynamic and flexible NS provisioning. To this end, we plan to extend Business
Process Execution Language (BPEL) to automate NS provisioning. This could
be done by extending BPEL gateways (e.g., parallel, inclusive, pick) and con-
trol flows (e.g., if, repeat until, for each) to interconnect the VNFs that make
up the network services and support sharing data between them. Specifically,
appropriate "BPEL4VNF" descriptors could be embedded in the NS connectivity
and executed by an extended version of the MANO, the same way that BPEL
engines (e.g., Apache ODE, Bonita) execute BPEL orchestration plans.

Implementation of a complete proof of concept prototype. For dissem-
ination and normalization purposes, we plan to integrate into ETSI NFV open
source MANO the proposed approaches. The Mastermyr Chest tools for VNF de-
scription, publication, and discovery, and DYVINE tools for NS instantiation are
already implemented and integrated with OSM1, an open-source MANO imple-
mentation; using both OpenStack as a VIM and OpendayLight as SDN-controller.
However, the proposed heuristic NSE approach was implemented and evaluated
through theoretical analysis only, which is insufficient to prove the real perfor-
mances. Therefore, we plan to extend the NFVO of OSM with our heuristic NSE
approach, to complete the Mastermyr Chest and DYVINE components.

In the long-term, we are considering the following avenues of research.
Zero-touch network and Service Management: The goal is to integrate our

proposed Routing VNFs in Chapter 4 within the results of the newly Zero-touch
network and Service Management (ZSM)[ETSI ] ETSI working group. The ZSM
working group focuses on describing automation in network management and
aims to deliver policy-driven automation, intent-based automation, as well as
intent-based service orchestration. We believe that this research work meets the
objectives and the topics of interest of the ETSI ZSM working group.

Intent-Based Networks (IBN). IBN can be defined as a novel concept
that incorporates: (i) SDN to manage the network control plane and

1https://osm.etsi.org/



98 Chapter 6. Conclusion and perspectives

(ii) machine learning and artificial intelligence to automate administration
tasks across the network [Campanella 2019]. Recently published IBN-based
work aim at automating network routes management during run-time (e.g.,
see [Han 2016], [Kiran 2018], [Paganelli 2017]). However, to the best of our knowl-
edge, there are still no studies today that evaluate and compare the business and
operational costs of integrating IBN into the ecosystem of network providers. IBN
is still at its early stages, while NFV is becoming more broadly adopted nowadays
by network providers (e.g., CISCO Systems, Netflix, etc.).

Mobility-aware NS management. Users’ mobility causes significant challenges for
NS management. Principally, these challenges are due to the traffic density and
handovers for different access networks. A promising research area is to extend the
current ETSI-MANO architecture to manage a non-homogeneous and resource-
constrained set of mobile nodes (mobile devices, lamppost, any IoT sensors). It
will be able to use mobile devices like our smartphones to deploy some VNFs,
which may increase the limited resources and reduce the handovers. However, it
may require more effort to manage mobile network service deployed over mobile
infrastructure.



Scientific production

Journal

• Nour El Houda Nouar, Sami Yangui, Noura Faci, Khalil Drira, Said Tazi. A
Semantic virtualized network functions description and discovery model. Com-
puter Networks, vol. 195, 2021.

Conference

• Nour El Houda Nouar, Sami Yangui, Noura Faci, Khalil Drira, Said Tazi. Agile
and Dynamic Virtualized Network Functions Wiring in Network Services. IEEE
International Conference on Cloud Computing (CLOUD), pages 322-332, 2021.

Tutorial

• Nour El Houda Nouar, Sami Yangui, Noura Faci, Khalil Drira, Said Tazi.
Semantic Virtualized Network Functions Description Publication and Discovery
in Content Delivery Networks. 5th ACS/IEEE International Conference on Com-
puter Systems and Applications (AICCSA), 2018.





Bibliography

[Adala 2011] Asma Adala, Nabil Tabbane and Sami Tabbane. A Framework for
Automatic Web Service Discovery Based on Semantics and NLP Techniques.
Advances in Multimedia, vol. 2011, pages 1–7, 2011. (Cited in page 19.)

[Afify 2017] Yasmine M Afify, Nagwa L Badr, Ibrahim F Moawad and Mohamed F
Tolba. A comprehensive business domain ontology for cloud services. In 2017
Eighth International Conference on Intelligent Computing and Information Sys-
tems (ICICIS), pages 134–143. IEEE, 2017. (Cited in page 32.)

[Alaluna 2017] Max Alaluna, Luıs Ferrolho, José Rui Figueira, Nuno Neves and
Fernando MV Ramos. Secure virtual network embedding in a multi-cloud
environment. arXiv preprint arXiv:1703.01313, 2017. (Cited in pages 26 and 29.)

[Antonakoglou 2018] Konstantinos Antonakoglou, Xiao Xu, Eckehard Steinbach, Tok-
tam Mahmoodi and Mischa Dohler. Toward haptic communications over the
5G tactile Internet. IEEE Communications Surveys & Tutorials, vol. 20, no. 4,
pages 3034–3059, 2018. (Cited in page 74.)

[Araniti 2017] Giuseppe Araniti, Massimo Condoluci, Pasquale Scopelliti, Antonella
Molinaro and Antonio Iera. Multicasting over emerging 5G networks:
Challenges and perspectives. Ieee network, vol. 31, no. 2, pages 80–89, 2017.
(Cited in page 74.)

[Baranda 2020] Jorge Baranda, Josep Mangues-Bafalluy, Ricardo Martínez, Luca Vet-
tori, Kiril Antevski, Carlos J Bernardos and Xi Li. 5G-TRANSFORMER meets
Network Service Federation: design, implementation and evaluation. In 2020 6th
IEEE Conference on Network Softwarization (NetSoft), pages 175–179. IEEE,
2020. (Cited in pages 25, 26, and 29.)

[Bhamare 2016] Deval Bhamare, Raj Jain, Mohammed Samaka and Aiman Erbad. A
survey on service function chaining. Journal of Network and Computer Appli-
cations, vol. 75, pages 138–155, 2016. (Cited in page 23.)

[Binz 2014] Tobias Binz, Uwe Breitenbücher, Oliver Kopp and Frank Ley-
mann. TOSCA: portable automated deployment and management of cloud
applications. In Advanced Web Services, pages 527–549. Springer, 2014. (Cited
in page 20.)

[Boban 2018] M. Boban, A. Kousaridas, K. Manolakis, J. Eichinger and W. Xu.
Connected Roads of the Future: Use Cases, Requirements, and Design



102 Bibliography

Considerations for Vehicle-to-Everything Communications. IEEE Vehicular
Technology Magazine, vol. 13, no. 3, pages 110–123, 2018. (Cited in page 58.)

[Bonfim 2019] Michel Bonfim, Fred Freitas and Stênio Fernandes. A Semantic-Based
Policy Analysis Solution for the Deployment of NFV Services. IEEE Transac-
tions on Network and Service Management, vol. 16, no. 3, pages 1005–1018,
2019. (Cited in pages 21 and 27.)

[Boubendir 2018] Amina Boubendir, Emmanuel Bertin and Noemie Simoni. Flexibility
and dynamicity for open network-as-a-service: From VNF and architecture
modeling to deployment. In NOMS 2018-2018 IEEE/IFIP Network Operations
and Management Symposium, pages 1–6. IEEE, 2018. (Cited in page 4.)

[Bouten 2016] N. Bouten, M. Claeys, R. Mijumbi, J. Famaey, S. Latré and J. Serrat.
Semantic validation of affinity constrained service function chain requests. In
2016 IEEE NetSoft Conference and Workshops (NetSoft), pages 202–210, June
2016. (Cited in pages 4, 21, and 27.)

[Callegati 2015] Franco Callegati, Walter Cerroni, Chiara Contoli and Giuliano San-
tandrea. Dynamic chaining of virtual network functions in cloud-based edge
networks. In Proceedings of the 2015 1st IEEE Conference on Network Soft-
warization (NetSoft), pages 1–5. IEEE, 2015. (Cited in pages 23 and 28.)

[Campanella 2019] A. Campanella. Intent Based Network Operations. In 2019 Opti-
cal Fiber Communications Conference and Exhibition (OFC), pages 1–3, 2019.
(Cited in page 98.)

[Cao 2016] Hanwen Cao, Sandip Gangakhedkar, Ali Ramadan Ali, Mohamed Gharba
and Josef Eichinger. A 5G V2X testbed for cooperative automated driving. In
2016 IEEE Vehicular Networking Conference (VNC), pages 1–4. IEEE, 2016.
(Cited in page 58.)

[Carella 2015] Giuseppe Antonio Carella and Thomas Magedanz. Open baton: a
framework for virtual network function management and orchestration for
emerging software-based 5g networks. Newsletter, vol. 2016, page 190, 2015.
(Cited in page 12.)

[Casazza 2017] M. Casazza, P. Fouilhoux, M. Bouet and S. Secci. Securing Virtual
Network Function Placement with High Availability Guarantees. CoRR, 2017.
(Cited in page 37.)

[Chowdhury 2010] N.M. Mosharaf Kabir Chowdhury and Raouf Boutaba. A survey of
network virtualization. Computer Networks, vol. 54, no. 5, pages 862–876, apr
2010. (Cited in page 3.)



Bibliography 103

[clo 2022] Cloudify orchestration platform - multi cloud, cloud native amp; edge, Jan
2022. (Cited in page 12.)

[Csoma 2014] Attila Csoma, Balázs Sonkoly, Levente Csikor, Felicián Németh, An-
dràs Gulyas, Wouter Tavernier and Sahel Sahhaf. ESCAPE: Extensible service
chain prototyping environment using mininet, click, netconf and pox. ACM
SIGCOMM Computer Communication Review, vol. 44, no. 4, pages 125–126,
2014. (Cited in pages 24 and 28.)

[De Sousa 2019] Nathan F Saraiva De Sousa, Danny A Lachos Perez, Raphael V
Rosa, Mateus AS Santos and Christian Esteve Rothenberg. Network service
orchestration: A survey. Computer Communications, 2019. (Cited in page 23.)

[Domingue 2005] John Domingue, Dumitru Roman and Michael Stollberg. Web service
modeling ontology (WSMO)-An ontology for semantic web services, 2005.
(Cited in page 19.)

[Doynikova 2018] E. Doynikova and I. Kotenko. Approach for determination of
cyber-attack goals based on the ontology of security metrics. IOP Conference
Series: Materials Science and Engineering, vol. 450, page 052006, Nov 2018.
(Cited in page 36.)

[Dwiardhika 2018] Dhanu Dwiardhika and Takuji Tachibana. Cost efficient VNF
placement with optimization problem for security-aware virtual networks. In
2018 IEEE 7th International Conference on Cloud Networking (CloudNet),
pages 1–3. IEEE, 2018. (Cited in page 26.)

[Dwiardhika 2019] Dhanu Dwiardhika and Takuji Tachibana. Virtual network
embedding based on security level with VNF placement. Security and Com-
munication Networks, vol. 2019, 2019. (Cited in pages 26 and 29.)

[Dzone 2018] Dzone, 2018. (Cited in page 22.)

[ets 2020] Network Functions Virtualisation (NFV) Release 3; Protocols and Data
Models; RESTful protocols specification for the Policy Management Interface.
ETSI GS NFV-SOL 012 V3.4.1. techreport, October 2020. (Cited in page 43.)

[ETSI ] ETSI. ZSM. Zero Touch Network and Service Man. agement (ZSM). (Cited
in page 97.)

[ETSI 2012] ETSI. Network Functions Virtualisation—Introductory White Paper.
techreport, ETSI, 2012. (Cited in page 2.)



104 Bibliography

[ETSI 2014] Network Functions Virtualisation ETSI. ETSI GS NFV 002
V1.2.1Network Functions Virtualisation (NFV);Architectural Framework. Man-
agement and Orchestration, vol. V1.2.1, 2014. (Cited in pages ix, 10, and 11.)

[ETSI 2015] ISGNFV ETSI. ETSI GS NFV-REL 001 V1. 1.1: Network Functions
Virtualisation(NFV); Resiliency Requirements, 2015. (Cited in page 37.)

[ETSI 2021] Network Functions Virtualisation ETSI. ETSI GS NFV-IFA 011, Network
Functions Virtualisation (NFV) Release 4. vol. V4.2.1, 2021. (Cited in pages ix,
15, and 16.)

[Fischer 2017] Andreas Fischer, Ramona Kühn, Waseem Mandarawi and Hermann
de Meer. Modeling security requirements for VNE algorithms. In proceedings of
the 10th EAI International Conference on Performance Evaluation Methodolo-
gies and Tools on 10th EAI International Conference on Performance Evaluation
Methodologies and Tools, pages 149–154, 2017. (Cited in pages 26 and 29.)

[Forti 2020] Stefano Forti, Gian-Luigi Ferrari and Antonio Brogi. Secure cloud-edge
deployments, with trust. Future Generation Computer Systems, vol. 102, pages
775–788, 2020. (Cited in pages 26 and 29.)

[Gharbaoui 2017] Molka Gharbaoui, S Fichera, Piero Castoldi and Barbara Mar-
tini. Network orchestrator for QoS-enabled service function chaining in reliable
NFV/SDN infrastructure. In 2017 IEEE Conference on Network Softwarization
(NetSoft), pages 1–5. IEEE, 2017. (Cited in pages 24 and 28.)

[goo ] What is site Reliability Engineering (SRE). (Cited in page 1.)

[Gruber 1993] Thomas R. Gruber. A translation approach to portable ontology
specifications. Knowledge Acquisition, vol. 5, no. 2, pages 199 – 220, 1993.
(Cited in pages 19 and 27.)

[gur 2021] The Fastest Solver, Dec 2021. (Cited in page 86.)

[Han 2016] Y. Han, J. Li, D. Hoang, J. Yoo and J. W. Hong. An intent-based network
virtualization platform for SDN. In 2016 12th International Conference on
Network and Service Management (CNSM), pages 353–358, 2016. (Cited in
page 98.)

[Hawilo 2019] H. Hawilo, M. Jammal and A. Shami. Exploring Microservices as the
Architecture of Choice for Network Function Virtualization Platforms. IEEE
Network, vol. 33, pages 202–210, 2019. (Cited in page 22.)



Bibliography 105

[Herrera 2016] Juliver Gil Herrera and Juan Felipe Botero. Resource allocation in
NFV: A comprehensive survey. IEEE Transactions on Network and Service
Management, vol. 13, no. 3, pages 518–532, 2016. (Cited in page 25.)

[Houidi 2020] Omar Houidi, Oussama Soualah, Wajdi Louati and Djamal Zeghlache.
Dynamic vnf forwarding graph extension algorithms. IEEE Transactions on
Network and Service Management, vol. 17, no. 3, pages 1389–1402, 2020. (Cited
in pages 25 and 29.)

[Hoyos 2016] L. C. Hoyos and C. E. Rothenberg. NOn: Network function virtualization
ontology towards semantic service implementation. pages 1–6, Nov 2016. (Cited
in pages 4, 21, 27, and 32.)

[IETF 2018] IETF. Service Function Chaining (SFC) Operation, Administration and
Maintenance (OAM) Framework. draft-ietf-sfc-oam-framework-05. techreport,
IETF, September 2018. (Cited in pages 4 and 18.)

[ITU 2015] ICT Facts and Figures: The World in 2015. May 2015. (Cited in page 9.)

[Jmila 2019] Houda Jmila and Gregory Blanc. Designing security-aware service
requests for NFV-enabled networks. In 2019 28th International Conference
on Computer Communication and Networks (ICCCN), pages 1–9. IEEE, 2019.
(Cited in pages 23 and 28.)

[Johnston 1976] HC Johnston. Cliques of a graph-variations on the Bron-Kerbosch
algorithm. International Journal of Computer & Information Sciences, vol. 5,
no. 3, pages 209–238, 1976. (Cited in page 82.)

[Katsalis 2016] Kostas Katsalis, Navid Nikaein and Andy Edmonds. Multi-domain
orchestration for nfv: Challenges and research directions. In 2016 15th Inter-
national Conference on Ubiquitous Computing and Communications and 2016
International Symposium on Cyberspace and Security (IUCC-CSS), pages 189–
195. IEEE, 2016. (Cited in page 25.)

[Kim 2018] Sang Il Kim and Hwa Sung Kim. Semantic Ontology-Based NFV Service
Modeling. In 2018 Tenth International Conference on Ubiquitous and Future
Networks (ICUFN), pages 674–678. IEEE, 2018. (Cited in pages 21 and 27.)

[Kiran 2018] Mariam Kiran, Eric Pouyoul, Anu Mercian, Brian Tierney, Chin Guok
and Inder Monga. Enabling intent to configure scientific networks for high
performance demands. Future Generation Computer Systems, vol. 79, pages
205–214, 2018. (Cited in page 98.)



106 Bibliography

[Knight 2011] Simon Knight, Hung X Nguyen, Nickolas Falkner, Rhys Bowden and
Matthew Roughan. The internet topology zoo. IEEE Journal on Selected Areas
in Communications, 2011. (Cited in page 87.)

[Kreutz 2015] D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E. Rothenberg,
S. Azodolmolky and S. Uhlig. Software-Defined Networking: A Comprehensive
Survey. Proceedings of the IEEE, vol. 103, no. 1, pages 14–76, 2015. (Cited in
page 57.)

[Küster 2007] Ulrich Küster, Birgitta König-Ries, Mirco Stern and Michael Klein.
DIANE: an integrated approach to automated service discovery, matchmaking
and composition. In Proceedings of the 16th international conference on World
Wide Web, pages 1033–1042, 2007. (Cited in page 19.)

[Lal 2017] Shankar Lal, Tarik Taleb and Ashutosh Dutta. NFV: Security threats and
best practices. IEEE Communications Magazine, vol. 55, no. 8, pages 211–217,
2017. (Cited in page 36.)

[Lee 2015] Seung-Ik Lee and Myung-Ki Shin. A self-recovery scheme for service
function chaining. In 2015 International Conference on Information and
Communication Technology Convergence (ICTC), pages 108–112. IEEE, 2015.
(Cited in pages 23 and 28.)

[Li 2021] Xi Li, Andres Garcia-Saavedra, Xavier Costa-Perez, Carlos J Bernardos, Car-
los Guimarães, Kiril Antevski, Josep Mangues-Bafalluy, Jorge Baranda, En-
gin Zeydan, Daniel Corujoet al. 5Growth: An End-to-End Service Platform
for Automated Deployment and Management of Vertical Services over 5G
Networks. IEEE Communications Magazine, vol. 59, no. 3, pages 84–90, 2021.
(Cited in pages 26 and 29.)

[Lin 2017] P. Lin, C. Wu and P. Shih. Optimal Placement of Network Security
Monitoring Functions in NFV-Enabled Data Centers. In International Sym-
posium on Cloud and Service Computing (SC2), pages 9–16, Los Alamitos,
CA, USA, nov 2017. IEEE Computer Society. (Cited in page 37.)

[Liu 2017] Junjie Liu, Wei Lu, Fen Zhou, Ping Lu and Zuqing Zhu. On dynamic service
function chain deployment and readjustment. IEEE Transactions on Network
and Service Management, vol. 14, no. 3, pages 543–553, 2017. (Cited in pages 24,
28, and 29.)

[Long 2015] J. Long, E. Shelhamer and T. Darrell. Fully convolutional networks for
semantic segmentation. In 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 3431–3440, June 2015. (Cited in page 19.)



Bibliography 107

[Luizelli 2018] Marcelo Caggiani Luizelli, Danny Raz and Yaniv Sa’ar. Optimizing
NFV chain deployment through minimizing the cost of virtual switching. In
IEEE INFOCOM 2018-IEEE Conference on Computer Communications, pages
2150–2158. IEEE, 2018. (Cited in pages 25, 28, and 29.)

[Mangues-Bafalluy 2019] Josep Mangues-Bafalluy, Jorge Baranda, Iñaki Pascual, Ri-
cardo Martínez, Luca Vettori, Giada Landi, Arturo Zurita, David Salama, Kiril
Antevski, Jorge Martín-Pérezet al. 5G-TRANSFORMER Service Orchestrator:
design, implementation, and evaluation. In 2019 European Conference on Net-
works and Communications (EuCNC), pages 31–36. IEEE, 2019. (Cited in
page 26.)

[Martin 2004] David Martin, Mark Burstein, Hobbset al. OWL-S: Semantic markup
for web services. W3C member submission, vol. 22, no. 4, 2004. (Cited in
page 19.)

[Martini 2016] Barbara Martini and Federica Paganelli. A service-oriented approach
for dynamic chaining of virtual network functions over multi-provider
software-defined networks. Future Internet, vol. 8, no. 2, page 24, 2016. (Cited
in pages 24 and 28.)

[Mazrekaj 2016] Artan Mazrekaj, Isak Shabani and Besmir Sejdiu. Pricing Schemes in
Cloud Computing: An Overview. 2016. (Cited in page 36.)

[Mechtri 2017] Marouen Mechtri, Chaima Ghribi, Oussama Soualah and Djamal Zegh-
lache. NFV orchestration framework addressing SFC challenges. IEEE Com-
munications Magazine, vol. 55, no. 6, pages 16–23, 2017. (Cited in pages 20
and 27.)

[Medhat 2016] Ahmed M Medhat, Tarik Taleb, Asma Elmangoush, Giuseppe A
Carella, Stefan Covaci and Thomas Magedanz. Service function chaining in
next generation networks: State of the art and research challenges. IEEE Com-
munications Magazine, vol. 55, no. 2, pages 216–223, 2016. (Cited in page 23.)

[Mijumbi 2016] Rashid Mijumbi, Joan Serrat, Juan-Luis Gorricho, Niels Bouten,
Filip De Turck and Raouf Boutaba. Network Function Virtualization:
State-of-the-Art and Research Challenges. IEEE Communications Surveys &
Tutorials, vol. 18, no. 1, pages 236–262, 2016. (Cited in pages 3 and 13.)

[Mohammed 2016] AA Mohammed, Molka Gharbaoui, Barbara Martini, Federica
Paganelli and Piero Castoldi. SDN controller for network-aware adaptive
orchestration in dynamic service chaining. In 2016 IEEE NetSoft Conference and
Workshops (NetSoft), pages 126–130. IEEE, 2016. (Cited in pages 23 and 28.)



108 Bibliography

[Morin 2020] Cedric Morin, Géraldine Texier, Christelle Caillouet, Gilles Desmangles
and Cao-Thanh Phan. Optimization of Network Services Embedding Costs over
Public and Private Clouds. In 2020 International Conference on Information
Networking (ICOIN), pages 360–365. IEEE, 2020. (Cited in pages 25 and 29.)

[ndl 2020] NDL OWL, January 2020. (Cited in pages 19 and 27.)

[nfv 2015] NFV, Network Functions Virtualisation. ETSI GS NFV-SEC 009 V1. 1.1
(2015-12). 2015. (Cited in page 36.)

[NFV 2017] Management NFV Release 2 and Network Service Templates Specification
Orchestration. ETSI GS NFV-IFA 014 V2.3.1 (2017-08), 2017. (Cited in pages 5,
15, and 57.)

[nfv 2018] Network Functions Virtualisation (NFV). ETSI GR NFV-IFA 012 V3.1.1
(2018-10). 2018. (Cited in page 4.)

[Nguyen 2017] Thi Minh Nguyen. Optimizing resource allocation in infrastructure
networks based on network function virtualization. PhD thesis, Université Pierre
et Marie Curie-Paris VI, 2017. (Cited in pages 82 and 87.)

[Nguyenphu 2018] Thinh Nguyenphu. SOL001:VNF Descriptor (VNFD) Overview.
techreport, ETSI, May 2018. (Cited in page 43.)

[Oliver 2018] I. Oliver, S. Panda, K. Wang and A. Kalliola. Modelling NFV concepts
with ontologies. pages 1–7, Feb 2018. (Cited in pages 4, 21, and 27.)

[ona 2021] Sep 2021. (Cited in page 12.)

[Ordanini 2008] Andrea Ordanini and Paolo Pasini. Service co-production and value
co-creation: The case for a service-oriented architecture (SOA). European Man-
agement Journal, vol. 26, no. 5, pages 289–297, 2008. (Cited in page 3.)

[osm ] OSM release. https://osm.etsi.org/, journal=OSM. (Cited in page 12.)

[Pace 2012] N. M. Pace and L. Zakaras. Moving Beyond Eyes-On Review: The Promise
of Computer-Categorized Review. In Where the money goes: Understanding
litigant expenditures for producing electronic discovery, chapter 5, pages 59–69.
Rand, 2012. (Cited in page 50.)

[Paganelli 2017] F. Paganelli, F. Paradiso, M. Gherardelli and G. Galletti. Network
service description model for VNF orchestration leveraging intent-based SDN
interfaces. In 2017 IEEE Conference on Network Softwarization (NetSoft), pages
1–5, 2017. (Cited in page 98.)

https://osm.etsi.org/


Bibliography 109

[Pei 2018] Jianing Pei, Peilin Hong, Kaiping Xue and Defang Li. Efficiently embedding
service function chains with dynamic virtual network function placement in
geo-distributed cloud system. IEEE Transactions on Parallel and Distributed
Systems, vol. 30, no. 10, pages 2179–2192, 2018. (Cited in pages 25, 28, and 29.)

[Peltz 2003] Chris Peltz. Web services orchestration and choreography. Computer,
vol. 36, no. 10, pages 46–52, 2003. (Cited in page 3.)

[Petcu 2013] Dana Petcu, Beniamino Martino, Salvatore Venticinque, Massimiliano
Rak, Tamás Máhr, Gorka Lopez, Fabrice Brito, Roberto Cossu, Miha Stopar,
Svatopluk Šperka and Vlado Stankovski. Experiences in building a mOSAIC
of clouds. Journal of Cloud Computing: Advances, Systems and Applications,
vol. 2, no. 1, page 12, 2013. (Cited in page 19.)

[Pfaff 2015] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou,
Jarno Rajahalme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelaret al.
The Design and Implementation of OpenvSwitch. In 12th USENIX symposium
on networked systems design and implementation (NSDI 15), pages 117–130,
2015. (Cited in page 66.)

[Powers 2011] Powers. Evaluation: From precision, recall and f-measure. Journal of
Machine Learning Technologies, vol. 2, no. 1, pages 37–63, 2011. (Cited in
page 50.)

[Quinn 2018] Paul Quinn, Uri Elzur and Carlos Pignataro. Network service header
(NSH). In RFC 8300. RFC Editor, 2018. (Cited in page 67.)

[Raissi 2019] F. Raissi, S. Yangui and F. Camps. Autonomous Cars, 5G Mobile
Networks and Smart Cities: Beyond the Hype. In 2019 IEEE 28th Interna-
tional Conference on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE), pages 180–185, 2019. (Cited in pages 58 and 74.)

[rdf 2020] Online, February 2020. (Cited in page 19.)

[Rosa 2015] Raphael Vicente Rosa, Mateus Augusto Silva Santos and Christian Es-
teve Rothenberg. MD2-NFV: The case for multi-domain distributed network
functions virtualization. In 2015 International Conference and Workshops on
Networked Systems (NetSys), pages 1–5. IEEE, 2015. (Cited in page 25.)

[rsd 2021] Relative standard deviation formula: RSD Calculator (excel template), Mar
2021. (Cited in page 89.)

[Salvadori 2017] I. Salvadori, B. Oliveira, A. Huf, E.C. Inacio and F. Siqueira. An
Ontology Alignment Framework for Data-Driven Microservices. In Proceedings



110 Bibliography

of the 19th International Conference on Information Integration and Web-Based
Applications & Services, 2017. (Cited in page 22.)

[Scheid 2016] Eder J Scheid, Cristian C Machado, Ricardo L dos Santos, Alberto E
Schaeffer-Filho and Lisandro Z Granville. Policy-based dynamic service chaining
in Network Functions Virtualization. In 2016 IEEE Symposium on Computers
and Communication (ISCC), pages 340–345. IEEE, 2016. (Cited in pages 24
and 28.)

[Segata 2013] Michele Segata, Renato Lo Cigno and Falko Dressler. Towards
communication strategies for platooning, 2013. (Cited in page 69.)

[Seog-Chan Oh 2006] Seog-Chan Oh, H. Kil, Dongwon Lee and S. R. T. Kumara.
Algorithms for Web Services Discovery and Composition Based on Syntactic
and Semantic Service Descriptions. In The 8th IEEE International Conference
on E-Commerce Technology and The 3rd IEEE International Conference on En-
terprise Computing, E-Commerce, and E-Services (CEC/EEE’06), pages 66–66,
2006. (Cited in page 19.)

[Shapiro 1987] Stuart C Shapiro and William J Rapaport. SNePS considered as a fully
intensional propositional semantic network. In The knowledge frontier, pages
262–315. Springer, 1987. (Cited in page 19.)

[sid 2013] TM Forum Information framework (SID). November 2013. (Cited in
page 20.)

[snd ] Sndlib. http://sndlib.zib.de/home.action. Accessed: 2022-01-15. (Cited
in page 87.)

[Soares 2014] Joao Soares, Miguel Dias, Jorge Carapinha, Bruno Parreira and Susana
Sargento. Cloud4nfv: A platform for virtual network functions. In 2014 IEEE
3Rd international conference on cloud networking (cloudnet), pages 288–293.
IEEE, 2014. (Cited in pages 20 and 27.)

[Song 2007] R. Song, Z. Luo, J-R. Wen, Y. Yu and H-W. Hon. Identifying ambiguous
queries in web search. In Proceedings of the 16th International Conference on
World Wide Web, WWW 2007, Banff, Alberta, Canada, May 8-12, 2007, pages
1169–1170, 2007. (Cited in page 47.)

[Souag 2015] A. Souag, C. Salinesi, Raúl Mazo and I. Comyn-Wattiau. A security
ontology for security requirements elicitation, pages 157–177. Springer Interna-
tional Publishing, 2015. (Cited in page 36.)

[Sowa 1987] John F. Sowa. Semantic Networks, 1987. (Cited in page 19.)

http://sndlib.zib.de/home.action


Bibliography 111

[Specification 2017] Committee Specification. TOSCA Simple Profile for
NetworkFunctions Virtualization (NFV) Version 1.0. May 2017. (Cited
in pages 4, 18, 20, and 27.)

[Sumra 2014] Irshad Ahmed Sumra, Halabi Bin Hasbullahet al. Effects of attackers
and attacks on availability requirement in vehicular network: a survey. In 2014
International Conference on Computer and Information Sciences (ICCOINS),
pages 1–6. IEEE, 2014. (Cited in page 70.)

[Sun 2017] Chen Sun, Jun Bi, Zhilong Zheng, Heng Yu and Hongxin Hu. NFP:
Enabling network function parallelism in NFV. In Proceedings of the Confer-
ence of the ACM Special Interest Group on Data Communication, pages 43–56,
2017. (Cited in pages 23 and 28.)

[Tang 2003] Chunqiang Tang, Zhichen Xu and Sandhya Dwarkadas. Peer-to-peer
information retrieval using self-organizing semantic overlay networks. In Pro-
ceedings of the 2003 conference on Applications, technologies, architectures, and
protocols for computer communications - SIGCOMM '03. ACM Press, 2003.
(Cited in page 19.)

[Tao 2017] Xiaofeng Tao, Yan Han, Xiaodong Xu, Ping Zhang and Victor C. M. Leung.
Recent advances and future challenges for mobile network virtualization. Science
China Information Sciences, vol. 60, no. 4, page 040301, Mar 2017. (Cited in
page 3.)

[tco 2015] vmware: total Cost of ownership Study Virtualizing the Mobile Core, 2015.
(Cited in page 17.)

[TeleGeography ] TeleGeography. COVID-19 Network Impact. (Cited in page 1.)

[Thomas 2007] Erl Thomas. SOA principles of service design. Boston: Prentice Hall,
vol. 37, pages 71–75, 2007. (Cited in page 3.)

[Torkzaban 2019] Nariman Torkzaban, Chrysa Papagianni and John S Baras.
Trust-aware service chain embedding. In 2019 Sixth International Conference
on Software Defined Systems (SDS), pages 242–247. IEEE, 2019. (Cited in
pages 26 and 29.)

[Torkzaban 2020] Nariman Torkzaban and John S Baras. Trust-aware service function
chain embedding: A path-based approach. In 2020 IEEE Conference on Network
Function Virtualization and Software Defined Networks (NFV-SDN), pages 31–
36. IEEE, 2020. (Cited in page 29.)

[Trabelsi 2007] S. Trabelsi, L. Gomez and Y. Roudier. Context-aware security policy
for the service discovery, volume 1, pages 477–482. 2007. (Cited in page 36.)



112 Bibliography

[Valcarenghi 2018] Luca Valcarenghi, Barbara Martini, Kiril Antevski, CJ Bernar-
dos, Giada Landi, Marco Capitani, Josep Mangues-Bafalluy, Ricardo Martínez,
Jorge Baranda, Iñaki Pascualet al. A framework for orchestration and federation
of 5G services in a multi-domain scenario. In Proceedings of the Workshop
on Experimentation and Measurements in 5G, pages 19–24, 2018. (Cited in
page 25.)

[van der Ham 2015] Jeroen van der Ham, József Stéger, Sándor Laki, Yiannos Kryftis,
Vasilis Maglaris and Cees de Laat. The NOVI information models. Future
Generation Computer Systems, vol. 42, pages 64 – 73, 2015. (Cited in pages 19
and 27.)

[Virtualisation 2014] Network Functions Virtualisation. Management and
Orchestration (GS/NFV-MAN-001), 2014. (Cited in pages 2, 4, 18, and 43.)

[Voigt 2018] Shaun Voigt, Catherine Howard, Dean Philp and Christopher Penny.
Representing and Reasoning About Logical Network Topologies. In Madalina
Croitoru, Pierre Marquis, Sebastian Rudolph and Gem Stapleton, editors,
Graph Structures for Knowledge Representation and Reasoning, pages 73–83,
Cham, 2018. Springer International Publishing. (Cited in page 19.)

[Walsh 2002] Aaron E Walsh. Uddi, soap, and wsdl: the web services specification
reference book. Prentice Hall Professional Technical Reference, 2002. (Cited in
page 3.)

[Wang 2015] Yang Wang, Phanvu Chau and Fuyu Chen. A framework for
security-aware virtual network embedding. In 2015 24th International Confer-
ence on Computer Communication and Networks (ICCCN), pages 1–7. IEEE,
2015. (Cited in pages 26 and 29.)

[Willner 2015] A. Willner, R. Loughnane and T. Magedanz. FIDDLE: Federated
Infrastructure Discovery and Description Language. In 2015 IEEE International
Conference on Cloud Engineering, pages 465–471, 2015. (Cited in pages 19
and 27.)

[Xilouris 2014] Georgios Xilouris, Eleni Trouva, Felicia Lobillo, João M Soares, Jorge
Carapinha, Michael J McGrath, George Gardikis, Pietro Paglierani, Evangelos
Pallis, Letterio Zuccaroet al. T-NOVA: A marketplace for virtualized network
functions. In 2014 European Conference on Networks and Communications
(EuCNC), pages 1–5. IEEE, 2014. (Cited in pages 20 and 27.)

[Yang 2004] Jian Yang and Mike P Papazoglou. Service components for managing the
life-cycle of service compositions. Information Systems, vol. 29, no. 2, pages
97–125, 2004. (Cited in page 13.)



Bibliography 113

[Yangui 2016] Sami Yangui, Roch H. Glitho and Constant Wette. Approaches to
end-user applications portability in the cloud: A survey. IEEE Communica-
tions Magazine, vol. 54, no. 7, pages 138–145, 2016. (Cited in page 4.)

[Zhang 2017] Yang Zhang, Bilal Anwer, Vijay Gopalakrishnan, Bo Han, Joshua Reich,
Aman Shaikh and Zhi-Li Zhang. Parabox: Exploiting parallelism for virtual
network functions in service chaining. In Proceedings of the Symposium on
SDN Research, pages 143–149, 2017. (Cited in pages 23 and 28.)

[Zsoka 2019] Zoltan Zsoka and Khalil Mebarkia. Layered Solutions for Dynamic
Service Chaining. In 2019 22nd Conference on Innovation in Clouds, Inter-
net and Networks and Workshops (ICIN), pages 292–296. IEEE, 2019. (Cited
in page 24.)


	Introduction
	Context
	Motivations and Challenges
	Research outline
	Research questions
	Objectives and contributions

	Thesis Organization

	Background and thesis positioning
	Introduction
	Background information
	ETSI specification for the NFV
	NFV paradigm and analogy with service computing
	ETSI-NFV management and orchestration aspects
	NFV restrain cost benefits

	The State-Of-The-Art
	Network service life-cycle management
	On network service design
	On network service instantiation and management
	On network service deployment and management

	Synthesis
	Summary

	A Semantic Virtualized Network Functions Description and Discovery Model
	Introduction
	A semantic approach for VNF description and discovery
	VIKING ontology for VNF description model
	VNF discovery model

	Mastermyr Chest architecture and implementation
	Proof-of-concept architecture
	Mastermyr Chest integration to ETSI NFV MANO

	Validation and evaluation
	Test collection
	Performance analysis
	Robustness evaluation

	Summary

	Agile and Dynamic Virtualized Network Functions Wiring in Network Services
	Introduction
	A novel dynamic and re-configurable VNF wiring in NS
	Motivating use case
	Requirements and foundations
	High-level architecture

	Dyvine architecture and implementation
	Proof-of-Concept
	Running prototype

	Validation and evaluation experiments
	Testbed settings
	Performance results and analysis
	Effectiveness validation
	Discussion

	Summary

	Resource Optimization for Network Service Deployment
	Introduction
	Resources model and NS embedding requests
	NSE problem formulation
	Heuristic NSE problem-solving
	Heuristic search for candidate paths
	Adjusting NSE formulation

	Dynamic pricing scheme for resource allocation
	Simulation and evaluation
	Parameter settings for simulation
	Performance and quality metrics
	Benchmarking
	Dynamic pricing impact analysis

	Summary

	Conclusion and perspectives
	Conclusion
	Overview on contributions
	Obtained results and lessons learned
	Potentials future work

	Scientific production
	Bibliography

