Functionalized double-walled carbon nanotubes for integrated gas sensors - LAAS - Laboratoire d'Analyse et d'Architecture des Systèmes Accéder directement au contenu
Thèse Année : 2017

Functionalized double-walled carbon nanotubes for integrated gas sensors

Nanotubes de carbone fonctionnalisés à double paroi pour capteurs de gaz intégrés

Résumé

We have successfully fabricated gas sensors based on chemically functionalized double-wall carbon nanotubes (DWCNTs) using a robust and low cost process. The DWCNTs were synthesized by catalytic chemical vapor deposition (CCVD) method. They were then purified before functionalization (oxidation, amination, and fluorination). The sensor devices were fabricated by soft lithography using PDMS (Poly-DiMethylSiloxane) stencils and liquid phase pipetting of a suspension of chemically functionalized DWCNTs in deionized water, rinsing and finally drying in a nitrogen flow. Each device (1 cm x 2 cm) is equipped with a set of 7 DWCNT based resistors. Each resistor can accommodate a precise chemical functionalization for targeting a specific gas species, allowing a multiplexed (up to 7) detection. Due to their small size and the possibility to fabricate them on soft substrates, they could be used for many kinds of applications including wearable devices. The electrical resistance of the produced resistors turned out to decrease with temperature, suggesting fluctuations induced tunneling conduction through the disordered network of metallic nanotubes. However, we have shown in our work that for realistic applications, gas sensing can be achieved without any temperature regulation of our devices, because the variations of electrical conductance caused by gas molecules adsorption are significantly larger than those caused by possible temperature fluctuations. The as fabricated devices exhibit at room temperature a metallic conducting behavior. Devices with a resistance less than 100 kΩ were selected for gas detection. Because the sensing principle is based on the direct measurement of the resistance, our scheme ensures low power consumption (<1 μW). Raw (not functionalized) DWCNTs-based gas sensors exhibited a low sensitivity to the tested analytes, including ethanol, acetone, ammonia and water vapor. Functionalized DWCNTs-based gas sensors exhibited a moderate sensitivity to ethanol, acetone and water vapor but the response to ammonia, even in the presence of additional water vapor, was excellent. In particular, oxidized DWCNTs based gas sensors exhibited a high stability in the case of prolonged and repeated gas exposures. The oxidized DWCNTs gas sensors were also able to detect ammonia vapor at sub-ppm concentration in the presence of water vapor at high concentration. We believe that the functional groups grafted to the DWCNTs modify the interaction between gas molecules and DWCNTs and that the induced charge transfer is responsible for the modification of the electrical conductivity. We have built a simple phenomenological model for the analysis of the sensing response curve. This model includes two components for the variations of electrical resistance during gas exposure, an exponential regime and a linear one. In particular, the time constant extracted from the exponential part of the response was found to be informative on devices' sensitivity and selectivity. Finally, we tested our sensors for realistic applications such as trace detection of ammonia, which could be easily detected while far below the detection threshold of human nose (0.04ppm) Due to the high stability, ease of fabrication (very simple design, use of low-cost technologies, integration on flexible substrates), robustness (detection in the presence of a large excess of water vapor and resilient to temperature fluctuations) and extremely low amounts of carbon nanotube required, we expect these results to have some potential for a wide range of mass applications in the field of wearable gas sensors for Information and Communication Technologies (ICT) industry.
Nous proposons dans ce travail une méthode robuste et bas-coût afin de fabriquer des détecteurs de gaz à base de Nanotubes de Carbone bi-parois (DWCNTs) chimiquement fonctionnalisés. Ces nano-objets (DWCNTs) sont synthétisés par dépôt catalytique en phase vapeur (CCVD), puis purifiés avant d’être oxydés ou bien fonctionnalisés par des terminaisons fluorées ou aminées. Les dispositifs de détection électriques ont été fabriqués par lithographie douce en utilisant un pochoir de PDMS (Poly-DiMethyl Siloxane) et un dépôt en phase liquide à la pipette d’une suspension aqueuse contenant les nanotubes fonctionnalisés, rinçage puis séchage à l’azote sec. Chaque dispositif (1 cm X 2 cm) est équipé d’un jeu de 7 résistors à base de DWCNTs. Chaque résistor peut accueillir des nanotubes fonctionnalisés par une entité chimique différente afin de cibler un gaz spécifique, permettant ainsi une détection multiplexée. En raison de leur faible encombrement et la possibilité de les fabriquer sur tout type de substrat y compris des substrats souples, ces détecteurs pourraient être utilisés pour une large gamme d’applications et notamment les détecteurs de gaz portatifs et intégrés. La résistance électrique des résistors s’avère décroître avec la température suggérant une conduction électrique gouvernée par l’effet tunnel et les fluctuations au sein du tapis désordonné de nanotubes de carbone. Nous avons cependant montré dans ce travail que pour des applications réelles de détection de gaz, une régulation thermique des dispositifs n’est pas nécessaire car les variations de résistance engendrées par l’adsorption de molécules de gaz sont significativement plus grandes que les variations causées par de possibles fluctuations de température. Les dispositifs produits présentent un caractère métallique à température ambiante et pour des applications de détection de gaz nous avons sélectionné des dispositifs présentant des résistances inférieures à 100 kΩ. Le principe de base de la détection de gaz étant basé sur la mesure directe de la résistance électrique du dispositif, la consommation électrique de ces dispositifs reste faible (<1 μW). La réponse des dispositifs à base de nanotubes de carbone non fonctionnalisés aux analytes testés (éthanol, acétone, ammoniac et vapeur d’eau) est faible. Les nanotubes de carbone fonctionnalisés présentent quant à eux, une réponse modérée à la vapeur d’eau, à l’éthanol et à l’acétone mais montrent une sensibilité excellente à l’ammoniac. En particulier, les nanotubes de carbone oxydés se sont avérés capables de détecter des concentrations sub-ppm d’ammoniac en présence de vapeur d’eau en excès et à température ambiante et ont montré une grande stabilité dans le temps même pour des expositions de gaz répétées. Nous pensons que les groupes chimiques fonctionnels ancrés à la surface des nanotubes de carbone modifient les interactions entre les molécules de gaz et les nanotubes et que le transfert de charges induit provoque les modifications de la conductance électrique du système. Nous avons construit un modèle phénoménologique pour analyser les réponses électriques de nos dispositifs lors de l’exposition d’un gaz. Ce modèle prend en compte une variation exponentielle de la résistance au cours du temps puis un régime d’accroissement linéaire de cette résistance. Nous montrons en particulier que la constante de temps extraite du régime exponentiel est très informative sur la sensibilité et la sélectivité du détecteur de gaz. Nous avons finalement testé nos dispositifs pour des applications représentatives comme par exemple la détection de traces d’ammoniac qui ont pu être aisément réalisées à des concentrations bien inférieures au seuil de détection du nez humain (0.04ppm). En raison de leur grande stabilité, facilité de fabrication (design très simple, technologies de fabrication bas coût, intégration sur substrats souples), robustesse (détection possible en présence de vapeur d’eau et résiliente aux fluctuations thermiques) et en raison de la faible quantité de nanotubes de Carbone nécessaire, nous pensons que nos résultats sont intéressants pour des applications de masse concernant des détecteurs de gaz portables pour l’industrie des technologies de l’information et de la communication.
Fichier principal
Vignette du fichier
YANG Lin.pdf (9.62 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

tel-01675535 , version 1 (04-01-2018)
tel-01675535 , version 2 (16-11-2018)

Identifiants

  • HAL Id : tel-01675535 , version 1

Citer

Lin Yang. Functionalized double-walled carbon nanotubes for integrated gas sensors. Micro and nanotechnologies/Microelectronics. Université toulouse 3 Paul Sabatier, 2017. English. ⟨NNT : ⟩. ⟨tel-01675535v1⟩
144 Consultations
55 Téléchargements

Partager

Gmail Facebook X LinkedIn More