Stability results for infinite-dimensional linear control systems subject to saturations

Swann Marx 1 Yacine Chitour 2 Christophe Prieur 3
1 LAAS-MAC - Équipe Méthodes et Algorithmes en Commande
LAAS - Laboratoire d'analyse et d'architecture des systèmes [Toulouse]
3 GIPSA-SYSCO - SYSCO
GIPSA-DA - Département Automatique
Abstract : This article deals with the stability analysis and the derivation of ISS-Lyapunov functions for infinitedimensional linear systems subject to saturations. Two cases are considered: 1) the saturation acts in the same space as the control space; 2) the saturation acts in another space, especially a Banach space. For the first case, an explicit ISS-Lyapunov function can be derived. For the second case, we prove the global asymptotic stability of the origin when considering all weak solutions.
Complete list of metadatas

https://hal.laas.fr/hal-01857265
Contributor : Swann Marx <>
Submitted on : Monday, October 29, 2018 - 1:19:14 PM
Last modification on : Friday, April 12, 2019 - 4:23:46 PM
Long-term archiving on : Wednesday, January 30, 2019 - 3:11:27 PM

Files

ecc_final_SM.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01857265, version 3
  • ARXIV : 1808.05370

Citation

Swann Marx, Yacine Chitour, Christophe Prieur. Stability results for infinite-dimensional linear control systems subject to saturations. European Control Conference (ECC 2018), Jun 2018, Limassol, Cyprus. ⟨hal-01857265v3⟩

Share

Metrics

Record views

79

Files downloads

18