Stability results for infinite-dimensional linear control systems subject to saturations - LAAS - Laboratoire d'Analyse et d'Architecture des Systèmes Access content directly
Conference Papers Year :

Stability results for infinite-dimensional linear control systems subject to saturations

Abstract

This article deals with the stability analysis and the derivation of ISS-Lyapunov functions for infinitedimensional linear systems subject to saturations. Two cases are considered: 1) the saturation acts in the same space as the control space; 2) the saturation acts in another space, especially a Banach space. For the first case, an explicit ISS-Lyapunov function can be derived. For the second case, we prove the global asymptotic stability of the origin when considering all weak solutions.
Fichier principal
Vignette du fichier
ecc_final_SM.pdf (303.3 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-01857265 , version 1 (14-08-2018)
hal-01857265 , version 2 (14-09-2018)
hal-01857265 , version 3 (29-10-2018)
hal-01857265 , version 4 (04-12-2018)

Identifiers

Cite

Swann Marx, Yacine Chitour, Christophe Prieur. Stability results for infinite-dimensional linear control systems subject to saturations. European Control Conference (ECC 2018), Jun 2018, Limassol, Cyprus. ⟨hal-01857265v3⟩
529 View
21 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More