Multi-contact Locomotion of Legged Robots

Abstract : Locomotion of legged robots on arbitrary terrain using multiple contacts is yet an open problem. To tackle it, a common approach is to rely on reduced template models (e.g. the linear inverted pendulum). However, most of existing template models are based on some restrictive hypotheses that limit their range of applications. Moreover, reduced models are generally not able to cope with the constraints of the robot complete model, such as the kinematic limits. In this paper, we propose a complete solution relying on a generic template model, based on the centroidal dynamics, able to quickly compute multi-contact locomotion trajectories for any legged robot on arbitrary terrains. The template model relies on exact dynamics and is thus not limited by arbitrary assumption. We also propose a generic procedure to handle feasibility constraints due to the robot whole body as occupancy measures, and a systematic way to approximate them using off-line learning in simulation. An efficient solver is finally obtained by introducing an original second-order approximation of the centroidal wrench cone. The effectiveness and the versatility of the approach is demonstrated in several multi-contact scenarios with two humanoid robots both in reality and in simulation.
Type de document :
Article dans une revue
IEEE Transactions on Robotics, Institute of Electrical and Electronics Engineers (IEEE), In press
Liste complète des métadonnées

Littérature citée [37 références]  Voir  Masquer  Télécharger
Contributeur : Justin Carpentier <>
Soumis le : mardi 21 août 2018 - 16:20:36
Dernière modification le : vendredi 26 octobre 2018 - 10:33:56
Document(s) archivé(s) le : jeudi 22 novembre 2018 - 19:02:59


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01859108, version 1


Justin Carpentier, Nicolas Mansard. Multi-contact Locomotion of Legged Robots. IEEE Transactions on Robotics, Institute of Electrical and Electronics Engineers (IEEE), In press. 〈hal-01859108〉



Consultations de la notice


Téléchargements de fichiers